Pose2L.ang3D: Distilling 3D Reasoning from 2D Skeletons via Language
Supervision
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Figure 1: Our model proposes a framework to generate fine grained pose descriptions through 3D pose knowledge dis-
tillation using language supervision outperforming existing 3D Pose estimator & VLM approaches that produce generic

and spatially unaware responses.

Abstract

Despite the progress in 3D human pose estimation, its re-
liance on expensive multi-view setups and limited dataset
availability hinders scalability in real-world applications. We
propose a novel framework that distills 3D spatial under-
standing into a language-aligned representation space using
only 2D and 3D pose skeletons rendered as images. Our
method learns a shared embedding space where 2D and 3D
pose images are projected close to their corresponding nat-
ural language descriptions. During training, the model lever-
ages 3D pose supervision to enrich semantic alignment, while
at test time, it operates exclusively on 2D poses inferred from
real images. This enables high-quality language-based rea-
soning such as action descriptions and question answering
without an additional computational cost or supervision re-
quirements of 3D pose estimators at inference. Our approach
not only reduces reliance on 3D sensors but also demonstrates
that 2D pose alone, when trained with 3D-informed language
grounding, can achieve rich semantic understanding. Experi-
ments on a newly curated dataset of 80K annotated pose im-
ages shows the effectiveness of our method, showing 20.8%
and 44.1% improvements over 2D-only baselines and 1.8%
and 1.3% improvements over 3D methods in VQA accuracy
and BLEU-4 scores respectively.

1 Introduction

Understanding human pose is a critical problem in com-
puter vision with applications spanning action recognition,
human-computer interaction, and augmented reality. Tradi-
tional approaches to this problem have evolved along two
primary directions: 2D pose estimation and 3D pose esti-
mation. 2D pose estimation has seen remarkable progress
with methods like OpenPose (Cao et al. 2019) and HR-
Net (Wang et al. 2020) achieving high accuracy in diverse
environments. These approaches are computationally effi-

cient and work reliably in unconstrained settings, making
them suitable for real-time applications. However, they lack
depth information crucial for understanding complex human
actions and spatial relationships.

In contrast, 3D pose estimation methods (Liu et al. 2025),
(Liu et al. 2021) provide richer spatial understanding but
typically require specialized hardware setups like motion
capture systems or multi-view cameras. This makes 3D pose
estimation prohibitively expensive and impractical for many
real-world scenarios, creating a significant barrier to deploy-
ment despite its superior representational capacity.

To address this, vision-language models have emerged as
a promising alternative, offering better representations along
with alignment in language space. However, these models
often struggle with fine-grained pose-related queries due to
their limited ability to reason about human body configu-
rations. Attempts to address this limitation by incorporat-
ing 2D pose keypoints into multimodal frameworks like
LXMERT (Tan and Bansal 2019), ViIBERT (Lu et al. 2019),
and LLaVA (Liu et al. 2023) have shown improvements but
still fall short on tasks requiring spatial reasoning. More re-
cently, PoseChat (Feng et al. 2024) demonstrated that in-
corporating 3D pose information can substantially enhance
language-based reasoning about human actions. While ef-
fective, this approach introduces significant computational
overhead, making it unsuitable for real-time applications due
to high latency and resource requirements.

We identify a critical gap in current research: the need
for a system that achieves 3D-level reasoning capabilities
while maintaining the computational efficiency and accessi-
bility of 2D pose estimation. To address this challenge, we
introduce Pose2Lang3D, a novel framework that distills 3D
knowledge using language into a model that operates solely
on 2D skeletal inputs at inference time. Our key insight is



that while explicit 3D information is valuable, much of this
knowledge can be implicitly learned through appropriate su-
pervision during training. By leveraging language as a su-
pervision signal, our approach enables a model to “think
in 3D” despite processing only 2D inputs at test time. This
distillation-based approach dramatically reduces computa-
tional requirements while preserving the rich reasoning ca-
pabilities associated with full 3D pose understanding.
The contributions of our work are as follows:

* We propose a knowledge distillation framework that
transfers 3D reasoning capabilities to a model operating
exclusively on 2D skeletal inputs, eliminating the need
for complex 3D pose estimation at inference time.

* We introduce a language-supervised learning approach
that grounds pose understanding in natural language, en-
abling more intuitive and semantically rich pose reason-
ing without explicit 3D representation.

