
Published as a conference paper at ICLR 2021

HYPERDYNAMICS: META-LEARNING OBJECT AND
AGENT DYNAMICS WITH HYPERNETWORKS

Zhou Xian, Shamit Lal, Hsiao-Yu Fish Tung, Emmanouil Antonios Platanios & Katerina Fragkiadaki
School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA
{xianz1,shamitl,htung,e.a.platanios,katef}@cs.cmu.edu

ABSTRACT

We propose HyperDynamics, a dynamics meta-learning framework that condi-
tions on an agent’s interactions with the environment and optionally its visual
observations, and generates the parameters of neural dynamics models based on
inferred properties of the dynamical system. Physical and visual properties of the
environment that are not part of the low-dimensional state yet affect its temporal
dynamics are inferred from the interaction history and visual observations, and are
implicitly captured in the generated parameters. We test HyperDynamics on a set
of object pushing and locomotion tasks. It outperforms existing dynamics models
in the literature that adapt to environment variations by learning dynamics over
high dimensional visual observations, capturing the interactions of the agent in re-
current state representations, or using gradient-based meta-optimization. We also
show our method matches the performance of an ensemble of separately trained
experts, while also being able to generalize well to unseen environment variations
at test time. We attribute its good performance to the multiplicative interactions
between the inferred system properties—captured in the generated parameters—
and the low-dimensional state representation of the dynamical system.

1 INTRODUCTION

Humans learn dynamics models that predict results of their interactions with the environment, and
use such predictions for selecting actions to achieve intended goals (Miall & Wolpert, 1996; Haruno
et al., 1999). These models capture intuitive physics and mechanics of the world and are remarkably
versatile: they are expressive and can be applied to all kinds of environments that we encounter in our
daily lives, with varying dynamics and diverse visual and physical properties. In addition, humans
do not consider these models fixed over the course of interaction; we observe how the environment
behaves in response to our actions and quickly adapt our model for the situation at hand based on
new observations. Let us consider the scenario of moving an object on the ground. We can infer
how heavy the object is by simply looking at it, and we can then decide how hard to push. If it does
not move as much as expected, we might realize it is heavier than we thought and increase the force
we apply (Hamrick et al., 2011).

Motivated by this, we propose HyperDynamics, a dynamics meta-learning framework for that gen-
erates parameters for dynamics models (experts) dedicated to the situation at hand, based on obser-
vations of how the environment behaves. HyperDynamics has three main modules: i) an encoding
module that encodes a few agent-environment interactions and the agent’s visual observations into
a latent feature code, which captures the properties of the dynamical system, ii) a hypernetwork (Ha
et al., 2016) that conditions on the latent feature code and generates parameters of a dynamics model
dedicated to the observed system, and iii) a target dynamics model constructed using the generated
parameters that takes as input the current low-dimensional system state and the agent action, and
predicts the next system state, as shown in Figure 1. We will be referring to this target dynamics
model as an expert, as it specializes on encoding the dynamics of a particular scene at a certain point
in time. HyperDynamics conditions on real-time observations and generates dedicated expert mod-
els on the fly. It can be trained in an end-to-end differentiable manner to minimize state prediction
error of the generated experts in each task.

1

Published as a conference paper at ICLR 2021

Figure 1: HyperDynamics encodes the visual observations and a set of agent-environment interactions and
generates the parameters of a dynamics model dedicated to the current environment and timestep using a hy-
pernetwork. HyperDynamics for pushing follows the general formulation, with a visual encoder for detecting
the object in 3D and encoding its shape, and an interaction encoder for encoding a small history of interactions
of the agent with the environment.

Many contemporary dynamics learning approaches assume a fixed system without considering po-
tential change in the underlying dynamics, and train a fixed dynamics model (Watter et al., 2015;
Banijamali et al., 2018; Fragkiadaki et al., 2015; Zhang et al., 2019). Such expert models tend to
fail when the system behavior changes. A natural solution to address this is to train a separate expert
for each dynamical system. However, this can hardly scale and doesn’t transfer to systems with
novel properties. Inspired by this need, HyperDynamics aims to infer a system’s properties by sim-
ply observing how it behaves, and automatically generate an expert model that is dedicated to the
observed system. In order to address system variations and obtain generalizable dynamics models,
many other prior works propose to condition on visual inputs and encode history of interactions to
capture the physical properties of the system (Finn & Levine, 2016; Ebert et al., 2018; Xu et al.,
2019b; Pathak et al., 2017; Xu et al., 2019a; Li et al., 2018; Sanchez-Gonzalez et al., 2018b; Hafner
et al., 2019). These methods attempt to infer system properties; yet, they optimize a single and fixed
global dynamics model, which takes as input both static system properties and fast-changing states,
with the hope that such a model can handle variations of systems and generalize. We argue that a
representation which encodes system information varies across different system variations, and each
instance of this presentation ideally should correspond to a different dynamics model that needs to
be used in the corresponding setting. These models are different, but also share a lot of information
as similar systems will have similar dynamics functions. HyperDynamics makes explicit assump-
tions about the relationships between these systems, and attempts to exploit this regularity and learn
such commonalities across different system variations. There also exsists a family of approaches
that attempt online model adaptation via meta-learning (Finn et al., 2017; Nagabandi et al., 2019;
Clavera et al., 2018; Nagabandi et al., 2018a). These methods perform online adaptation on the pa-
rameters of the dynamics models through gradient descent. In this work, we empirically show that
our approach adapts better than such methods to unseen system variations.

We evaluate HyperDynamics on single- and multi-step state predictions, as well as downstream
model-based control tasks. Specifically, we apply it in a series of object pushing and locomotion
tasks. Our experiments show that HyperDynamics is able to generate performant dynamics models
that match the performance of separately and directly trained experts, while also enabling effective
generalization to systems with novel properties in a few-shot manner. We attribute its good per-
formance to the multiplicative way of combining explicit factorization of encoded system features
with the low-dimensional state representation of the system. In summary, our contributions are as
follows:

• We propose HyperDynamics, a general dynamics learning framework that is able to gener-
ate expert dynamics models on the fly, conditioned on system properties.

• We apply our method to the contexts of object pushing and locomotion, and demonstrate
that it matches performance of separately trained system-specific experts.

• We show that our method generalizes well to systems with novel properties, outperforming
contemporary methods that either optimize a single global model, or attempt online model
adaptation via meta-learning.

2

Published as a conference paper at ICLR 2021

2 RELATED WORK

2.1 MODEL LEARNING AND MODEL ADAPTATION

To place HyperDynamics in the context of existing literature on model learning and adaptation,
we distinguish four groups of methods, depending on whether they explicitly distinguish between
dynamic—such as joint configurations of an agent or poses of objects being manipulated—and static
—such as mass, inertia, 3D object shape—properties of the system, and whether they update the
dynamics model parameters or the static property values of the system.

(i) No adaptation. These methods concern dynamics model over either low-dimensional states or
high-dimensional visual inputs of a specific system, without considering potential changes in the
underlying dynamics. These models tend to fail when the system behavior changes. Such expert
dynamics models are popular formulations in the literature (Watter et al., 2015; Banijamali et al.,
2018; Fragkiadaki et al., 2015; Zhang et al., 2019). They can be adapted through gradient descent at
any test system, yet that would require a large number of interactions.

