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Abstract

Establishing visual correspondences under large intra-
class variations, which is often referred to as semantic cor-
respondence or semantic matching, remains a challeng-
ing problem in computer vision. Despite its significance,
however, most of the datasets for semantic correspondence
are limited to a small amount of image pairs with similar
viewpoints and scales. In this paper, we present a new
large-scale benchmark dataset of semantically paired im-
ages, SPair-71k, which contains 70,958 image pairs with
diverse variations in viewpoint and scale. Compared to
previous datasets, it is significantly larger in number and
contains more accurate and richer annotations. We be-
lieve this dataset will provide a reliable testbed to study
the problem of semantic correspondence and will help to
advance research in this area. We provide the results of
recent methods on our new dataset as baselines for fur-
ther research. Our benchmark is available online at http:
//cvlab.postech.ac.kr/research/SPair-71k/.

1. Motivation
The problem of semantic correspondence aims at es-

tablishing visual correspondences between images depict-
ing different instances of the same object or scene cate-
gory [3, 7]. Unlike other conventional problems of visual
correspondence such as stereo matching, optical flow, and
wide-baseline matching, it inherently involves a variety of
intra-class variations, which makes the problem notoriously
challenging. With growing interest in semantic correspon-
dence, several annotated benchmarks are now available.
Due to the high expense of ground-truth annotations for se-
mantic correspondence, early benchmarks [1, 6] only sup-
port indirect evaluation using a surrogate evaluation met-
ric rather than direct matching accuracy. For example, the
Caltech-101 dataset in [6] provides binary mask annota-
tions of objects of interest for 1,515 pairs of images and
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View-point diff.: Medium
Scale diff.: Easy
Truncation: Target truncated
Occlusion: None
Keypoints: 8

View-point diff.: Medium
Scale diff.: Medium
Truncation: Source truncated
Occlusion: None
Keypoints: 8

Figure 1. SPair-71k data statistics and example pairs with its an-
notations. Best viewed in electronic form.

the accuracy of mask transfer is evaluated as a rough ap-
proximation to that of matching. Recently, Ham et al. [3, 4]
and Taniai et al. [13] have introduced datasets with ground-
truth correspondences. Since then, PF-WILLOW [3] and
PF-PASCAL [4] have been used for evaluation in many pa-
pers. They contain 900 and 1,300 image pairs, respectively,
with keypoint annotations for semantic parts.

All previous datasets, however, have several drawbacks:
First, the amount of data is not sufficient to train and test
a large model. Second, image pairs do not display much
variability in viewpoint, scale, occlusion, and truncation.
Third, the annotations are often limited to either keypoints
or object segmentation masks, which hinders in-depth anal-
ysis. Fourth, the datasets have no clear splits for train-
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Type View-point diff. Scale diff. Truncation diff. Occlusion diff.
easy medi hard easy medi hard none src tgt both none src tgt both

Train 26,466 21,646 5,228 29,248 16,184 7,908 29,184 9,796 9,796 4,564 35,330 7,737 7,737 2,536
Val 2,862 2,016 506 2,880 1,570 934 2,744 1,047 1,047 546 3,760 722 722 180
Test 6,654 4,474 1,106 6,458 3,794 1,982 7,050 2,166 2,166 852 8,166 1,806 1,806 456
All 35,982 28,136 6,840 38,586 21,548 10,824 38,978 13,009 13,009 5,962 47,256 10,265 10,265 3,172

Table 1. Distribution of SPair-71k in terms of difficulty labels.

Category Train Val Test All
aeroplane 2,924 304 690 3,918

bicycle 2,946 334 650 3,930
bird 3,080 272 702 4,054
boat 2,936 302 702 3,940

bottle 2,448 374 870 3,692
bus 2,708 250 644 3,602
car 2,960 274 564 3,798
cat 3,306 272 600 4,178

chair 3,060 306 646 4,012
cow 3,118 272 640 4,030
dog 3,192 306 600 4,098

horse 3,136 306 600 4,042
motorbike 3,180 238 702 4,120

person 3,066 306 650 4,022
potted plant 2,446 380 862 3,688

sheep 3,140 240 664 4,044
train 2,752 342 756 3,850

tv/monitor 2,942 306 692 3,940
total 53,340 5,384 12,234 70,958

Table 2. Distribution of SPair-71k in terms of category labels.

ing, validation, and testing. Due to this, recent evaluations
in [5, 10, 11] have been done with different dataset splits of
PF-PASCAL. Furthermore, the splits are disjoint in terms
of image pairs, but not images: some images are shared be-
tween training and testing data.

