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ABSTRACT

There is a growing interest in employing unlearnable examples against privacy
leaks on the Internet, which prevents the unauthorized models from being properly
trained by adding invisible image noise. However, existing attack methods rely
on an ideal assumption called label-consistency. In this work, we clarify a more
practical scenario called label-inconsistency that allows hackers and protectors to
hold different labels for the same image. Inspired by disrupting the uniformity and
discrepancy, we present a novel method called UniversalCP on label-inconsistency
scenario, which generates the universal unlearnable examples by cluster-wise per-
turbation. Furthermore, we investigate a new strategy for selecting the CLIP as
the surrogate model, since vision-and-language pre-training models are trained on
large-scale data and more semantic supervised information. We also verify the ef-
fectiveness of the proposed methods and the strategy for selecting surrogate models
under a variety of experimental settings including black-box backbones, datasets
and even commercial platforms Microsoft Azure and Baidu PaddlePaddle.

1 INTRODUCTION

It has been observed that the unconscious and unauthorized collection of users’ images from Internet
for training commercial models raises privacy problems (Hill, 2020). E.g., a private company called
Clearview AI was disclosed to unconsciously crawl more than three billion users’ images from
Facebook, YouTube and other websites to construct a commercial API (Zhang et al., 2020). To
address this concern, unlearnable examples are proposed to make training examples unusable for
Deep Neural Networks (DNNs) (Huang et al., 2021). In other literature, they are also known as
availability attacks (Biggio & Roli, 2018; Yu et al., 2022) or indiscriminate poisoning attacks (He
et al., 2022), which imperceptibly perturb the training images to injure the DNNs’ performance
during inference phase.

However, these methods are generally based on the ideal assumption: the labels used for the same
image to train the surrogate model and the victim model1 are identical. The protectors transform
a clean dataset Dc = {(xi,yi)} with images x ∈ X ⊂ Rd and labels y ∈ Y into an unlearnable
dataset Du = {(x′

i,y
′
i)} with unlearnable images x′ = x + δ and x ∈ Dc and imperceptible

perturbation δ ∈ ∆ ⊂ Rd and labels y′ ∈ Ω. The flaw in this ideal assumption is the belief that
Ω = Y , yet this is almost impossible in practice, since the protector only releases unlabeled images
to the hacker via the web. For instance, the label yi of an image xi in Y is a “domestic cat”, but the
label y′ in Ω could be a “cat” (hyperonymy relation) or an “American shorthair” (hyponymy relation),
or even a “black-footed cat” (similar relation). In other words, for the same images, the labels owned
by the protector and the labels owned by the hacker are inconsistent. We define the former ideal
assumption as the label-consistency scenario, and the more realistic latter as the label-inconsistency
scenario. We found the current methods suffer from a significant reduction in effectiveness in the
latter (Figure 1), because the dependency for these methods on specific labels derives invalidation in
label-inconsistency scenarios.

Therefore, we are faced with the need to find ways that can decouple the poisoning attacks from
the label dependencies to fit the label-inconsistency scenario. To this end, we analyzed the SOTA

1The surrogate model refers to the model that generates the unlearnable examples. The victim model refers
to the model that is trained on unlearnable examples, i.e., poisoned by unlearnable examples. The protector uses
the surrogate models to poison the victim models belonging to the hacker.
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attacks in label-consistency scenario (Error-minimizing Noise (Huang et al., 2021) and Adversarial
Poisoning (Fowl et al., 2021)) and sought to find the common core mechanisms behind them. By
observing the visual analysis, we found that the reason why these powerful poisoning attacks work is
that they disrupt the uniformity and discrepancy of the data distribution in feature representations
(Figure 2). Uniformity refers to the property that the manifold of unlearnable examples in the feature
space does not deviate from clean examples, and discrepancy refers to the property that examples
belonging to the same subject are richly diverse in the feature space. Inspired by this, we propose
the Universal unlearnable examples with Cluster-wise Perturbation (UniversalCP) to solve the label-
inconsistency issue. This allows us to achieve disrupting uniformity and discrepancy simultaneously
without knowing the labelled information.

Another issue beyond label-inconsistency is how to choose an appropriate surrogate model. It is
supposed to be a classified DNN that contains as many classes as possible in order to facilitate the
recognition and protection of billions of images on the Internet, such as the ImageNet (Russakovsky
et al., 2015) model (Huang et al., 2021). Yet, since we have removed the limitation on label
dependency, we can extend the choice of surrogate models to numerous non-classified models.
Among them, vision-and-language pre-training models (VLPMs) (Li et al., 2019; Radford et al.,
2021; Li et al., 2021) enjoy strong representation capabilities (more precisely, image encoders of
VLPMs) because they are trained on a large amount of training images and more semantic supervision
(using a textual description to align with the image rather than a one-hot label). In this paper, we
propose to employ CLIP2 (Radford et al., 2021) as surrogate models to generate unlearnable examples.