* We demonstrate that our approach achieves comparable
performance to methods using explicit 3D information
while requiring significantly fewer parameters and sim-
pler input requirements, making it suitable for real-time
applications.

Pose2Lang3D represents a significant step toward mak-
ing sophisticated 3D-aware pose understanding more acces-
sible and practical for real-world applications. By bridging
the gap between computationally efficient 2D pose estima-
tion and semantically rich 3D reasoning, our work opens
new possibilities for human-computer interaction systems
that can understand and respond to nuanced human activi-
ties.

2 Related Work

Our work lies at the intersection of pose estimation, vision-
language models, and knowledge distillation. In this section,
we review relevant literature across these domains.

2.1 2D Pose Estimation

Human pose estimation in 2D has advanced significantly
with deep learning approaches. Early deep learning meth-
ods (Toshev and Szegedy 2014) treated keypoint detec-
tion as a regression problem. Later, DeepCut (Pishchulin
et al. 2016) and DeeperCut (Insafutdinov et al. 2016) intro-
duced part-based models with integer linear programming
for joint association. OpenPose (Cao et al. 2019) revolution-
ized the field with real-time multi-person pose estimation us-
ing Part Affinity Fields. Subsequently, top-down approaches
like Mask R-CNN (He et al. 2017) and HRNet (Wang et al.
2020) achieved state-of-the-art performance by first detect-
ing people and then estimating their poses. More recently,
transformer-based methods (Li et al. 2021; Yang et al. 2021)
have shown promising results by modeling long-range de-
pendencies between keypoints.

These approaches are computationally efficient and work
well in unconstrained environments, making them suitable
for real-time applications. However, they lack depth infor-
mation crucial for understanding complex spatial relation-
ships and actions.

2.2 3D Pose Estimation

3D pose estimation methods can be broadly categorized into
direct regression and 2D-to-3D lifting approaches. Direct re-
gression methods (Pavlakos et al. 2017; Sun, Li, and Lin
2018) predict 3D joint coordinates directly from images.
Pavlakos et al. (Pavlakos et al. 2017) used volumetric rep-
resentations for 3D pose, while Sun et al. (Sun, Li, and Lin
2018) introduced integral regression for improved accuracy.

Lifting-based approaches (Martinez et al. 2017; Zhao
et al. 2019; Pavllo et al. 2019) first estimate 2D poses and
then ”1ift” them to 3D. Martinez et al. (Martinez et al. 2017)
demonstrated that a simple MLP could effectively lift 2D
poses to 3D. Temporal information has been leveraged in
works like (Pavllo et al. 2019), which used 1D convolutions
over sequential frames to improve 3D predictions. Multi-
view approaches (Rhodin et al. 2018; Iskakov et al. 2019)
utilize multiple camera perspectives to resolve depth ambi-
guities, achieving higher accuracy but requiring complex se-
tups.

While these methods provide rich spatial understand-
ing, they typically require specialized hardware, calibrated
multi-view systems, or motion capture setups, creating sig-
nificant barriers to deployment in real-world applications.

2.3 Vision-Language Models for Pose
Understanding

General vision-language models like CLIP (Radford et al.
2021), LXMERT (Tan and Bansal 2019), and VILBERT (Lu
et al. 2019) have transformed visual reasoning but often
struggle with fine-grained pose understanding. More re-
cent large multimodal models like LLaVA (Liu et al. 2023)
have improved capabilities but still face challenges with de-
tailed pose analysis. Several works have attempted to en-
hance VQA systems specifically for pose reasoning. JRDB-
Pose (Vendrow et al. 2023) built a specialized dataset for
pose-related questions but was limited to simple spatial re-
lationships. PoseFormer (Zheng et al. 2021) explored gener-
ating textual descriptions from pose sequences, while multi-
modal attention mechanisms (Farinhas, Martins, and Aguiar
2021) investigated the inverse task of generating poses from
descriptions. These works highlighted the rich semantic in-
formation that can be captured through language-pose align-
ment but did not address the challenge of distilling 3D rea-
soning into 2D-only models.

