
Published as a conference paper at ICLR 2023

A GNN-GUIDED PREDICT-AND-SEARCH FRAME-
WORK FOR MIXED-INTEGER LINEAR PROGRAMMING

Qingyu Han1,2†, Linxin Yang1,3†, Qian Chen1,4, Xiang Zhou5, Dong Zhang5, Akang Wang1*,
Ruoyu Sun6,3*, Xiaodong Luo1,3

1 Shenzhen Research Institute of Big Data, China
2 Shandong University, China
3 School of Data Science, The Chinese University of Hong Kong, Shenzhen, China
4 School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, China
5 Huawei, China
6 Shenzhen International Center For Industrial and Applied Mathematics, Shenzhen Research
Institute of Big Data, China

ABSTRACT

Mixed-integer linear programming (MILP) is widely employed for modeling com-
binatorial optimization problems. In practice, similar MILP instances with only
coefficient variations are routinely solved, and machine learning (ML) algorithms
are capable of capturing common patterns across these MILP instances. In this
work, we combine ML with optimization and propose a novel predict-and-search
framework for efficiently identifying high-quality feasible solutions. Specifically,
we first utilize graph neural networks to predict the marginal probability of each
variable, and then search for the best feasible solution within a properly defined
ball around the predicted solution. We conduct extensive experiments on pub-
lic datasets, and computational results demonstrate that our proposed framework
achieves 51.1% and 9.9% performance improvements to MILP solvers SCIP and
Gurobi on primal gaps, respectively.

1 INTRODUCTION

Mixed-integer linear programming is one of the most widely used techniques for modeling com-
binatorial optimization problems, such as production planning (Pochet & Wolsey, 2006; Chen,
2010), resource allocation (Liu & Fan, 2018; Watson & Woodruff, 2011), and transportation man-
agement (Luathep et al., 2011; Schöbel, 2001). In real-world settings, MILP models from the same
application share similar patterns and characteristics, and such models are repeatedly solved without
making uses of those similarities. ML algorithms are well-known for its capability of recognizing
patterns (Khalil et al., 2022), and hence they are helpful for building optimization algorithms. Re-
cent works have shown the great potential of utilizing learning techniques to address MILP prob-
lems. The work of (Bengio et al., 2021) categorized ML efforts for optimization as (i) end-to-end
learning (Vinyals et al., 2015; Bello* et al., 2017; Khalil et al., 2022), (ii) learning to configuring
algorithms (Bischl et al., 2016; Kruber et al., 2017; Gasse et al., 2022) and (iii) learning alongside
optimization (Gasse et al., 2019; Khalil et al., 2016; Gupta et al., 2020). In this work, for the sake
of interest, we focus on the end-to-end approach. While such an approach learns to quickly identify
high-quality solutions, it generally faces the following two challenges:

(I) high sample collection cost. The supervised learning task for predicting solutions is to
map from the instance-wise information to a high-dimensional vector. Such a learning task
becomes computationally expensive since it necessitates collecting a considerable amount
of optimal solutions (see, e.g., Kabir et al. (2009)).

(II) feasibility. Most of the end-to-end approaches directly predict solutions to MILP problems,
ignoring feasibility requirements enforced by model constraints (e.g. Yoon (2022); Nair

†Equal first authorship *Corresponding authors

1

Published as a conference paper at ICLR 2023

et al. (2020)). As a result, the solutions provided by ML methods could potentially violate
constraints.

We propose a novel predict-and-search framework to address the aforementioned challenges. In
principle, end-to-end approaches for MILP problems require the collection of abundant optimal so-
lutions. However, collecting so many training samples is computationally prohibitive since obtain-
ing optimal solutions is excessively time-consuming. We consider to approximate the distribution
by properly weighing high-quality solutions with their objective values. This reduces the cost of
sample collections by avoiding gathering optimal solutions as mentioned in challenge (I). Regard-
ing challenge (II), we implement a trust region inspired algorithm that searches for near-optimal
solutions within the intersection of the original feasible region and a properly defined ball centered
at a prediction point. The overall framework is outlined in Figure 1. The commonly used end-to-

Trust Region

Round
Input

Bipartite
Graph x̂I

Predict

GNN

0.9

0.5

0.3

0.1

Select
Vars.

0.9

0.1

1

0

Search

x̂I

∇

MILP problem

c1
c2
c3

x2

x1

x3
x4

MLP

Output Input

Marginal
probabilities

Output

0

1

0

0

Near optimal
solution

Figure 1: Our approach first predicts a marginal probability of each variable utilizing a graph neural
network (GNN) with graph convolution and multi-layer perceptron modules, and then searches for
near optimal solutions to the original MILP problem within a well defined trust region.

end approaches usually fix variables directly based on information from the prediction step, such as
in Nair et al. (2020) and Yoon (2022). However, such approaches could lead to sub-optimal solu-
tions or even infeasible sub-problems. Rather than forcing variables to be fixed, our search module
looks for high-quality solutions within a subset of the original feasible region, which allows better
feasibility while maintaining optimality.

The distinct contributions of our work can be summarized as follows.

• We propose a novel predict-and-search framework that first trains a GNN to predict a
marginal probability of each variable and then constructs a trust region to search for high-
quality feasible solutions.

• We demonstrate the ability of our proposed framework to provide equivalently good or
better solutions than fixing-based end-to-end approaches.

• We conduct comprehensive computational studies on several public benchmark datasets
and the computational results show that our proposed framework achieves 51.1% and 9.9%
smaller primal gaps than state-of-the-art general-purpose optimization solvers SCIP and
Gurobi, respectively.

We make our code publicly available at https://github.com/sribdcn/Predict-and
-Search_MILP_method.

2 PRELIMINARIES

Given a vector v ∈ Rn and an index set I ⊆ {1, 2, ..., n}, let vI ∈ R|I| denote a subvector that
corresponds to the index set I .