To solidly demonstrate the effectiveness of our methods in practical applications, we designed more
black-box settings, including several black-box backbones and black-box datasets. More importantly,
we compared our methods with baselines on two commercial machine learning platforms: Microsoft
Azure3 and Baidu PaddlePaddle4. To our knowledge, this is the first to conduct experimental
evaluations on commercial APIs in this line of work. Our contributions are summarized as follows:

• We clarify a more practical scenario called label-inconsistency in using imperceptible
perturbations to protect user privacy from unconscious and unauthorized collection, in which
the existing baseline methods are rendered inefficient.

• We analyze the existing attacks and attribute the common core mechanism to disrupting
the uniformity and discrepancy. Then we propose a novel method called UniversalCP,
which allows us to generate the universal unlearnable examples by cluster-wise perturbation
without knowing the labelled information.

• We present a novel strategy for choosing surrogate models. Since VLPMs are trained on
large-scale data and more semantic supervised information, we explore the employment of
CLIP as the surrogate model.

• We empirically verify the effectiveness of the proposed methods by designing a variety of
black-box settings including backbones and datasets. We also demonstrate the practical
performances in real-world scenarios via the commercial platforms.

2 RELATED WORK

Poisoning Attacks. Poisoning attacks refer to perturbing some or the entire training dataset so that
the model performs poorly on the entire validation dataset or some certain samples (Biggio et al.,
2012; Biggio & Roli, 2018). Considering the difference in the perturbing objects, the poisoning
attacks can be divided into clean-label attacks (perturbing images) and dirty-label attacks (perturbing
labels) (Yuan & Wu, 2021). Among the latter, the attacks that degrade the performance of the model
over the entire validation dataset by adding imperceptible image noise are known as indiscriminate
poisoning attacks or availability attacks or unlearnable examples (Huang et al., 2021; Fowl et al.,
2021; Yu et al., 2022; He et al., 2022). In this paper, we focus on these attacks since they maintain
image perception and also prevent hackers from using these perturbed data to train their own models.

2More precisely, we just employ the image encoder of CLIP in this work. For brevity, we use this description
in the rest of this paper.

3https://portal.azure.com/
4https://www.paddlepaddle.org.cn/en/
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Koh & Liang (2017) investigated the effect of error-maximizing noise on models. Huang et al. (2021)
proposed the error-minimizing noise based on a assumption that reduction of training errors (close
to zero) can trick the model into believing there is nothing to learn from unlearnable examples.
Inspired by the idea that adversarial noise is a type of non-robust features (Ilyas et al., 2019), Fowl
et al. (2021) proposed using targeted adversarial examples to implement poisoning attacks called
adversarial poisoning. Yu et al. (2022) proposed synthetic perturbations by enabling the model to rely
on shortcuts (Geirhos et al., 2020) during the training phase.

Adversarial Attacks. Adversarial attacks explore the vulnerability of DNNs, where they catas-
trophically misclassify inputs by small perturbations (Szegedy et al., 2013). However, regarding
it as a remarkable tool to interfere algorithms, many efforts have studied privacy preserving in
testing phase (Zhang et al., 2020; Zhong & Deng, 2022). Recently, many works have also noticed
this property of adversarial attacks when protecting privacy in the training phase and have used its
gradient-based generation paradigm to construct powerful poisoning attacks (unlearnable examples)
(Huang et al., 2021; Fowl et al., 2021). However, regardless of whether the image noises are the
sample-wise or the class-wise (Moosavi-Dezfooli et al., 2017), they rely on labelled information and
miss the label-inconsistency issue.

3 PROBLEM STATEMENT

3.1 PRELIMINARIES

Threat Models. We introduce two parties: the protector, and the hacker. The protector possesses
the surrogate model and uses it to implement a poisoning attack to release the generated unlearnable
examples onto the web. In the real world, it is close to social media companies, who have the drive
to take steps to protect users’ privacy. Then, without permission, the hacker crawls the training
images they need from the web, and in some way label them as supervision to train the victim
model for private purposes. Labelling images may be done through their own manuals or by using
crowd-sourcing platforms, such as Amazon Mechanical Turk. In the real world, a hacker may be a
researcher for academic purposes or a practitioner in industry.