Attention mechanisms for pose estimation (Liu et al. 2020)
incorporated 2D pose features as additional inputs to atten-
tion mechanisms, demonstrating significant improvements
in temporal context exploitation. VisualBERT (Li et al.
2019) integrated multimodal understanding with language
processing through unified transformer architectures. Most
recently, PoseChat (Feng et al. 2024) demonstrated sig-
nificant improvements by incorporating 3D pose informa-
tion into language models, enabling more accurate reason-
ing about complex spatial relationships. Despite its effec-
tiveness, this approach introduces substantial computational
overhead, making it impractical for real-time applications.
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2.4 Knowledge Distillation for Pose Analysis

Knowledge distillation (Hinton, Vinyals, and Dean 2015)
transfers knowledge from a complex teacher model to a sim-
pler student model. In the pose estimation domain, this ap-
proach has been applied to improve efficiency (Zhang, Zhu,
and Ye 2019; Li et al. 2022). Zhang et al. (Zhang, Zhu, and
Ye 2019) distilled knowledge from a high-capacity pose es-
timator to a lightweight model. Li et al. (Li et al. 2022), pro-
poses an online knowledge distillation framework that trains
a single multi-branch network eliminating the need for pre-
trained teacher models.

Specifically for 3D-to-2D distillation, Zhao et al. (Zhao
et al. 2021) proposed a graph transformer that combines
graph convolution with multi-head attention to effectively
model joint relationships for 2D-to-3D pose estimation.
Cheng et al. (Cheng et al. 2021) integrated top-down
and bottom-up networks to exploit their complementary
strengths. However, these approaches focused primarily on
improving pose estimation accuracy rather than enhancing
pose-language reasoning capabilities.

Our work builds upon these foundations by introducing a
novel approach that distills 3D reasoning capabilities into a
model that operates solely on 2D pose inputs, leveraging lan-
guage supervision as the bridge between these representa-
tions. Unlike previous works that focused on either improv-
ing pose estimation accuracy or enhancing language under-
standing, Pose2Lang3D specifically addresses the challenge
of achieving 3D-level reasoning without the computational
overhead of explicit 3D pose estimation at inference time.

3 Methodology
In this section, we present our novel architecture for uni-
fying 2D pose, 3D pose, and language representations in
a shared embedding space. Our approach enables effective
multimodal pose understanding and reasoning, which is cru-
cial for human-centric visual understanding tasks. Figure 2
illustrates our proposed methodology.

3.1 Problem Formulation

Given an input image I € R7*W>3 and a query Q € V%«
where V is the vocabulary and L, is the query length, our

goal is to generate a response R € VEr that accurately an-
swers fine-grained pose-related questions. Our framework
addresses the challenge of bridging the semantic gap be-
tween 2D visual observations and 3D pose understanding
through language, enabling detailed pose reasoning even
when only 2D pose estimation is available at inference time.

3.2 Architecture Overview

Our framework consists of four main components that work
synergistically to achieve multimodal pose understanding.
The Multimodal Pose Encoders extract representations
from 2D and 3D poses using specialized architectures. The
Noise-Augmented Feature Enhancement module employs
a U-Net architecture to improve feature robustness. The
Unified Embedding Space incorporates specialized align-
ment transformers for cross-modal correspondence learn-
ing. Finally, the Knowledge Distillation Module facilitates
cross-modal feature refinement through attention mecha-
nisms. The architecture operates in two phases: a training
phase where we learn to align representations from different
modalities, and an inference phase where we leverage the
learned representations to answer pose-related queries.

3.3 Multimodal Pose Representation

2D Pose Encoding For 2D pose extraction, we employ
MMPose (Contributors 2020) to obtain keypoints P20 =
{p?P1E | where p?P € R? represents the (z,y) coordi-
nates of the ¢-th keypoint, and K is the total number of key-
points. We encode these keypoints using a Pose Former net-
work. The PoseFormer consists of N, transformer blocks
with multi-head self-attention mechanisms, specifically de-
signed to capture spatial dependencies between keypoints
and temporal consistency across frames.

(D

3D Pose Encoding For 3D poses, we have keypoints
P3P = [p3P1K | where p3P € R? represents the (,y, 2)
coordinates. We employ a Spatial-Temporal Graph Convo-
lutional Network (ST-GCN) (Yan, Xiong, and Lin 2018) to

F*P — poseFormer(P?P) € Rvo:e



model the spatial-temporal dependencies.The ST-GCN ar-
chitecture leverages the inherent skeletal structure of human
poses, with adjacency matrices defined according to anatom-
ical connections between body joints.

F3P = ST-GCN(P3P) € Rrose )

Language Encoding To encode textual information, we
use a CLIP-Text Encoder for both captions C during training
and queries @) during inference.

