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Abstract

In this extended abstract, we summarize results from our recent work (Authors, 2024), in
which we provide a mathematical formulation for learning functions on symmetric matrices
that are invariant with respect to the action of permutations by conjugation. To achieve
this, we construct O(n2) invariant features derived from generators for the field of rational
functions on n×n symmetric matrices that are invariant under joint permutations of rows
and columns. We obtain these generators using an argument from Galois theory. We show
that these invariant features can separate all distinct orbits of symmetric matrices except
for a measure zero set; such features can be used to universally approximate invariant
functions on almost all weighted graphs. We empirically demonstrate the feasibility of our
approach in a molecular properties regression problem.
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1. Introduction

Many machine learning (ML) applications come equipped with intrinsic symmetry, and in-
corporating that knowledge into the design of models has often boosted the performance
and efficiency. As a result, the success of symmetry-informed models has spurred interest
in group invariant and equivariant classes of functions. These developments have been par-
ticularly relevant for ML applied to scientific domains, such as molecular chemistry and
physics, where known symmetries are imposed by physical law Zhang et al. (2023).

Here we consider the problem of learning a permutation-invariant function on (node and
edge) weighted graphs1. In this problem the underlying invariant theory is hard; indeed,
computing a complete set of generating invariants is at least as hard as graph isomorphism
(solvable in quasi-polynomial time (Babai, 2016); unknown if solvable in polynomial time).

Motivated by computational scalability, we propose a relaxation of universal approx-
imation. At the cost of throwing out a closed, measure zero set of “bad” point clouds
(respectively, weighted graphs), we provide an approach to these learning problems that
has a universal approximation guarantee on the remaining “good” weighted graphs.

Our method is to look for computationally tractable invariants that contain the same
information as a set of generators for the field of invariant rational functions on the data.
It is known that such field generators separate orbits away from a Zariski-closed (and
thus Euclidean-closed and measure zero) “bad” subset; thus the proposed invariants do
as well. A standard argument based on the Stone-Weierstrass theorem then implies that
the proposed invariants are universally approximating away from the “bad” subset. For an
n-node weighted graph we extract O(n2) invariant features. Since such a graph has O(n2)
weights, this is tight information-theoretically.

1. In the the full paper Authors (2024) we also consider the closely related problem of learning invariant
functions on d-dimensional point clouds of n points, that is, invariant functions with respect both to
permutations and orthogonal transformations using O(nd) features. We refer the reader to the full paper
for those results.
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2. Related work

Due to space constraints we refer the reader to the full paper for a thorough discussion on
related work. We identify several related lines of research including:

Invariant theory. Describing the class of functions invariant under a group action is
historically the project of invariant theory (see e.g.: Kemper et al. 2022).

Machine learning on weighted graphs. Graph neural networks (GNNs) are a pop-
ular ML tool for learning functions on graphs. GNNs are designed to satisfy permutation
invariance (for graph-level output), where the choice of enforcing invariance leads to a trade-
off between efficiency and expressivity (cf.: Huang et al. 2024). The expressivity of GNNs
has been extensively studied using the graph isomorphism test and comparison with the
Weisfeiler-Lehman (WL) algorithms (Xu et al., 2018; Morris et al., 2019) —a hierarchy of
combinatorial graph invariants. To mitigate such issues, more powerful GNNs have been pro-
posed, including higher-order GNNs, subgraph-based GNNs, and spectral GNNs, yet they
typically incur higher computation costs due to higher-order tensor operations or additional
preprocessing. By using intractable high-order tensors, universality results are established
in Maron et al. (2019); Keriven and Peyré (2019). Beyond the Weisfeiler-Lehman hierarchy,
expressivity of GNNs can be studied using equivariant polynomials (Puny et al., 2023) or
graph spectral invariants (Lim et al., 2022).

Enforcing symmetries in machine learning models. More generally, invariant
and equivariant machine learning is a very active research area, where researchers incor-
porate symmetries into the design of machine learning models . There are many different
approaches, including orbit averaging, frame averaging, representation theory, group convo-
lutions, weight sharing, canonicalization, and invariant theory (a list of relevant references
is provided at the end). The present work considers the invariant theory approach.