2.1 MIXED-INTEGER LINEAR PROGRAMMING

MILP techniques are used to model combinatorial optimization problems, and an MILP instance
can be formulated as: min

x∈D
c⊤x, where D ≡ {x ∈ Zq × Rn−q : Ax ≤ b, l ≤ x ≤ u} denotes the

2

https://github.com/sribdcn/Predict-and-Search_MILP_method
https://github.com/sribdcn/Predict-and-Search_MILP_method

Published as a conference paper at ICLR 2023

feasible region. There are n variables, with c, l, u ∈ Rn being their objective coefficients, lower and
upper bounds, respectively. Without loss of generality, the first q variables are discrete. A ∈ Rm×n

denotes the coefficient matrix while b ∈ Rm represents the right-hand-side vector. For convenience,
let M ≡ (A, b, c, l, u, q) denote an MILP instance. For the sake of interest, we consider each
discrete variable to be binary, i.e. xi ∈ {0, 1} for 1 ≤ i ≤ q. Furthermore, incorporating continuous
variables into consideration will not invalidate our proposed methodology, hence in what follows we
consider a pure binary integer programming problem.

2.2 NODE BIPARTITE GRAPH

Gasse et al. (2019) proposed a bipartite graph representation for MILP problems. Specifically, let
G ≡ (V, E) denote a bipartite graph, where V ≡ {v1, ..., vn, vn+1, ..., vn+m} denotes the set
of n variable nodes and m constraint nodes, and E represents the set of edges that only connect
between nodes of different types. Variable nodes and constraint nodes are individually associated
with the instance information e.g. degrees and coefficients. The adjacency matrix A is a |V| × |V|
matrix that represents the connectivity of G, as defined below:

A ≡
[
0 C⊤

C 0

]
where Ci,j = 1Ai,j ̸=0.

2.3 GRAPH NEURAL NETWORKS

Let N (vi) ≡ {vj ∈ V : Ai,j ̸= 0} denote the set of neighbors of node vi. We construct a k-layer
GNN as follows:

h(k)
vi ≡ f

(k)
2

({
h(k−1)
vi , f

(k)
1

({
h(k−1)
u : u ∈ N (vi)

})})
,

where function f
(k)
1 aggregates the feature information over the set of neighboring nodes and func-

tion f
(k)
2 combines the nodes’ hidden features from iteration (k − 1) with the aggregated neighbor-

hood features, and h
(k−1)
vi denotes the hidden state of node vi in the (k − 1)

th layer. Initially, h(0)
vi

is the output of an embedding function g (·). Note that the bipartite graph associated with an MILP
instance does not include edges between variable nodes as well as constraint nodes.

2.4 TRUST REGION METHOD

The trust region method is designed for solving non-linear optimization problems as follows:

min
x∈H

f (x), (1)

where H ⊆ Rn denotes a set of feasible solutions. The main idea is to convert the originally dif-
ficult optimization problem into a series of simple local search problems. Specifically, it iteratively
searches for trial steps within the neighborhood of the current iterate point (Yuan, 2015). The trial
step dk is obtained by solving the following trust region problem:

min
d∈Hk

f̃k (d),

s.t. ∥d∥Wk
≤ ∆k

(2)

where f̃k (d) is an approximation of the objective function f (xk + d), Hk denotes a shifted H−xk

of the set H , ∥.∥Wk
is a norm of Rn, and ∆k denotes the radius of the trust region. After solving the

problem in the kth iteration, xk+1 is updated to xk + dk or xk accordingly. Then, new ∥.∥Wk+1
and

∆k+1 are selected along with a new approximation f̃k+1 (d).

3 PROPOSED FRAMEWORK

The supervised learning task in end-to-end approaches trains a model to map the instance-wise in-
formation to a high-dimensional vector. Ding et al. (2020) first utilizes a GNN to learn the values of

3

Published as a conference paper at ICLR 2023

“stable” variables that stay unchanged across collected solutions, and then searches for optimal so-
lutions based on learned information. However, such a group of variables does not necessarily exist
for many combinatorial optimization problems. Another approach is to learn solution distributions
rather than directly learning solution mapping; Li et al. (2018) predicts a set of probability maps
for variables, and then utilizes such maps to conduct tree search for generating a large number of
candidate solutions. Their work designed ML-enhanced problem-specific tree search algorithm and
achieved encouraging results, however, it is not applicable to general problems. Nair et al. (2020)
proposed a more general approach that first learns the conditional distribution in the solution space
via a GNN and then attempts to fix a part of discrete variables, producing a smaller MILP problem
that is computationally cheap to solve. However, fixing many discrete variables might lead to an
infeasible MILP model.

To alleviate these issues, we adopt the trust region method and design a novel approach that searches
for near-optimal solutions within a properly defined region. Specifically, we propose a predict-and-
search framework that: (i) utilizes a trained GNN model to predict marginal probabilities of all
binary variables in a given MILP instance; (ii) searches for near-optimal solutions within the trust
region based on the prediction.

3.1 PREDICT

In this section, our goal is to train a graph neural network using supervised learning to predict the
conditional distribution for MILP instances. To this end, we introduce the conditional distribution
learning. On this basis, we present the training label in the form of a vector, i.e. marginal probabili-
ties.

3.1.1 DISTRIBUTION LEARNING

A probability distribution learning model outputs the conditional distribution on the entire solution
space of an MILP instance M . A higher conditional probability is expected when the corresponding
solution is more likely to be optimal. Nair et al. (2020) proposed a method to construct the condi-
tional distribution with objective values via energy functions, and for a solution x, the conditional
probability p(x;M) can be calculated by:

p(x;M) ≡ exp(−E(x;M))∑
x′ exp(−E(x′;M))

, where E(x;M) ≡
{
c⊤x if x is feasible,
+∞ otherwise.

(3)

This implies that an infeasible solution is associated with a probability of 0, while the optimal
solution has the highest probability value. It’s worth noting that each instance corresponds to one
distribution.