F© = CLIP-Text(C) € R**, F? = CLIP-Text(Q) € R%
3)
where F'C and F? are the caption and query feature rep-
resentations, respectively.

3.4 Noise-Augmented Feature Enhancement

A key innovation in our approach is the integration of a
noise-augmented feature enhancement module using a U-
Net architecture. This component serves two purposes: im-
proving the robustness of pose features through controlled
noise injection, and facilitating better feature alignment
across modalities. The U-Net takes pose features and con-
trolled noise as input.

F?P = U-Net(F*P @ N'(0,0%)) € R¥rose (4)

F3P = U-Net(F3P @ N(0,0%)) € Rvose 6))

where @ denotes element-wise addition, N(0,0?) is
Gaussian noise, and o is a learnable parameter that adapts
during training.

3.5 Unified Embedding Space with Alignment

We construct a shared 2D-3D-Language embedding space
through a projection head followed by specialized alignment
transformers. The projection head maps features from differ-
ent modalities into a unified space.

E' = Projection(F"), t € {2D, 3D, C}, E' € R%m ()

2D Pose-Caption Alignment Transformer The 2D pose-
caption alignment transformer establishes fine-grained cor-
respondences between 2D pose features and language rep-
resentations. Given the projected 2D pose embeddings E%”
and caption embeddings £, we introduce a **projection-
aware attention mechanism** that accounts for depth ambi-
guity in 2D poses.

The attention weights are computed with an uncertainty-
modulated scoring function:

QK™
Vg
where 02P € R™N; represents learned uncertainty esti-

mates for each 2D joint due to depth ambiguity, and A is a
weighting factor. The multi-head attention becomes:

Score(Q, K) = + Alog 2P @)

head; = softmax(Score(QVViQ7 K WiK ))VWiV (8

E?P = LayerNorm(E?P 4 Concat(heady, . . . , head;,)Wo)

©))

This uncertainty-aware mechanism allows the model to

dynamically weight attention based on the reliability of 2D
pose estimates.

3D Pose-Caption Alignment Transformer The 3D pose-
caption alignment transformer learns correspondences be-
tween 3D pose features and language representations while
preserving spatial geometry. We augment the standard atten-
tion with **depth-conditioned position embeddings** that
encode both skeletal topology and 3D spatial relationships.
The 3D positional encoding incorporates bone length ra-
tios and joint angles:
E3D = E3D + ¢bone(P3D) + ¢angle(P3D) (10)

pos
where ¢pone €ncodes normalized bone length vectors and

@Pangle captures joint angle configurations using sinusoidal
encodings:

) _ < Ip; — pill >
one = MLP (11)
’ Zk Hpk - pparent(k) ||

o) 1o = [sin(0; /72 ), cos(0; /T NE (12)

where 6; is the joint angle at joint i. The attention mecha-
nism operates on these geometry-enriched embeddings:

E3D — LayerNorm(Eg’(g + MultiHead(ngs, E°, E(’;)l)?))
This depth-conditioned encoding ensures that the 3D
alignment captures biomechanically meaningful pose-
language correspondences, which are then distilled to guide
2D representation learning.

3.6 Knowledge Distillation Module

The knowledge distillation module is designed to transfer
rich 3D structural knowledge to 2D pose representations, en-
abling 2D features to benefit from 3D understanding during
inference. The module operates through a teacher-student
paradigm where 3D features act as the teacher and 2D fea-
tures as the student.The distillation process begins by com-
puting attention weights between aligned 2D and 3D fea-
tures Asp_,3p. The distilled local features F'°ce! are ob-
tained from 2D pose caption alignment transformers and
global features are extracted from the 3D representations us-
ing adaptive average pooling F9/°%@ Further, the distillation
module employs a gating mechanism to control the flow of
information G.

EQD E3D T
Asp_s3p = softmax # (14)
vV djoint
Flocal _ A2D—>3D . E3D c Rdjaim (15)

Fotobal — AdaptivePool(E3P) € R%omt  (16)



G — O'(Wg[Flocal;FglObal} + bg) (17)

where o is the sigmoid function, W, € Rioint x2djoint
and [; ] denotes concatenation.