To resolve these issues, we introduce a new dataset,
SPair-71k, consisting of total 70,958 pairs of images from
PASCAL 3D+ [14] and PASCAL VOC 2012 [2]. The
dataset is significantly larger with rich annotations and
clearly organized for learning. In particular, several types
of useful annotations are available: keypoints of semantic
parts, object segmentation masks, bounding boxes, view-
point, scale, truncation, and occlusion differences for im-
age pairs, etc. Figure 1 shows the dataset statistics in
pie chart forms and sample image pairs with their anno-
tations. Our benchmark is available online at http://
cvlab.postech.ac.kr/research/SPair-71k/.

∗This article is extended from section 4 of our recent pa-
per [8] to provide the details of the dataset and more results.

2. Dataset generation and annotation
We have created the SPair-71k dataset using 1,800 im-

ages from 18 categories of PASCAL VOC [2]. Specifically,
we extract 1,000 images from 10 rigid categories of PAS-
CAL 3D+ [14] (aeroplane, bike, boat, bottle, bus, car, chair,
motorbike, train, tv/monitor) and 800 images of 8 non-rigid

categories of PASCAL VOC 2012 [2] (bird, cat, cow, dog,
horse, person, potted plant, sheep). Note that we do not
use ‘dining table’ and ‘sofa’ categories present in PASCAL
VOC as they usually appear as background and their seman-
tic keypoints are too ambiguous to localize properly. The
images are selected to cover diverse viewpoints of each cat-
egory as much as possible. For the selected 1,800 images,
we manually annotated keypoints and generate 70,958 pairs
of images with pair-level annotations as follows1.

Image-level annotations. Keypoints for each object cate-
gory are carefully selected and annotated according to three
keypoint selection criteria: (1) each keypoint should de-
scribe an object’s part shared across instances of the same
object category, (2) keypoints of an object category should
be distinct from each other, and (3) keypoints of an object
category should spread over the whole object. The num-
ber of selected keypoints varies from 9 (potted plant) to 30
(car) across categories; occluded or truncated keypoints are
not annotated, thus varying from 3 to 30 across instances in
practice. Azimuths for 10 rigid categories are directly ob-
tained from PASCAL 3D+ [14] and quantized to one of the
eight angular bins while azimuth bins for the other 8 non-
rigid categories are manually annotated. Bounding box,
segmentation mask, truncation and occlusion labels are re-
trieved from PASCAL VOC 2012 [2] where both truncation
and occlusion labels are binary indicators, i.e., whether an
instance in the image is truncated (occluded) or not.

Image-level splits. In order to build disjoint splits of im-
age pairs for training, validation, and testing, we first create
corresponding splits of images before generating pairs. 100
images of each object category are divided into three splits
with an approximate ratio of 5:2:3 so that the images of each
split spreads over quantized azimuth values, thus obtaining
997, 322, and 481 images for training, validation, and test-
ing splits, respectively. Figure 2 shows category-wise cir-
cular histograms of azimuth values for the splits. Images of
each split are then used to generate image pairs with pair-
level annotations as follows.

Pair-level annotations. We build pair-level annotations us-
ing keypoints, azimuth bins, bounding boxes, truncations,
and occlusions annotated in images. Common keypoints in
two images are used as keypoints of pair-level annotations,
i.e., keypoint correspondences. If there are no common key-

1When annotating keypoints, we treat ‘bottle’, ‘potted plant’, ‘train’
and ‘tv/monitor’ as flat instances as it is hard to discriminate between
front/back and left/right of the instances due to their cylindrical shapes.
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Methods aero bike bird boat bottle bus car cat chair cow dog horse moto person plant sheep train tv All

Authors’
original
models

CNNGeores101 [9] 21.3 15.1 34.6 12.8 31.2 26.3 24.0 30.6 11.6 24.3 20.4 12.2 19.7 15.6 14.3 9.6 28.5 28.8 18.1
A2Netres101 [12] 20.8 17.1 37.4 13.9 33.6 29.4 26.5 34.9 12.0 26.5 22.5 13.3 21.3 20.0 16.9 11.5 28.9 31.6 20.1

WeakAlignres101 [10] 23.4 17.0 41.6 14.6 37.6 28.1 26.6 32.6 12.6 27.9 23.0 13.6 21.3 22.2 17.9 10.9 31.5 34.8 21.1
NC-Netres101 [11] 24.0 16.0 45.0 13.7 35.7 25.9 19.0 50.4 14.3 32.6 27.4 19.2 21.7 20.3 20.4 13.6 33.6 40.4 26.4

HPFres50 [8] 25.3 18.5 47.6 14.6 37.0 22.9 18.3 51.1 16.7 31.5 30.8 19.1 23.7 23.8 23.5 14.4 30.8 37.2 27.2
HPFres101 [8] 25.2 18.9 52.1 15.7 38.0 22.8 19.1 52.9 17.9 33.0 32.8 20.6 24.4 27.9 21.1 15.9 31.5 35.6 28.2

