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ABSTRACT

We propose maximum conditional divergence (MaxCondDiv), a new curiosity-
driven exploration strategy that encourages the agent to learn in the absence of
extrinsic rewards, effectively separating exploration from exploitation. Our central
idea is to define curiosity as the divergence between the agent’s estimation of
the transition probability between the next state given current state-action pairs
(i.e., P(st+1|st,at)) in two adjacent trajectory fractions. Distinct to other recent
intrinsically motivated exploration approaches that usually incur complex models
in their learning procedures, our exploration is model-free and explicitly estimates
this divergence from multivariate continuous observations, thanks to the favorable
properties of the Cauchy-Schwarz divergence. Therefore, MaxCondDiv is less
computationally expensive and reduces internal model selection bias. We establish
a connection between the MaxCondDiv and the famed maximum entropy (MaxEnt)
exploration, and observe that our MaxCondDiv achieves wider exploration range
and faster convergence. Our exploration also encourages the agent to acquire
intricate skills in a fully reward-free environment.

1 INTRODUCTION

Over the past few years, Reinforcement Learning (RL) has achieved remarkable success in addressing
challenges in fields like robotics (Mnih et al., 2015) and games (Silver et al., 2016). Nonetheless, RL’s
practical applications in real-world scenarios are still restricted due to the high variability and lack of
user control on the availability of dense rewards, which are critical to the timeliness and success of
RL. To counteract this shortcoming, intrinsically motivated exploration (Amin et al., 2021) has been
put forth to encourage the agent to explore unknown states in the absence of extrinsic rewards, by
offering an internal motivation, such as diversity (Eysenbach et al., 2019), novelty (Ostrovski et al.,
2017; Tao et al., 2020), curiosity (Pathak et al., 2017; Burda et al., 2019).

Existing intrinsically motivated exploration approaches can be roughly divided into two categories
with distinct goals (Amin et al., 2021): the space coverage approaches encourage an agent to visit
more unexplored states or state-action pairs in a shorter amount of time; whereas the curiosity-driven
approaches seek to explore areas where the agent’s prediction on next state given current state-action
pairs (i.e., P(st+1|st,at)) has high uncertainty.

Maximum entropy (MaxEnt) principle has emerged as a prominent technique in the first category.
One way to achieve MaxEnt is by minimizing the KL divergence between a uniform distribution
and a target distribution. This is because a uniform distribution can guarantee full coverage of
the space, which also displays maximum entropy. Recently, (Hazan et al., 2019) introduced the
concept of maximum state entropy exploration (MSEE) in a broader spectrum of RL environments.
Subsequently, multiple approaches have been proposed to enhance it, such as (Zhang et al., 2021; Seo
et al., 2021; Yuan et al., 2022; Nedergaard & Cook, 2022; Yarats et al., 2021; Tiapkin et al., 2023),
just to name a few. However, the utilization of multiple policies in these MaxEnt-based methods and
the objective of uniform distribution over state space may cause the agent to spend a considerable
amount of time near the starting states, leading to longer training time.

Conversely, curiosity-driven methods encourage exploration of unpredictable parts of the environment
and prioritize the discovery of novel states beyond the initial ones. Usually, the dynamic of the
environment is characterized by the transition probability of next state given current state-action
pairs, i.e., P(st+1|st,at). Hence, most approaches in this category use an auxiliary predictive model
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Pθ(st+1|st,at) with parameters θ, such as linear regression (Schmidhuber, 1991), convolution neural
networks (Pathak et al., 2017) and fully-connected neural networks (Stadie et al., 2015; Yu et al.,
2020; Pathak et al., 2017), to model the transition probability. Once the model is trained, intrinsic
rewards can be defined with either the prediction error of the next state st+1 or the information
gain (Lopes & Mengue, 2022), which can be approximated by the difference between the estimate of
the transition probability before and after new triple samples {st+1, st,at} are included.

The above-mentioned curiosity-driven techniques are model-based in the sense that they never
explicitly estimate the true divergence of transition probability P(st+1|st,at) from observations
{st+1, st,at}∞t=1 in the trajectory. Rather, they model it implicitly with an internal parametric
auxiliary model Pθ(st+1|st,at) for the ease of estimation. Hence, the exploration depends heavily on
the predictive performance of the auxiliary models; and it is also hard for practitioners to decide which
models to choose. If the model is well trained such that it learns precisely the conditional distribution
P(st+1|st,at), the RL agent may encounter vanishing intrinsic rewards. On the contrary, intrinsic
rewards explode. Besides, the inclusion of auxiliary models introduces additional hyperparameters
and parameters, making it challenging to maintain a balance between the model and the RL agent.

In this paper, we develop Maximum Conditional Divergence (MaxCondDiv), a new curiosity-driven
exploration approach for exploration RL that does not rely on external rewards or parameterized
models for prediction. To this end, akin to the MaxEnt principle, it leverages an information-theoretic
measure to explicitly model and estimate the divergence of P(st+1|st,at) in two adjacent trajectory
fractions (i.e., maxD(Pc(st+1|st,at);Pf(st+1|st,at)), where c stands for “current” and f stands
for “former”) only based on observation triplets {st+1, st,at}, in a model-free manner. Despite the
simplicity of this idea, a precise estimation of the divergence between two conditional distributions is a
non-trivial task, especially when the estimator is required to operate in a multivariate continuous space.
To address this issue, we estimate D(Pc(st+1|st,at);Pf(st+1|st,at)) by introducing the notion of the
Cauchy-Schwarz (CS) divergence (Principe et al., 2000; Yu et al., 2023), which significantly reduces
the difficulty of estimation and enjoys several desirable properties than conventional Kullback–Leibler
(KL) divergence and maximum mean discrepancy (MMD) (Gretton et al., 2012).

To summarize, we make the following key contributions:

• By explicitly modeling the conditional distribution P(st+1|st,at) without training an auxil-
iary model, we propose MaxCondDiv as a new reward-free exploration strategy applicable
to multivariate observations, which encourages the agent to explore divergent transition
probability and leads to high information gain.

• Distinct to f -divergence such as KL divergence and integral probability metric such as
MMD, the use of CS divergence simplifies the estimation and avoids unstable training.

• We also establish the connection between MaxCondDiv with respect to MaxEnt.

• Using MaxCondDiv, our agent can acquire intricate skills such as jumping and flipping in a
fully reward-free environment. Using the visited states as a metric, our method outperforms
other state-of-the-art reward-free exploration methods in three Mujoco environments.

2 BACKGROUND KNOWLEDGE AND RELATED WORKS

2.1 RÉNYI’S α-ENTROPY AND CAUCHY-SCHWARZ DIVERGENCE

In information theory, a natural extension of the well-known Shannon’s entropy is Rényi’s α-
entropy (Rényi, 1961). For a random variable x with probability density function (PDF) p(x) in a
finite set X , the α-entropy Hα(x) is defined as:

Hα(x) =
1

1− α
log

∫
X
pα(x)dx. (1)

Similarly, for two random variables x and y with joint PDF p(x,y), the joint entropy is given by:

Hα(x,y) =
1

1− α
log

∫
Y

∫
X
pα(x,y)dxdy. (2)
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Thus, the α-order mutual information1 can be expressed as (Cachin, 1997; Teixeira et al., 2012):

Iα(x,y) = Hα(x) +Hα(y)−Hα(x,y). (3)

Likewise, extensions for the relative entropy also exist; a modified version of Rényi’s α-relative
entropy (or divergence) between PDFs p and q is given by (Lutwak et al., 2005):

Dα(p; q) = log
(
∫
qα−1p)

1
1−α (

∫
qα)

1
α

(
∫
pα)

1
α(1−α)

. (4)

The limiting case of (1) and (4) for α → 1 are Shannon’s entropy and KL divergence, respectively.