3.7 Cross-Attention for Global and Local Feature
Fusion

The cross-attention mechanism fuses global and local fea-
tures to produce enhanced representations that capture both
holistic pose understanding and fine-grained local details.
The cross-attention operation is formulated as:

CI'OSSAttn(FglObal, Flocal) — Attel’ltiOl’l(FglObal, Flocal’ Flocal)

(18)

The enhanced features are computed through a residual
connection with layer normalization:

Fenhanced _ LayerNorm(Fglobal + CI‘OSSAttl’l(FglObal, Flocal))

(19)

To further refine the features, we apply a feed-forward
network with residual connections:

F’r’efined — LayerNorm(Fenhanced + FFN(Fenhanced))
(20)
where FEN(x) = Wy - ReLU(W; - © 4 by) + b is a two-
layer feed-forward network.

3.8 Training Objectives

Our training process involves multiple objectives to ensure
effective alignment and knowledge transfer across modal-
ities. To preserve the uniqueness of each modality while
encouraging information sharing, we introduce a diversity
loss L giversity-To align visual pose representations with lan-
guage, we adopt Loprp. We introduce a distillation loss
Laistin to transfer 3D knowledge to 2D representations and
to improve the language generation we use cross entropy
loss Lo g. The overall training objective is a weighted com-
bination of the above losses Liota-

Laiversity = a-MSE(E?P, E3P)+ - (1—cos(E?P, E3P))

21

where « and ( are hyperparameters, MSE is the mean
squared error, and cos denotes cosine similarity.

a exp(sim(EZP, EF) /1)
STl exp(sim(E2P, ES) /1)
(22)

where sim(-, -) computes cosine similarity, 7 is a temper-
ature parameter, and /N is the batch size.

1
Lerip = N

Laistin = KL(softmax (F*4 /T, softmax(E3P /T))
(23)
where T is the temperature parameter.

L,
Log =—5 Y logp(rifres, /! EC)  (24)
t=1
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Figure 3: Inference pipeline takes image and query as in-
put and using MMPose and pose former extracts 2D pose
embeddings and query embeddings from CLIP-text encoder
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coded by the vicuna decoder

where p(r¢|r<;, Fr¢/me? EC) is the probability of gen-
erating token r; given previous tokens and multimodal em-
beddings.

Liotal = MLaiversity + AoLorip + A3Laistin + MaLlce

(25)

where A1, A2, A3, and A4 are hyperparameters controlling
the contribution of each loss term.

3.9 Inference Pipeline

During inference, given an input image I and a query @,
we follow these steps. First, we extract 2D keypoints us-
ing MMPose: PP = MMPose(]). Next, we encode the
2D pose: F2P = PoseFormer(P??), which internally ap-
plies noise-augmented enhancement: F2D — U-Net(F?P @
N(0,0%)). The features are projected to the joint space:
E?P = Projection(F2P). We encode the query: FQ =
CLIP-Text(()) and project it to the joint space: E9 =
Projection(F'?). The alignment transformer is applied:
E2P = Alignment-Transformer, ,,(E2P, E?). We gener-
ate enhanced features through cross-attention: Frefined —
CrossAttn( F9lobal | [rlocaly Finally, we generate the answer
using the MiniGPT decoder:

R = MiniGPT(Frefined pQ) (26)

4 Experiments
4.1 Experimental Setup

Datasets We evaluate our approach using Hu-
man3.6M (Ionescu et al. 2014), which provides 80K
poses with paired 2D and 3D keypoint coordinates. We
enriched this dataset by generating fine-grained language
descriptions for each pose through a carefully designed
template that captures detailed information about body
parts and their relative positions. Using these descriptions,
we created a comprehensive question-answer dataset by
prompting LLaVA-1.5-7b to generate three categories of
questions: (1) low-level questions focusing on fine-grained
pose details, (2) medium-level questions about body con-
figurations, and (3) high-level questions addressing overall
pose stability and environmental interactions.



Table 1: Performance evaluation of our model against baseline methods on pose understanding tasks. Our approach achieves
superior results while operating solely on 2D pose inputs at inference, demonstrating effective knowledge distillation from 3D
supervision during training. All models use HRNet as the 2D pose estimator. Best results are in bold, second best are underlined.