SPair-71k
finetuned
models

CNNGeores101 [9] 23.4 16.7 40.2 14.3 36.4 27.7 26.0 32.7 12.7 27.4 22.8 13.7 20.9 21.0 17.5 10.2 30.8 34.1 20.6
A2Netres101 [12] 22.6 18.5 42.0 16.4 37.9 30.8 26.5 35.6 13.3 29.6 24.3 16.0 21.6 22.8 20.5 13.5 31.4 36.5 22.3

WeakAlignres101 [10] 22.2 17.6 41.9 15.1 38.1 27.4 27.2 31.8 12.8 26.8 22.6 14.2 20.0 22.2 17.9 10.4 32.2 35.1 20.9
NC-Netres101 [11] 17.9 12.2 32.1 11.7 29.0 19.9 16.1 39.2 9.9 23.9 18.8 15.7 17.4 15.9 14.8 9.6 24.2 31.1 20.1

Table 3. Per-class PCK (αbbox = 0.1) results on SPair-71k dataset. For the authors’ original models, the models of [9, 12] trained on
PASCAL-VOC with self-supervision, [10, 11] trained on PF-PASCAL with weak-supervision, and [8] tuned using validation split of
SPair-71k are used for evaluation. For SPair-71k-finetuned models, the original models are further finetuned on SPair-71k dataset by
ourselves with our best efforts. Numbers in bold indicate the best performance and underlined ones are the second and third best.

Methods View-point Scale Truncation Occlusion Alleasy medi hard easy medi hard none src tgt both none src tgt both
Identity mapping 7.3 3.7 2.6 7.0 4.3 3.3 6.5 4.8 3.5 5.0 6.1 4.0 5.1 4.6 5.6

Authors’
original
models

CNNGeores101 [9] 25.2 10.7 5.9 22.3 16.1 8.5 21.1 12.7 15.6 13.9 20.0 14.9 14.3 12.4 18.1
A2Netres101 [12] 27.5 12.4 6.9 24.1 18.5 10.3 22.9 15.2 17.6 15.7 22.3 16.5 15.2 14.5 20.1

WeakAlignres101 [10] 29.4 12.2 6.9 25.4 19.4 10.3 24.1 16.0 18.5 15.7 23.4 16.7 16.7 14.8 21.1
NC-Netres101 [11] 34.0 18.6 12.8 31.7 23.8 14.2 29.1 22.9 23.4 21.0 29.0 21.1 21.8 19.6 26.4

HPFres50 [8] 35.0 18.9 13.6 32.0 25.1 15.4 29.7 24.5 23.5 22.9 29.6 22.9 22.1 21.3 27.2
HPFres101 [8] 35.6 20.3 15.5 33.0 26.1 15.8 31.0 24.6 24.0 23.7 30.8 23.5 22.8 21.8 28.2

SPair-71k
finetuned
models

CNNGeores101 [9] 28.8 12.0 6.4 24.8 18.7 10.6 23.7 15.5 17.9 15.3 22.9 16.1 16.4 14.4 20.6
A2Netres101 [12] 30.9 13.3 7.4 26.1 21.1 12.4 25.0 17.4 20.5 17.6 24.6 18.6 17.2 16.4 22.3

WeakAlignres101 [10] 29.3 11.9 7.0 25.1 19.1 11.0 24.0 15.8 18.4 15.6 23.3 16.1 16.4 15.7 20.9
NC-Netres101 [11] 26.1 13.5 10.1 24.7 17.5 9.9 22.2 17.1 17.5 16.8 22.0 16.3 16.3 15.2 20.1

Table 4. PCK analysis by variation factors on SPair-71k. The variation factors include view-point, scale, truncation, and occlusion.

points between the two, the pair is excluded. View-point
differences are divided into three levels of ‘easy’, ‘medium’,
and ‘hard’; a pair is marked as ‘easy’, ‘medium’, and ‘hard’
if the difference between azimuth bin indexes of the two
instances falls in the range of {0, 1}, {2, 3}, and {4}, re-
spectively. Scale differences are labeled levels of ‘easy’,
‘medium’, and ‘hard’; a pair is labeled ‘easy’, ‘medium’,
and ‘hard’ if the area ratio of corresponding object bound-
ing boxes falls in the range of [1,2), [2, 4), [4, ∞]. Each
pair is also annotated for both truncation and occlusion lev-
els with ‘none’, ‘source only’, ‘target only’, and ‘both’. See
Table 1 and 2 for details.