For the collected dataset
{(

M i, Li
)}N

i=1
, Li ≡

{
xi,j

}Ni

j=1
denotes the set of Ni feasible solutions

to instance M i. The probability of each solution in the dataset can be calculated by Equation (3).
In general, the distance between two distributions can be measured by Kullback-Leibler divergence.
Thus, the loss function for the supervised learning task is defined as:

L (θ) ≡ −
N∑
i=1

Ni∑
j=1

wi,j logPθ

(
xi,j ;M i

)
, where wi,j ≡

exp
(
−ci

⊤
xi,j

)
∑Ni

k=1 exp
(
−ci

⊤
xi,k

) . (4)

Pθ

(
xi,j ;M i

)
denotes the prediction from the GNN denoted as Fθ with learnable parameters θ. The

conditional distribution of an MILP problem can be approximated by a part of the entire solution
space. Consequently, the number of samples to be collected for training is significantly reduced.

3.1.2 WEIGHT-BASED SAMPLING

To better investigate the learning target and align labels with outputs, we propose to represent the
label in a vector form. With the learning task specified in Equation (4), a new challenge arises:
acquiring solutions through high-dimensional sampling is computationally prohibitive. A common
technique is to decompose the high-dimensional distribution into lower-dimensional ones. Given an

4

Published as a conference paper at ICLR 2023

instance M , let xd denote the dth element of a solution vector x. In Nair et al. (2020), it is assumed
that the variables are independent of each other, i.e.,

Pθ(x;M) =

n∏
d=1

pθ (xd;M) . (5)

With this assumption, the high-dimensional sampling problem is decomposed into n 1-
dimensional sampling problems for each xd according to their probabilities pθ (xd;M). Since
pθ (xd = 1;M) = 1− pθ (xd = 0;M), we only need pθ (xd = 1;M) for d ∈ {1, 2, ..., n} to
represent the conditional probability Pθ (x;M). Then the conditional distribution mapping out-
puts a n−dimension vector (pθ (x1 = 1;M) , ..., pθ (xn = 1;M)). Hence, the prediction of the
GNN model can be represented as Fθ(M) ≡ (p̂1, p̂2, ..., p̂n), where p̂d ≡ pθ (xd = 1;M) for
d ∈ {1, 2, ..., n}.

Let Si
d ⊆

{
1, 2, ..., N i

}
denote the set of indices in Li with their dth component being 1.

pid ≡
∑
j∈Si

d

wi,j , (6)

where pid is normalized by |Li|. Given an MILP instance M , we can calculate a corresponding
learning target in the form of vector, i.e, P ≡ (p1, p2, ..., pq), where each component is obtained
by applying Equation (6). This equation calculates the marginal probability, where the weight wi,j

is 1 if the variable holds a value of 1 in the corresponding solution and 0 otherwise. We define such
a learning target in the form of a vector as marginal probabilities. Solutions of higher quality will
be associated with larger weighting coefficients wij and hence contribute more to the loss function.

For the loss function shown in Equation (4), based on the assumption in Equation (5) and the calcu-
lation of probabilities in Equation (4), we have:

L (θ) = −
N∑
i=1

n∑
d=1

Ni∑
j=1

wi,j logpθ
(
xi,j
d ;M i

)

= −
N∑
i=1

n∑
d=1

∑
j∈Si

d

wi,j logpθ
(
xi,j
d ;M i

)
+

∑
j /∈Si

d

wi,j logpθ
(
xi,j
d ;M i

)
= −

N∑
i=1

n∑
d=1

{
pidlog

(
p̂id
)
+

(
1− pid

)
log

(
1− p̂id

)}
.

This indicates that the multi-dimensional distribution learning loss L (θ) becomes a summation of
each component’s probability learning loss. Thus, with Equation (5), the distribution learning is
converted to a marginal probabilities learning.

3.2 SEARCH

With marginal probabilities as inputs, we adopted a trust region like method to carry out a search
algorithm. In this section, we first introduce our observation that the distance between the solution
obtained from a rounded learning target and the optimal solution can be very small. Hence, we
adopt a trust region like method to address aforementioned challenge (II) and present a proposition
to manifest the superiority of our framework. The complete framework is shown in Algorithm 1.

3.2.1 OBSERVATION

A variable’s marginal probability is closer to 1 if this variable takes a value of 1 in the optimal
solution, and 0 otherwise. Given an MILP instance M and its learning target P , we set the partial
solution size parameter (k0, k1) to represent the numbers of 0’s and 1’s in a partial solution. Let I0
denote the set of indices of the k0 smallest components of P , and I1 denote the set of indices of the
k1 largest components of P . If d ∈ I ≡ I1 ∪ I0, we get a partial solution xI by:

xd ≡
{
0 if d ∈ I0,
1 if d ∈ I1.

(7)

5

Published as a conference paper at ICLR 2023

Let x∗ denote an optimal solution of M , empirically, we found xI is close to x∗
I as discussed in

Appendix D. Explicitly, we measure the distance by ℓ1 norm, and there still exists a small ∆ > 0,
such that ∥xI − x∗

I∥1 < ∆ while (k0 + k1) is a large number. We speculate that, since the optimal
solution has the largest weight as shown in equation (6), it is closer to the learning target than all
other solutions. As a result, we hypothesize that similar phenomena can be observed with a slightly
larger ∆ and the same (k0, k1) when obtaining the set of indices I based on prediction Fθ (M).

With this observation, it is reasonable to accelerate the solving process for MILP problems by fixing
variables in the partial solution. Specifically, the sub-problem of an instance M using the fixing
strategy with the partial solution xI can be formulated as:

min
x∈D∩S(xI)

c⊤x, (8)

where S (xI) ≡ {x ∈ Rn : xI = xI}. However, once xI ̸= x∗
I , the fixing strategy may lead to

suboptimal solutions or even infeasible sub-problems, which can also be observed in Appendix C.

3.2.2 SEARCH WITHIN A NEIGHBORHOOD

Based on the observations and analysis above, we design a more practicable method. Inspired by
the trust region method, we use the partial solution as a starting point to establish a trust region and
search for a trial step. The trial step is then applied to the starting point to generate a new solution.