It turns out that for the case of α = 2, the above quantities can be expressed as functions of inner
products between PDFs, which makes them be easy to estimate in reproducing kernel Hilbert spaces
(RKHS) (Principe, 2010). In particular, the quadratic entropy and divergence are given by:

H2(x) = − log

∫
X
p2(x)dx, and DCS(p; q) = −1

2
log

(
∫
pq)2

(
∫
p2)(

∫
q2)

. (5)

Eq. (5) is also called the Cauchy-Schwarz (CS) divergence as it can be obtained by applying the CS
inequality associated with p(x) and q(x):∣∣∣ ∫ p(x)q(x)dx

∣∣∣2 ≤
∫

| p(x) |2 dx

∫
| q(x) |2 dx. (6)

The CS inequality also holds for two conditional distributions p(y|x) and q(y|x) (Yu et al., 2023),
the resulting conditional CS divergence can be expressed naturally as:

DCS(p(y|x); q(y|x))

= −2 log

(∫
X

∫
Y
p(y|x)q(y|x)dxdy

)
+ log

(∫
X

∫
Y
p2(y|x)dxdy

)
+ log

(∫
X

∫
Y
q2(y|x)dxdy

)
= −2 log

(∫
X

∫
Y

p(x,y)q(x,y)

p(x)q(x)
dxdy

)
+ log

(∫
X

∫
Y

p2(x,y)

p2(x)
dxdy

)
+ log

(∫
X

∫
Y

q2(x,y)

q2(x)
dxdy

)
.

(7)

2.2 INTRINSICALLY-MOTIVATED EXPLORATION RL

The existing intrinsically motivated exploration approaches can be broadly categorized into two types:
the space coverage and the curiosity-driven approaches. Approaches rooted in the MaxEnt principle
for achieving space coverage have gained popularity recently due to their strong mathematical
interpretability and performance. For example, maximum state entropy exploration (MSEE) by
(Hazan et al., 2019) guarantees uniform coverage of the state space. It offers a proof of policy
improvement when utilizing the APPROXPLAN/DENSITYEST oracle. Later, MaxRényi (Zhang
et al., 2021) replaced the Shannon entropy with Rényi entropy, and maximizes the entropy in the
joint space of action and state. RE3 (Seo et al., 2021) incorporates neural encoders, enabling their
application in video-oriented environments like Atari. RISE (Yuan et al., 2022) integrates both RE3
and MaxRényi, leveraging them to accelerate the learning process. In (Nedergaard & Cook, 2022)
and (Yarats et al., 2021), k-means and prototypical representations are introduced to enhance the
quality of latent vectors. (Tiapkin et al., 2023) studies MSEE to learn a policy leading to ϵ-optimal
maximum and reduces the sample complexity.

The other type, curiosity-driven approaches, have their roots traced back to the 70’s when the concept
of “observer’s information" and “interestingness" were introduced (Pfaffelhuber, 1972; Lenat, 1976).
Recent popular prediction error-based approaches, largely driven by advancements in deep neural
networks (DNNs), fall under this category. For instance, ICM (Pathak et al., 2017) utilizes CNN as
the auxiliary model to predict the next image, whereas GIRIL(Yu et al., 2020) implements variational

1There is no generally accepted definition on α-order mutual information (Verdú, 2015). We took the
one (Cachin, 1997) that is inspired by the strong chain rule of Shannon entropy, i.e., H(x,y) = H(x)+H(y|x).
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autoencoder (VAE) (Kingma & Welling, 2014) to model the transitions in environments. Similarly,
(Shyam et al., 2019) aims to maximize the Jensen-Shannon divergence of fully-connected neural
network outputs. In contrast to these methods, we pursue a model-free approach.

Our method shares the closest resemblance with the model-free curiosity-driven approach introduced
by (Storck et al., 1995), which estimates the transition probability directly from observations. How-
ever, this method can only be used in tabular discrete environments, as it calculates the transition
probability by counting. In contrast, our method is applicable to both discrete and continuous
environments and is compatible with arbitrary RL techniques, thanks to the use of CS divergence.

3 MAXIMUM CONDITIONAL DIVERGENCE (MAXCONDDIV) EXPLORATION

The intrinsically-Motivated exploration RL problem can be defined as policy search in an infinite-
horizon Markov decision process (MDP) defined by a 6-tuple (S,A, ps, r

E, rI, γ), where S is the set
of all possible states, A is the set of all possible actions. ps(st+1|st,at) is the transition probability
density of the next state st+1 ∈ S given the current state st ∈ S and action at ∈ A. The environment
omits extrinsic rewards given by the extrinsic reward function rE(st,at). Meanwhile, the intrinsic
reward function rI(ρt−) determines the intrinsic rewards based on historical data ρt− collected before
time step t. γ ∈ [0, 1) is a discount factor. The optimal policy aims to learn a policy π(at|st) : S 7→ A
by maximizing extrinsic and intrinsic rewards:

π∗ = argmaxπEρ∼π

(
T−1∑
t=0

γt[rE(st,at) + βrI(ρt−)]

)
, (8)

where β is a hyperparameter that determines the relative importance of intrinsic and extrinsic reward,
and ρ = {st+1, st,at}T−1

t=0 is the data collection by executing policy π. We specifically consider the
case of reward-free cases, where the extrinsic reward rE(st,at) is consistently zero. Our method
aims to design an intrinsic reward function rI(ρt−) for exploring the functional space of transitions
ps(st+1|st,at), without relying on any extrinsic reward rE(st,at).

3.1 CONDITIONAL CAUCHY-SCHWARZ DIVERGENCE (CCSD) REWARD FUNCTION

Our focus is on enabling the agent to acquire novel transitions in contrast to recent visited
samples. To specify a transition sample, we require a triplet sample consisting of the next
state st+1, the current state st, and the action at. Hence, a complete trajectory TE =
{(s2, s1,a1), (s3, s2,a2), · · · , (sT , sT−1,aT−1), · · · }, E for “entire”, is defined to be the sequence
of triplet samples, as illustrated in Fig. 1. Meanwhile, we utilize a first-in-first-out replay buffer
(sliding window) to locally store transition samples. We refer to this subsequence of trajectory TE as a
“trajectory fraction”, denoted as T . The trajectory fraction T contains data for a maximum of 2τ pre-
vious time steps. Then we define Pf(st+1|st,at) = P(st+1,{st,at})∼T1:τ

(st+1|st,at), f for “former”,
as the transition probability P(st+1|st,at) for triplets that are sampled from T1:τ (i.e., 1-st to τ -th
elements of T ). Similarly, Pc(st+1|st,at) = P(st+1,{st,at})∼T(τ+1):2τ

(st+1|st,at), c for “current”,
be the transition probability P(st+1|st,at) for triplets that are sampled from Tτ+1:2τ . Our framework
estimates an intrinsic reward defined as the divergence between Pf(st+1|st,at) and Pc(st+1|st,at),
and learns a policy by maximizing this conditional divergence (MaxCondDiv). More formally, our
optimal policy aims to maximize the divergence between “former” and “current” transitions in the
trajectory fraction T :

π∗
MaxCondDiv = argmaxπEρ∼π

(∑
T ∈[TE ]

D(Pc(st+1|st,at);Pf(st+1|st,at)))
)
. (9)
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:  ``Former’’ trajectory fraction 𝒯𝒯1:𝜏𝜏

:  ``Current’’ trajectory fraction 𝒯𝒯(𝜏𝜏+1):2𝜏𝜏

Time

MaxDiv: Maximizing 𝐷𝐷𝑐𝑐𝑐𝑐(ℙ𝑓𝑓 𝑠𝑠𝑡𝑡+1 𝑠𝑠𝑡𝑡 ,𝑎𝑎𝑡𝑡 ;ℙ𝑐𝑐(𝑠𝑠𝑡𝑡+1|𝑠𝑠𝑡𝑡 ,𝑎𝑎𝑡𝑡))

Figure 1: The structure of our replay buffer. We choose
the length of T to be 2τ and divide it equally into "cur-
rent" and "former" parts. The split point is arbitrary, and
overlapping fractions are also possible. If we designate
the T1:2τ−1 as "former" and the T1:2τ samples as "cur-
rent", our approach is consistent with that of (Storck
et al., 1995).

Algorithm 1: MaxCondDiv Exploration
Reinforcement Learning

1: Initialize data collections ρ ; empty
buffer T .

