
TriEmbed: Bridge the Gap between Text and Token Indices
with Embedding Reparameterization

Anonymous ACL submission

Abstract
The current paradigm of language modeling is a001
two-stage pipeline that first transforms raw text002
to token indices, where the distribution is then003
estimated. It inherently discards linguistic rela-004
tions between tokens during tokenization, creat-005
ing a fundamental gap. To address this, we pro-006
pose TriEmbed, a reparameterization method007
for embeddings that incorporates the morpho-008
logical relationships inherent in subword tok-009
enizer algorithms. Specifically, by organizing010
the vocabulary into a Trie structure, we can011
encode these relations and reparametrize the012
embeddings, facilitating the recovery of other013
linguistic relationships during training. Empiri-014
cal results across various settings demonstrate015
that TriEmbed outperforms conventional em-016
beddings from the perspective of scaling, while017
offering more linguistically informative token018
embeddings.019

1 Introduction020

In recent years, language modeling has undergone021

rapid advancements, unlocking unprecedented po-022

tential through large-scale scaling. The current023

paradigm of language modeling is a pipeline con-024

sisting of two decoupled components: a tokenizer025

and a language model. The tokenizer converts raw026

text, defined in the text space, into a sequence of027

token indices in the token index space, where the028

language model can operate in a differentiable man-029

ner. However, this transformation also introduces a030

fundamental gap: tokenization discards the linguis-031

tic relations between tokens (e.g., morphological032

variations such as "run" and "running" or synony-033

mous expressions like "big" and "large"), reducing034

them to mere numerical representations (i.e. token035

indices) with only identity relations preserved.036

Common practice in LLMs disregards the gap,037

relying on end-to-end training with the next to-038

ken prediction objective to implicitly recover these039

lost relationships. However, this process is uncon-040

trollable, possibly leading to problems including041

�������������

���

�����������

���������������

����������������

������������������

���������������

���������

��
	
������������

����������

�
��������������

�����������

������������

�����������������

���������

���������

������ �, ������

�

���� ������� �������� ���� ������� ��������

����

�������

��������

���� ������� ��������

�������

���� �����

����

�����

���

������

+ +

+

���� ������� �������� ���� ������� ��������

����

�������

��������

���� ������� ��������

�������

���� ����

�

����

�����

���

������

+ +

+��� ���

���������

���������

+ ����������������������

�������� ��������

Figure 1: (a) A subtree of token "m" in the Trie-
structured vocabulary. (b) Comparison between original
embeddings and our proposed TriEmbed. Each token is
assigned one embedding vector e(·) for the former and
one atomic vector a(·) for the latter as parameters.