MPIL MS COCO
Method Test Input | 3D Supervision VOA Captioning VOA Captioning Runtime (ms)
Acc (%) F1 BLEU-4 SPICE | Acc (%) Fl1 BLEU-4 SPICE
HRNet (Wang et al. 2020) + BART (Lewis et al. 2019) 2D Pose X 68.9 60.2 313 0.22 64.2 55.8 28.6 0.19 28+ 3
VIIBERT (Lu et al. 2019) Image+2D X 76.9 67.8 40.2 0.30 70.9 63.5 36.5 0.27 58+t4
LLaVA (Liu et al. 2023) Image+2D X 77.2 68.9 41.0 0.33 73.1 65.3 37.8 0.29 62+3
LXMERT (Tan and Bansal 2019) Image+2D X 71.5 68.2 40.8 0.31 724 64.7 372 0.28 55+2
PoseChat (Feng et al. 2024) 3D Pose v 81.7 74.5 44.5 0.36 779 71.2 41.3 0.34 35+ 8
PoseEmbroider (Delmas et al. 2024) 3D Pose v 824 75.8 44.8 0.37 78.6 72.1 41.0 0.33 38+ 5
Pose2Lang3D (Ours) 2D Pose v 83.2 76.3 45.1 0.38 79.5 72.8 41.3 0.34 30+ 4
For training, Pose2Lang3D uses the augmented Hu- Table 2: Ablation study on key components of

man3.6M dataset, while evaluation is performed on the MPII
(Andriluka et al. 2014), MSCOCO (Lin et al. 2015) datasets
which provides both pose keypoints and corresponding im-
ages for real-world testing. This cross-dataset evaluation
demonstrates our model’s ability to generalize to unseen
poses in naturalistic settings.

Metrics We evaluate our approach on two tasks: pose-
based Visual Question Answering (VQA) and pose caption-
ing. For VQA, we report accuracy for multiple-choice ques-
tions and F1 score for open-ended ones. Captioning perfor-
mance is measured using BLEU-4 and SPICE. Additionally,
we assess computational efficiency via inference time (mil-
liseconds per sample) and model size (millions of parame-
ters).

Baselines We compare Pose2Lang3D against several
strong baselines. PoseChatleverages explicit 3D pose infor-
mation at inference but requires full 3D pose inputs at test
time. LXMERT and VilBERT, two vision-language models,
are extended to accept 2D pose features from HRNet along-
side images. LLaVa, a large-scale vision-language model, is
adapted to incorporate pose information. We also consider
Pose-guided VQA, which uses only 2D pose features with
language supervision, and HRNet+BART, a simple com-
bination of 2D pose extraction and a pretrained language
model. For fairness, all methods use HRNet for 2D pose es-
timation.

4.2 Main Results

Pose2Lang3D consistently outperforms all baselines on
VQA and captioning tasks. It achieves a 5.7% higher VQA
accuracy and a 4.1% improvement in BLEU-4 compared
to the strongest 2D-only baseline. Notably, it surpasses
both PoseChat and the recent PoseEmbroider (Delmas et al.
2024) despite relying solely on 2D poses at inference,
demonstrating the efficacy of our knowledge distillation
strategy. Moreover, Pose2Lang3D outperforms more com-
plex vision language models that use both images and poses.
Our method achieves a runtime of 30ms per sample, faster
than 3D-based methods (PoseEmbroider: 38ms, PoseChat:
35ms), while delivering superior accuracy, highlighting its
optimal efficiency-accuracy trade-off.

Pose2Lang3D. The three core components are: 3D pose
caption alignment (3D-PC), 2D pose caption alignment
(2D-PC), and the Unet-based embedding space (UNet) on
MPII dataset. Best results are in bold.

Components VQA | Captioning
3D-PC Align. 2D-PC Align. UNet.|Acc (%)| B-4 SPICE
X v X 50.8 [20.8 0.11

X X v 52.1 |18.4 0.13

v X X 56.9 |22.5 0.20

v X v 58.3 |24.7 0.21

X v v 60.6 332 0.30

v v X | 802 (425 036

v v v 83.2 |45.1 0.38

4.3 Ablation Studies

We perform ablation studies to analyze the contributions
of key components in our architecture. Removing 3D su-
pervision leads to the largest performance drop, 22.6% in
VQA accuracy and 11.9% in BLEU-4, confirming the im-
portance of distilled 3D knowledge for fine-grained pose un-
derstanding. Eliminating 2D-language supervision degrades
both VQA and captioning performance, while excluding the
cross-modal UNet embedding alignment reduces VQA ac-
curacy by 3.0% and BLEU-4 by 2.6%. These results un-
derscore the complementary benefits of each component as
shown in Table 2. Table 3 shows the improtance of global
and local feature alignment which improves the accuracy by
5% and also shows the performance of our architecture with
only 2D components and 3D components.