2: while not converge do
3: clear T .
4: while the episode not end do
5: Sample the action at ∼ π(at|st).
6: Sample st+1 ∼ P (st+1|st, at).
7: Record trio {st+1, st, at} into the

buffer T .
8: Compute conditional divergence

D̂CS(Pf ;Pc) with Eq. (13) from
triplets in the buffer T .

9: Record {st+1, st, at, (D̂CS)t} in
the data collection ρ

10: update policy via sampling from ρ.
11: end while
12: end while

3.2 WHY CONDITIONAL CAUCHY-SCHWARZ DIVERGENCE (CCSD) FOR MAXCONDDIV?

In principle, any divergence could be used in the context of MaxCondDiv. We underscore the rationale
for choosing CS divergence, rather than the popular KL divergence and MMD. For KL divergence
DKL(p; q) =

∫
plog(pq ), its conditional extension follows a decomposition rule (Cover, 1999):

DKL(Pc(st+1|st,at);Pf(st+1|st,at)) = DKL(Pc(st+1, st,at);Pf(st+1, st,at))

−DKL(Pc(st,at);Pf(st,at)),
(10)

in which both terms are usually evaluated by k-NN estimator (Wang et al., 2009). However, the
term log(pq ) will explode when q → 0, a scenario commonly encountered in our RL experiments.
This instability can disrupt the learning process for RL agents. Further empirical details regarding
MaxCondDiv’s use of KL divergence can be found in both Section 4.3 and the Appendix C.2.

Fortunately, CS divergence does not have this issue: it is much more stable and never explodes (see
also our discussions in Appendix D.1). Theoretically, CS divergence is no greater than KL divergence
in Gaussian distributed data. Therefore, it provides a viable alternative objective when KL divergence
is hard to be applied in practice.

Proposition 1. For two arbitrary d-variate Gaussian distributions p ∼ N (µ1,Σ1) and q ∼
N (µ2,Σ2), we have:

DCS(p; q) ≤ min{DKL(p; q), DKL(q; p)}. (11)

All Proofs can be found in Appendix A. Moreover, compared with the k-NN estimator, our empirical
estimator of CS divergence is differentiable, which makes it promising for potential applications in
deep multi-modal learning, where the RL module may play a critical role.

MMD embeds probability functions in a reproducing kernel Hilbert space (RKHS). If we take the
conditional MMD definition in (Ren et al., 2016), the estimator involves matrix inverse and an
extra hyper-parameter, which also makes the training highly unstable and time consuming. See the
Appendix C.1 for more discussions.
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In this paper, we suggest conditional Cauchy-Schwarz divergence (CCSD) for MaxCondDiv:
DCS(Pf(st+1|st,at);Pc(st+1|st,at))

= −2 log

(∫
St+1

∫
{St,At}

Pf(st+1, {st,at})Pc(st+1, {st,at})
Pf({st,at})Pc({st,at})

d{st,at}dst+1

)

+ log

(∫
St+1

∫
{St,At}

P2
f (st+1, {st,at})
P2
f ({st,at})

d{st,at}dst+1

)

+ log

(∫
St+1

∫
{St,At}

P2
c(st+1, {st,at})
P2
c({st,at})

d{st,at}dst+1

)
,

(12)

where St+1, {St,At} are world set of st+1 and {st,at}, respectively.

3.3 PRACTICAL METHODS FOR ACCURATELY ESTIMATING THE CCSD INTRINSIC REWARD

Proposition 2 (Empirical Estimator of DCS(Pf(st+1|st,at);Pc(st+1|st,at)) (Yu et al., 2023)).
Given observations in the 2τ -length trajectory fraction T = {[(st+1)i, {st,at}i]}2τi=1, dividing them
into two fractions such that {[(st+1)i, {st,at}i]}τi=1 are sampled from distribution Pf(st+1, {st,at}))
and {[(st+1)i, {st,at}i]}2τi=τ+1 are sampled from Pc(st+1, {st,at})). Let Kf and Lf denote, respec-
tively, the Gram matrices2 for the concatenated variable {st,at} and the variable st+1 in the
distribution Pf . That is,

(
Kf
)
ij

= κ({st,at}i − {st,at}j),
(
Lf
)
ij

= κ({st+1}i − {st+1}j) for

i, j = 1 : τ , in which κ is a Gaussian kernel and takes the form of κ = exp
(
−∥·∥2

2σ2

)
. Similarly,

let Kc and Lc denote, respectively, the Gram matrices for the variable {st,at} and the variable
st+1 in the distribution Pc. Meanwhile, let Kfc ∈ Rτ×τ (i.e.,

(
Kfc
)
ij

= κ({st,at}i − {st,at}j),
i = 1 : τ and j = τ + 1 : 2τ ) denote the Gram matrix for variable {st,at} from distribution
Pf to distribution Pc, and Lfc ∈ Rτ×τ the Gram matrix for variable st+1 from distribution Pf to
distribution Pc. The Gram matrices Kcf and Lcf can be defined similarly. The empirical estimation
of DCS(Pf(st+1|st,at);Pc(st+1|st,at)) is given by:

D̂CS(Pf(st+1|st,at);Pc(st+1|st,at)) = log

 τ∑
j=1

(∑τ
i=1 K

f
jiL

f
ji

(
∑τ

i=1 K
f
ji)

2

)+ log

 τ∑
j=1

(∑τ
i=1 K

c
jiL

c
ji

(
∑τ

i=1 K
c
ji)

2

)
− log

 τ∑
j=1

( ∑τ
i=1 K

fc
jiL

fc
ji

(
∑τ

i=1 K
c
ji)(
∑τ

i=1 K
fc
ji)

)− log

 τ∑
j=1

( ∑τ
i=1 K

cf
jiL

cf
ji

(
∑τ

i=1 K
cf
ji )(
∑τ

i=1 K
f
cf)

) .

(13)

We offer a visualization in Appendix D.2 and provide implementation in Appendix E to facilitate
comprehension of the Gram matrix. The estimator exhibits low computational complexity with
O(N2). The CCSD intrinsic reward can be combined with any RL methods, e.g., Q-learning (Watkins
& Dayan, 1992), PPO (Schulman et al., 2017). We summarize the training pseudo code in Algorithm 1.

3.4 CONNECTION BETWEEN MAXCONDDIV AND MAXENT

Proposition 3. Let X and Y be two random variable with marginal PDFs pX(x) = pX(X = x) and
pY (y) = pY (Y = y), respectively, where x ∈ R and y ∈ R. Let pXY (x, y) = pXY (X = x, Y = y)
denotes the joint PDF. We have:

1

2
H2(x) +

1

2
H2(y)− I2(x, y) ≥ Dcs(pX ; pY ) (14)

iff: ∫
r∈R

pX(X = r)pY (Y = r)dr ≥
∫
y∈R

∫
x∈R

p2XY (x, y)dxdy (15)

2In kernel learning, the Gram or kernel matrix is a symmetric matrix where each entry is the inner product of
the corresponding data points in a reproducing kernel Hilbert space (RKHS), defined by kernel function κ.
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where H2(·) and I2(·, ·) are 2nd-order Rényi entropy and mutual information, as defined in Eq.( 1)
and Eq. (3), respectively.

We justify Proposition 3 in the Appendix A.3. For two variables X and Y , maximizing their CS
divergence Dcs(pX ; pY ) also maximizes a lower bound of the sum of 2nd-order Rényi entropy of X
and Y minus their 2nd-order Rényi mutual information. It applies to our case by substituting X and Y
with st+1 ∼ Pf(·|st,at) and st+1 ∼ Pc(·|st,at), respectively. Therefore, maximizing our CCSD is
closely related to the maximum trajectory entropy exploration (Ekroot & Cover, 1993; Fiechter, 1994),
i.e., argmaxπHtraj(p

π
traj), where pπtraj = π(a1|s1)

∏2τ
t=2 Pt−1(st|st−1,at−1))πt(at|st), which can

also be obtained by solving entropy regularized Bellman equations using entropy of the transition
probabilities H(st+1|st,at) as rewards (Fiechter, 1994; Tiapkin et al., 2023). Meanwhile, the last
term in Eq. (15) incentives the independence between “former” and “current”.