Assumptions and Objectives. We consider image classification task in this paper. We first
briefly review the pipeline of previous studies on this task. Given a clean training dataset Dm

c =
{(xi,yi)}ki=j consisting of k clean examples with images x ∈ X ⊂ Rd and labels y ∈ Y and the
total number of classes m, the protector trained the m-class surrogate model fm

s on it. Next, based
on the clean training dataset Dm

c and the corresponding surrogate model fm
s , the protector generates

the unlearnable dataset Dn
u = {(x′

i,y
′
i)}ki=1 with unlearnable images x′ = x+ δ and x ∈ Dm

c and
imperceptible noise δ ∈ ∆ ⊂ Rd and labels y′ ∈ Ω and the total number of classes n. Finally,
the protectors expect that the hackers will use this unlearnable dataset Dn

u with the same labels to
train their own n-class victim model fn

v with the same classes as the surrogate model fm
s , i.e., their

assumption is that y = y′, m = n, and Y = Ω. They ignore the fact that the “protector→ web→
hacker” transfer chain of unlearnable dataset involves only images but not labels. So this assumption
is nearly impossible in reality, since it is hard for protectors and hackers to label all images identically.
We denote the above assumption as label-consistency.

In this paragraph, we will clarify the more practical assumption called label-inconsistency. Still
considering the clean training dataset Dm

c on the classification task, a more reasonable surrogate
model is supposed to be the classified model fm

s that has seen as many classes of images as possible,
where m is not equal to m, and usually≫m. In this paper, we employ ResNet-50 (He et al., 2016)
trained on ImageNet-1k as the default surrogate model, i.e., m = 1000. We also discuss other kinds
of surrogate models later. Next, the unlearnable examples x′ are generated from the data pairs (x,y)
fed into the surrogate model fm

s , where y is the pseudo label predicted by the surrogate model fm
s ,

i.e., y = fm
s (x). Finally, hackers use these unlearnable sample pairs (x′,y′) to train their own

n-class victim model fn
v . Note that although y′ and y are most likely not equal, they are similar in

semantics.

Our aim is to shed the limitation on the number of categories regardless of m or n, to generate the
perturbation δ and the corresponding unlearnable examples x′ that are also applicable in the label-
inconsistency scenario. Regarding the non-classification surrogate model fs (or the classification
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surrogate model but removed the top fully-connected layers), we pursue to perturb the embedding
features e = fs(x) to e′ = fs(x

′) (instead of focusing the change of prediction) by adding
perturbation δ.

3.2 BASELINE RESULTS IN LABEL-INCONSISTENCY
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Figure 1: CIFAR-10 accuracy of the victim models de-
rived by the current SOTA attacks in different scenarios.

In this subsection, we probe the perfor-
mance of the current baseline methods in
the label-inconsistency scenario. Taking
the CIFAR-10 dataset (Krizhevsky et al.,
2009) as an example, we first evaluate the
performance of the baseline methods un-
der label-consistency. Under this ideal as-
sumption, the labels for generating unlearn-
able examples are consistent with the la-
bels for training the victim model. Next,
following the label-inconsistency scenario
presented in the previous subsection, we
employ ResNet-50 (trained on ImageNet-
1k) as the surrogate model to generate the
unlearnable examples. For the same image,
the label at the generation of unlearnable
examples stage and at the training of victim
model stage may be inconsistent, e.g., “partridge” at the first stage and “bird” at the second stage.
Even the 5000 “bird” images in the second stage belong to dozens of different categories in the first
stage.

In this setting, we compare the performance of baseline methods including Error-minimizing
Noise (Huang et al., 2021), Error-maximizing Noise (Koh & Liang, 2017), Adversarial Poison-
ing (Fowl et al., 2021), Synthetic Perturbations (Yu et al., 2022) and DeepConfuse (Feng et al., 2019)
in these two scenarios. We showed in Figure 1 that these SOTA attacks are rendered inefficient in
the label-inconsistency scenario even though they yield considerable attack performance in their raw
assumptions (label-consistency).

4 UNIVERSAL UNLEARNABLE EXAMPLES: CLUSTER-WISE PERTURBATIONS

4.1 UNIFORMITY AND DISCREPANCY

(a) clean (b) Error-minimizing Noise (c) Adversarial Poisoning

Figure 2: The three-dimensional feature visualization of (a) clean CIFAR-10 examples and (b) (c)
the unlearnable examples derived by poisoning attacks. Data with the same color indicate that they
belong to the same category.