Further analysis of loss functions shows that diversity loss
(Ldiversity) preserves modality-specific features and yields
modest gains. Removing the CLIP contrastive loss (Lcpip)
leads to substantial drops, highlighting its critical role in
aligning pose and language representations. As expected,
cross-entropy loss (Lcg) is essential for language genera-
tion, and its removal severely impacts performance. Table 4
presents the results with different loss combinations.

Architectural Variations We evaluate various architec-
tural configurations of the pose encoders and projection head
(Table 5). Reducing the number of PoseFormer transformer
blocks from 6 to 4 results in a minor performance decrease
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9 parallel to each other and towards the ground. Ankles are at

The torso is bent forward, leaning towards ground.The thighs
P
same level.

Figure 4: Qualitative results on MPII dataset (Andriluka et al. 2014). Pose2Lang3D is fine-grained while captioning the poses
and correct while answering the fine-grained questions where are other models struggle to answer finegrained questions and

while captioning.

Table 3: Comparison of different model architectures. We
compare Pose2Lang3D with 2D-only and 3D-only variants,
as well as models without global and local feature align-
ment. All models use language supervision and results on
MPII dataset. Best results are in bold.

VQA Captioning

Model Acc(%) | B-4  SPICE
2D-only model 60.6 332 024
w/o Global & Local feature alignment 78.3 40.5 031
3D-only model 81.7 445 033
Pose2Lang3D(ours) 83.2 45.1 0.38

Table 4: Ablation study on loss terms in Pose2Lang3D. We
evaluate the contribution of diversity loss (Ldiversity), CLIP
contrastive loss (Lcrp), and cross-entropy loss (Lcg) on
MPII dataset. Best results are in bold.

Loss Terms VQA Captioning
L iv ﬁCL[p ECE Acc F1 B-4 CIDEr
672 615|308 0.84
783 714 | 40.5 1.10
816 74.8 | 439 119
832 763 | 451 1.23

v
v
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which is 0.7% in VQA accuracy and 0.9% in BLEU-4 score,
while significantly reducing model size by 14M parameters.
Similarly, decreasing ST-GCN graph convolutional layers
from 9 to 6 only slightly affects performance, indicating that
fewer 3D pose encoding layers suffice to maintain strong re-
sults. Regarding the projection head, the default two-layer
MLP achieves the best balance, with a simpler single-layer
variant yielding slightly lower accuracy and a deeper three-
layer head offering negligible improvement at the cost of in-
creased complexity. These results demonstrate that our archi-
tectural choices strike a good balance between model com-
plexity and performance. In Figure 4 we show the qualitative
results of our model which shows fine grained descriptions

Table 5: Ablation study on architectural choices in
Pose2Lang3D. We evaluate different pose encoders and pro-
jection head designs on MPII dataset. Best results are in
bold.

Architecture VQA Captioning

PoseFormer ST-GCN | Acc (%) Fl B-4  SPICE

4 blocks 6 layers 81.9 748 | 435 034
4 blocks 9 layers 82.5 75.6 | 442  0.35
6 blocks 6 layers 82.8 75.9 | 447  0.36
6 blocks 9 layers 83.2 763 | 451  0.38

1-layer MLP projection 82.6 757 | 443 035
3-layer MLP projection 83.0 76.1 | 45.0 0.37

when compared to the other models.

5 Conclusion

We introduced Pose2Lang3D, a framework that distills 3D
spatial reasoning capabilities into a model operating solely
on 2D skeletal inputs at inference time. We also propose a
dataset of 80K 2D, 3D pose images with rich fine grained de-
scriptions. Our knowledge distillation approach and shared
embedding space enable high-quality language-based rea-
soning without the computational overhead of 3D pose es-
timation. Experiments demonstrate that Pose2Lang3D out-
performs existing methods in both VQA and captioning
tasks while maintaining efficiency comparable to 2D-only
models. Our approach shows strong performance across
multiple architectural variants and robust generalization
from Human3.6M to MPII and MSCOCO. However, in case
of rare or extreme poses, similar and subtle actions are the
regions where the current model struggles and would be the
future work directions incorporating the temporal informa-
tion which can also scale across video sequences to better
distinguish between nuanced movements.
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