Specifically, given instance M , we acquire the set I via the prediction Fθ (M) from a trained GNN,
and get a partial solution x̂I by equation (7) to construct the trust region problem for a trial step
d∗ similar to problem (1), (2). At last, output the point updated by trial step. Such a trust region
problem is equivalent to following:

min
x∈D∩B(x̂I ,∆)

c⊤x, (9)

where B (x̂,∆) ≡ {x ∈ Rn : ∥x̂I − xI∥1 ≤ ∆} denotes a neighborhood constraint. In order to
reduce computational costs, we solve this problem only once to find a near-optimal solution. We
show that our proposed method always outperforms fixing-based methods in Proposition 1.
Proposition 1. let zFixing and zSearch denote optimal values to problems (8) and (9) respectively.
zSearch ≤ zFixing, if they have same partial solution x̂I .

Proof. Note that S (x̂I) = B (x̂I , 0) ⊂ B (x̂I ,∆), it is obvious

min
x∈D∩B(x̂I ,∆)

c⊤x ≤ min
x∈D∩S(x̂I)

c⊤x,

i.e. zSearch ≤ zFixing.
□

This proposition demonstrates the advantage of our proposed search strategy over fixing strategy;
that is, when fixing strategies may lead to suboptimal solutions or even infeasible sub-problems as
a consequence of inappropriate fixing, applying such a trust region search approach can always add
flexibility to the sub-problem. Computational studies also provide empirical evidence in support
of this proposition. Algorithm 1 presents the details of our proposed search algorithm. It takes
the prediction Fθ (M) as input, and acquires a partial solution xd and neighborhood constraints.
A complete solution x is then attained by solving the modified instance M ′ with neighborhood
constraints appended. The solving process is denoted by SOLV E (M ′), i.e. utilizing an MILP
solver to address instance M ′.

4 COMPUTATIONAL STUDIES

We conducted extensive experiments on four public datasets with fixed testing environments to
ensure fair comparisons.

Benchmark Problems Four MILP benchmark datasets are considered in our computational studies.
Two of them come from the NeurIPS ML4CO 2021 competition Gasse et al. (2022), including the
Balanced Item Placement (denoted by IP) dataset and the Workload Appointment (denoted by WA)
dataset (Gasse et al., 2022). We generated the remaining two datasets: Independent Set (IS) and

6

Published as a conference paper at ICLR 2023

Algorithm 1 Predict-and-search Algorithm
Parameter: Size {k0, k1}, radius of the neighborhood: ∆
Input: Instance M , Probability prediction Fθ (M)
Output: Solution x ∈ Rn

1: Sort the components in Fθ (M) from smallest to largest to obtain sets I0 and I1.
2: for d = 1 : n do
3: if d ∈ I0 ∪ I1 then
4: create binary variable δd
5: if d ∈ I0 then
6: create constraint

xd ≤ δd
7: else
8: create constraint

1− xd ≤ δd
9: end if

10: end if
11: end for
12: create constraint

∑
d∈I0∪I1

δd ≤ ∆

13: Let M ′ denote the instance M with new constraints and variables
14: Let x = SOLV E (M ′)
15: return x

Combinatorial Auction (CA) using Ecole library (Prouvost et al., 2020) as Gasse et al. (2019) did.
Note that the other two datasets from Gasse et al. (2019), Set Covering and Capacitated Facility
Location, are not chosen since they can be easily solved by state-of-the-art MILP solvers, such as
Gurobi and SCIP. Details of our selected datasets can be found in the Appendix F.

Graph neural networks A single layer perceptron embeds feature vectors so they have the same
dimension of 64, and the layer normalization Ba et al. (2016) is applied for a better performance
of the network. Then we adopted 2 half-convolution layers from Gasse et al. (2019) to conduct
information aggregation between nodes.

Finally, marginal probabilities are obtained by feeding the aggregated variable nodes into a 2-layer
perceptron followed by a sigmoid activation function.

Training protocol Each dataset contains 400 instances, including 240 instances in the training set,
60 instances in the validation set, and 100 instances in the test set. All numerical results are reported
for the test set. Our model is constructed with the PyTorch framework, and the training process runs
on GPUs. The loss function is specified in Equation (4) and (5) with a batch size of 8. The ADAM
optimizer Kingma & Ba (2014) is used for optimizing the loss function with a start learning rate of
0.003.

Evaluation metrics For each instance, we run an algorithm of interest and report its incumbent
solution’s objective value as OBJ. Then we run single-thread Gurobi for 3, 600 seconds and de-
note as BKS the objective to the incumbent solution returned. BKS is updated if it is worse
than OBJ. We define the absolute and relative primal gaps as: gapabs ≡ |OBJ− BKS| and
gaprel ≡ |OBJ − BKS| /

(
|BKS|+ 10−10

)
, respectively and utilize them as performance metrics.

Clearly, a smaller primal gap indicates a stronger performance.

Evaluation Configurations All evaluations are performed under the same configuration. The evalu-
ation machine has two Intel(R) Xeon(R) Gold 5117 CPUs @ 2.00GHz, 256GB ram and two Nvidia
V100 GPUs. SCIP 8.0.1 Bestuzheva et al. (2021), Gurobi 9.5.2 Gurobi Optimization, LLC (2022)
and PyTorch 1.10.2 Paszke et al. (2019) are utilized in our experiments. The emphasis for Gurobi
and SCIP is set to focus on finding better primal solutions. The time limit for running each experi-
ment is set to 1, 000 seconds since a tail-off of solution qualities was often observed after that.

Data collection Details will be provided in the Appendix B.

7

Published as a conference paper at ICLR 2023

5 RESULTS AND DISCUSSION

To investigate the benefits of applying our proposed predict-and-search framework, we conducted
comprehensive computational studies that: (i) compare our framework with SCIP and Gurobi;
(ii) compare our framework with Neural Diving framework (Nair et al., 2020). Other numerical
experiments including comparing against a modified version of confidence threshold neural div-
ing (Yoon, 2022) along with implementation details can be found in the Appendix D.