4 EXPERIMENTS

4.1 A THOUGHT EXPERIMENT

To highlight the contrast between MaxEnt and MaxCondDiv, let us consider a thought experiment
visualized in Fig. 2, where optimal policies are realized through a retrospective step: The scenario
involves a 2-D open-world environment. In each trial, the agent initiates from the central position
(100, 100) and undergoes a sequence of 200 time steps. At each time step, the agent’s action is to
select an arbitrary direction and move one unit distance. We replicate this procedure 100 times for
each exploration policy.

As illustrated in Fig. 2, the random policy keeps the agent predominantly near its starting point.
Conversely, the optimal MaxEnt policy distributes the agent’s trajectory evenly, covering a range
that far exceeds what a random policy achieves. Our MaxCondDiv agent selects a random direction
to move in the first step because the sample in the buffer is (100, 100), and moving in any radial
direction is equally divergent. For instance, if the agent moves to (100, 101), the samples in the
buffer become [(100, 100), (100, 101)]. To maximize the divergence, the agent needs to move to
(100, 102) in the next step. Deviating from this will result in smaller distances to the previously
visited states. Consequently, during each trial, the agent consistently moves in one single random
direction. Over 100 trials, the MaxCondDiv agent explores the world more radially, akin to a
fireworks display. We also explore maximizing the divergence between joint distributions (MaxJDiv),
i.e., DCS(Pf(st+1, st,at);Pc(st+1, st,at)), an alternative to MaxCondDiv. For the joint probability
P(st+1, st,at) = P(st+1|st,at)P(st,at), if P(st,at) is small (that is, the corresponding state-action
pairs are not fully explored), the corresponding P(st+1|st,at) plays a minor role in the learning
objective. If P(st,at) is large, the corresponding P(st+1|st,at) would have higher weight. This is
in contrast to our goal, in which we expect that regions with low P(st,at) should be explored more
during exploration. Hence, we expect the performance of MaxJDiv is outperformed by MaxCondDiv.
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Figure 2: The realization of the thought experiment using random, optimal MaxEnt, MaxJDiv and MaxCond-
Div policies. The MaxEnt principle facilitates exploration by uniformly visiting more states, whereas our
MaxCondDiv principle guides exploration by maintaining distance from previously visited states.

4.2 RESULTS ON MOUNTAINCAR AND MAZE

In this section, we experiment with MountainCar and Maze, using Q-learning as the oracle, and
compare it to the MaxEnt principle and random policy. For MaxEnt principle, we adopt the MSEE
of (Hazan et al., 2019). The agent is trained 100 episodes, i.e., around 50,000 steps. In Figure 3
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Figure 3: Trajectories of different trained policies on Mountain Car and Maze. The flag positions are indicated
by red vertical lines. Both MaxEnt and MaxCondDiv can facilitate environment exploration to achieve a defined
goal. MaxEnt emphasizes uniform visits to all states, while our MaxCondDiv strategy involves maintaining
distance from starting points.

(top-left), we illustrate the MountainCar environment, where the most challenging state to explore
is indicated by the flag. We executed trained policies, and visualize their trajectories using kernel
density estimation in heatmaps. As expected, the random policy fails to reach the flag and remains
close to the starting points. Although MaxEnt can reach the flag, it focuses more on states near the
starting point. In contrast, MaxCondDiv reaches the flag more frequently but tends to ignore regions
near visited states.

In Maze, as shown in Fig. 3, the agent drives the red point to explore the maze. We record trajectories
for 50, 000 steps. The agent is reset to the start point every 1, 000 steps. The random policy remains
near the start points, while MaxEnt explores the entire state space evenly. Our MaxCondDiv also
explores the entire maze, but tends to stay away from the start point. In the heatmap of MaxCondDiv,
the probability at the start point is much lower than that at challenging states, such as top-right and
bottom-right corner, indicating that our method has a higher probability to “reach the boundary".

4.3 RESULTS ON MUJOCO

Random MaxEnt MaxCondDiv Random MaxEnt MaxCondDiv Random MaxEnt MaxCondDiv 0

1

2

3

4

5

6

Figure 4: Trajectories of various trained policies on Mujoco. Consistent with prior findings, our MaxCondDiv
approach is characterized by a deliberate maintenance of distance from visited states.

Mujoco is an advanced physics simulation with continuous spaces and multiple tasks in which we
select Hopper, Halfcheetah and Ant. In our experiments, observation noise is introduced by rounding
state and action values to two decimal places, and the RL backbone is a PPO agent. Details of
hyper-parameters are in Appendix B. The agent is trained for 1,000 episodes, i.e., 1,000,000 steps in
total. The agent restarts from the initial state with uniform noise in each episode.

Divergence vs Entropy. We depict the distribution of visited states within 10,000 steps using trained
agents in Fig. 4. For both Hopper and Halfcheetah, we visualize the first two states, which are
the z-coordinate of the front tip and the top angle for Hopper, and the x-y coordinates for Ant. In
Hopper, our method outperforms others and effectively learns the necessary degrees of freedom to
walk forward or backward. In HalfCheetah and Ant, MaxEnt explores a broad space, generating
trajectories evenly distributed around the start point. Our MaxCondDiv diverges by concentrating
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Figure 5: Learning curves tracked over 10 checkpoints, employing visited states acquired by executing trained
policies for 10,000 steps as the Y-axis. Our MaxCondDiv method demonstrates superior performance in both
exploration range and speed compared to the baseline methods.
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Figure 6: The policies trained with MaxCondDiv using no extrisic rewards exhibit diverse behaviors.

on exploration far from the start point, as confirmed by the radial exploration trajectories from our
thought experiment.

Comparsion to SOTA Exploration RL Approaches. We compare our method with random policy,
curiosity-driven exploration (Pathak et al., 2017)(ICM), Exploration by Random Network Distillation
(Burda et al., 2019) (RND), Rényi State Entropy Maximization (Yuan et al., 2022) (RISE), Exploration
by Maximizing Rényi Entropy (MaxRényi), Maximum State Entropy Exploration (Hazan et al., 2019)
(MSEE) and our MaxCondDiv using KL divergene. Similar to (Hazan et al., 2019), we evaluate the
exploration performance of trained agents using the number of visited states. It is widely accepted
that a large number of visited states will result in improved performance in downstream tasks because
the agent can gather sufficient information (Jin et al., 2020). We execute the trained policy for 10,000
steps every 100,000 steps of training, depicting the numbers of visited states in Fig. 5. MaxCondDiv
outperforms the baseline methods in terms of exploration range and training speed. Furthermore, we
carry out experiments on downstream tasks which is commonly referred to as the "planning phase"
within a reward-free RL framework (Jin et al., 2020). However, the results in downstream tasks are
significantly influenced by the subsequent offline RL algorithms employed and are limited compared
to online RL. Consequently, we have not utilized them as our primary results but have included them
in Appendix C.5 for reference.

Learned Skill without Using Extrinsic Rewards. We have included images depicting agent motions
in Fig. 6. MaxCondDiv acquires a range of basic behaviors such as jumping forward, flipping, etc,
without extrinsic rewards. Videos are shown in Appendix C.3 and attached zip file.

5 CONCLUSION

We propose Mamaximum Conditional Divergence (MaxCondDiv), a model-free method for ex-
ploration without extrinsic rewards that estimates the difference of transition probabilities in two
trajectory fractions using a conditional Cauchy-Schwarz divergence estimator. MaxCondDiv exhibits
distinct exploration behaviors compared to maximum entropy principle and avoids auxiliary model
selection bias observed in other curiosity-driven approaches. We evaluate MaxCondDiv in two
discrete and three continuous environments, consistently achieving exploration of more states or
successfully reaching challenging states.
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A PROOFS OF MAIN RESULTS

A.1 PROOF OF THE PROPOSITION 1

Proposition 1. For two arbitrary d-variate Gaussian distributions p ∼ N (µ1,Σ1) and q ∼
N (µ2,Σ2),

DCS(p; q) ≤ min{DKL(p; q), DKL(q; p)}. (16)

Proof. Given two d-dimensional Gaussian distributions p ∼ N (µ1,Σ1) and q ∼ N (µ2,Σ2), the KL
divergence for p and q is given by:

DKL(p; q) =
1

2

(
tr(Σ−1

2 Σ1)− d+ (µ2 − µ1)
TΣ−1

2 (µ2 − µ1) + ln

(
|Σ2|
|Σ1|

))
, (17)

in which | · | is the determinant of matrix.