representation degeneration (Gao et al., 2019), fre- 042

quency bias (Yu et al., 2022) and so on. Some 043

previous work attempts to include semantic rela- 044

tions by pretraining embedding modules (Minix- 045

hofer et al., 2022; Dobler and de Melo, 2023). Yet, 046

structural discrepancies between different represen- 047

tation spaces commonly induce domain shifts in 048

continual training, resulting in worse performance 049

than random initializations (Kim et al., 2024). 050

To bridge the gap, we propose a novel repa- 051

rameterization method for embedding modules, 052

TriEmbed, which incorporates the morphological 053

relations inherent in tokenizer algorithms. Subword 054

tokenizer builds on word formation morphology. 055

And its training process reflects morphological rela- 056

tions within vocabulary. We encode these relations 057

in ancestor-descendant connections within an im- 058

plicit Trie. Following the hierarchical structure of 059

the Trie, we derive each embedding from all its an- 060

cestors. Our method retains the benefits of random 061

initialization while seamlessly integrating induc- 062

tive bias about the morphological relations among 063

token indices. 064

We conduct extensive experiments to validate the 065

effectiveness of TriEmbed across different scales 066

of training corpora and model sizes. Notably, when 067

1

pretraining Pythia on FineWeb-Edu, TriEmbed068

achieves performance on par with conventional em-069

bedding modules while requiring about 70% of the070

model parameters or 90% of the pretraining corpus.071

Furthermore, a detailed analysis reveals that our072

approach significantly improves the morphology073

of representation space, offering more meaningful074

token embeddings.075

2 Background076

Language modeling aims to estimate the proba-077

bility p(s) of any given text string s ∈ Σ∗. Cur-078

rent paradigm follows a two-component pipeline079

consisting of a tokenizer and a language model.080

A tokenizer segments a text string s into tokens,081

then maps them to a sequence of token indices082

X = [x0, ...xN] ∈ Z∗. It provides an intermediate083

token index space, in which the language model084

can estimate the probability distribution pθ(xi|x<i)085

in a differentiable way.086

Tokenizer algorithm focuses on constructing a087

suitable vocabulary. LLMs predominantly adopt088

subword tokenizer such as BPE (Sennrich et al.,089

2016), which hypothesizes that complex words090

should be split into multiple subwords. For training,091

they begin with a base vocabulary (e.g. all Unicode092

characters), and iteratively merges the most fre-093

quent token pairs in training corpus as a new token094

to expand the vocabulary (see Appendix A for the095

pseudo-code). Therefore, the resulting vocabulary096

implicitly encodes a Trie1, as shown in Figure 1(a).097

Although the pipeline simplifies the training pro-098

cess for next token prediction, it also introduces099

a fundamental gap when transforming from the100

original text space to the token index space.101

To illustrate this issue, consider the word102

spelling challenge. A sample s= "model→103

mod e l" is tokenized as X= [id(model), id(→104

), id(_m), id(_o), id(_d), id(_e), id(_l)]. The105

morphological relations between different tokens106

(e.g. "model" and "_m") are lost, leading to107

frequent failure of LLMs in word spelling tasks108

(Karpathy, 2024).109

This issue extends beyond morphology and is110

inherent to the two-component pipeline. A wide111

range of linguistic relationships, including seman-112

tic, etymological, and derivational connections, are113

similarly discarded after tokenization, since lan-114

1We additionally consider an non-existing start-of-word
token as the prefix of all tokens in the vocabulary, hence
constructing a Trie.