In the previous section, we showed that the gradient-based methods (Error-minimizing Noise and
Adversarial Poisoning) can achieve comparable results in the label-consistency scenario actually.
This demonstrates that the drop in effectiveness is due to a lack of adaptation to the new label-
inconsistency scenario, rather than the erroneous nature in the methodology. Therefore, a more
intuitive solution is to find ways to decouple these attacks from the label dependencies to fit the
label-inconsistency scenario. To this end, we analyzed the changes caused by the perturbations on
embedding representations, but with less concern for the final output of the model. By this, we sought
to find the common core mechanisms behind them, even without the labelled information.
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Specifically, using a ResNet-18 trained on the CIFAR-10 dataset as a mapping function, a 512-
dimensional representation is derived for each image in CIFAR-10 dataset with an input resolution
of 32× 32× 3. To be more intuitive, we used the representation matrix of the original CIFAR-10
to construct a three-dimensional space by PCA decomposition (Wold et al., 1987) (512-dimension
to 3-dimension). The visualizations of the clean examples, the unlearnable examples generated by
Error-minimizing Noise and Adversarial Poisoning in this three-dimensional space are plotted in the
Figure 2, respectively. (1) Error-minimizing Noise causes samples belonging to the same class to
be more compact in feature space, but does not shift the data manifold. This actually disrupts the
discrepancy of the data distribution. In other words, e.g., for the category “birds”, even if there are
5000 different “birds” in the training set, they all look like the same “bird” to the model. (2) On top
of disrupting the discrepancy, Adversarial Poisoning also shifts the data manifold away from the
original region to disrupt the uniformity simultaneously. Also using the category of “birds” as an
example, these 5000 images not only all look the same, but also no longer looked like “birds” to
the model. So, once we can achieve disrupting the uniformity and discrepancy without relying on
labelled information, then theoretically, we can also enable effective unlearnable examples in the
label-inconsistency scenario.

4.2 CLASS-WISE PERTURBATIONS AND CLUSTER-WISE PERTURBATIONS

Class-wise Perturbations. The previous analytical results have demonstrated that adversarial
perturbation is a remarkable solution for disrupting the uniformity and discrepancy. The adversarial
perturbation can be further divided into two categories: class-wise perturbation and sample-wise
perturbation. Different from general sample-wise perturbation, class-wise perturbation is also known
as universal adversarial perturbation (Moosavi-Dezfooli et al., 2017; Poursaeed et al., 2018), which is
fixed image noise that can be added into arbitrary images to fool the model. Huang et al. (2021) have
shown that the class-wise error-minimizing noise is superior in terms of experimental results. We
provide some insights into the class-wise perturbation here. First, Zhang et al. (2021) discovered that,
when investigating the feature preferences of DNNs, the class-wise perturbation can be regarded as
the “strong features” that effectively cover native semantic features in images. Such strong features
cause images to be more clustered on the feature space, which actually enhances the disrupting
discrepancy. Second, Yu et al. (2022) found that, when conducting backdoor attacks, the fixed pattern
(shortcuts) is an effective and model-unrequired unlearnable noise. Therefore, the complementary
properties give the class-wise perturbation a boost in performance.

However, the limitation of the class-wise perturbation is also obvious as it requires labelled infor-
mation, so it is not appropriate for the label-inconsistency scenario. Besides, generating a single
class-wise perturbation is quite time consuming (requiring several epochs on the entire training set).
If considering the surrogate model possesses a huge number of classes (e.g., 1000 categories for
ImageNet-1k models), the huge computational cost is unimaginable.

Cluster-wise Perturbations. To solve this limitation, we propose a universal cluster-wise per-
turbations called UniversalCP that does not require labelled information yet achieves disrupting
the uniformity and discrepancy. We use the generators (encoder-decoder networks (Poursaeed
et al., 2018)) to yield cluster-wise perturbation. The whole pipeline can be implemented in two
parts. First, the clean dataset Dc is fed into the surrogate model without classified layers fs to
derive the feature matrix E = [e1, · · · , ek]. Through feeding the it into K-means algorithm (Se-
lim & Ismail, 1984), given the number of clusters p, the set of clusters C = {C1, · · · , Cp} where
Ci = {xij}τ(i)j=1 = {xi1, · · · ,xiτ(i)} and

∑p
i=1 τ(i) = k, and the corresponding cluster centers

µC = {µC1
, · · · , µCp

} are derived. Second, we generate the corresponding cluster-wise perturbation
δi for each cluster Ci. Specially, for i-th cluster Ci, we hope that δi will bring the cluster of unlearn-
able examples C′i = {x′

i1, · · · ,x′
iτ(i)} close to one of the other clustering center g(µCi) in the feature

space of the surrogate model fs:

θi = argmin
θi

LDDU(Ci, g(µCi
), θi)

= argmin
θi

∑
xij∈Ci

d(fs(xij + G(σ; θi)), g(µCi
)),

(1)
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Figure 3: The UniversalCP pipeline. The entire dataset is divided into p clusters, each corresponding
to a certain generator parameters θi and a cluster-wise perturbation δi.