The CS divergence for p and q is given by (Kampa et al., 2011):

DCS(p; q) = − log(z12) +
1

2
log(z11) +

1

2
log(z22), (18)

where

z12 = N (µ1|µ2, (Σ1 +Σ2)) =
exp(− 1

2 (µ1 − µ2)
T )(Σ1 +Σ2)

−1(µ1 − µ2)√
(2π)d|Σ1 +Σ2|

z11 =
1√

(2π)d|2Σ1|

z22 =
1√

(2π)d|2Σ2|
.

(19)

Therefore,

DCS(p; q) =
1

2
(µ2 − µ1)

T (Σ1 +Σ2)
−1(µ2 − µ1) + log(

√
(2π)d|Σ1 +Σ2|)−

1

2
log(

√
(2π)d|2Σ1|)−

1

2
log(

√
(2π)d|2Σ2|)

=
1

2
(µ2 − µ1)

T (Σ1 +Σ2)
−1(µ2 − µ1) +

1

2
ln

(
|Σ1 +Σ2|

2d
√

|Σ1||Σ2|

)
.

(20)

We first consider the difference between DCS(p; q) and DKL(p; q) results from mean vector discrep-
ancy, i.e., µ1 − µ2.

Corollary 1. (Horn & Johnson, 2012) For any two positive semi-definite Hermitian matrices A
and B of size n× n, then A−B is positive semi-definite if and only if B−1 −A−1 is also positive
semi-definite.

Applying Corollary 1 to (Σ1 + Σ2) − Σ2 (which is positive semi-definite), we obtain that Σ−1
2 −

(Σ1 +Σ2)
−1 is also positive semi-definite, from which we obtain:

(µ2 − µ1)
TΣ−1

2 (µ2 − µ1)− (µ2 − µ1)
T (Σ1 +Σ2)

−1(µ2 − µ1)

= (µ2 − µ1)
T
[
Σ−1

2 − (Σ1 +Σ2)
−1
]
(µ2 − µ1) ≥ 0.

(21)

We then consider the difference between DCS(p; q) and DKL(p; q) results from covariance matrix
discrepancy, i.e., Σ1 − Σ2.
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We have,

2(DCS(p; q)−DKL(p; q))µ1=µ2
= log

(
|Σ1 +Σ2|

2d
√
|Σ1||Σ2|

)
− log

(
|Σ2|
|Σ1|

)
− tr(Σ−1

2 Σ1) + d.

= −d log 2 + log (|Σ1 +Σ2|)−
1

2
(log |Σ1|+ log |Σ2|)

− log |Σ2|+ log |Σ1| − tr(Σ−1
2 Σ1) + d

= −d log 2 + log

(
|Σ1 +Σ2|

|Σ2|

)
+

1

2
log

(
|Σ1|
|Σ2|

)
− tr(Σ−1

2 Σ1) + d

= −d log 2 + log
(
|Σ−1

2 Σ1 + I|
)
+

1

2
log
(
|Σ−1

2 Σ1|
)
− tr(Σ−1

2 Σ1) + d

(22)

Let {λi}di=1 denote the eigenvalues of Σ−1
2 Σ1, which are non-negative, since Σ−1

2 Σ1 is also positive
semi-definite.

We have:

|Σ−1
2 Σ1| =

( d∏
i=1

λi

)1/d
d

≤

[
1

d

d∑
i=1

λi

]d
=

(
1

d
tr(Σ−1

2 Σ1)

)d

, (23)

in which we use the property that geometric mean is no greater than the arithmetic mean.

Similarly, we have:

|Σ−1
2 Σ1 + I| =

d∏
i=1

(1 + λi) ≤

[
1

d

d∑
i=1

(1 + λi)

]d
=

(
1 +

1

d
tr(Σ−1

2 Σ1)

)d

. (24)

By plugging Eqs. (23) and (24) into Eq. (22), we obtain:

2(DCS(p; q)−DKL(p; q))µ1=µ2
= −d log 2 + log

(
|Σ−1

2 Σ1 + I|
)
+

1

2
log
(
|Σ−1

2 Σ1|
)
− tr(Σ−1

2 Σ1) + d

≤ −d log 2 + d log(1 +
1

d
tr(Σ−1

2 Σ1)) +
d

2
log(

1

d
tr(Σ−1

2 Σ1))− tr(Σ−1
2 Σ1) + d.

(25)

Let us denote x = tr(Σ−1
2 Σ1) =

∑d
i=1 λi ≥ 0, then

2(DCS(p; q)−DKL(p; q))µ1=µ2
= f(x) = −d log 2 + d log(1 +

x

d
) +

d

2
log(

x

d
)− x+ d. (26)

Let f ′(x) = 0, we have x = d. Since f ′′(x = d) < 0, we have,

2(DCS(p; q)−DKL(p; q))µ1=µ2
= f(x) ≤ f(x = d) = 0. (27)

Combining Eq. (21) with Eq. (27), we obtain:

DCS(p; q)−DKL(p; q) ≤ 0. (28)

The above analysis also applies to DKL(q; p).

Specifically, we have:

2(DKL(q; p)−DCS(p; q))Σ1=Σ2 = (µ2 − µ1)
T
[
Σ−1

1 − (Σ1 +Σ2)
−1
]
(µ2 − µ1) ≥ 0, (29)
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2(DCS(p; q)−DKL(q; p))µ1=µ2
= log

(
|Σ1 +Σ2|

2d
√
|Σ1||Σ2|

)
− log

(
|Σ1|
|Σ2|

)
− tr(Σ−1

1 Σ2) + d.

= −d log 2 + log (|Σ1 +Σ2|)−
1

2
(log |Σ1|+ log |Σ2|)

− log |Σ1|+ log |Σ2| − tr(Σ−1
1 Σ2) + d

= −d log 2 + log

(
|Σ1 +Σ2|

|Σ1|

)
+

1

2
log

(
|Σ2|
|Σ1|

)
− tr(Σ−1

1 Σ2) + d

= −d log 2 + log
(
|Σ−1

1 Σ2 + I|
)
+

1

2
log
(
|Σ−1

1 Σ2|
)
− tr(Σ−1

1 Σ2) + d

≤ −d log 2 + d log(1 +
1

d
tr(Σ−1

1 Σ2)) +
d

2
log(

1

d
tr(Σ−1

1 Σ2))− tr(Σ−1
1 Σ2) + d

≤ 0.
(30)

Hence,

DCS(p; q)−DKL(q; p) ≤ 0. (31)

Combining Eq. (28) and Eq. (31), we obtain:

DCS(p; q) ≤ min{DKL(p; q), DKL(q; p)}. (32)

A.2 PROOF OF THE PROPOSITION 2

Proposition 2 (Empirical Estimator of DCS(Pf(st+1|st,at);Pc(st+1|st,at)) (Yu et al., 2023)).
Given observations in the 2τ -length trajectory fraction T = {[(st+1)i, {st,at}i]}2τi=1, dividing them
into two fractions such that {[(st+1)i, {st,at}i]}τi=1 are sampled from distribution Pf(st+1, {st,at}))
and {[(st+1)i, {st,at}i]}2τi=τ+1 are sampled from Pc(st+1, {st,at})). Let Kf and Lf denote, respec-
tively, the Gram matrices3 for the concatenated variable {st,at} and the variable st+1 in the
distribution Pf . That is,

(
Kf
)
ij

= κ({st,at}i − {st,at}j),
(
Lf
)
ij

= κ({st+1}i − {st+1}j) for

i, j = 1 : τ , in which κ is a Gaussian kernel and takes the form of κ = exp
(
−∥·∥2

2σ2

)
. Similarly,

let Kc and Lc denote, respectively, the Gram matrices for the variable {st,at} and the variable
st+1 in the distribution Pc. Meanwhile, let Kfc ∈ Rτ×τ (i.e.,

(
Kfc
)
ij

= κ({st,at}i − {st,at}j),
i = 1 : τ and j = τ + 1 : 2τ ) denote the Gram matrix for variable {st,at} from distribution
Pf to distribution Pc, and Lfc ∈ Rτ×τ the Gram matrix for variable st+1 from distribution Pf to
distribution Pc. The Gram matrices Kcf and Lcf can be defined similarly. The empirical estimation
of DCS(Pf(st+1|st,at);Pc(st+1|st,at)) is given by:

D̂CS(Pf(st+1|st,at);Pc(st+1|st,at)) = log

 τ∑
j=1

(∑τ
i=1 K

f
jiL

f
ji

(
∑τ

i=1 K
f
ji)

2

)+ log

 τ∑
j=1

(∑τ
i=1 K

c
jiL

c
ji

(
∑τ

i=1 K
c
ji)

2

)
− log

 τ∑
j=1

( ∑τ
i=1 K

fc
jiL

fc
ji

(
∑τ

i=1 K
c
ji)(
∑τ

i=1 K
fc
ji)

)− log

 τ∑
j=1

( ∑τ
i=1 K

cf
jiL

cf
ji

(
∑τ

i=1 K
cf
ji )(
∑τ

i=1 K
f
cf)

) .