(ii) Visual dynamics and recurrent state representations. These methods operate over high-
dimensional visual observations of systems with a variety of properties (Finn & Levine, 2016; Ebert
et al., 2018; Li et al., 2018; Xu et al., 2019b; Mathieu et al., 2015; Oh et al., 2015; Pathak et al.,
2017), hoping the visual inputs could capture both the state and properties of the system. Some also
attempt to encode a history of interactions with a recurrent hidden state (Xu et al., 2019a; Li et al.,
2018; Ebert et al., 2018; Sanchez-Gonzalez et al., 2018b; Hafner et al., 2019), in order to implicitly
capture information regarding the physical properties of the system. These methods use a single and
fixed global dynamics model that takes system properties as input directly, together with its state
and action.

(iii) System identification (Bhat et al., 2002). These methods model explicitly the properties of the
dynamical system using a small set of semantically meaningful physics parameters, such as mass,
inertia, damping, etc. (Ajay et al., 2019; Mrowca et al., 2018), and adapt by learning their values
from data on-the-fly (Chen et al., 2018; Li et al., 2019; Sanchez-Gonzalez et al., 2018b; Battaglia
et al., 2016; Sanchez-Gonzalez et al., 2018a).

(iv) Online model adaptation via meta-learning (Finn et al., 2017; Nagabandi et al., 2019; Clavera
et al., 2018; Nagabandi et al., 2018a). These methods perform online adaptation on the parameters
of the dynamics models through gradient descent. They are optimized to produce a good parameter
initialization that can be adapted to the local context with only a few gradient steps at test time.

The expert models in (i) work well for their corresponding systems but fail to handle system varia-
tions. Methods in (ii) and (iii), though attempting to infer system properties, optimize a single and
fixed global dynamics model, which takes as input both static system properties and fast-changing
states. Methods in (iv) attempt online update for a learned dynamics model. HyperDynamics dif-
fers from these methods in that it generates system-conditioned dynamics models on the fly. In our
experimental Section, we compare with all these methods and empirically show that our method
adapts better to unseen systems.

2.2 BACKGROUND ON HYPERNETWORKS

Central to HyperDynamics is the notion of using one network (the hypernetwork) to generate the
weights of another network (the target network), conditioned on some forms of embeddings. The
weights of the target network are not model parameters; during training, their gradients are back-
propagated to the weights of the hypernetwork (Chang et al., 2019). This idea is initially proposed
in (Ha et al., 2016), where the authors demonstrate leveraging the structural features of the original
network to generate network layers, and achieve model compression while maintaining competitive
performance for both image recognition and language modelling tasks. Since then, it has been ap-
plied to various domains. In Ratzlaff & Fuxin (2019) the authors use hypernetworks to generate
an ensemble of networks for the same task to improve robustness to adversarial data. Platanios
et al. (2018) attempts to generate language encoders conditioned on the language context for better
weight sharing across languages in a machine translation setting. Other applications include but are
not limited to: weight pruning (Liu et al., 2019), multi-task learning (Klocek et al., 2019; Serrà et al.,
2019; Meyerson & Miikkulainen, 2019), neural architecture search (Zhang et al., 2018; Brock et al.,

3

Published as a conference paper at ICLR 2021

2017), and continual learning (von Oswald et al., 2019). To the best of our knowledge, this is the
first work that applies the idea of generating model parameters to the domain of model-based RL,
and proposes to generate expert models conditioned on system properties.

3 HYPERDYNAMICS

HyperDynamics generates expert dynamics models on the fly, conditioned on observed system fea-
tures. We study applying HyperDynamics to a series of object pushing and locomotion tasks, but in
principle it is agnostic to the specific context of a dynamics learning task. In this section, we first
present the general form of HyperDynamics, and then describe the task-specific modules we used.

Given a dynamical system o (which is typically composed of an agent and its external environment)
with a certain set of properties, HyperDynamics observes both how it behaves under a few actions
(interactions), as well as its visual appearance when needed. Then, a visual encoderEvis encodes the
visual observation I into a latent visual feature code zovis, and an interaction encoder Eint encodes
a k-step interaction trajectory τ = (s0, a0, ...sk, ak) into a latent physics feature code zoint. We then
combine these two features codes by concatenating them, zo = [zint, zvis], forming a single vector
that captures the underlying dynamics properties of the system. A hypernetwork H maps zo to a
set of neural network weights for a forward dynamics model Fo, which is a mapping from the state
of the system and the action of the agent, to the state change at the subsequent time step t + 1:
δst = Fo(st, at). The hypernetwork is a fully-connected network and generates all parameters in a
single-shot as the output of it’s final layer. The detailed architecture of HyperDynamics for an object
pushing example is shown in Figure 1.

We meta-train HyperDynamics by backpropagating error gradients of the generated dynamics
model’s prediction, all the way to our visual and interaction encoders and the hypernetwork. Let
O denote the pool of all systems used for training. Let T denote the length of the collected trajecto-
ries. Let N denote the number of trajectories collected per system. The final prediction loss for our
model is defined as:

Lpred =
1

|O|NT

|O|∑
o=1

N∑
i=1

T∑
t=1

‖δst − F(st, at;H([Evis(I;φ), Eint(τ ;ψ)];ω))‖2, (1)

where φ, ψ and ω denote the learned parameters of Evis, Eint and H, respectively. We consider a
set of locomotion tasks for which only the interaction history is used as input, in accordance with
prior work (e.g., Finn et al., 2017; Nagabandi et al., 2019; Clavera et al., 2018; Nagabandi et al.,
2018a), and a pushing task on a diverse set of objects, where the visual encoder encodes the 3D
shape of the object.

3.1 HYPERDYNAMICS FOR OBJECT PUSHING

For our object pushing setting, we consider a robotic agent equipped with an RGB-D camera to ob-
serve the world and an end-effector to interact with the objects. The agent’s goal is to push objects to
desired locations on a table surface. At time t, the state of our pushing system is sot =< sobjt , srobt >,
where the object state sobjt is a 13-vector containing the object’s position pobj

t , orientation qobj
t

(represented as a quaternion), as well as its translational and rotational velocities vobj
t , and the robot

state srobt is a 3-vector representing the position of its end-effector. For controlling the robot, we use
position-control in our experiments, so the action at = (δx, δy, δz) is a 3-vector representing the
movement of the robot’s end-effector.

Objects behave differently under pushing due to varying properties such as shape, mass, and friction
relative to the table surface. For this task, HyperDynamics tries to infer object properties from its
observations and generate a dynamics model specific to the object being manipulated. While the
3D object shape can be inferred by visual observations, physics properties such as mass and friction
are hard to discern visually. Instead, they can be inferred by observing the motion of an object as a
result to a few interactions with the robot (Xu et al., 2019b). To produce the code zo, we use both
Evis for encoding shape information and Eint for encoding physics properties.

Given an object to be pushed, we assume its properties stay unchanged during the course of manipu-
lation. To produce the interaction trajectory τ , the robot pushes the object by k actions sampled from

4

Published as a conference paper at ICLR 2021

random directions. Eint then maps τ to a latent code zint ∈ R2. In practice we found k = 5 suffi-
cient to yield informative zint for pushing, and using a bigger value does not help further improve
performance. We use a simple fully-connected network for Eint.

Given a single RGB-D image I of the scene, Evis produces object-centric zvis ∈ R8 to encode
the shape information of the objects in the scene. We build our Evis using the recently proposed
Geometry-Aware Recurrent Networks (GRNNs) (Tung et al., 2019), which learn to map single 2.5D
images to complete 3D feature grids M ∈ Rw×h×d×c that represent the appearance and the shape
of the scene and its objects. GRNNs learn such mappings using differentiable unprojection (2.5D to
3D) and projection (3D to 2.5D) neural modules and can be optimized end-to-end for both 3D object
detection and view prediction, and complete missing or occluded shape information while optimized
for such objectives. It helps us implicitly handle possible minor occlusions caused by the robot end-
effector during data collection. GRNNs detect objects using a 3D object detector that operates over
its latent 3D feature map M of the scene. The object detector maps the scene feature map M to a
variable number of axis-aligned 3D bounding boxes of the objects (and their segmentation masks if
needed). Its architecture is similar to Mask R-CNN (He et al., 2017) but it uses RGB-D inputs and
produces 3D bounding boxes. We refer readers to Tung et al. (2019) for more details.