guage models can only observe token indices with 115

identity relations left. 116

Common practice in LLMs tends to disregard the 117

gap, relying on end-to-end training with the next 118

token prediction objective to learn these linguistic 119

information implicitly. However, this process is 120

computational expensive. Moreover, the stochas- 121

tic nature of gradient-based algorithm makes the 122

training process uncontrollable, leading to severe 123

problems such as representation degeneration (Gao 124

et al., 2019; Biś et al., 2021) and frequency bias 125

(Schick and Schütze, 2020; Gong et al., 2018; Yu 126

et al., 2022). Another line of work (Minixhofer 127

et al., 2022; Dobler and de Melo, 2023) tries to ini- 128

tialize embeddings with pretrained weights to par- 129

tially recover the missing relations among tokens in 130

vocabulary. However, these pretrained embeddings 131

often exhibit structural discrepancy with the final 132

representation space of the language model. For 133

instance, they tend to have significantly larger vari- 134

ance magnitudes (Kim et al., 2024), which makes 135

the subsequent training difficult. More related work 136

is presented in Appendix B. 137

3 Method 138

As discussed in the previous section, the transfor- 139

mation from text space to token index space dis- 140

cards linguistic relationships between tokens, in- 141

troducing a fundamental gap. To address this, we 142

aim to leverage the inductive bias inherent in the 143

tokenizer to recover the lost information during 144

tokenization. 145

The subword tokenizer draws inspiration from 146

Word Formation Morphology (Pounder, 2000; 147

wfm, 1986; Görlach, 2003), a field that studies 148

the structure of words in terms of morphemes. And 149

its iterative merging process mirrors the word for- 150

mation process where words are constructed by 151

sequentially adding affixes to stems. As such, an 152

inherent morphological relation exists among the 153

resulting vocabulary. 154

By reorganizing the vocabulary into a Trie struc- 155

ture, this morphological information is captured 156

within the ancestor-descendant relationships of the 157

tree. We hypothesize that, the ancestor-descendant 158

relationship can serve as a foundation for the intri- 159

cate linguistic relations among tokens, facilitating 160

the restoration of other relations during training. 161

Building on the hypothesis, we propose 162

TriEmbed, a novel reparameterization approach 163

for the embedding module, which incorporates the 164

2

���������������������� ����������������������

���������������������
 �	�������������������

������
����������������� ������
�����������������

������
����������������
 ������
����������������

��������
��������
������������

��
���
��������
����� ������������� �����

�
��

Figure 2: Scalability of different embeddings. (a-d) Pythia-410m and GPT2-large trained on different size of dataset.
(e-h) Different scales of Pythia and GPT2 trained on 0.5B tokens. The blue and orange curves represent the scaling
laws of TriEmbed and original embedding correspondingly, with fitting error shown on the right of each curve.

inductive bias about the Trie structure among to-165

kens. Given a token, we derive its embedding from166

those of its ancestors. Specifically, we first assign167

each token with a unique atomic vector a(·), then168

define the embedding of a token as the cumula-169

tive sum of the atomic vectors of all its ancestors170

and its own, i.e. e(v) =
∑

u∈ancestors(v) or u=v a(u).171

This summation process follows a traversal from172

the root of the Trie to the current node, reflecting173

the word formation process in which affixes are174

progressively added to a stem. The method is illus-175

trated in Figure 1(b).176

A key advantage of our approach is that it does177

not introduce additional parameters, maintaining178

parameter efficiency. Additional computational179

costs are also minimal due to simplicity of summa-180

tion. Despite its simplicity, TriEmbed still brings181

significant improvements, which we will empiri-182

cally demonstrate in the following experiments.183

4 Experiments184

4.1 Settings185

Our experiments are conducted on two widely186

used pretraining datasets including FineWeb-Edu187

(Penedo et al., 2024) and CodeParrot (Tunstall188

et al., 2022). We consider three different series of189

language model architectures including Pythia (Bi-190

derman et al., 2023), GPT2 (Radford et al., 2019)191

and Qwen2.5 (Qwen et al., 2025). Notably, all192

models are trained from scratch, and any references193

to model names refer to architectures rather than 194

pretrained weights. Unless stated, we adopt Pythia- 195

410m and GPT2-large as the default model config- 196

urations and use a 0.5B-token subset of FineWeb- 197

Edu as the default dataset. More details about ex- 198

perimental settings are presented in Appendix C. 199

4.2 Scalability of TriEmbed 200

We evaluate the scalability of TriEmbed across 201

varying model and dataset sizes. We fit both model 202

scaling laws and data scaling laws on the experi- 203

mental results using Huber loss minimization, fol- 204

lowing Hoffmann et al. (2022). The scaling law fits 205

well in our experimental results with fitting error 206

less than 0.0001. The results for Pythia and GPT2 207

are presented in Figure 2, while those for Qwen2.5 208

are included in Appendix D. 209

It is evident that the fitted scaling curves of 210

TriEmbed are consistently below those of con- 211

ventional embedding modules. Notably, a Pythia 212

model with TriEmbed achieves performance com- 213

parable to a conventional 2.8B-parameter Pythia 214

model while requiring only 70% parameters. Fur- 215

thermore, under an identical Pythia-410M config- 216

uration, TriEmbed requires only 90% of the text 217

corpus to match the performance of a conventional 218

one trained on 1B tokens. 219

Furthermore, we also evaluate the transfer learn- 220

ing capability of TriEmbed by finetuning it on 221

SAMSum, a dialogue summarization dataset. The 222

3

Figure 3: Visualization of different token embeddings
through a 2-dimensional PCA projection. The color gra-
dient corresponds to token frequency in training corpus,
with darker shades indicating lower frequencies.