where LDDU denotes the loss of disrupting discrepancy and uniformity. G is the generator with
parameters θi, σ is the uniform noise sampled from a uniform distribution [0, 1]. d(·, ·) is a distance
metric, and Kullback-Leibler divergence loss is employed in this work. g is a permutation on µC
to ensure the disrupting uniformity, i.e., g(µCi

) ̸= µCi
. When the generator G with parameters θi

is optimized by Equation 1, then the cluster-wise perturbation δi can be obtained by the following
equation:

δi = G(σ; θi). (2)

Equation 1 and Equation 2 need to be repeated p times to obtain cluster-wise perturbations δ =
{δ1, · · · , δp}. Figure 3 illustrates the generation of the cluster-wise perturbations. The detailed
pipeline is described in Algorithm 1.

4.3 SURROGATE MODEL: CLIP

How to choose a surrogate model remains a challenge to be discovered. The knowledgeable surrogate
models can generate better unlearnable examples on different datasets and victim models, which is
analogous to “transferability” in the adversarial examples community. Since the baseline methods
use a classification model as a surrogate model, an intuitive choice would be a model trained on a
large-scale classification dataset such as ImageNet. Benefit from the removal of the limitation on the
number of categories, we can extend the choice of surrogate models to numerous non-classified deep
learning models. Among them, the size of the training set used by vision-and-language pre-training
models far exceeds the existing classification dataset, e.g., CLIP uses 400 million images far beyond
ImageNet. Beyond that, CLIP uses text information as supervision rather than one-hot labels. This
more semantical and informative supervision allows the model to learn more general knowledge
(better transferability), as evidenced by the SOTA transfer results on more than 30 downstream
computer vision datasets (Radford et al., 2021). These two items motivate us to use CLIP as a
surrogate model to generate more transferable perturbations.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETTINGS

In this paper, we carry out our study on 6 high-resolution and industrial-scale vision datasets to
simulate real-world performance including Pets (Parkhi et al., 2012), Cars (Krause et al., 2013),
Flowers (Nilsback & Zisserman, 2008), Food (Bossard et al., 2014), SUN397 (Xiao et al., 2010) and
ImageNet (Russakovsky et al., 2015). For ImageNet, we use the first 100 classes subset denoted as
ImageNet⋆. For surrogate models, we consider ResNet-50 (RN50) trained on ImageNet-1k as the de-
fault, unless otherwise explicitly stated. In Section 5.3, we also discuss the performance of ViT (Doso-
vitskiy et al., 2020). For victim models, we employ randomly initialized ResNet-18 (RN18) (He
et al., 2016), EfficientNet-B1 (EN1) (Tan & Le, 2019) and RegNetX-1.6GF (RNX1.6) (Radosavovic
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et al., 2020). We consider L∞-norm restriction in this work, within ∥δ∥∞ < ϵ = 16/255. The
number of clusters p is a hyperparameter defaulted to 10 in this work, and we discuss its effect on the
experimental results in Section 5.5.

We compare our methods with baseline methods including DeepConfuse (Feng et al., 2019), Synthetic
Perturbations (Yu et al., 2022), Error-minimizing Noise (Huang et al., 2021), Error-maximizing
Noise (Koh & Liang, 2017), and Adversarial Poisoning (Fowl et al., 2021). We also extend the
Error-minimizing Noise and Adversarial Poisoning to transform the targets from labels to cluster
centers, denoted as Error-minimizing Noise-C and Adversarial Poisoning-C, respectively. More
setups are detailed in Appendix B.

5.2 EXPERIMENTAL RESULTS ON BLACK-BOX VICTIM MODELS

Table 1: The test accuracy (%) of the victim models RN18 trained on different datasets and attack
methods, all of which use RN50 as the backbone of the surrogate model.

METHODS PETS CARS FLOWERS FOOD SUN397 IMAGENET⋆

CLEAN 62.31 67.18 67.18 78.97 43.08 77.76
DEEPCONFUSE 53.72 51.11 50.94 73.13 34.41 55.12

SYNTHETIC PERTURBATION 52.60 53.50 52.74 74.80 38.26 74.69
ERROR-MAXIMIZING NOISE 54.70 52.95 51.70 73.77 37.57 73.82
ERROR-MINIMIZING NOISE 52.96 54.43 50.58 75.47 38.48 74.20