Evis first detects all the objects in the scene, and then crops the scene map around the object we
want to push to produce an object-centric 3D feature map Mobj = crop(M), which is then used
for shape encoding. We opt for such 3D representations since it allows a more realistic pushing
setting: we do not require the camera viewpoint to be fixed throughout training and testing, and we
can handle robot-object occlusions better since our encoder learns to complete missing (occluded)
shape information in the map Mobj . We train Evis for object detection jointly with the prediction
loss in Equation 1. We also add additional regularization losses by reconstructing the object’s shape,
where the visual code zvis is passed into a decoder Dvis to reconstruct the object shape V obj . Note
that the reconstruction loss can be applied from pure visual data, by observing objects from multiple
viewpoints, without necessarily interacting with them. This is important because moving a camera
around objects is cheaper than interacting with them through the robot’s end-effectors. In addition,
since our tasks concern planar pushing, we found reconstructing a top-down 2D shape instead of the
the full 3D one suffices for regularization, essentially predicting a top-down view of the object from
any perspective viewpoint.

Object 3D orientation: context or state? The shape of rigid objects does not change over time;
rather, its orientation changes. The framework discussed so far intuitively divides the input informa-
tion among different modules: the hypernetwork generates a dynamics model conditioned on object
properties, and the dynamics model takes care of low-dimensional object states. Then, one natural
choice is that the object state includes both its position and orientation information, and zvis encodes
the object shape information oriented at its canonical orientation, independent of its actual orienta-
tion. However, when there’s only a few objects used for training, the hypernetwork will only strive
to optimize for a discrete set of dynamics models, as it only sees a discrete set of object-specific zvis,
thus potentially leading to severe overfiting on the training data. Instead of producing zvis to encode
object shape information at its canonical pose, we propose to encode the object shape oriented at
its current orientation at each time step, and discard the orientation information from the states fed
into the generated dynamics model, as their generated parameters would already encode the orien-
tation information. This way, we move the orientation information from the state input (fed into
the generated dynamics model) to the shape input (encoded into zvis and fed into the hypernetwork
H). Using oriented as opposed to canonical shape as input permits H to have way more training
examples, even from a small number of objects with distinct shapes. Intuitively, H now treats the
same object with different orientations as distinct objects, and generates a different expert for each.
This helps smoothen and widen the data distribution seen by H.

3.2 HYPERDYNAMICS FOR LOCOMOTION

For locomotion tasks, we consider a legged robot walking in a dynamic environment with changing
terrains, where their properties are only locally consistent. At timestep t, the state contains the joint
velocities and joint positions of the robot, as well as the position of its center of mass. The dimension
of the state depends on the actual morphology of the robot. Torque-control is used to send low-level
torque commands to the robot.

5

Published as a conference paper at ICLR 2021

Unlike the object pushing setting where the properties of the objects can be safely assumed to re-
main constant, here the system dynamics changes rapidly due to varying terrain properties. Hence,
we adopt an online adaptation setting where at timestep t, the interaction data is taken to be the
most recent trajectory τ = (st−k, at−k, ...st−1, at−1). Similarly, we use a simple fully-connected
network to encode the interaction trajectory. In practice, we found k = 16 (equal to a trajectory seg-
ment of around 0.3 seconds) to be informative enough for Eint to infer accurate terrain properties,
and using a bigger value does not provide further performance gain. The encoded zint ∈ R2 is then
used by H to generate a dynamics model for the local segment of the terrain in real-time.

3.3 MODEL UNROLLING AND ACTION PLANNING

Action-conditioned dynamics models can be unrolled forward in time for long-term planning and
control tasks. We apply our approach with model predictive control (MPC) for action planning and
control. Specifically, we use random shooting (RS) (Nagabandi et al., 2018b) for action planning,
unroll our model forward with randomly sampled action sequences, pick the best performing one,
and replan at every timestep using updated state information to avoid compounding errors.

The unrolling mechanism of HyperDynamics for pushing is straightforward: at each timestep t, a
generated dynamics model Fo

t predicts δsot for the system. Afterwards, we compute sot+1 = sot⊕δsot ,
where ⊕ represents simple summation for positions and velocities, and quaternion composition
for orientations. We then re-orient the object-centric feature map Mobj using the updated object
orientation qobj

t+1 and generate a new dynamics model Fo
t+1. Finally, the updated full state sot+1,

excluding qobj
t+1, is used by Fo

t+1 for motion prediction. For locomotion, at each timestep we obtain
one zint, generate a dynamics model Fo

t for the local context, and use it for all unrolling steps into
the future, since future terrain properties are not predictable.

4 EXPERIMENTS

Our experiments aim to answer these questions: (1) Is HyperDynamics able to generate dynamics
models across environment variations that perform as well as expert dynamics models, which are
trained specifically on each environment variation? (2) Does HyperDynamics generalize to systems
with novel properties? (3) How does HyperDynamics compare with methods that either use fixed
global dynamics models or adapt their parameters during the course of interaction through meta-
optimization? We test our proposed framework in the tasks of both object pushing and locomotion,
and describe each of them in details below.

4.1 OBJECT PUSHING

Many prior works that learn object dynamics consider only quasi-static pushing or poking, where an
object always starts to move or stops together with the robot’s end-effector (Finn & Levine, 2016;
Agrawal et al., 2016; Li et al., 2018; Pinto & Gupta, 2017). We go beyond simple quasi-static
pushing by varying the physics parameters of the object and the scene, and allow an object to slide
by itself if pushed with a high speed. A PID controller controls the robot’s torque in its joint space
under the hood, based on position-control commands, so varying the magnitude of the action could
lead to different pushing speed of the end-effector. We test HyperDynamics on its motion prediction
accuracy for single- and multi-step object pushing, as well as its performance when used for pushing
objects to desired locations with MPC.

Experimental Setup. We train our model with data generated using the PyBullet simulator
(Coumans & Bai, 2016–2019). Our setup uses a Kuka robotic arm equipped with a single rod-
shaped end-effector, as shown in Figure 1. Our dataset consists of only 31 different object meshes
with distinct shapes, including 11 objects from the MIT Push dataset (Yu et al., 2016) and 20 objects
selected from four categories (camera, mug, bowl and bed) in the ShapeNet Dataset (Chang et al.,
2015). We split our dataset so that 24 objects are used for training and 7 are used for testing. The
objects can move freely on a planar table surface of size 0.6m × 0.6m. For data collection, we
randomly sample one object with randomized mass and friction coefficient, and place it on the table
with a random starting position. The mass is uniformly sampled from [300, 1000], the friction coef-
ficient of the object material is uniformly sampled from [8e−4, 12e−4], and the friction coefficient
of the table surface is set to be 10, all using the default units in PyBullet. Then, we instantiate the

6

Published as a conference paper at ICLR 2021

Table 1: Motion prediction error (in centimeters).

Model Seen Objects Novel Objects
t = 1 t = 5 t = 1 t = 5

Expert-Ens 0.82±0.37 4.22±2.21 1.68±0.79 5.83±2.49
XYZ 1.45±0.62 5.89±2.46 1.72±0.66 6.46±2.92
Direct 1.01±0.41 5.14±2.30 1.24±0.54 5.60±2.59
MB-MAML 1.68±0.61 8.91±3.79 1.76±0.73 9.05±5.98
HyperDynamics 0.83±0.35 4.27±2.24 0.93±0.53 4.77±2.57

Table 2: Pushing success rate.