results shown in Table 1 further highlight the supe-223

riority of TriEmbed.224

4.3 Ablation of Inductive Bias225

The proposed reparameterization not only incorpo-226

rates morphological relationships within the vocab-227

ulary but also alters some gradient dynamics. To228

investigate the reasons for the improved scaling per-229

formance of TriEmbed, we conduct experiments230

with other factors ablated. Specifically, we pre-231

serve the topological structure of the Trie and ran-232

domly shuffle all token indices, thereby disrupting233

the ground-truth ancestor-descendant relationships.234

The variant denoted as TriEmbedrand now shares235

a similar gradient dynamics with TriEmbed, but236

introduces incorrect inductive bias. As shown in237

Figure 2, results of TriEmbedrand closely aligns238

with the original embedding module under all set-239

tings. This observation strongly suggests that the240

performance gains stem primarily from the morpho-241

logical relations between tokens in the tokenizer,242

further demonstrating our hypothesis.243

4.4 Analysis of Embedding244

Visualization. We visualize the resulting token em-245

beddings of different embedding modules in Figure246

3. Consistent with the representation degeneration247

problem in Gao et al. (2019), both original em-248

beddings and TriEmbedrand degenerate into narrow249

cones in the space. Moreover with color indicating250

token frequency, we find that rare tokens and popu-251

lar tokens are heavily clustered and lie in different252

subregions of the space, aligned with the observa-253

tion of frequency bias in Gong et al. (2018). In con-254

trast, TriEmbed results in a significantly more uni-255

form distribution over the embedding space, with256

Model BERTScore Rouge1 Rouge2 RougeL

Pythia-410m 84.40 17.27 6.97 15.70
Pythia-410m w/ TriEmbed 84.32 18.08 7.31 15.57

GPT2-large 84.33 31.62 13.65 26.64
GPT2-large w/ TriEmbed 87.87 38.21 16.74 31.69

Table 1: Fine-tuning performance of TriEmbed on
SAMSum. All models are pretrained on FineWeb-Edu
(0.5B tokens subset) first.

Model Rare Words Word Analogy
Embedding Original TriEmbed Original TriEmbed

GPT2 52.41 54.93 30.55 47.45
GPT2-medium 55.50 56.11 24.75 43.77

GPT2-large 56.88 53.66 20.65 50.14
GPT2-xl 55.61 50.90 17.02 63.51

Pythia-70m 46.00 51.62 36.84 65.73
Pythia-160m 50.86 57.49 28.95 49.88
Pythia-410m 52.07 53.34 23.69 53.78

Pythia-1b 54.99 55.64 13.18 37.83
Pythia-1.4b 52.00 56.14 13.21 36.09
Pythia-2.8b 48.36 50.93 10.59 52.69

Table 2: Embedding performance on benchmarks for
word similarity and analogy. All models are pretrained
on FineWeb-Edu (0.5B tokens subset).