ERROR-MINIMIZING NOISE-C 54.54 50.93 51.49 74.91 38.20 73.56
ADVERSARIAL POISONING 50.86 51.91 50.64 75.07 38.51 73.76

ADVERSARIAL POISONING-C 53.12 53.20 52.40 74.97 37.70 73.60
UNIVERSALCP (OURS) 7.41 35.84 41.86 55.29 20.38 54.80

UNIVERSALCP-CLIP (OURS) 4.69 16.70 7.97 19.07 3.89 39.78

In this subsection, we compare our methods with baseline methods on several black-box victim
models. We conduct the experiment on ResNet-18, EfficientNet-B1 and RegNetX-1.6GF, and the
results are shown in Table 1, Table 4 and Table 5, respectively. The unlearnable images input to
each victim model are subjected to the following data augmentations: resizing, random crop, random
horizontal flip and normalization. Since we do not consider the data augmentations, the common
setup of training DNNs in real-world, when deploying poisoning attacks, they actually weaken the
effect of unlearnable examples. From Table 1, we have the following main findings: (1) Our methods,
UniversalCP and UniversalCP-CLIP, widely outperform these existing methods. This demonstrates
the superiority of our method in label-inconsistency scenario compared to the near invalidation of the
baseline methods. (2) UniversalCP-CLIP achieves a better performance than UniversalCP, which
proves that using CLIP as the surrogate model is a reasonable and compatible way. (3) For a specific
case, ImageNet⋆, the victim model training set is a subset of the surrogate model training set, where
our methods still achieve the best performance. This further demonstrates the effectiveness of using
CLIP, as the similarity of ImageNet⋆ to ImageNet is much higher than the CLIP’s training set.

5.3 EXPERIMENTAL RESULTS ON BLACK-BOX COMMERCIAL PLATFORMS

We have demonstrated the effectiveness of our methods on black-box victim models. To further verify
our methods in real world, we deploy two commercial machine learning platforms: Microsoft Azure
and Baidu PaddlePaddle. In this setting, all the training details are owned to the platforms and
are unknown to us, including the model, learning rate, batch size, epoch, data augmentation, splitting
of the validation set, etc. Hence, the evaluation results on these two APIs are even more valuable than
Table 1. Considering that ViT may be used on commercial platforms due to its recent popularity, we
extended UniversalCP-CLIP-ViT from the setup in Section 5.2, i.e., replaced the surrogate model
ResNet-50 in UniversalCP-CLIP with ViT-B-32. The results in Table 2 are consistent with Table 1,
i.e., our methods achieve the best performance and can be productively complemented with CLIP.
Moreover, UniversalCP-CLIP-ViT performs better than UniversalCP-CLIP-RN50 on both platforms,
suggesting that ViT may be a better choice for surrogate model if the victim model is deployed by
commercial platforms. We visualize some examples in Figure 6.
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Table 2: The test accuracy (%) of Cars dataset on commercial platforms. For both platforms, we used
the fastest training configuration.

METHODS Azure PaddlePaddle
CLEAN 48.45 83.74

DEEPCONFUSE 39.47 41.88
SYNTHETIC PERTURBATION 42.38 47.59
ERROR-MAXIMIZING NOISE 42.83 42.99
ERROR-MINIMIZING NOISE 44.06 44.40

ERROR-MINIMIZING NOISE-C 45.84 44.53
ADVERSARIAL POISONING 43.97 43.38

ADVERSARIAL POISONING-C 46.03 45.10
UNIVERSALCP-RN50 (OURS) 36.4 30.96

UNIVERSALCP-CLIP-RN50 (OURS) 26.97 25.79
UNIVERSALCP-CLIP-VITB32 (OURS) 22.47 11.49

5.4 EXPERIMENTAL RESULTS ON DEFENSES

Table 3: Effects of defenses against our attacks on Pets dataset. Each defense is incorporated with
data augmentation.

METHODS NO DEFENSE MIXUP GAUSSIAN CUTMIX CUTOUT

UNIVERSALCP (OURS) 7.41 14.34 24.26 14.50 12.35
UNIVERSALCP-CLIP (OURS) 4.69 11.96 18.59 6.21 12.29

Since the poisoning attack derives the invisible perturbations to degrade the performance of the victim
models, it is worth exploring the impact on the image pre-processing. This image pre-processing
aimed at weakening poisoning attacks can also be referred to as “defense”. Previous studies have
reported that adversarial training is one of the strongest of these defenses (Madry et al., 2017; Fu
et al., 2022). However, for the research area of using invisible perturbation to protect user privacy
on the web, it is paranoid to consider adversarial training as a potential defense. The reason is as
follows: images on the social web are vast in number, common in kind, and widely available, so
hackers use this cheap way to obtain the required training data. But once adversarial training is
deployed, then it becomes very expensive considering that the cost of adversarial training is one or
two order of magnitude higher than normal training, regardless of the time cost or the computational
cost on the GPUs. In other words, unless it is a rare type of image like medical images, instead of
using adversarial training to deal with unlearnable examples, hackers could just purchase certified
data. Therefore, a more practical defense should be fast, such as some image denoising techniques.
The regular data augmentation we used in Section 5.2 can also be considered as a simple defense.
In this subsection, we also include others techniques such as Mixup (Zhang et al., 2017), Gaussian
smoothing, Cutmix (Yun et al., 2019) and Cutout (Cubuk et al., 2018) as defenses, and the defense
results on RN18 are shown in Table 3. The experimental results show that these defenses even
combined with regular data augmentation are ineffective against our methods, but can hurt the
performance of victim model without defenses (e.g., Gaussian smoothing).