5.1 COMPARING AGAINST STATE-OF-THE-ART SOLVERS

In what follows, we utilize SCIP (Gurobi) as an MILP solver in our proposed framework and denote
our approach as PS+SCIP (PS+Gurobi). Figure 2 exhibits the progress of average gaprel as the
solving process proceeds. In Figure 2a, we notice a significant performance improvement of our
framework (blue) upon default SCIP (green), and such an improvement is also observed for WA, CA
and IS datasets as shown in 2b, 2c and 2d. Compared with default Gurobi (black), our approach(red)
still performs better, specially in the IS dataset. We remark that, in Figure 2d, PS+Gurobi obtained
optimal solutions to IS problems within 10 seconds. The performance comparison in Figure 2 also
indicates that our proposed framework can bring noticable performance improvement upon MILP
solvers, regardless of the solver choice.

101 102 103

time (sec)

0.00

0.50

1.00

1.50

a
ve

ra
g

e
p

ri
m

a
l

g
a

p

(a) IP

101 102 103

time (sec)

0.00

0.05

0.10

0.15

0.20

a
ve

ra
g

e
p

ri
m

a
l

g
a

p

(b) WA

101 102 103

time (sec)

0.00

0.01

0.02

a
ve

ra
g

e
p

ri
m

a
l

g
a

p

(c) CA

101 102 103

time (sec)

0.00

0.01

0.02

0.03

a
ve

ra
g

e
p

ri
m

a
l

g
a

p

reached BKS

(d) IS

SCIP PS+SCIP Gurobi PS+Gurobi

Figure 2: Performance comparisons between PS, Gurobi and SCIP, where the y-axis is relative
primal gap averaged across 100 instances; each plot represents one benchmark dataset.

In Table 1, we present objective values averaged across 100 instances at the time limit of 1, 000
seconds. Column “gapabs” provides the absolute primal gap at 1, 000 seconds, and column “gain”
presents the improvement of our method compared over an MILP solver. For instance, Table 1
shows that BKS for IP dataset is 12.02, and the absolute primal gaps of SCIP and PS+SCIP
are 7.41 and 3.44 respectively. Then gain is computed as (7.41− 3.44) /7.41 × 100% = 53.6%.
According to Table 1, we can claim that our proposed framework outperforms SCIP and Gurobi with
average improvements of 51.1% and 9.9%, respectively. We notice that the improvement for Gurobi
is not as significant as for SCIP since Gurobi is significantly more capable in terms of identifying
high-quality solutions than SCIP.

Table 1: Average objective values given by different approaches at 1,000 seconds.

dataset BKS
SCIP PS+SCIP Gurobi PS+Gurobi

OBJ gapabs OBJ gapabs

gain
OBJ gapabs OBJ gapabs

gain

IP 12.02 19.43 7.41 15.46 3.44 53.6% 12.65 0.63 12.71 0.69 -9.5%
WA 700.94 704.23 3.29 702.35 1.41 57.1% 701.24 0.30 701.22 0.28 6.7%
IS 685.04 684.94 0.10 685.03 0.01 90.0% 685.04 0.00 685.04 0.00 0.00
CA 23,680.01 23,671.66 8.35 23,671.95 8.06 3.5% 23,635.07 44.94 23,654.47 25.54 43.2%

avg. 51.1% 9.9%

8

Published as a conference paper at ICLR 2023

5.2 COMPARING AGAINST NEURAL DIVING

Another interesting comparison should be conducted against the state-of-the art ML method for
optimization: the Neural Diving framework with Selective Net. However, since detailed settings
and codes of the original work Nair et al. (2020) are not publicly available, reproducing the exact
same results is impractical. To our best effort, a training protocol with fine parameter tuning and an
evaluation process are established following algorithms provided in Nair et al. (2020). Three of six
tested benchmark datasets used in Nair et al. (2020) are publicly available: Corlat, Neural Network
Verification, and MipLib. Most Corlat instances can be solved by SCIP within a few seconds; MipLib
contains instances with integer variables rather than binary variables, which is out of the scope
of this work. Hence, Neural Network Verification (denoted as NNV) is chosen as the benchmark
dataset for the comparison study. It is noteworthy that, empirically, turning on the presolve option in
SCIP (Bestuzheva et al., 2021) causes false assertion of feasibility on many NNV instances. Hence,
in our experiments on the NNV dataset, the presolve option is turned off, which potentially hurts the
performances of both SCIP itself and frameworks implemented with SCIP.

Under such circumstances, the best performance obtained is exhibited in Figure 3a. Clearly, the
Neural Diving framework achieves significant improvement over default SCIP. With such an imple-

101 102 103

time (sec)

0.0

0.2

0.4

0.6

0.8

1.0

av
er

ag
e

pr
im

al
 g

ap

(a) NNV

101 102 103

time (sec)

0.0

0.2

0.4

0.6

0.8

1.0

av
er

ag
e

pr
im

al
 g

ap

(b) IP

101 102 103

time (sec)

0.00

0.01

0.02

0.03

av
er

ag
e

pr
im

al
 g

ap

(c) IS

SCIP Neural Diving+SCIP PS+SCIP

Figure 3: The experiment shown in Figure 3a validates the performance of our Neural Diving imple-
mentation by comparing it with default SCIP on NNV dataset. Figure 3b and 3c exhibit performance
comparisons between PS and Neural Diving framework on IP and IS datasets. All methods related
are implemented with SCIP. The result shows that our proposed method outperforms the Neural
Diving framework significantly.

mentation, we can start to compare our proposed framework against the Neural Diving approach.
Due to the limitation of computational power, we are not able to find suitable settings of parameters
to train Neural Diving framework on WA and CA datasets. Hence we conducted experiments only
on IP and IS datasets. As shown in Figure 3b and 3c, our predict-and-search framework produced
at least three times smaller average relative primal gaps. An interesting observation is that Neural
Diving framework failed to surpass SCIP on IS dataset where the optimality is hard to achieve,
while our framework outperformed both SCIP and the implemented Neural Diving method.

6 CONCLUSIONS

We propose a predict-and-search framework for tackling difficult MILP problems that are routinely
solved. A GNN model was trained under a supervised learning setting to map from bipartite graph
representations of MILP problems to marginal probabilities. We then design a trust region based
algorithm to search for high-quality feasible solutions with the guidance of such a mapping. Both
theoretical and empirical supports are provided to illustrate the superiority of this framework over
fixing-based strategies. With extensive computational studies on publicly available MILP datasets,
we demonstrate the effectiveness of our proposed framework in quickly identifying high-quality
feasible solutions. Overall, our proposed framework achieved 51.1% and 9.9% better primal gaps
comparing to SCIP and Gurobi, respectively.