Model Seen Objects Novel Objects
w/o
obs

w/ obs w/o
obs

w/ obs

Expert-Ens 0.92 0.72 0.80 0.44
XYZ 0.80 0.42 0.74 0.44
Direct 0.88 0.62 0.84 0.58
MB-MAML 0.70 0.42 0.68 0.38
VF 0.62 — 0.52 —
DensePhysNet 0.70 — 0.58 —
HyperDynamics 0.92 0.70 0.92 0.68

end-effector nearby the object and collect pushing sequences with length of 5 timesteps, where each
action is a random horizontal displacement of the robot’s end-effector ranging from 3cm to 6cm,
and each timestep is defined to be 800ms. Our method relies on a single 2.5D image as input for
object detection and motion prediction. Note that although collecting actual interactions with ob-
jects is expensive and time-consuming, data consisting of only varying shapes are cheap and easily
accessible. To ensure zvis produced by the visual encoderEvis captures sufficient shape information
for pushing, we train it on the whole ShapeNet (Chang et al., 2015) for shape autoencoding as an
auxiliary task, jointly with the dynamics prediction task. See Appendix A.1 for more details.
Baselines. We compare our model against these baselines: (1) XYZ: a model that only take as
input the action and states of the object and the agent, without having access to its visual feature
or physics properties, similar to Andrychowicz et al. (2020) and Wu et al. (2017). (2) Direct: this
baseline uses the same visual encoder and interaction encoder as our model does, and also uses the
same input, while it passes the encoded latent code z directly into a dynamics model in addition
to the system state. Compared to ours, the only difference is that it directly optimizes a single
global dynamics model instead of generating experts. This approach resembles the most common
way of conditioning on object features used in the current literature (Finn & Levine, 2016; Agrawal
et al., 2016; Li et al., 2018; Xu et al., 2019a; Fragkiadaki et al., 2015; Zhang et al., 2019; Hafner
et al., 2019), where a global dynamics model takes as input both the state and properties of the
dynamical system. (3) Visual Foresight (VF) (Ebert et al., 2018) and DensePhysNet (Xu et al.,
2019a): these two models rely on 2D visual inputs of the current frame, and predict 2D optical flows
that transform the current frame to the future frame. These models also use a global dynamics model
for varying system properties, and feed system features directly into the model, following the same
philosophy of Direct. These two baselines are implemented using the architectures described in their
corresponding papers. (4) MB-MAML (Nagabandi et al., 2019): a meta-trained model which applies
model-agnostic meta-learning to model-based RL, and trains a dynamics model that can be rapidly
adapted to the local context when given newly observed data. This baseline also uses the same input
as our model does; the only difference is that it uses the interaction data for online model update.
(5) Expert-Ens: we train a separate expert model for each distinct object, forming an ensemble of
experts. This baseline assumes access to the ground-truth orientation, mass, and friction, and serves
as an oracle when tested on seen objects. For unseen objects, we select a corresponding expert
from the ensemble using shape-based nearest-neighbour retrieval, essentially performing system
identification.
Implementation Details. In order to ensure a fair comparison, all the dynamics models used in
Direct, MB-MAML and Expert-Ens use the exactly same architecture as the one generated by Hy-
perDynamics. The interaction encoder is a fully-connected network with one hidden layer of size
8. The hypernetwork is a fully-connected network with one hidden layer of size 16. The visual
encoder follows the architecture of (Tung et al., 2019) and its encoder uses 3 convolutional layers,
each followed by a max pooling layer, with a fully-connected layer at the end. It uses kernels of
size 5, 3 and 3, with 2, 4, and 8 channels respectively. Its decoder uses 3 transposed convolutional
layers, with 16, 8, and 1 channels and the same kernel size of 4. The generated dynamics model is
a fully-connected network with 3 hidden layers, each of size 32; the same applies to the dynamics
models used in XYZ, Direct and Expert-Ens. We use leaky ReLU as activations for all the modules.
We use batch size of 8 and a learning rate of 1e − 3. We collected 50, 000 pushing trajectories for
training, and 1, 000 trajectories for testing. All models are trained till convergence for 500K steps.

We evaluate all the methods on prediction error for both single-step (t = 1) and multi-step unrolling
(t = 5) (Table 1). We also test their performance for downstream manipulation tasks, where the
robot needs to push the objects to desired target locations with MPC, in scenes both with and without
obstacles. When obstacles are present, the agent needs to plan a collision-free path. We report their
success rates in 50 trials in Table 2. Red numbers in bold denote the best performance across all

7

Published as a conference paper at ICLR 2021

models, while black numbers in bold represent the oracle performance (provided by Expert-Ens).
VF and DensePhysNet are not tested for motion prediction since they work in 2D image space and do
not predict explicit object motions, and are not applicable for collision checking and collision-free
pushing for the same reason.

Our model outperforms all baselines by a margin on both prediction and control tasks. When tested
on objects seen during training, while our model needs to infer orientation information and physics
properties via encoding visual input and interactions, it performs on par with the Expert-Ens oracle,
which assumes access to ground-truth orientation, mass and friction coefficient. This shows that the
dynamics model generated by HyperDynamics on the fly is as performant as the separately and di-
rectly trained dynamics experts. The XYZ baseline depicts the best performance possible when shape
and physics properties of the objects are unknown. When tested with novel objects unseen during
training, our model shows a performance similar to seen objects, outperforming XYZ by a great mar-
gin, demonstrating that our model transfers acquired knowledge to novel objects well. Expert-Ens
on novel objects performs similarly to XYZ, suggesting that with only a handful of distinct objects
in the training set, applying these dedicated models to novel objects, though after nearest-neighbour
searches, yields poor generalization. Performance gain of our model over Direct suggests our hi-
erarchical way of conditioning on system features and generating experts outperforms the common
framework in the literature, which uses a global model with fixed parameters for varying system
dynamics. Our model also shows a clear performance gain over MB-MAML, when only 5 data sam-
ples of interaction are available for online adaptation. This indicates that our framework, which
directly generates dynamics model given the system properties, is more sample-efficient than the
meta-trained dynamics model prior that needs to adapt to the context via extra tuning.

4.2 LOCOMOTION

Figure 2: We consider two types
of robots and two environments
for locomotion. Top: Ant-Pier.
Down: Cheetah-Slope.

Experimental Setup. We set up our environment using the Mu-
JoCo simulator (Todorov et al., 2012). In particular, we consider
two types of robots: a planar half-cheetah and a quadrupedal “ant”
robot. For each robot, we consider two environments where the
terrains are changing: (1) Slope: the robot needs to walk over a
terrain consisting of multiple slopes with changing steepness. (2)
Pier: the robot needs to walk over a series of blocks floating on the
water surface, where damping and friction properties vary between
the blocks. As a result, we consider these 4 tasks in total: Cheetah-
Slope, Ant-Slope, Cheetah-Pier and Ant-Pier. Figure 2 shows two
of them. Unlike the setting of object pushing, randomly and uni-
formly sampled states in the robot’s state space do not match the
actual state distribution encountered when the robot moves on the
terrain. As a result, on-policy data collection is performed: the lat-
est model is used for action selection to collect best-performing trajectories, which are then used to
update the dataset for model training. For Slope, the environment is comprised of a series of con-
secutive terrain segments, each of which has a randomly sampled steepness. During test time, we
also evaluate on unseen terrains with either higher or lower steepness. For Pier, each of the blocks
floating on the water has randomly sampled friction and damping properties, and moves vertically
when the robot runs over it, resulting in a rapidly changing terrain. Similarly, during test time we
also evaluate using blocks with properties outside of the training distribution. See Appendix A.2 for
more details.