3. Invariant functions on symmetric matrices

Suppose X = (Xij) is a real symmetric n × n matrix, and S(n) is the vector space of all
such matrices. The symmetric group Sn on n points acts on S(n) by

πX := PπXP⊤
π , (1)

where Pπ is the permutation matrix corresponding to the permutation π. This is the action
corresponding to node reordering in a graph. Specifically, an undirected weighted graph G
on n nodes can be represented by a symmetric n × n matrix X, known as the adjacency
matrix, where Xij describes the edge weight between nodes i and j. (The diagonal entries
Xii can be viewed as node weights.) When X is binary and the diagonal is zero, we recover
the class of simple undirected graphs.

The order of the nodes is not an intrinsic property of the graph, but rather a choice;
therefore, the representation of the graph as a matrix is not unique. The orbit of X under
the action of Sn consists of all adjacency matrices corresponding to the graph G. In other
words, we can identify the space of weighted graphs with S(n)/Sn, where S(n)/Sn is the
quotient of S(n) by the group action.

Here we give a set of O(n2) (specifically,
(
n+1
2

)
+ 1) invariant functions that are easy to

compute in practice and that almost universally approximate invariant functions on S(n).
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For k = 1, . . . , n, and for ℓ = 1, . . . ,
(
n
2

)
let

fd
k (X) = the kth largest of the numbers X11, . . . , Xnn, (d for “diagonal”)

fo
ℓ (X) = the ℓth largest of the numbers Xij , 1 ≤ i < j ≤ n, (o for “off-diagonal”)

f⋆(X) =
∑
i ̸=j

XiiXij . (2)

Theorem 1 There is a closed, Sn-invariant, measure zero set B ⊂ S(n) (the “bad set”),
such any continuous, Sn-invariant function S(n) \ B → R defined on the complement of
B can be uniformly approximated on any compact subset by a multi-layer perceptron that
takes the f ’s defined above (2) as inputs. The “bad set” B is defined by the vanishing of
some polynomials; in other words, it is an algebraic subvariety of S(n).

The argument follows a standard pattern in machine learning of translating an orbit-
separation result (Proposition 3.1 below) into a universal approximation result via the
Stone-Weierstrass theorem.

Proposition 3.1 There is a closed, Sn-invariant, measure zero set B ⊂ S(n) such that
any two distinct orbits of Sn in the complement of B are separated by some f .

The proof uses the main idea from (Thiéry, 2000, Theorem 11.2). We provide a proper
proof in the full paper. Informally the idea is the following: the fd’s and fo’s are invariants
of a bigger group acting on S(n) with the action of permutations that permute diagonal and
off-diagonal elements independently. Specifically, the fd’s and fo’s are separating invariant
functions for the action of the (bigger) direct product group Γ := Sn ×Sn(n−1)/2 on S(n).

Consider the field K := R(Xij: 1≤i≤j≤n) of rational functions on S(n). The subfield of
K consisting of functions invariant with respect to Γ is KΓ := R(fd

k: 1≤k≤n, f
o
ℓ: 1≤ℓ≤(n2)

).

The field extension KΓ ⊂ K is a Galois extension. Therefore, the fundamental theorem
of Galois theory implies that if we construct a set of invariants that are only fixed by the
desired group, then those invariants generate the field of invariant functions; therefore, by
Rosenlicht (1956), they uniquely identify all orbits except for those in a proper algebraic
subvariety (the “bad set” B of the theorem). Here, the desired group is Sn ⊂ Γ carrying
the action of permutation by conjugation.

Now we consider the action of Sn by (1), in which the Xii’s and the Xij ’s are permuted
consistently. What we want are the invariants for the action of that subgroup Sn of Γ
where the entries in a pair (σ, τ) ∈ Γ = Sn×Sn(n−1)/2 are induced by the same underlying
permutation of the index set.