9

Published as a conference paper at ICLR 2023

ACKNOWLEDGMENTS

This work is supported by the National Key R&D Program of China under grant 2022YFA1003900;
Huawei; Hetao Shenzhen-Hong Kong Science and Technology Innovation Cooperation Zone Project
(No.HZQSWS-KCCYB-2022046); University Development Fund UDF01001491 from The Chi-
nese University of Hong Kong, Shenzhen; Guangdong Key Lab on the Mathematical Foundation of
Artificial Intelligence, Department of Science and Technology of Guangdong Province.

REFERENCES

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

Irwan Bello*, Hieu Pham*, Quoc V. Le, Mohammad Norouzi, and Samy Bengio. Neural combina-
torial optimization with reinforcement learning, 2017. URL https://openreview.net/f
orum?id=rJY3vK9eg.

Yoshua Bengio, Andrea Lodi, and Antoine Prouvost. Machine learning for combinatorial opti-
mization: a methodological tour d’horizon. European Journal of Operational Research, 290(2):
405–421, 2021.

Ksenia Bestuzheva, Mathieu Besançon, Wei-Kun Chen, Antonia Chmiela, Tim Donkiewicz, Jasper
van Doornmalen, Leon Eifler, Oliver Gaul, Gerald Gamrath, Ambros Gleixner, Leona Gottwald,
Christoph Graczyk, Katrin Halbig, Alexander Hoen, Christopher Hojny, Rolf van der Hulst,
Thorsten Koch, Marco Lübbecke, Stephen J. Maher, Frederic Matter, Erik Mühmer, Benjamin
Müller, Marc E. Pfetsch, Daniel Rehfeldt, Steffan Schlein, Franziska Schlösser, Felipe Serrano,
Yuji Shinano, Boro Sofranac, Mark Turner, Stefan Vigerske, Fabian Wegscheider, Philipp Well-
ner, Dieter Weninger, and Jakob Witzig. The SCIP Optimization Suite 8.0. ZIB-Report 21-41,
Zuse Institute Berlin, December 2021. URL http://nbn-resolving.de/urn:nbn:
de:0297-zib-85309.

Bernd Bischl, Pascal Kerschke, Lars Kotthoff, Marius Lindauer, Yuri Malitsky, Alexandre Fréchette,
Holger Hoos, Frank Hutter, Kevin Leyton-Brown, Kevin Tierney, et al. Aslib: A benchmark
library for algorithm selection. Artificial Intelligence, 237:41–58, 2016.

Zhi-Long Chen. Integrated production and outbound distribution scheduling: review and extensions.
Operations research, 58(1):130–148, 2010.

Jian-Ya Ding, Chao Zhang, Lei Shen, Shengyin Li, Bing Wang, Yinghui Xu, and Le Song. Ac-
celerating primal solution findings for mixed integer programs based on solution prediction. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 34, pp. 1452–1459, 2020.

Maxime Gasse, Didier Chételat, Nicola Ferroni, Laurent Charlin, and Andrea Lodi. Exact combi-
natorial optimization with graph convolutional neural networks. Advances in Neural Information
Processing Systems, 32, 2019.

Maxime Gasse, Simon Bowly, Quentin Cappart, Jonas Charfreitag, Laurent Charlin, Didier Chételat,
Antonia Chmiela, Justin Dumouchelle, Ambros Gleixner, Aleksandr M. Kazachkov, Elias Khalil,
Pawel Lichocki, Andrea Lodi, Miles Lubin, Chris J. Maddison, Morris Christopher, Dimitri J.
Papageorgiou, Augustin Parjadis, Sebastian Pokutta, Antoine Prouvost, Lara Scavuzzo, Giulia
Zarpellon, Linxin Yang, Sha Lai, Akang Wang, Xiaodong Luo, Xiang Zhou, Haohan Huang,
Shengcheng Shao, Yuanming Zhu, Dong Zhang, Tao Quan, Zixuan Cao, Yang Xu, Zhewei
Huang, Shuchang Zhou, Chen Binbin, He Minggui, Hao Hao, Zhang Zhiyu, An Zhiwu, and
Mao Kun. The machine learning for combinatorial optimization competition (ml4co): Re-
sults and insights. In Douwe Kiela, Marco Ciccone, and Barbara Caputo (eds.), Proceed-
ings of the NeurIPS 2021 Competitions and Demonstrations Track, volume 176 of Proceed-
ings of Machine Learning Research, pp. 220–231. PMLR, 06–14 Dec 2022. URL https:
//proceedings.mlr.press/v176/gasse22a.html.

Prateek Gupta, Maxime Gasse, Elias Khalil, Pawan Mudigonda, Andrea Lodi, and Yoshua Bengio.
Hybrid models for learning to branch. Advances in neural information processing systems, 33:
18087–18097, 2020.

10

https://openreview.net/forum?id=rJY3vK9eg
https://openreview.net/forum?id=rJY3vK9eg
http://nbn-resolving.de/urn:nbn:de:0297-zib-85309
http://nbn-resolving.de/urn:nbn:de:0297-zib-85309
https://proceedings.mlr.press/v176/gasse22a.html
https://proceedings.mlr.press/v176/gasse22a.html

Published as a conference paper at ICLR 2023

Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2022. URL https://www.gu
robi.com.

Humayun Kabir, Ying Wang, Ming Yu, and Qi-Jun Zhang. High-dimensional neural-network tech-
nique and applications to microwave filter modeling. IEEE Transactions on Microwave Theory
and Techniques, 58(1):145–156, 2009.

Elias Khalil, Pierre Le Bodic, Le Song, George Nemhauser, and Bistra Dilkina. Learning to branch
in mixed integer programming. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 30, 2016.

Elias B Khalil, Christopher Morris, and Andrea Lodi. Mip-gnn: A data-driven framework for guid-
ing combinatorial solvers. Update, 2:x3, 2022.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Markus Kruber, Marco E Lübbecke, and Axel Parmentier. Learning when to use a decomposition. In
International conference on AI and OR techniques in constraint programming for combinatorial
optimization problems, pp. 202–210. Springer, 2017.