5.5 ABLATION STUDY

We have shown that the SOTA results are achieved by our methods at p = 10, but the influence of
hyperparameter p has not yet been explored. Taking the Pets dataset as an example, we evaluated
UniversalCP and UniversalCP-CLIP under different values of p as shown in Figure 4. First, we can
find that our methods achieve reasonable results for all values of p, and even the worst value (p = 5)
performs better than baseline methods. This further illustrates the independent of our methods to
delicate hyperparameters. Moreover, for this dataset with 37 classes, p = 10 is chosen casually rather
than carefully, suggesting that the results in Table 1 have the potential to achieve better results if the
hyperparameter p is carefully tuned.
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Figure 4: Effects of the number of cluster p on Pets dataset. p = 10 is used as default.

5.6 MIXTURE OF CLEAN DATA AND UNLEARNABLE DATA
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Figure 5: Effects of the mixture of unlearnable data and clean
data. The analysis was carried out on the Pets dataset.

So far, the experiments conducted
have been in the setting of entire un-
learnable training dataset, consistent
with Huang et al. (2021); Fowl et al.
(2021); Yu et al. (2022). This set-
ting is reasonable when the protectors
have access to modify all user data to
prevent hackers from malicious col-
lections, such as social media plat-
forms. However, a further case is that
the hacker’s property possesses some
unperturbed images, which creates a
mixture of clean data and unlearnable
data. This case was shown by previ-
ous studies (Huang et al., 2021; Fowl
et al., 2021; Yu et al., 2022) that the
effectiveness of unlearnable samples
is severely weakened, where a mix-
ture of unlearnable data and clean data yielded even higher accuracy than only clean data, i.e., the
unlearnable data played a negative role.

In this work, we compared using a portion of clean data as the training set and using the same clean
data supplemented with unlearnable data as the training set. E.g., for Pets dataset containing 3680
training images of 37 classes, when we use only 2 classes of clean data to build the “clean” training
set, we also use these 2 classes of clean data and the remaining 35 classes of unlearnable data to build
the “mixture” training set. As shown in Figure 5, the purple line is near the green line, indicating that
the additional unlearnable data is almost useless for the model’s test performance, where each green
dot indicates that the all 3680 training images were used. We can also find that when the number of
classes used is small, the accuracy derived from the mixture dataset is slightly higher than the clean
dataset, which is consistent with the previous finding (Huang et al., 2021; Fowl et al., 2021; Yu et al.,
2022). However, when the number of classes is relatively high (roughly ≥ 19), the mixture dataset is
almost equal to or sometimes slightly lower than the clean dataset, which is an undiscovered result
in previous line of work. Still, the mixture case is expected to perform as well as the entire training
dataset in the future.

6 CONCLUSION

Unlearnable examples show acceptable potential in preventing hackers from collecting users’ private
information on the Internet. Several works have noticed such paths and proposed effective poisoning
attacks under the ideal assumption. However, in the present work, we clarify a more realistic scenario
called label-inconsistency which weakens the effectiveness of existing methods. By analyzing the
common mechanisms of existing attacks, we propose the cluster-wise perturbations for the more
challenging scenario. We also investigate the criteria for selecting surrogate models. The experimental
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results on a variety of settings demonstrate the effectiveness of our cluster-wise perturbations and the
strategy for selecting surrogate models.
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A ALGORITHM OF CLUSTER-WISE PERTURBATIONS

Algorithm 1 Generating Cluster-wise Perturbations

1: Input: surrogate model fs, distance metric d, uniform noise σ, number of clusters p, random
permutation g, L∞-norm restriction ϵ, clean images x ∈ Dc, initialized generator G with
parameters θ

2: Output: cluster-wise perturbations δ = {δ1, · · · , δp}
3: feature matrix E = fs(x)
4: set of clusters with the cluster centers {C, µC} = K-means(E, p)
5: for i in 1 · · · p do
6: Initialize θi
7: δi = G(σ; θi)
8: δi = Clamp(δi,−ϵ, ϵ)
9: for xij in Ci do

10: x′
ij = Clamp(xij + δi, 0, 1)

11: θi ← Optimize(x′
ij , fs, g(µCi

), d)
12: end for
13: δi = G(σ; θi)
14: δi = Clamp(δi,−ϵ, ϵ)
15: end for

B MORE EXPERIMENTAL DETAILS

All analyses and experiments are conducted on NVIDIA Tesla V100 32GB GPUs. The code for the
analyses and experiments uses PyTorch framework.