Baselines. We compare our model against these baselines: (1) Recurrent (Sanchez-Gonzalez et al.,
2018b): A recurrent model that also uses GRUs (Cho et al., 2014) to encode a history of interactions
to infer system dynamics and perform system identification implicitly. (2) MB-MAML (Nagabandi
et al., 2019): a model meta-trained using MAML, same as the one used for object pushing. It
uses the same 16-step interaction trajectory for online adaptation. (3) Expert-Ens: An ensemble of
separately trained experts, similar to the one used for object pushing. The only difference is that in
pushing, we train one expert for each distinct object, while now we have a continuous distribution
of terrain properties used for training. Therefore, for each task we pick several environments with
properties evenly sampled from the continuous range, and train an expert for each of them.

Implementation Details. Again, in order to have a fair comparison, all the forward dynamics
models used in Recurrent and MB-MAML use the same architecture as the one generated by Hy-

8

Published as a conference paper at ICLR 2021

Table 3: Comparison of average total return for locomotion tasks.

Model Cheetah-Slope Cheetah-Pier Ant-Slope Ant-Pier
Seen Novel Seen Novel Seen Novel Seen Novel

Expert-Ens 104.1±59.2 76.9±42.4 354.6±182.9 321.4±171.3 142.1±77.9 124.2±71.9 219.0±113.2 179.3±87.2
Recurrent 64.4±21.0 76.6±38.1 292.5±132.1 279.7±132.4 133.9±68.4 142.1±66.1 176.4±87.7 170.5±89.1
MB-MAML 55.3±24.5 62.7±37.7 291.3±143.0 297.1±151.9 104.5±45.2 110.4±53.2 180.2±91.2 171.0±87.1
HyperDynamics 107.9±63.1 124.5±64.7 349.4±189.0 337.2±179.4 138.8±65.3 140.1±72.0 216.6±121.2 208.4±103.8

perDynamics. Both Recurrent and MB-MAML use the same input as our model does. Our encoder
is a fully-connected network with 2 hidden layers, both of size 128, followed by ReLU activations
and a final layer which outputs the encoded zint. The hypernetwork is a fully-connected network
with one hidden layer of size 16. The generated dynamics model is a fully-connected network with
two hidden layers, each of size 128; the same applies to the dynamics models used in Recurrent and
MB-MAML. During planning and control, 500 random action sequences are sampled with a planning
horizon of 20 steps. Data collection is performed in an on-policy manner. We start the first iteration
of data collection with randomly sampled actions and collect 10 rollouts, each with 500 steps. We
iterate over the data for 100 epochs before proceeding to next iteration of data collection. At each
iteration, the size of training data is capped at 50000 steps, randomly sampled from all available
trajectories collected. Here we use batch size of 128 and a learning rate of 1e − 3. All models are
trained for 150 iterations till convergence. In addition, early stopping is applied if an rolling average
of total return decreases.

We apply all the methods with MPC for action selection and control, and report in Table 3 the
average return computed over 500 episodes. Again, red numbers denote the best performance and the
black ones represent the oracle performance. In all tasks, HyperDynamics is able to infer accurate
system properties and generate corresponding dynamics models that match the oracle Expert-Ens
on seen terrains, and shows a great advantage over it when tested on unseen terrains. Recurrent also
performs reasonably well on Ant-Slope, but our model outperforms both MB-MAML and Recurrent
on most of the tasks. Note that here Recurrent can be viewed as serving the same role of the Direct
baseline in pushing, since it feeds system features together with the states to a fixed global dynamics
model. The results suggest that our explicit factorization of system features and the multiplicative
way of aggregating it with low-dimensional states provide a clear advantage over methods that either
train a fixed global model or perform online parameter adaptation on a meta-trained dynamics prior.

5 CONCLUSION

We presented HyperDynamics, a dynamics meta-learning framework that conditions on system fea-
tures inferred from observations and interactions with the environment to generate parameters for
dynamics models dedicated to the observed system on the fly. We evaluate our framework in the
context of object pushing and locomotion. Our experimental evaluations show that dynamics mod-
els generated by HyperDynamics perform on par with an ensemble of directly trained experts in
the training environments, while other baselines fail to do so. In addition, our framework is able
to transfer knowledge acquired from seen systems to novel systems with unseen properties, even
when only 24 distinct objects are used for training in the object pushing task. Our method presents
explicit factorizations of system properties and state representations, and provides a multiplicative
way for them to interact, resulting in a performance gain over both methods that employ a global
yet fixed dynamics models, and methods using gradient-based meta-optimization. The proposed
framework is agnostic to the specific form of dynamics learning tasks, and we hope this work could
stimulate future research into weight generation for adaptation of dynamics models in more versa-
tile tasks and environments. Handling more varied visual tasks, predicting both the architecture and
the parameters of the target dynamics model, and applying our method in real-world scenarios are
interesting avenues for future work. For pushing, we believe our method has the potential to transfer
to real-world without heavy fine-tuning, since it uses a geometry-aware representation, as suggested
in Tung et al. (2020). For locomotion, our model should also be easily trainable with data collected
in real-world, following the pipeline described in Nagabandi et al. (2019).

9

Published as a conference paper at ICLR 2021

ACKNOWLEDGMENTS

This paper is based upon work supported by Sony AI, ARL W911NF1820218, and DARPA Com-
mon Sense program. Fish Tung is supported by Yahoo InMind Fellowship and Siemens Future-
Maker Fellowship.

REFERENCES

Pulkit Agrawal, Ashvin V Nair, Pieter Abbeel, Jitendra Malik, and Sergey Levine. Learning to
poke by poking: Experiential learning of intuitive physics. In Advances in neural information
processing systems, pp. 5074–5082, 2016.

Anurag Ajay, Maria Bauza, Jiajun Wu, Nima Fazeli, Joshua Tenenbaum, Alberto Rodriguez, and
Leslie Kaelbling. Combining physical simulators and object-based networks for control, 04 2019.

OpenAI: Marcin Andrychowicz, Bowen Baker, Maciek Chociej, Rafal Jozefowicz, Bob McGrew,
Jakub Pachocki, Arthur Petron, Matthias Plappert, Glenn Powell, Alex Ray, et al. Learning
dexterous in-hand manipulation. The International Journal of Robotics Research, 39(1):3–20,
2020.

Ershad Banijamali, Rui Shu, Hung Bui, Ali Ghodsi, et al. Robust locally-linear controllable em-
bedding. In International Conference on Artificial Intelligence and Statistics, pp. 1751–1759,
2018.

Peter Battaglia, Razvan Pascanu, Matthew Lai, Danilo Jimenez Rezende, et al. Interaction networks
for learning about objects, relations and physics. In Advances in neural information processing
systems, pp. 4502–4510, 2016.

Kiran S. Bhat, Steven M. Seitz, and Jovan Popovic. Computing the physical parameters of rigid-
body motion from video. In Anders Heyden, Gunnar Sparr, Mads Nielsen, and Peter Johansen
(eds.), ECCV, volume 2350 of Lecture Notes in Computer Science, pp. 551–565. Springer,
2002. ISBN 3-540-43745-2. URL http://dblp.uni-trier.de/db/conf/eccv/
eccv2002-1.html#BhatSP02.

Andrew Brock, Theodore Lim, James M Ritchie, and Nick Weston. Smash: one-shot model archi-
tecture search through hypernetworks. arXiv preprint arXiv:1708.05344, 2017.