Zhuwen Li, Qifeng Chen, and Vladlen Koltun. Combinatorial optimization with graph convolutional
networks and guided tree search. Advances in neural information processing systems, 31, 2018.

Li Liu and Qi Fan. Resource allocation optimization based on mixed integer linear programming in
the multi-cloudlet environment. IEEE Access, 6:24533–24542, 2018.

Paramet Luathep, Agachai Sumalee, William HK Lam, Zhi-Chun Li, and Hong K Lo. Global
optimization method for mixed transportation network design problem: a mixed-integer linear
programming approach. Transportation Research Part B: Methodological, 45(5):808–827, 2011.

Vinod Nair, Sergey Bartunov, Felix Gimeno, Ingrid von Glehn, Pawel Lichocki, Ivan Lobov, Bren-
dan O’Donoghue, Nicolas Sonnerat, Christian Tjandraatmadja, Pengming Wang, Ravichandra
Addanki, Tharindi Hapuarachchi, Thomas Keck, James Keeling, Pushmeet Kohli, Ira Ktena, Yu-
jia Li, Oriol Vinyals, and Yori Zwols. Solving mixed integer programs using neural networks,
2020.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance
deep learning library. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and
R. Garnett (eds.), Advances in Neural Information Processing Systems 32, pp. 8024–8035. Curran
Associates, Inc., 2019.

Yves Pochet and Laurence A Wolsey. Production planning by mixed integer programming, volume
149. Springer, 2006.

Antoine Prouvost, Justin Dumouchelle, Lara Scavuzzo, Maxime Gasse, Didier Chételat, and Andrea
Lodi. Ecole: A gym-like library for machine learning in combinatorial optimization solvers. In
Learning Meets Combinatorial Algorithms at NeurIPS2020, 2020. URL https://openrevi
ew.net/forum?id=IVc9hqgibyB.

Anita Schöbel. A model for the delay management problem based on mixed-integer-programming.
Electronic notes in theoretical computer science, 50(1):1–10, 2001.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer networks. In C. Cortes, N. Lawrence,
D. Lee, M. Sugiyama, and R. Garnett (eds.), Advances in Neural Information Processing Systems,
volume 28. Curran Associates, Inc., 2015. URL https://proceedings.neurips.cc/p
aper/2015/file/29921001f2f04bd3baee84a12e98098f-Paper.pdf.

Jean-Paul Watson and David L Woodruff. Progressive hedging innovations for a class of stochastic
mixed-integer resource allocation problems. Computational Management Science, 8(4):355–370,
2011.

11

https://www.gurobi.com
https://www.gurobi.com
https://openreview.net/forum?id=IVc9hqgibyB
https://openreview.net/forum?id=IVc9hqgibyB
https://proceedings.neurips.cc/paper/2015/file/29921001f2f04bd3baee84a12e98098f-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/29921001f2f04bd3baee84a12e98098f-Paper.pdf

Published as a conference paper at ICLR 2023

Taehyun Yoon. Confidence threshold neural diving, 2022.

Ya-xiang Yuan. Recent advances in trust region algorithms. Mathematical Programming, 151(1):
249–281, 2015.

12

Published as a conference paper at ICLR 2023

A HALF CONVOLUTION

We use two interleaved half-convolutions Gasse et al. (2019) to replace the graph convolution. After
that, the GNN we used can be formulated as:

h(k)
vi = MLP(k)

c

h(k−1)
vi ,

∑
u∈N(vi)

h(k−1)
u

 i ∈ {n, n+ 1, ..., n+m− 1, n+m} ,

h(k)
vi = MLP(k)

v

h(k−1)
vi ,

∑
u∈N(vi)

h(k−1)
u

 i ∈ {1, 2, ..., n} ,

where MLP(k)
c , MLP(k)

v and g (·) are 2-layer perceptrons with ReLU activation functions. That
is, a half-convolution is performed to promote each constraint node aggregating information from
its relevant variable nodes; after that, another one is performed on each variable node to aggregate
information from its relevant constraint nodes and variable nodes.

B DATA COLLECTION

The training process requires bipartite graph representations of MILP problems as the input and
marginal probabilities of variables as the label. We first extract the bipartite graph by embedding
variables and constraints as respective feature vectors (see Appendix E). Then, we run a single-
thread Gurobi with a time limit of 3,600 seconds on training sets to collect feasible solutions along
with their objective values. These solutions are thereafter weighted via energy functions as in Equa-
tion (3) to obtain marginal probabilities.

C COMPARING OBJECTIVE VALUES IN DIFFERENT PARTIAL SOLUTIONS

We also scrutinize why fixing strategy could fail. Variables in the optimal solution are randomly
perturbed to simulate a real-world setting that a prediction is very likely to be inaccurate. Figure 4
exhibited a trend that, as we perturb more variables, the absolute primal gap (green) increases, and
the percentage of infeasible sub-problems (red) increases. The absolute gaps shown in Figure 4a
indicate large performance drawbacks given that the optimal objective value is 685. Convincingly,
we conclude that fixing approaches presumably produce sub-optimal solutions. Besides, as shown
in Figure 4b, randomly perturbing one variable can result in 20% of infeasible sub-problems. That
is, fixing strategy could lead to infeasible sub-problems even if relatively accurate predictions are
provided.

(a) WA (b) WA

Figure 4: This plot shows how qualities of solutions to sub-problems vary as variables are randomly
perturbed in one WA instance. Maximum, minimum and average values are presented in the plot.
The x-axis is the number of variables perturbed in the partial solution while y-axis of Figure 4a is
the absolute primal gap between average objective values (only include feasible sub-problems) and
the optimal objective value; y-axis of Figure 4b on the right is the percentage of infeasible sub-
problems.