high-frequency and low-frequency tokens evenly 257

mixed together. This suggests that our approach 258

mitigates both representation degeneration and fre- 259

quency bias, encouraging a better embedding space 260

structure. 261

Word embedding benchmarks. We also vali- 262

date the quality of learned token embeddings on 263

standard word embedding benchmarks, includ- 264

ing Stanford Rare Words (Luong et al., 2013) 265

and Word Analogy (Mikolov et al., 2013). Re- 266

sults presented in Table 2 highlight the superiority 267

of TriEmbed, demonstrating our hypothesis that 268

ancestor-descendant relations can serve as a foun- 269

dation for learning other linguistic relations more 270

effectively. 271

5 Conclusions 272

In this work, we review the gap between text space 273

and token index space inherent in the current two- 274

component language modeling pipeline. We intro- 275

duce TriEmbed, a reparameterization method for 276

the embedding module that incorporates morpho- 277

logical information from the tokenizer algorithm. 278

Extensive experiments demonstrate the effective- 279

ness of TriEmbed particularly in terms of scala- 280

bility, suggesting a promising direction for future 281

large-scale pretraining of language models. 282

4

Limitations283

The gap between token index space and text space284

is inherent to the current two-component pipeline285

paradigm. While TriEmbed partially mitigates this286

issue, it cannot fully close the gap without aban-287

doning the tokenization process.288

Additionally, our experiments are limited to pre-289

training on small-scale models with fewer than 3290

billion parameters due to resource limits. While re-291

sults of our experiments have already demonstrated292

clear advantages of TriEmbed, scaling up the exper-293

iments to larger models and training corpus would294

provide more robust validation, which we leave as295

future work.296

References297

1986. Chapter III: Word formation in generative mor-298
phology, pages 37–56. De Gruyter Mouton, Berlin,299
Boston.300

Stella Biderman, Hailey Schoelkopf, Quentin Anthony,301
Herbie Bradley, Kyle O’Brien, Eric Hallahan, Mo-302
hammad Aflah Khan, Shivanshu Purohit, USVSN Sai303
Prashanth, Edward Raff, Aviya Skowron, Lintang304
Sutawika, and Oskar van der Wal. 2023. Pythia:305
A suite for analyzing large language models across306
training and scaling. Preprint, arXiv:2304.01373.307

Daniel Biś, Maksim Podkorytov, and Xiuwen Liu. 2021.308
Too Much in Common: Shifting of Embeddings in309
Transformer Language Models and its Implications.310
In Proceedings of the 2021 Conference of the North311
American Chapter of the Association for Computa-312
tional Linguistics: Human Language Technologies,313
pages 5117–5130, Online. Association for Computa-314
tional Linguistics.315

Konstantin Dobler and Gerard de Melo. 2023. FOCUS:316
Effective Embedding Initialization for Monolingual317
Specialization of Multilingual Models. In Proceed-318
ings of the 2023 Conference on Empirical Methods in319
Natural Language Processing, pages 13440–13454,320
Singapore. Association for Computational Linguis-321
tics.322

Jun Gao, Di He, Xu Tan, Tao Qin, Liwei Wang, and323
Tie-Yan Liu. 2019. Representation Degeneration324
Problem in Training Natural Language Generation325
Models. Preprint, arXiv:1907.12009.326

Chengyue Gong, Di He, Xu Tan, Tao Qin, Liwei327
Wang, and Tie-Yan Liu. 2018. FRAGE: Frequency-328
Agnostic Word Representation. In Advances in Neu-329
ral Information Processing Systems, volume 31. Cur-330
ran Associates, Inc.331

Manfred Görlach. 2003. 7. Morphology and word for-332
mation, pages 75–92. John Benjamins Publishing333
Company.334

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, 335
Elena Buchatskaya, Trevor Cai, Eliza Rutherford, 336
Diego de Las Casas, Lisa Anne Hendricks, Johannes 337
Welbl, Aidan Clark, Tom Hennigan, Eric Noland, 338
Katie Millican, George van den Driessche, Bogdan 339
Damoc, Aurelia Guy, Simon Osindero, Karen Si- 340
monyan, Erich Elsen, Jack W. Rae, Oriol Vinyals, 341
and Laurent Sifre. 2022. Training compute-optimal 342
large language models. Preprint, arXiv:2203.15556. 343

Andrej Karpathy. 2024. Let’s build the gpt tokenizer. 344

Ha Young Kim, Niranjan Balasubramanian, and 345
Byungkon Kang. 2024. On Initializing Trans- 346
formers with Pre-trained Embeddings. Preprint, 347
arXiv:2407.12514. 348

Thang Luong, Richard Socher, and Christopher Man- 349
ning. 2013. Better word representations with recur- 350
sive neural networks for morphology. In Proceed- 351
ings of the Seventeenth Conference on Computational 352
Natural Language Learning, pages 104–113, Sofia, 353
Bulgaria. Association for Computational Linguistics. 354

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey 355
Dean. 2013. Efficient Estimation of Word Represen- 356
tations in Vector Space. Preprint, arXiv:1301.3781. 357