Angel X. Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan, Qixing Huang, Zimo Li,
Silvio Savarese, Manolis Savva, Shuran Song, Hao Su, Jianxiong Xiao, Li Yi, and Fisher Yu.
ShapeNet: An Information-Rich 3D Model Repository. Technical Report arXiv:1512.03012
[cs.GR], Stanford University — Princeton University — Toyota Technological Institute at
Chicago, 2015.

Oscar Chang, Lampros Flokas, and Hod Lipson. Principled weight initialization for hypernetworks.
In International Conference on Learning Representations, 2019.

Tao Chen, Adithyavairavan Murali, and Abhinav Gupta. Hardware conditioned policies for multi-
robot transfer learning. In Proceedings of the 32nd International Conference on Neural Informa-
tion Processing Systems, pp. 9355–9366. Curran Associates Inc., 2018.

Kyunghyun Cho, Bart Van Merriënboer, Dzmitry Bahdanau, and Yoshua Bengio. On the properties
of neural machine translation: Encoder-decoder approaches. arXiv preprint arXiv:1409.1259,
2014.

Ignasi Clavera, Anusha Nagabandi, Ronald Fearing, Pieter Abbeel, Sergey Levine, and Chelsea
Finn. Learning to adapt: Meta-learning for model-based control. 03 2018.

Erwin Coumans and Yunfei Bai. Pybullet, a python module for physics simulation for games,
robotics and machine learning. http://pybullet.org, 2016–2019.

Frederik Ebert, Chelsea Finn, Sudeep Dasari, Annie Xie, Alex Lee, and Sergey Levine. Visual fore-
sight: Model-based deep reinforcement learning for vision-based robotic control. arXiv preprint
arXiv:1812.00568, 2018.

10

http://dblp.uni-trier.de/db/conf/eccv/eccv2002-1.html#BhatSP02
http://dblp.uni-trier.de/db/conf/eccv/eccv2002-1.html#BhatSP02
http://pybullet.org

Published as a conference paper at ICLR 2021

Chelsea Finn and Sergey Levine. Deep visual foresight for planning robot motion. CoRR,
abs/1610.00696, 2016. URL http://arxiv.org/abs/1610.00696.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation
of deep networks. CoRR, abs/1703.03400, 2017. URL http://arxiv.org/abs/1703.
03400.

Katerina Fragkiadaki, Pulkit Agrawal, Sergey Levine, and Jitendra Malik. Learning visual predictive
models of physics for playing billiards. CoRR, abs/1511.07404, 2015.

David Ha, Andrew Dai, and Quoc V Le. Hypernetworks. arXiv preprint arXiv:1609.09106, 2016.

Danijar Hafner, Timothy Lillicrap, Ian Fischer, Ruben Villegas, David Ha, Honglak Lee, and James
Davidson. Learning latent dynamics for planning from pixels. In International Conference on
Machine Learning, pp. 2555–2565, 2019.

Jessica Hamrick, Peter Battaglia, and Joshua B Tenenbaum. Internal physics models guide proba-
bilistic judgments about object dynamics. In Proceedings of the 33rd annual conference of the
cognitive science society, pp. 1545–1550. Cognitive Science Society Austin, TX, 2011.

Masahiko Haruno, Daniel M Wolpert, and Mitsuo Kawato. Multiple paired forward-inverse models
for human motor learning and control. In M. J. Kearns, S. A. Solla, and D. A. Cohn (eds.),
Advances in Neural Information Processing Systems 11, pp. 31–37. MIT Press, 1999.

Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross B. Girshick. Mask R-CNN. CoRR,
abs/1703.06870, 2017. URL http://arxiv.org/abs/1703.06870.

Sylwester Klocek, Łukasz Maziarka, Maciej Wołczyk, Jacek Tabor, Jakub Nowak, and Marek
Śmieja. Hypernetwork functional image representation. In International Conference on Arti-
ficial Neural Networks, pp. 496–510. Springer, 2019.

Jue Kun Li, Wee Sun Lee, and David Hsu. Push-net: Deep planar pushing for objects with unknown
physical properties. In Robotics: Science and Systems, 2018.

Yunzhu Li, Jiajun Wu, Russ Tedrake, Joshua B. Tenenbaum, and Antonio Torralba. Learning particle
dynamics for manipulating rigid bodies, deformable objects, and fluids. In International Confer-
ence on Learning Representations, 2019. URL https://openreview.net/forum?id=
rJgbSn09Ym.

Zechun Liu, Haoyuan Mu, Xiangyu Zhang, Zichao Guo, Xin Yang, Kwang-Ting Cheng, and Jian
Sun. Metapruning: Meta learning for automatic neural network channel pruning. In Proceedings
of the IEEE International Conference on Computer Vision, pp. 3296–3305, 2019.

Michaël Mathieu, Camille Couprie, and Yann LeCun. Deep multi-scale video prediction beyond
mean square error. CoRR, abs/1511.05440, 2015. URL http://arxiv.org/abs/1511.
05440.

Elliot Meyerson and Risto Miikkulainen. Modular universal reparameterization: Deep multi-task
learning across diverse domains. In Advances in Neural Information Processing Systems, pp.
7903–7914, 2019.

R. C. Miall and D. M. Wolpert. Forward models for physiological motor control. Neural Netw., 9
(8):1265–1279, November 1996. ISSN 0893-6080. doi: 10.1016/S0893-6080(96)00035-4. URL
http://dx.doi.org/10.1016/S0893-6080(96)00035-4.

Damian Mrowca, Chengxu Zhuang, Elias Wang, Nick Haber, Li Fei-Fei, Joshua B Tenenbaum, and
Daniel LK Yamins. Flexible neural representation for physics prediction. In Advances in Neural
Information Processing Systems, 2018.

Anusha Nagabandi, Chelsea Finn, and Sergey Levine. Deep online learning via meta-learning:
Continual adaptation for model-based rl, 12 2018a.

Anusha Nagabandi, Gregory Kahn, Ronald S Fearing, and Sergey Levine. Neural network dynamics
for model-based deep reinforcement learning with model-free fine-tuning. In 2018 IEEE Interna-
tional Conference on Robotics and Automation (ICRA), pp. 7559–7566. IEEE, 2018b.

11

http://arxiv.org/abs/1610.00696
http://arxiv.org/abs/1703.03400
http://arxiv.org/abs/1703.03400
http://arxiv.org/abs/1703.06870
https://openreview.net/forum?id=rJgbSn09Ym
https://openreview.net/forum?id=rJgbSn09Ym
http://arxiv.org/abs/1511.05440
http://arxiv.org/abs/1511.05440
http://dx.doi.org/10.1016/S0893-6080(96)00035-4

Published as a conference paper at ICLR 2021

Anusha Nagabandi, Ignasi Clavera, Simin Liu, Ronald S. Fearing, Pieter Abbeel, Sergey Levine,
and Chelsea Finn. Learning to adapt in dynamic, real-world environments through meta-
reinforcement learning. In International Conference on Learning Representations, 2019.

Junhyuk Oh, Xiaoxiao Guo, Honglak Lee, Richard Lewis, and Satinder Singh. Action-conditional
video prediction using deep networks in atari games. arXiv preprint arXiv:1507.08750, 2015.

Deepak Pathak, Pulkit Agrawal, Alexei A. Efros, and Trevor Darrell. Curiosity-driven exploration by
self-supervised prediction. CoRR, abs/1705.05363, 2017. URL http://arxiv.org/abs/
1705.05363.

Lerrel Pinto and Abhinav Gupta. Learning to push by grasping: Using multiple tasks for effective
learning. In 2017 IEEE International Conference on Robotics and Automation (ICRA), pp. 2161–
2168. IEEE, 2017.