13

Published as a conference paper at ICLR 2023

D COMPARING AGAINST A MODIFIED VERSION OF CONFIDENCE THRESHOLD NEURAL
DIVING

In this part, we demonstrate our advantage over a fixing strategy by conducting numerical exper-
iments. In Yoon (2022)’s work, thresholds are chosen to determine how many variables to fix.
We modify this method so that the number of variables becomes a tunable hyper-parameter, which
makes the procedure more controllable and flexible. We directly use the learning target to define
confidence scores, and we obtain partial solutions by setting different size parameters (k0, k1) as
stated in Section 3.2.1. ℓ1 norm is utilized for measuring such distances. We selected (700, 0),
(750, 0), (800, 0), (850, 0), and (900, 0) as size parameters and obtained their corresponding ℓ1 dis-
tances as 0.00, 0.04, 1.20, 35.26, and 85.01. We observed that such distances can be small if only
a small portion of variables are taken into consideration. However, as we enlarge the number of
involved variables, the distance increases dramatically. Hence, the predict-and-search approach can
involve larger set of variables than fixing strategy does while still retaining the optimality.

To support this argument, we compare the performance of our approach with that of a fixing strat-
egy. For simplicity, we denote the modified version of confidence threshold neural diving as Fixing
in Figures. Figure 5 shows the average relative primal gap achieved by different approaches, where
both approaches use a fixed number of selected variables. One can spot the dominance of our ap-
proach over the modified version of confidence threshold neural diving from Figure 5a; this implies
that such a fixing strategy only leads to mediocre solutions, while the search method (red) achieves
solutions with better qualities. In Figure 5d, both approaches are capable of finding optimal so-
lutions instantly, but the ones obtained by fixing method is far from optimal solutions to original
problems. We notice that in Figure 5b and 5c, our framework struggles to find good solution in the
early solving phases, but produces equivalent or better solutions within 1, 000 seconds comparing to
the fixing method. A possible reason is that our solution results in larger feasible regions comparing
to the fixing strategy. Conclusively, our framework always outperforms the fixing strategy.

101 102 103

time (sec)

0.00

0.10

0.20

0.30

0.40

0.50

a
ve

ra
g

e
p

ri
m

a
l

g
a

p

(a) IP

101 102 103

time (sec)

0.00

0.05

0.10

0.15

0.20

a
ve

ra
g

e
p

ri
m

a
l

g
a

p

(b) WA

101 102 103

time (sec)

0.00

0.01

0.02

a
ve

ra
g

e
p

ri
m

a
l

g
a

p

(c) CA

101 102 103

time (sec)

0.00

0.01

0.02

0.03

a
ve

ra
g

e
p

ri
m

a
l

g
a

p

reached BKS

(d) IS

Fixing+Gurobi PS+Gurobi

Figure 5: This figure shows average gaprel achieved by the search method and the fixing method
under the same partial solution. The results are averaged across 100 instances, and each plot rep-
resents one dataset. The proposed framework shows a constantly dominant performance over the
fixing-based method.

E FEATURE DESCRIPTIONS FOR VARIABLE NODES, CONSTRAINT NODES AND EDGES

To encode MILP problems, we propose a set of features extracted from constraints, variables, and
edges. This set of features is relatively light-weighted and generalized; each feature is obtained
either directly from the original MILP model or by conducting simple calculations. Moreover, such
extractions do not require pre-solving the MILP instance, which would save a significant amount of
time for large and difficult MILP problems.

14

Published as a conference paper at ICLR 2023

Table 2: Features in embedded bipartite representations

features. name description

Variable

1 obj normalized coefficient of variables in the objective function
1 v coeff average coefficient of the variable in all constraints
1 Nv coeff degree of variable node in the bipartite representation
1 max coeff maximum value among all coefficients of the variable
1 min coeff minimum value among all coefficients of the variable

1 int binary representation to show if the variable is an
integer variable

12 pos emb binary encoding of the order of appearance for
each variable among all variables.

Constraint

1 c coeff average of all coefficients in the constraint
1 Nc coeff degree of constraint nodes in the bipartite representation
1 rhs right-hand-side value of the constraint
1 sense the sense of the constraint

Edge 1 coeff coefficient of variables in constraints

F SIZES OF BENCHMARK PROBLEMS

Table 3 exhibits dimensions of the largest instance of each tested benchmark dataset. The numbers
of constraints, variables, and binaries are presented.

Table 3: Maximum problem sizes of each dataset

dataset # constr. # var. # binary var.

IP 195 1,083 1,050
WA 64,480 61,000 1,000
IS 600 1,500 1,500
CA 6,396 1,500 1,500

G PARAMETRIC SETTINGS FOR EXPERIMENTS

For experiments where our predict-and-search framework is compared with SCIP, Gurobi, and
fixing-based strategy, the settings for fixing-parameter (k0, k1) and the neighborhood parameter ∆
are listed in Table 4. Based on the performance of the underlying solver, various settings of (k0, k1)
are used to carry out experiments for each benchmark dataset shown in Table 4. The radius of the
search area ∆ is chosen respectively for different implementations (PS+SCIP, PS+Gurobi, and
Fixing+SCIP) of our framework as shown in Table 4.

Table 4: k0, k1, and ∆ settings for different dataset

dataset PS+SCIP PS+Gurobi Fixing+SCIP

k0, k1 ∆ k0, k1 ∆ k0, k1 ∆

IP 400, 5 1 400, 5 10 400, 5 0
WA 0, 500 5 0, 500 10 0, 500 0
IS 300, 300 15 300, 300 20 300, 300 0
CA 400, 0 10 600, 0 1 600, 0 0

15

	Introduction
	Preliminaries
	Mixed-integer linear programming
	Node Bipartite Graph
	Graph Neural Networks
	Trust Region Method

	Proposed Framework
	Predict
	Distribution learning
	weight-based sampling

	Search
	Observation
	Search within a neighborhood

	Computational Studies
	Results and Discussion
	Comparing against state-of-the-art solvers
	Comparing against Neural Diving

	Conclusions
	Appendix
	Half convolution
	Data collection
	Comparing objective values in different partial solutions
	Comparing against a modified version of confidence threshold neural diving
	Feature descriptions for variable nodes, constraint nodes and edges
	Sizes of benchmark problems
	Parametric settings for experiments