Benjamin Minixhofer, Fabian Paischer, and Navid Rek- 358
absaz. 2022. WECHSEL: Effective initialization of 359
subword embeddings for cross-lingual transfer of 360
monolingual language models. In Proceedings of 361
the 2022 Conference of the North American Chap- 362
ter of the Association for Computational Linguistics: 363
Human Language Technologies, pages 3992–4006, 364
Seattle, United States. Association for Computational 365
Linguistics. 366

Jiaqi Mu and Pramod Viswanath. 2018. All-but-the-Top: 367
Simple and Effective Postprocessing for Word Repre- 368
sentations. In International Conference on Learning 369
Representations. 370

Guilherme Penedo, Hynek Kydlíček, Loubna Ben al- 371
lal, Anton Lozhkov, Margaret Mitchell, Colin Raffel, 372
Leandro Von Werra, and Thomas Wolf. 2024. The 373
fineweb datasets: Decanting the web for the finest 374
text data at scale. Preprint, arXiv:2406.17557. 375

Amanda Pounder. 2000. Process and Paradigms in 376
Word-Formation Morphology. De Gruyter Mouton, 377
Berlin, New York. 378

Qwen, :, An Yang, Baosong Yang, Beichen Zhang, 379
Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li, 380
Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, 381
Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Yang, 382
Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, 383
Keming Lu, Keqin Bao, Kexin Yang, Le Yu, Mei Li, 384
Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji 385
Lin, Tianhao Li, Tianyi Tang, Tingyu Xia, Xingzhang 386
Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang 387
Zhang, Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru 388
Zhang, and Zihan Qiu. 2025. Qwen2.5 technical 389
report. Preprint, arXiv:2412.15115. 390

5

https://doi.org/doi:10.1515/9783110877328.37
https://doi.org/doi:10.1515/9783110877328.37
https://doi.org/doi:10.1515/9783110877328.37
https://arxiv.org/abs/2304.01373
https://arxiv.org/abs/2304.01373
https://arxiv.org/abs/2304.01373
https://arxiv.org/abs/2304.01373
https://arxiv.org/abs/2304.01373
https://doi.org/10.18653/v1/2021.naacl-main.403
https://doi.org/10.18653/v1/2021.naacl-main.403
https://doi.org/10.18653/v1/2021.naacl-main.403
https://doi.org/10.18653/v1/2023.emnlp-main.829
https://doi.org/10.18653/v1/2023.emnlp-main.829
https://doi.org/10.18653/v1/2023.emnlp-main.829
https://doi.org/10.18653/v1/2023.emnlp-main.829
https://doi.org/10.18653/v1/2023.emnlp-main.829
https://doi.org/10.48550/arXiv.1907.12009
https://doi.org/10.48550/arXiv.1907.12009
https://doi.org/10.48550/arXiv.1907.12009
https://doi.org/10.48550/arXiv.1907.12009
https://doi.org/10.48550/arXiv.1907.12009
https://doi.org/doi:10.1075/tlrp.7.11mor
https://doi.org/doi:10.1075/tlrp.7.11mor
https://doi.org/doi:10.1075/tlrp.7.11mor
https://arxiv.org/abs/2203.15556
https://arxiv.org/abs/2203.15556
https://arxiv.org/abs/2203.15556
https://www.youtube.com/watch?v=zduSFxRajkE
https://doi.org/10.48550/arXiv.2407.12514
https://doi.org/10.48550/arXiv.2407.12514
https://doi.org/10.48550/arXiv.2407.12514
https://aclanthology.org/W13-3512/
https://aclanthology.org/W13-3512/
https://aclanthology.org/W13-3512/
https://doi.org/10.48550/arXiv.1301.3781
https://doi.org/10.48550/arXiv.1301.3781
https://doi.org/10.48550/arXiv.1301.3781
https://doi.org/10.18653/v1/2022.naacl-main.293
https://doi.org/10.18653/v1/2022.naacl-main.293
https://doi.org/10.18653/v1/2022.naacl-main.293
https://doi.org/10.18653/v1/2022.naacl-main.293
https://doi.org/10.18653/v1/2022.naacl-main.293
https://arxiv.org/abs/2406.17557
https://arxiv.org/abs/2406.17557
https://arxiv.org/abs/2406.17557
https://arxiv.org/abs/2406.17557
https://arxiv.org/abs/2406.17557
https://doi.org/doi:10.1515/9783110814378
https://doi.org/doi:10.1515/9783110814378
https://doi.org/doi:10.1515/9783110814378
https://arxiv.org/abs/2412.15115
https://arxiv.org/abs/2412.15115
https://arxiv.org/abs/2412.15115