For ImageNet⋆, we repeated p times to train the generator G for 10 epochs with SGD using the initial
learning rate 0.1 and Cosine annealing, 256 batch size, and momentum 0.9. For others datasets, we
train the generator G for 50 epochs. For random permutation g, we simply chose i→ i+ 1 to build
a closed loop. For the surrogate models, we load the weights of ResNet-50 from the torchvision
package, as well as the weights of CLIP released by the authors. According to Radford et al.
(2021), there are 3 minor changes for ResNet-50 of CLIP: (1) There are now 3 “stem” convolutions
as opposed to 1, with an average pool instead of a max pool. (2) Performs anti-aliasing strided
convolutions, where an avgpool is prepended to convolutions with stride > 1. (3) The final pooling
layer is a QKV attention instead of an average pool. We train all randomly initialized victim models
including ResNet-18, EfficientNet-B1 and RegNetX-1.6GF for 90 epochs with SGD using the initial
learning rate 0.1 and Cosine annealing, 256 batch size, and momentum 0.9. For adversarial attacks in
Error-minimizing Noise and Adversarial Poisoning, we use PGD-40, and the step size is set to 1.25.

C MORE EXPERIMENTAL RESULTS ON BLACK-BOX VICTIM MODELS

Table 4: The test accuracy (%) of the victim models EfficientNet-B1 trained on different datasets and
attack methods, all of which use RN50 as the backbone of the surrogate model.

METHODS PETS CARS FLOWERS FOOD SUN397 IMAGENET⋆

CLEAN 48.68 72.33 52.46 80.29 42.84 78.04
DEEPCONFUSE 35.54 47.15 43.28 72.91 35.22 45.74

SYNTHETIC PERTURBATION 28.02 58.34 42.93 74.99 35.92 72.94
ERROR-MAXIMIZING NOISE 33.71 55.64 42.66 74.40 37.30 73.72
ERROR-MINIMIZING NOISE 36.88 54.23 44.06 75.54 37.20 72.20

ERROR-MINIMIZING NOISE-C 33.85 50.21 45.86 75.07 37.80 72.06
ADVERSARIAL POISONING 37.99 50.08 41.65 74.88 36.44 72.54

ADVERSARIAL POISONING-C 25.32 48.59 42.84 73.92 36.89 71.82
UNIVERSALCP (OURS) 4.85 46.54 41.78 53.45 22.97 32.30

UNIVERSALCP-CLIP (OURS) 6.19 1.43 17.61 17.44 12.95 31.82
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Table 5: The test accuracy (%) of the victim models RegNetX-1.6GF trained on different datasets
and attack methods, all of which use RN50 as the backbone of the surrogate model.

METHODS PETS CARS FLOWERS FOOD SUN397 IMAGENET⋆

CLEAN 44.86 63.84 52.69 84.02 43.27 80.78
DEEPCONFUSE 33.71 41.15 46.01 77.26 33.52 49.88

SYNTHETIC PERTURBATION 34.51 45.54 47.16 77.65 37.78 60.38
ERROR-MAXIMIZING NOISE 34.26 43.40 46.25 − 37.82 76.72
ERROR-MINIMIZING NOISE 37.04 39.67 47.34 79.43 36.82 74.86

ERROR-MINIMIZING NOISE-C 34.15 44.19 47.81 78.73 37.86 75.86
ADVERSARIAL POISONING 34.29 46.06 47.41 78.64 36.42 76.32

ADVERSARIAL POISONING-C 33.50 45.14 46.20 79.04 36.62 76.60
UNIVERSALCP (OURS) 4.77 29.46 37.97 − 22.28 56.10

UNIVERSALCP-CLIP (OURS) 3.87 1.46 7.51 − 6.04 41.66

We compare our methods with baseline methods on EfficientNet-B1 and RegNetX-1.6GF shown in
Table 4 and Table 5, respectively.

D EXAMPLE GALLERY

(a) UNIVERSALCP-RN50

(b) UNIVERSALCP-CLIP-RN50

(a) UNIVERSALCP-CLIP-VITB32

Figure 6: Samples from perturbed images uploaded to commercial platforms under ϵ = 16/255.

In Figure 6, we show some examples of perturbed images uploaded to commercial platforms Microsoft
Azure and Baidu PaddlePaddle.
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