(33)

3In kernel learning, the Gram or kernel matrix is a symmetric matrix where each entry is the inner product of
the corresponding data points in a reproducing kernel Hilbert space (RKHS), defined by kernel function κ.
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Meanwhile, recall the conditional Cauchy-Schwarz divergence (CCSD) for MaxCondDiv:

DCS(Pf(st+1|st,at);Pc(st+1|st,at))

= −2 log

(∫
St+1

∫
{St,At}

Pf(st+1, {st,at})Pc(st+1, {st,at})
Pf({st,at})Pc({st,at})

d{st,at}dst+1

)

+ log

(∫
St+1

∫
{St,At}

P2
f (st+1, {st,at})
P2
f ({st,at})

d{st,at}dst+1

)

+ log

(∫
St+1

∫
{St,At}

P2
c(st+1, {st,at})
P2
c({st,at})

d{st,at}dst+1

)
,

(34)

where St+1, {St,At} are world set of {st+1, {st,at}}, respectively.

Proof. We first demonstrate how to estimate the two conditional quadratic terms (i.e.,∫
X
∫
Y

p2(x,y)
p2(x) dxdy):∫

X

∫
Y

p2(x,y)

p2(x)
dxdy = Ep(X,Y )

[
p(X,Y )

p2(X)

]
≈ 1

τ

τ∑
j=1

p(xj ,yj)

p2(xj)
. (35)

By kernel density estimator (KDE), we have:

p(xj ,yj)

p2(xj)
≈ τ

∑τ
i=1 κσ(x

p
j − xp

i )κσ(y
p
j − yp

i )(∑M
i=1 κσ(x

p
j − xp

i )
)2 . (36)

where κ denotes Gaussian kernel; σ denotes kernel size. Therefore:∫
X

∫
Y

p2(x,y)

p2(x)
dxdy ≈

τ∑
j=1

(∑M
i=1 κσ(x

p
j − xp

i )κσ(y
p
j − yp

i )(∑τ
i=1 κσ(x

p
j − xp

i )
)2

)
. (37)

Similarly, : ∫
X

∫
Y

q2(x,y)

q2(x)
dxdy ≈

τ∑
j=1

(∑τ
i=1 κσ(x

q
j − xq

i )κσ(y
q
j − yq

i )(∑τ
i=1 κσ(x

q
j − xq

i )
)2

)
. (38)

Then we demonstrate how to estimate the cross term. i.e.,
∫
X
∫
Y

p(x,y)q(x,y)
p(x)q(x) dxdy, in a similar way:∫

X

∫
Y

p(x,y)q(x,y)

p(x)q(x)
dxdy = Ep(X,Y )

[
q(X,Y )

p(X)q(X)

]
≈ 1

τ

τ∑
j=1

q(xj ,yj)

p(xj)q(xj)
. (39)

And then by KDE, we have:∫
X

∫
Y

p(x,y)q(x,y)

p(x)q(x)
dxdy ≈
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. (40)

Similarly, we can also empirically estimate
∫
X
∫
Y

p(x,y)q(x,y)
p(x)q(x) dxdy over q(x,y):∫

X

∫
Y
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( ∑τ
i=1 κσ(x

q
j − xp

i )κσ(y
q
j − yp

i )∑τ
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q
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q
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i )

)
. (41)

Finally, we represent the equation above in the form of Gram matrices. Let Kf and Lf denote,
respectively, the Gram matrices for the input variable x and output variable y in the distribution p
(i.e., Pf ). Further, let (K)ji denotes the (j, i)-th element of a matrix K (i.e., the j-th row and i-th
column of K). We have:∫
St+1

∫
{St,At}

P2
f (st+1, {st,at})
P2
f ({st,at}

d{st,at}dst+1 =

∫
X

∫
Y

p2(x,y)

p2(x)
dxdy ≈

τ∑
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(∑τ
i=1 K

f
jiL

f
ji

(
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i=1 K
f
ji)

2

)
.

(42)
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Similarly, let Kc and Lc denote, respectively, the Gram matrices for input variable x and output
variable y in the distribution q (i.e., Pc). We have:∫
St+1

∫
{St,At}

P2
c(st+1, {st,at})
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2

)
.

(43)

Further, let Kfc ∈ Rτ×τ denote the Gram matrix between distributions p and q for input variable x,
and Lfc the Gram matrix between distributions p and q for output variable y. According to Eq. (40),
we have:∫
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{St,At}
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(44)

Similarly, according to Eq. 41, we have

log
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(45)

Therefore, we have:
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(46)

A.3 PROOF OF THE PROPOSITION 3

Proposition 3. Let X and Y be two random variable with marginal PDFs pX(x) = pX(X = x) and
pY (y) = pY (Y = y), respectively, where x ∈ R and y ∈ R. Let pXY (x, y) = pXY (X = x, Y = y)
denotes the joint PDF. We have:

1

2
H2(x) +

1

2
H2(y)− I2(x, y) ≥ Dcs(pX ; pY ) (47)

iff: ∫
r∈R

pX(X = r)pY (Y = r)dr ≥
∫
y∈R

∫
x∈R

p2XY (x, y)dxdy (48)

where H2(·) and I2(·, ·) are 2nd-order Rényi entropy and mutual information.

To facilitate comprehension of Eq. (48), we provide a visualization in Fig. 7 using a straightforward
discrete example involving three possible states within R. The right-hand side of Equation (48)
corresponds to the summation of the squared elements in the table. The left-hand side of Eq.
(48) is equivalent to the sum of the products of the marginal probabilities. i.e., pX(X = r) =∫
y∈R pXY (X = r, Y = y)dy and pY (Y = r) =

∫
x∈R pXY (X = x, Y = r)dx.
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Proof. We first rewrite the left side of Eq. (47):

1

2
H2(x) +

1

2
H2(y)− I2(x, y) =

1

2
H2(x) +

1

2
H2(y)− [H2(x, y) +H2(x) +H2(y)]

= H2(x, y)−
1

2
H2(pX)− 1

2
H2(pY )

= − log

∫
y∈R

∫
x∈R

p2XY (x, y)dxdy −
1

2
H2(pX)− 1

2
H2(pY )

(49)

where H2(x, y) is the joint entropy. Then we rewrite the right side of Eq. (47):

DCS(pX ; pY ) = −1

2
log

(
∫
r∈R pX(X = r)pY (Y = r)dr)2

(
∫
r∈R p2X(X = r)dr)(

∫
r∈R p2Y (Y = r)dr)

= − log(

∫
r∈R

pX(X = r)pY (Y = r)dr)− 1

2
H2(pX)− 1

2
H2(pY )

(50)

where − log(
∫
r∈R pX(X = r)pY (Y = r)dr) is also the 2-order Rényi cross entropy between p and

q. Therefore,

1

2
H2(x) +

1

2
H2(y)− I2(x, y) ≥ Dcs(pX ; pY )

⇔ − log

∫
y∈R

∫
x∈R

p2XY (x, y)dxdy ≥ − log(

∫
r∈R

pX(X = r)pY (Y = r)dr)

⇔
∫
r∈R

pX(X = r)pY (Y = r)dr ≥
∫
y∈R

∫
x∈R

p2XY (x, y)dxdy

(51)

Using discrete cases to further elucidate Eq. (48), if we break down both sides of the equation, we
find that the left-hand side generates N3 terms, whereas the right-hand side only yields N2 terms,
where N represents the number of possible state values in R.