Alec Radford, Jeff Wu, Rewon Child, David Luan,391
Dario Amodei, and Ilya Sutskever. 2019. Language392
models are unsupervised multitask learners.393

Timo Schick and Hinrich Schütze. 2020. Rare Words: A394
Major Problem for Contextualized Embeddings and395
How to Fix it by Attentive Mimicking. Proceedings396
of the AAAI Conference on Artificial Intelligence,397
34(05):8766–8774.398

Rico Sennrich, Barry Haddow, and Alexandra Birch.399
2016. Neural machine translation of rare words with400
subword units. In Proceedings of the 54th Annual401
Meeting of the Association for Computational Lin-402
guistics (Volume 1: Long Papers), pages 1715–1725,403
Berlin, Germany. Association for Computational Lin-404
guistics.405

L. Tunstall, L. von Werra, and T. Wolf. 2022. Natural406
Language Processing with Transformers: Building407
Language Applications with Hugging Face. O’Reilly408
Media.409

Dilin Wang, Chengyue Gong, and Qiang Liu. 2019a.410
Improving Neural Language Modeling via Adversar-411
ial Training. In Proceedings of the 36th International412
Conference on Machine Learning, pages 6555–6565.413
PMLR.414

Lingxiao Wang, Jing Huang, Kevin Huang, Ziniu Hu,415
Guangtao Wang, and Quanquan Gu. 2019b. Improv-416
ing Neural Language Generation with Spectrum Con-417
trol. In International Conference on Learning Repre-418
sentations.419

Sangwon Yu, Jongyoon Song, Heeseung Kim, Seong-420
min Lee, Woo-Jong Ryu, and Sungroh Yoon. 2022.421
Rare Tokens Degenerate All Tokens: Improving Neu-422
ral Text Generation via Adaptive Gradient Gating for423
Rare Token Embeddings. In Proceedings of the 60th424
Annual Meeting of the Association for Computational425
Linguistics (Volume 1: Long Papers), pages 29–45,426
Dublin, Ireland. Association for Computational Lin-427
guistics.428

A BPE Algorithm429

Algorithm 1 Byte-pair Encoding
Input: Training corpus D, Target vocab size k,

Base vocabulary V
Output: Final vocabulary V
while |V|<k do

(tl, tr)← most frequent bigram in D.
tnew ← concat(tl, tr)
V ← V + {tnew}
Replace all occurrence of (tl, tr) with tnew
in D