Finally, we obtain the SPair-71k dataset of 70,958 image
pairs in total, which consists of 53,340 for training, 5,384
for validation, and 12,234 for testing, respectively.

3. Baseline results on SPair-71k
We evaluate recent state-of-the-art methods [8, 9, 10, 11,

12] on SPair-71k to provide baseline results for further re-
search. For each method in comparison, we run two ver-
sions of each model: an original trained model provided by
the authors and a model further finetuned by ourselves us-
ing SPair-71k train/val set. The results are shown in Table 3.
We fail to successfully train the method of [10, 11] on SPair-
71k so that their performances drop when trained. We guess
that their original learning objectives for weakly-supervised
learning is fragile in presence of large view-point differ-

ences as in SPair-71k. We leave this issue for further inves-
tigation and will update the results at our benchmark page.
Analysis by variation factors. Each image pair in SPair-
71k has annotations of difficulty levels for four variation
factors (i.e., view-point, scale, truncation, and occlusion)
between corresponding instances of the same category;
‘easy’, ‘medium’, or ‘hard’ is annotated for view-point and
scale changes, while ‘none’, ‘source’, ‘target’ or ‘both’ is
annotated for truncation and occlusion. PCK analysis of
the models using these annotations are summarized in Ta-
ble 4. The results show that all the models perform better
given pairs with less variation, and that view-point and scale
changes significantly affect the performances.
Impact of individual variations. The results in Table 4
does not clearly demonstrate an impact of each individual
variation because the four types of variations co-exist in a
pair and interfere with each other when evaluated. To mea-
sure an impact of each variation individually, we need to
control the other variations to remain fixed. To this end, we
evaluate the performances of different levels of a specific
variation factor while fixing the levels of the other variations
as easy (view-point and scale) and none (truncation and oc-
clusion). For example, when evaluating the performances
varying view-point levels, we only use pairs that are labeled
‘easy’ scale, ‘none’ truncation, and ‘none’ occlusion. The
results are summarized in Table 5. It shows that the perfor-
mances of local-region-matching methods [8, 11] is more
robust to view-point variation compared to global-image-
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Approach Methods View-point Scale Truncation Occlusion Alleasy medi hard easy medi hard none src tgt both none src tgt both

Image
alignment

CNNGeores101 [9] 44.3 15.1 9.9 44.3 31.0 16.5 44.3 28.4 32.6 26.2 44.3 31.3 31.6 20.9 20.6
A2Netres101 [12] 45.0 15.8 10.4 45.0 34.2 18.6 45.0 32.5 36.4 30.0 45.0 32.3 29.7 24.0 22.3
WeakAlignres101 [10] 44.8 15.3 10.2 44.8 32.0 17.1 44.8 29.2 33.9 26.1 44.8 31.5 31.1 24.6 20.9

Region
matching

NC-Netres101 [11] 49.8 23.4 19.1 49.8 35.7 19.6 49.8 33.7 36.8 33.8 49.8 35.6 35.9 27.4 26.4
HPFres50 [8] 50.1 22.8 21.1 50.1 35.6 23.0 50.1 37.4 36.0 33.1 50.1 36.7 35.6 28.8 27.2
HPFres101 [8] 51.0 25.2 23.8 51.0 37.3 22.8 51.0 36.7 36.8 33.1 51.0 37.6 36.7 29.6 28.2

Table 5. PCK analysis by controlling individual variations. For each variation of view-point, scale, truncation, and occlusion, the difficulty
levels of the other variations are fixed as easy (view-point and scale) and none (truncation and occlusion). In this experiment, we use
author’s original models for [8, 10, 11] and SPair-71k-finetuned models for [9, 12] in favor of better performance.

Train

Val

Test

Figure 2. Azimuth distributions of SPair-71k training (top), vali-
dation (middle), and testing (bottom) images.

alignment methods [9, 10, 12]; the performance of the im-
age alignment models drops more quickly than those of the
region matching ones. In terms of scale changes, truncation,
and occlusion, however, we find no significant difference in
performance drop between the methods. While both trun-
cation and occlusion clearly degrade the performances, the
impacts are less than view-point and scale variations.

4. Conclusion

In this paper, we have presented a large-scale benchmark
dataset, SPair-71k, which consists of 71k image pairs for se-
mantic correspondence. Compared to previous datasets, it
contains a significantly large number of image pairs with
diverse variations in view-point, scale, truncation and oc-
clusion, thus generalizing the problem of visual correspon-
dence by reflecting real-world scenarios. Moreover, its rich
annotations including object bounding boxes, keypoint cor-
respondences, variation factors, azimuths, and object seg-
mentation masks will be useful for future research on se-
mantic correspondence and its joint problems.
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