Emmanouil Antonios Platanios, Mrinmaya Sachan, Graham Neubig, and Tom Mitchell. Contex-
tual parameter generation for universal neural machine translation. In Proceedings of the 2018
Conference on Empirical Methods in Natural Language Processing, pp. 425–435, 2018.

Neale Ratzlaff and Li Fuxin. Hypergan: A generative model for diverse, performant neural networks.
In International Conference on Machine Learning, pp. 5361–5369, 2019.

Alvaro Sanchez-Gonzalez, Nicolas Heess, Jost Tobias Springenberg, Josh Merel, Martin Riedmiller,
Raia Hadsell, and Peter Battaglia. Graph networks as learnable physics engines for inference
and control. In Jennifer Dy and Andreas Krause (eds.), Proceedings of the 35th International
Conference on Machine Learning, volume 80 of Proceedings of Machine Learning Research, pp.
4470–4479, Stockholmsmässan, Stockholm Sweden, 10–15 Jul 2018a. PMLR.

Alvaro Sanchez-Gonzalez, Nicolas Heess, Jost Tobias Springenberg, Josh Merel, Martin Riedmiller,
Raia Hadsell, and Peter Battaglia. Graph networks as learnable physics engines for inference and
control. In International Conference on Machine Learning, pp. 4470–4479, 2018b.

Joan Serrà, Santiago Pascual, and Carlos Segura Perales. Blow: a single-scale hyperconditioned
flow for non-parallel raw-audio voice conversion. Advances in Neural Information Processing
Systems, 32:6793–6803, 2019.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5026–5033.
IEEE, 2012.

Hsiao-Yu Fish Tung, Ricson Cheng, and Katerina Fragkiadaki. Learning spatial common sense with
geometry-aware recurrent networks. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 2595–2603, 2019.

Hsiao-Yu Fish Tung, Zhou Xian, Mihir Prabhudesai, Shamit Lal, and Katerina Fragkiadaki. 3d-oes:
Viewpoint-invariant object-factorized environment simulators. arXiv preprint arXiv:2011.06464,
2020.

Johannes von Oswald, Christian Henning, João Sacramento, and Benjamin F Grewe. Continual
learning with hypernetworks. arXiv preprint arXiv:1906.00695, 2019.

Manuel Watter, Jost Springenberg, Joschka Boedecker, and Martin Riedmiller. Embed to control:
A locally linear latent dynamics model for control from raw images. In Advances in neural
information processing systems, pp. 2746–2754, 2015.

Jiajun Wu, Erika Lu, Pushmeet Kohli, Bill Freeman, and Josh Tenenbaum. Learning to see physics
via visual de-animation. In Advances in Neural Information Processing Systems, pp. 153–164,
2017.

Zhenjia Xu, Jiajun Wu, Andy Zeng, Joshua B. Tenenbaum, and Shuran Song. Densephysnet:
Learning dense physical object representations via multi-step dynamic interactions. CoRR,
abs/1906.03853, 2019a. URL http://arxiv.org/abs/1906.03853.

12

http://arxiv.org/abs/1705.05363
http://arxiv.org/abs/1705.05363
http://arxiv.org/abs/1906.03853

Published as a conference paper at ICLR 2021

Zhenjia Xu, Jiajun Wu, Andy Zeng, Joshua B Tenenbaum, and Shuran Song. Densephysnet: Learn-
ing dense physical object representations via multi-step dynamic interactions. arXiv preprint
arXiv:1906.03853, 2019b.

Kuan-Ting Yu, Maria Bauzá, Nima Fazeli, and Alberto Rodriguez. More than a million ways to be
pushed: A high-fidelity experimental data set of planar pushing. CoRR, abs/1604.04038, 2016.
URL http://arxiv.org/abs/1604.04038.

Chris Zhang, Mengye Ren, and Raquel Urtasun. Graph hypernetworks for neural architecture
search. arXiv preprint arXiv:1810.05749, 2018.

Marvin Zhang, Sharad Vikram, Laura Smith, Pieter Abbeel, Matthew Johnson, and Sergey Levine.
Solar: Deep structured representations for model-based reinforcement learning. In International
Conference on Machine Learning, pp. 7444–7453, 2019.

13

http://arxiv.org/abs/1604.04038

Published as a conference paper at ICLR 2021

Figure 3: Top: 24 objects used for training. Bottom: 7 objects used for testing. Objects selected from the
ShapeNet Dataset (Chang et al., 2015) are realistic objects seen during daily life, and objects from the MIT
Push dataset (Yu et al., 2016) consist of basic geometries such as rectangle, triangle, and ellipse. Note that
the shape of the testing objects differ from those used for training. (The third mug object used for testing is
handleless.)

A EXPERIMENTAL DETAILS

A.1 OBJECT PUSHING

Our dataset consists of 31 object meshes with distinct shapes, including 11 objects from the MIT
Push dataset (Yu et al., 2016) and 20 objects selected from four categories (camera, mug, bowl and
bed) in the ShapeNet Dataset (Chang et al., 2015). 24 objects are used for generating the training
data and 7 objects are used for testing (see Figure 3). The size of the objects ranges from 7cm
to 12cm. For each pushing trajectory, we randomly sample an object with randomized mass and
friction coefficient, and place it on a 0.6m × 0.6m table surface at a uniformly sampled random
position. At the begining of each trajectory, we instantiate the robot’s end-effector nearby the object,
with a random distance from the object’s center ranging from 6cm to 10cm. When sampling pushing
actions, with a probability of 0.2 the agent pushes towards a completely random direction, and with
a probability of 0.8 it pushes towards a point randomly sampled in the object’s bounding box. Each
action is a displacement with a magnitude sampled from [3cm, 6cm].

Our method is viewpoint-invariant and relies on a single 2.5D image as input. We place cameras at
9 different views uniformly with different azimuth angles ranging from the left side to the right side
of the robot, and the same elevation angles of 60 degrees. All cameras are looking at 0.1m above
the center of the table, and 1m away from the look-at point. At test time, our model is tested with a
single and randomly selected view. All images are 128× 128.

For object pushing with MPC, we place a randomly selected object in the scene with a random initial
position, and sample a random target location for it. At each step, we evaluate 30 random action
sequences with the model before taking an action. For pushing without obstacle, the maximum
distance of the target to the initial position for each object is capped at 0.25m, and a planning
horizon of 1 step is used since greedy action selection suffices for it. For pushing with obstacles, we
randomly place 2 additional obstacles in the scene, selected from the same pool of available objects.
We place the first obstacle between the starting and goal positions with a small perturbation sampled
from [−2cm, 2cm], so that there exists no straight collision-free path from the starting position to
the goal. The second obstacle is placed randomly with a distance from the first one ranging in
[15cm, 25cm]. The distance from the target to the initial position is uniformly sampled from the
range [0.24m, 0.40m]. The model needs to plan a collision free path and thus a planning horizon of
10 steps is used. For both tasks, we run 50 trials and evaluate the success rate, where it is considered
successful if the object ends up within 4cm from the target position, without colliding with any
obstacles along the way.