For an arbitrary term on the right-hand side, let’s say p2XY (4, 5), there must exist a corresponding
term on the left-hand side, specifically pXY (4, 5)

∑N
r=1 pXY (5, Y = r). It’s reasonable to assume

that
∑N

r=1 pXY (5, Y = r) ≥ pXY (4, 5), especially when N is large.

State 1 2 3

1 p(1,1) p(1,2) p(1,3)

2 p(2,1) p(2,2) p(2,3)

3 p(3,1) p(3,2) p(3,3)

Figure 7: Visualization of joint probability table when number of possible states N = 3. The circles indicate
how to calculate marginal probabilities pX and pY , i.e., pX(X = r) =

∑3
y=1 pXY (X = r, Y = y) and

pY (Y = r) =
∑3

x=1 pXY (X = x, Y = r).

To demonstrate that the of Eq. (48) is a trivial case, we perform a Monte Carlo simulation using a
10× 10 joint probability table. Initially, we assign 100 random numbers from a uniform distribution
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in the interval [0, 10] to populate the table. Subsequently, we apply the softmax function to ensure
that the sum of the values in the table equals one. This experiment is repeated one million times.
In our experiments, the condition holds with a frequency of 99.78%. In Fig. 8, we illiterate some
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Figure 8: Counterexamples of Eq. (48)

counterexamples of Eq. (15). We observe that these joint probability tables often exhibit sparsity, with
the probability concentrated on a few non-diagonal elements. In the context of RL environments, this
suggests that the agent becomes stuck in a limited number of transitions, which is a rare occurrence,
particularly in continuous spaces.

B DETAILS OF EXPERIMENTAL SETTING

MountainCar Maze Hopper HalfCheetah Ant

Figure 9: Visual interfaces of environments

B.1 MORE DETAILS OF ENVIRONMENTS

MountainCar (Moore, 1990) is a classical deterministic control environment where a car is placed
randomly at the bottom of a sinusoidal valley. The available actions for the car are limited to
accelerations in either direction.

Maze is a classical 2-D space where an agent (red point) is placed at the starting point (0,0). The
agent has four available actions, allowing it to move in one of four directions.

Hopper (Erez et al., 2012) is a two-dimensional, one-legged agent composed of four main body parts:
the torso at the top, the thigh in the middle, the leg at the bottom, and a single foot serving as the base.

HalfCheetah (Wawrzyński, 2009) is a 2-dimensional robot comprised of 9 links and 8 joints,
including two paws. The objective is to apply torque to the joints and make the cheetah run forward
(to the right) as swiftly as possible.

Ant (Schulman et al., 2015) is a three-dimensional robot composed of a single torso, which is a freely
rotating body, and four legs connected to it. Each leg consists of two links.

In our experiments, observation noise is introduced by rounding state and action values to two decimal
places. Fig 9 showcases the visual interfaces of these environments. Table. 1 summarizes the crucial
statistics of five environments. We categorize MountainCar and Maze as discrete environments, while
Hopper, HalfCheetah, and Ant are classified as continuous environments.

Please note that the default state dimensionality of Ant is 27, but we include the x-y coordinates of
the agent by setting the parameter "exclude_current_positions_from_observation" to False. This is
consistent with the approach taken in the maximum entropy method described in (Hazan et al., 2019).
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Environment State
Dimensionality State Space Action

Dimensionality Action Space

MountainCar 2 continuous: [-1.2, 0.6]
[-0.07, 0.07] 1 discrete: {-1,0,1}

Maze 2 discrete: [20, 20] 1 discrete: {0,1,2,3}
Hopper 11 continuous: [-inf, inf] 3 continuous: [-1, 1]

HalfCheetah 17 continuous: [-inf, inf] 6 continuous: [-1, 1]
Ant 29 continuous: [-inf, inf] 8 continuous: [-1, 1]

Table 1: Statistics of Environments

B.2 INTRODUCTION OF BASELINES

Intrinsically-Motivated 
Exploration RL  

Entropy 
Maximization

Policy State Distribution
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-Learning
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M
SEE

M
axRenyi
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Curiosity- Driven
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M
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Figure 10: The taxonomy diagram depicts different intrinsically motivated exploration RL methods. Our
approach, in contrast to most of other curiosity-driven methods, is entirely model-free, meaning it does not
require an internal model. Instead, we estimate the divergence between transitions directly from either samples
or latent vectors of samples.

Here is a brief introduction to our baselines.In Fig. 10, we illustrate the taxonomy of related
intrinsically-motivated exploration RLs.

The Intrinsic Curiosity Module (ICM) (Pathak et al., 2017) is an exploration method driven by
curiosity. It defines curiosity as the discrepancy between an agent’s predicted consequences of its
own actions and the actual outcomes. This prediction is made in a visual feature space learned by a
self-supervised inverse dynamics model.

The Random Network Distillation (RND) (Burda et al., 2019) is an exploration method driven by
curiosity. Rather than utilizing prediction errors to measure novelty, this approach predicts the output
of a fixed randomly initialized neural network based on the current observation.

The Provably Efficient Maximum Entropy Exploration (MSEE) (Hazan et al., 2019) is the
pioneering approach that rigorously applies the maximum entropy principle. It provides a proof of
policy improvement using the APPROXPLAN/DENSITYEST oracle and directly estimates entropy
in observation spaces.

The Maximum Rényi Entropy Exploration (MaxRényi) (Zhang et al., 2021) is a Rényi entropy-
based variation of MSEE. Besides, it maximizes the entropy in the joint space of action and state.

The Rényi state entropy maximization (RISE) (Yuan et al., 2022) is a combination of MSEE and
MaxRényi. It replaces Shannon entropy with Rényi entropy and incorporates autoencoders and K-NN
methods to estimate entropy in the latent space. RISE emphasizes learning acceleration by leveraging
both extrinsic and intrinsic rewards. However, in our experiment, we solely utilize intrinsic rewards.
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For MSEE, we perform our experiments using the official codes 4 with the default settings. For
MaxRényi, we have adapted the MSEE code by substituting Shannon entropy with Rényi entropy and
incorporating the action space when estimating entropies. We have taken this approach because the
original code and replication details for MaxRényi are unavailable. For other methods we perform
our experiments using the toolbox 5 released by the author of (Yuan et al., 2022).

B.3 DETAILS OF HYPER-PARAMETER SETTING

For CCSD estimation, there are two hyperparameters to consider: the kernel size σ and the buffer
size 2τ . Table. 2 summarizes our selections of five environments.

Environments Thought Experiment MountainCar Maze Hopper HalfCheetah Ant
(σ, 2τ) (1, 50) (0.1, 400) (0.1, 50) (1, 400) (1, 100) (2, 50)

Table 2: Hyper-parameters of CCSD estimation

For our Q-learning oracle, we select he discount γ to be 0.9. For our Proximal Policy Optimization
(PPO) oracle, we summarizes our hyper-parameters in Table. 3

Hyper-parameters Value
entropy_coef 1e-2
critic_coef 0.5

actor_lr 3e-4
critic_lr 3e-4

hidden_dim 256
γ 0.99
λ 0.95

max_clip 0.2
traj_length 1000
batch_size 64

max_grad_norm 0.5
layer_num 3

activation_function torch.tanh
last_activation None

Table 3: Hyper-parameters of PPO

C ADDITIONAL EXPERIMENTAL RESULTS

C.1 RESULTS OF ALTERNATIVE ESTIMATOR: CONDITIONAL MAXIMUM MEAN DISCREPANCY
(CMMD)

As discussed in the section 3.2 of the paper, a popular choice of conditional divergence estimator is
conditional maximum mean discrepancy (CMMD). Here we adopt the estimtor prposed by by Ren et
al. (Ren et al., 2016). More formally using same notions of proposition 1:

ĈMMD =
1

τ2
trace(Lf · Cf) +

1

τ2
trace(Lc · Cc)− 2

τ2
trace(Lfc · Cfc), (52)

where Cf = (Kf + λI)−1Kf(Kf + λI)−1, Cc = (Kc + λI)−1Kc(Kc + λI)−1, Cfc = (Kfc +
λI)−1Kfc(Kfc + λI)−1, λ is a hyper-parameter.