This is where f⋆ enters. For an element (σ, τ) of Γ to leave f⋆ invariant, it must send
terms of the form XiiXij to other such terms. So the pair (σ, τ) of permutations must
preserve the “incidence relation” (i.e., the relation of sharing an index) between the Xii’s
and the Xij ’s (i ̸= j). Now σ (acting on the Xii’s) tells us what the underlying permutation
of the indices must be, and the fact that the pair (σ, τ) preserves this incidence relation
tells us that τ must be induced by the same underlying permutation of the indices. (This
point is argued carefully in the proof in Authors (2024).) Thus the only elements of Γ that
leave f⋆ invariant are precisely those belonging to Sn.
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4. Experimental results

We consider predicting the properties of the molecules given the molecular structure2. The
properties are invariant with respect to rotations and reflections of the molecular graph,
and permuting the nucleus labels. We use the stardard dataset QM7b (Blum and Reymond,
2009; Montavon et al., 2013a). It consists of 7,211 molecules with 14 regression targets. For
each molecule, the input featureX is an n×n symmetric CoulombMatrix (CM) (Rupp et al.,
2012)—a chemical descriptor of molecule. Specifically, X is an explicit invariant function of
the 3D coordinates {Ri}ni=1, Ri ∈ R3 of the nuclei, and the nuclear charges {Zi}ni=1, Zi ∈ R
(see details in Authors 2024).

In practice rather than computing the f ’s from the input X by sorting, we use the sets
{Xii} and {Xij} as inputs to a DeepSet3: DeepSet for Conjugation Invariance (DS-CI)

DS-CI(X) = MLPc

(
DeepSet1({fd

k (X)}k=1,...,n), DeepSet2({fo
ℓ (X)}ℓ=1,...,n(n−1)/2), MLP3(f

⋆(X))
)
.

We also consider an extension dubbed DS-CI+. This extension uses a “binary expansion”
(Montavon et al., 2013b, Appendix B) of the invariant features f , which is a common
preprocessing step in molecular regression.

We use an 80/10/10 train-validation-test split on QM7b and repeat the experiment
over 10 random data splits. We use Mean Absolute Error (MAE) as the loss function and
Adam optimizer with initial learning rate 0.01. We train the models for at most 1000 epochs
and report the test accuracy at the model checkpoint with the best validation accuracy.
Table 1 shows that our lightweight models based on the proposed invariant features achieve
competitive performance.

Table 1: Mean absolute error (MAE) on the test set over 10 random data splits (80/10/10
for train/validation/test sets). The results for the Kernel Ridge Regression (KRR) and Deep
Tensor Neural Network (DTNN) with the same data split ratio are taken from (Wu et al.,
2018, Table 10).

MAE ↓ Atomization
PBE0

Excitation
ZINDO

Absorption
ZINDO

HOMO
ZINDO

LUMO
ZINDO

1st excitation
ZINDO

Ionization
ZINDO

KRR 9.3 1.83 0.098 0.369 0.361 0.479 0.408
DS-CI (Ours) 12.849±0.757 1.776±0.069 0.086±0.003 0.401±0.017 0.338±0.048 0.492±0.058 0.422±0.012

DTNN 21.5 1.26 0.074 0.192 0.159 0.296 0.214
DS-CI+ (Ours) 7.650±0.399 1.045±0.030 0.069±0.005 0.172±0.009 0.119±0.005 0.160±0.011 0.189±0.011

MAE ↓ Affinity
ZINDO

HOMO
KS

LUMO
KS

HOMO
GW

LUMO
GW

Polarizability
PBE0

Polarizability
SCS

KRR 0.404 0.272 0.239 0.294 0.236 0.225 0.116
DS-CI (Ours) 0.404±0.047 0.302±0.009 0.225±0.01 0.329±0.016 0.213±0.008 0.255±0.015 0.114±0.008

DTNN 0.174 0.155 0.129 0.166 0.139 0.173 0.149
DS-CI+ (Ours) 0.122±0.002 0.169±0.007 0.135±0.007 0.183±0.005 0.139±0.004 0.139±0.005 0.088±0.004

2. Code available at TBA
3. Since the sets we consider for this application are 1-dimensional, other machine learning techniques are

also available (for instance, turning sets of scalars into histograms by binning and then using models
defined on 1-dimensional probability distributions such as histogram regressions Irpino and Verde (2015);
Dias and Brito (2015)).
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Grégoire Montavon, Matthias Rupp, Vivekanand Gobre, Alvaro Vazquez-Mayagoitia, Katja
Hansen, Alexandre Tkatchenko, Klaus-Robert Müller, and O Anatole von Lilienfeld. Ma-
chine learning of molecular electronic properties in chemical compound space. New Jour-
nal of Physics, 15(9):095003, 2013a. URL http://stacks.iop.org/1367-2630/15/i=

9/a=095003.
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