end
return V

B Extended Related Work 430

Gao et al. (2019) observe that language model- 431

ing trained with next-token-prediction loss using 432

gradient descent commonly leads to token embed- 433

dings degenerating to a narrow cone. This phe- 434

nomenon, named the representation degeneration 435

problem, indicates an overall similarity among em- 436

beddings, leading to decreased expressiveness of 437

token embeddings. Therefore, it is difficult for the 438

model to learn linguistic relationships between the 439

tokens and to generate high quality texts. Existing 440

studies addressing this problem by applying post- 441

processing (Mu and Viswanath, 2018; Biś et al., 442

2021) or regularization (Gao et al., 2019; Wang 443

et al., 2019b,a) directly to constraint the embedding 444

space. Our proposed TriEmbed doesn’t explicitly 445

constraint the embedding space. The reparameteri- 446

zation automatically change the gradient dynamics, 447

mitigating this problem. 448

Frequency bias in embedding space is another 449

problem. Gong et al. (2018) finds that rare words 450

and frequent words commonly occupy different 451

sub-regions of the embedding space. The reason 452

stems from the gradient descent with softmax. Be- 453

cause of the low sampling rates of rare words, their 454

token embeddings are merely updates, leading to 455

under-estimation. According to their observation, 456

the moving distance of the embedding for a popular 457

word is twice longer than that of a rare word during 458

training. Yu et al. (2022) mitigate this problem by 459

gating a specific part of the gradient of rare words. 460

Similarly, TriEmbed also mitigates the problem via 461

altering gradient dynamics. Since the token embed- 462

dings are now dependent, rare token embeddings 463

are more actively updated by the gradients of their 464

descendants. 465

C Experimental Details 466

Our experiments are conduct on two different 467

datasets, including FineWeb-Edu (Penedo et al., 468

2024) and CodeParrot (Tunstall et al., 2022). 469

FineWeb-Edu is a popular English pretraining 470

dataset filtered by an educational quality classi- 471

fier for our main experiments. CodeParrot is also a 472

commonly used code pretraining dataset consist of 473

5,361,373 Python files crawled from Github. For 474

both datasets, we chunk the corpus into samples 475

of 512 sequence length. In the data scaling experi- 476

ments, we randomly sampled five subsets with 1B, 477

0.75B, 0.5B, 0.375B and 0.25B tokens respectively. 478

We consider three different series of language 479

6

https://api.semanticscholar.org/CorpusID:160025533
https://api.semanticscholar.org/CorpusID:160025533
https://api.semanticscholar.org/CorpusID:160025533
https://doi.org/10.1609/aaai.v34i05.6403
https://doi.org/10.1609/aaai.v34i05.6403
https://doi.org/10.1609/aaai.v34i05.6403
https://doi.org/10.1609/aaai.v34i05.6403
https://doi.org/10.1609/aaai.v34i05.6403
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P16-1162
https://doi.org/10.18653/v1/P16-1162
https://books.google.com.sg/books?id=pNBpzwEACAAJ
https://books.google.com.sg/books?id=pNBpzwEACAAJ
https://books.google.com.sg/books?id=pNBpzwEACAAJ
https://books.google.com.sg/books?id=pNBpzwEACAAJ
https://books.google.com.sg/books?id=pNBpzwEACAAJ
https://doi.org/10.18653/v1/2022.acl-long.3
https://doi.org/10.18653/v1/2022.acl-long.3
https://doi.org/10.18653/v1/2022.acl-long.3
https://doi.org/10.18653/v1/2022.acl-long.3
https://doi.org/10.18653/v1/2022.acl-long.3

��������
��������

�����������
��	����������

�����������
���
������
� �����������
���
������
�

�����������
��	����������

����������������
���� �
����������� �����

��

Figure 4: Scalability of different embeddings. (a)(b) Qwen-2.5 trained on different size of dataset. (c)(d) Different
scales of Qwen-2.5 trained on 0.5B tokens. The blue and orange curves represent the scaling laws of TriEmbed and
original embedding correspondingly.

model architectures including Pythia (Biderman480

et al., 2023), GPT2 (Radford et al., 2019) and481

Qwen2.5 (Qwen et al., 2025). All models are482

weight tied by default.483

For all experiments, we train the model from484

scratch. The training batch size is 128 and the485

training epoch is 1. We set the learning rate to 1e-4.486

All loss reported in this work is calculated on a test487

dataset of 5,000,000 tokens.488

D Scalibility of TriEmbed on Qwen2.5489

The scaling experimental results of Qwen2.5 series490

are shown in Figure 4, which present similar pat-491

terns to those of GPT2 and Pythia. Specifically, we492

add a Qwen-0.25B configuration by scaling down493

Qwen-0.5B.494

7

	Introduction
	Background
	Method
	Experiments
	Settings
	Scalability of TriEmbed
	Ablation of Inductive Bias
	Analysis of Embedding

	Conclusions
	BPE Algorithm
	Extended Related Work
	Experimental Details
	Scalibility of TriEmbed on Qwen2.5