Additional model details. HyperDynamics for pushing follows the general formulation discussed
in Section 3. It’s composed of a visual encoder Evis, an interaction encoder Eint and a hypernet-

14

Published as a conference paper at ICLR 2021

work H. These components are trained together to minimize the dynamics prediction loss Lpred,
as defined in Equation 1. Meanwhile, Evis is also trained jointly for object detection and shape
reconstruction. Our Evis follows the architecture of GRNNs (Tung et al., 2019), which uses a sim-
ilar detection architecture as Mask R-CNN (He et al., 2017), except that it takes 2.5D input and
produces 3D bounding boxes. The detection loss Ldet is identical as the one defined in He et al.
(2017), supervised using ground-truth object positions provided by the simulator. Evis then uses
the bounding boxes to crop out a fixed-size feature map for the object under pushing, and encodes
it into a visual code zvis. In order to help Evis produce an informative zvis, we added an auxiliary
shape reconstruction loss, where zvis is passed into a decoder Dvis to reconstruct the object shape
V obj . In practice, since our tasks concern planar pushing, we found reconstructing a top-down 2D
shape instead of the full 3D one suffices to produce informative zvis. This is essentially performing
view prediction for the top-down viewpoint. The network is trained to regress to the ground-truth
top-down view of the object, which is provided by the simualtor and does not have any occlusion.
The view prediction loss Lvp of GRNNs uses a standard cross-entropy pixel matching loss, where
the pixel intensity is normalized. We refer readers to (Tung et al., 2019) for more details. The final
loss for HyperDynamics for pushing reads:

L = Lpred + Ldet + Lvp (2)

Note that while it’s expensive to collect actual pushing data with objects, data consisting of various
shapes are easily accessible. In order to ensure zvis produced by the shape encoder Eshape captures
sufficient shape information, we train it on the whole ShapeNet (Chang et al., 2015) for shape
autoencoding (essentially top-down view prediction) to jointly optimize forLvp. In practice, we load
random objects in the simulation and collect rendered RGB-D images from randomized viewpoints.
During training, data fed into Evis alternates between such rendered data and images of actual
objects being pushed, while the other components are only trained with the objects being pushed.
Note that such auxiliary data is only used to optimize for Lvp. (It’s also possible to use such data to
optimize forLdet, but in our experiments training object detection with only the objects being pushed
suffices.) The reason for doing this is that we can collect such visual data very fast using easily
accessible object meshes, while we only need to interact with a few objects with actual pushing.
This helps our model generalize to novel objects unseen during actual pushing, since Evis is now
able to produce a meaningful zvis for these novel objects.

A.2 LOCOMOTION

The Slope environment consists of a series of consecutive upward slopes with length of 15m. For
training, the height of each slope is randomly sampled from [0.5m, 3.5m], and for testing, the height
is randomly sampled from [0m, 0.25m] ∪ [3.75m, 4m]. The Pier environment consists of a series
of consecutive blocks with length of 4m. For training, the damping coefficient of each block is
randomly sampled from [0.2, 0.8], and for testing, the damping coefficient is randomly sampled
from [0, 0.1] ∪ [0.9, 1.0]. 5 experts are trained to form the expert ensemble for each task. The half-
cheetah robot has 6 controllable joints while the ant has 10. The reward function for half-cheetah
is defined to be xt+1−xt

0.01 − 0.05‖at‖22, and for ant it is xt+1−xt

0.02 + 0.05, where xt refers to the
x-coordinate of the agent at time t.

B ADDITIONAL EXPERIMENTAL RESULTS

B.1 MODEL ABLATIONS

In order to evaluate the effect of each network component in our model and motivate our design
choices, we present an ablation study here, and report the performance of each ablated model in
Table 4 and 5. For pushing, our model contains a visual decoder for top-down shape reconstruction
(top-down view prediction), uses a cropping step to produce object-centric feature maps, and uses
zvis ∈ R8 and zint ∈ R2. For locomotion, our model uses zint ∈ R2. We vary the sizes of
these latent codes and evaluate how they affect the model performance. In addition, in order to help
understand the performance of the 3D detector in our visual encoder, we also report the prediction
error using ground-truth object positions as input. The results in the table indicates that for pushing,
it’s essential to include the visual decoder to regularize the training, otherwise the model overfits
badly on the training data. The cropping step is also important and the object-centric feature map

15

Published as a conference paper at ICLR 2021

Table 4: Prediction error of HyperDynamics for pushing with different model ablations.

Model Ours w/ gt object
positions

w/o visual
decoder

w/o cropping zvis ∈ R16 zvis ∈ R32 zint ∈ R4 zint ∈ R8

Error (seen) 0.83±0.35 0.76±0.32 0.87±0.44 1.45±0.64 0.82±0.43 0.84±0.37 0.83±0.39 0.81±0.34
Error (novel) 0.93±0.53 0.86±0.44 4.32±2.08 1.76±0.90 0.94±0.51 0.96±0.49 0.93±0.52 0.94±0.55

Table 5: Average total return of HyperDynamics for locomotion with different model ablations.

Model Cheetah-Slope Cheetah-Pier Ant-Slope Ant-Pier
Seen Novel Seen Novel Seen Novel Seen Novel

Ours 107.9±63.1 124.5±64.7 349.4±189.0 337.2±179.4 138.8±65.3 140.1±72.0 216.6±121.2 208.4±103.8
zint ∈ R4 103.5±59.0 127.6±62.9 351.2±176.4 333.5±167.9 141.2±69.3 137.1±73.2 221.2±115.9 202.1±93.0
zint ∈ R8 112.1±64.0 122.9±59.9 363.7±173.6 329.8±173.1 134.5±63.8 134.9±75.8 214.2±124.1 206.7±97.3

Table 6: Comparison of prediction error (×10−2) for locomotion tasks.

Model Cheetah-Slope Cheetah-Pier Ant-Slope Ant-Pier
Seen Novel Seen Novel Seen Novel Seen Novel

Expert-Ens 3.4±0.6 26.1±6.4 5.4±0.8 12.0±6.1 8.9±3.6 25.4±9.2 14.2±4.7 41.7±13.2
Recurrent 5.2±1.7 22.4±5.2 5.2±1.2 12.1±4.5 9.1±3.2 23.0±8.9 18.3±8.0 39.1±18.0
MB-MAML 5.7±2.2 21.0±9.2 5.1±1.3 12.4±6.7 12.8±5.2 29.1±11.2 18.9±7.2 42.3±19.7
HyperDynamics 3.5±0.6 17.9±7.3 5.6±1.0 11.3±4.7 9.3±3.4 22.8±7.9 14.7±5.3 33.2±14.2

helps the model to make more accurate predictions. As for the object detector, when compared to
the model using ground-truth object positions, our model using detected object positions only shows
a minor performance drop, suggesting that the 3D detector in the visual encoder is able to accurately
detect the object locations. The table also motivates our choice for the dimension of the latent code
zvis (pushing) and zint (both pushing and locomotion), as further increasing their sizes does not
result in any clear performance gain. (In Table 5, none of the numbers is marked in red as the results
are similar across all ablated models.)

B.2 ADDITIONAL RESULTS ON PREDICTION ERROR FOR LOCOMOTION

In the locomotion tasks, the data collected is not i.i.d., since it depends on the model that’s being
optimized online. In order to show a clear comparison between our method and baselines regard-
ing their prediction accuracy, we train HyperDynamics till convergence for each task, and use this
converged model with MPC to collected a fixed dataset. Then, we compare the prediction error
of all models on this single dataset and report the results in Table 6. The error is computed as the
mean squared error between the predicted state and the actual state in the robot’s state space. Again,
our model is able to match the performance of Expert-Ens on the seen terrains and still performs
reasonably well on unseen terrains, outperforming the baselines consistently.

16

	Introduction
	Related Work
	Model learning and model adaptation
	Background on Hypernetworks

	HyperDynamics
	HyperDynamics for Object Pushing
	HyperDynamics for Locomotion
	Model Unrolling and Action Planning

	Experiments
	Object Pushing
	Locomotion

	Conclusion
	Experimental Details
	Object Pushing
	Locomotion

	Additional Experimental Results
	Model Ablations
	Additional Results on Prediction Error for Locomotion