As the equations shown, this method involves taking the matrix inverse of K + λI , which is not
guaranteed to be invertible. Using alternative computations, such as pseudo-inverses, may lead to
imprecise estimations and consequently reduce the stability of learning.

4https://github.com/abbyvansoest/maxent
5https://github.com/yuanmingqi/rl-exploration-baselines
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We perform experiments on MountainCar by replacing CCSD with CMMD to evaluate its perfor-
mance.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

CMMD
0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

CCSD

Figure 11: Trajectories of different estimators on Mountain Car

Figure 11 displays the traces over 5,000 steps using trained policies obtained from CMMD and CSSD.
Despite the possibility of CMMD reaching the flag, CSSD demonstrates better performance overall.
The learning curve of CMMD is depicted in Figure 12 (top-left), illustrating its expected instability
and difficulty in convergence.

Moreover, CCSD exhibits lower computational complexity compared to CMMD, with O(N2d) versus
O(N2d+N3), where N is the number of samples and d is the dimensionality. In our experiments,
CCSD completes 100-episode training in 636.73 seconds, whereas CMMD takes 3326.95 seconds.
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Figure 12: Learning Curves on five environments. The Y-axis is the cumulative CCSD in current episode.

C.2 LEARNING CURVES USING KL DIVERGENCE AND CONDITIONAL CAUCHY-SCHWARZ
DIVERGENCE

In Fig. 12, we display the learning curves utilizing CCSD as the intrinsic rewards. As training
progresses, the CCSD values increase and converge, confirming that the RL agents have learned to
achieve higher CCSD values, as intended. It empirically validates the policy improvement of our
method.

Conversely, we present learning curves employing conditional KL divergence as intrinsic rewards in
Fig. 13. Only the learning curves for HalfCheetah exhibit increases and convergence throughout the
learning process. The presence of the term log(pq ) results in NaN (Not-a-Number) values when either
p or q becomes very small, leading to instability in the learning process.

C.3 VIDEOS AND FRAMES RESULTS

Here we illustrated more frames of trained agents on Mujoco in Fig. 14. The agents learn a diverse set
of primitive behaviors for all tasks. For half cheetah, they learn skills for flip forwards and backwards
at various speeds; ant learns skills for jumping, flipping and Thomas flare maneuvers in many types
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Figure 13: Learning Curves on Mujoco environments. The Y-axis is the cumulative conditional KL divergence
in current episode.

of curved trajectories; hopper learns skills for hopping forward and backwards. More videos are
attached in the zip file.

Hopper: Hopping Forward

Hopper: Hopping Backward

HalfCheetah: Flipping Forward

HalfCheetah: Flipping Backward

Ant: Moving Around

Ant: Fliping Around

Ant: Thomas Flare Maneuvers

Figure 14: Learned skills without using any extrinsic rewards on Mujoco environments

C.4 HYPER-PARAMETER ANALYSIS

Within this section, we present results on how hyperparameters selection impacted experimental
outcomes. In our MaxCondDiv framework, two pivotal hyperparameters come to the fore: the
trajectory fraction length, denoted as τ , and the Gaussian kernel’s size, represented as σ. Due to
the constraints of the rebuttal timeframe, our experimentation centers around the two most complex
environments featured in our paper: HalfCheetah and Ant.

For the HalfCheetah environment, we explore six distinct values for 2τ and seven values for σ,
specifically [10, 50, 100, 150, 200, 500] and [0.1, 0.5, 0.75, 1, 1.5, 2, 10] respectively. The
experiments are conducted 3 times, and the average number of visited states within 10,000 steps
using trained policies is reported. As depicted in Fig. 15, MaxCondDiv achieves favorable outcomes
when τ is set between 50 and 200, as well as when σ ranges from 0.5 to 1.5. The peak can be readily
identified through line search.

For Ant environment, we explore six distinct values for 2τ and seven values for σ, specifically
[10,20,50,100,200,500] and [0.1,0.5,1,2,3,5,10] respectively. Results are similar to HalfCheetah.
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Figure 15: How hyper-parameters impact our experimental outcomes on HalfCheetah and Ant. We choose two
crucial hyper-parameters, i.e., the trajectory fraction length τ and the Gaussian kernel size σ, to construct a 3D
surface plot, with the z-axis depicting the number of visited states.

C.5 DOWNSTREAM TASK: OFFLINE REINFORCEMENT LEARNING RESULTS

Exploration RL has various applications, including the collection of datasets for offline RL (Fu et al.,
2020). This process involves two phases. In the exploration phase, we interact with the environment
using reward-free exploration RL to collect samples {st+1, at, st, r(st, at)} over a significant number
of steps. Here, r(st, at) represents the task-driven extrinsic reward. In the planning phase, we train
an offline RL algorithm using the collected dataset, eliminating the need for further interaction with
the environments. The results of offline RL can partially indicate the quality of the collected data
and, consequently, the effectiveness of the exploration method. We collect datasets for a total of 50
thousands and 20 million steps for discrete environments and Mujoco, respectively, using multiple
exploration methods, and utilize the conservative Q-learning (CQL) (Kumar et al., 2020) algorithm
as the offline RL method in our experiments.

Environments Random ICM RND RISE MSEE MaxCondDiv
(ours)

Online-Learning
(SAC)

MountainCar 0 0.454 0.548 0.575 0.521 0.587 1
Maze 0 0.634 0.701 0.712 0.765 0.681 1

Hopper 0.091 0.178 0.330 0.117 0.622 0.812 1
HalfCheetah 0.375 0.185 0.322 0.239 0.259 0.262 1

Ant 0.032 0.094 0.161 0.133 0.237 0.194 1
Table 4: Comparing the results of Random, ICM, RND, RISE, MSEE, and our MaxCondDiv exploration
methods, normalized with respect to the online Soft Actor-Critic (SAC) method. The best performance is in
bold. The second-best performance is underlined.

Table. 4 summarizes the results on five environments. In the case of MountainCar, all exploration
methods perform well and are able to reach the flag within 400 steps. However, our method shows
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slightly better performance as it achieves the flag more frequently compared to the other methods.
In the case of Maze, the goal is set as starting at coordinates (0, 0) and reaching coordinates (19,
19). All exploration methods show good performance, but MaxEnt outperforms the others by evenly
distributing its exploration throughout the entire space, allowing it to include a trajectory to (19, 19)
without any bias. In the case of Hopper, our method significantly outperforms the others as it learns to
hop forward even without any extrinsic rewards. On the other hand, the other methods mostly result
in the agent falling down in the majority of samples. In the case of Hopper, all methods perform
worse than the random policy. This is because the agent is intentionally designed to be difficult to
flip over when following a random policy (Wawrzyński, 2009). Consequently, the random policy
tends to collect samples of sliding forward slowly. However, exploration methods tend to collect
samples of flipping over because these states are considered "different" and novel. As a result, in
the task of moving forward, these "flipping" samples are noises rather than a useful dataset. In the
case of Ant, all methods fail to achieve satisfactory performance. This is because Ant is a complex
3D environment with a large number of possible trajectories. The samples collected by exploration
methods do not include enough instances of the desired behavior of "moving forward." As a result,
the learned policies based on these exploration methods struggle to navigate and perform well in the
Ant environment.

It is important to note that the results obtained are highly influenced by the choice of offline RL
algorithm. For instance, if we use batch-constrained Q-learning (Fujimoto et al., 2019), the score of
the random policy on HalfCheetah can be as low as 0.014. On the other hand, if we use offline SAC
(Haarnoja et al., 2018), the scores of the random policy may align with the table, but the datasets
collected by exploration methods may result in low scores. Therefore, the performance outcomes are
strongly tied to the specific offline RL method employed.

Hence, for the sake of simplicity and focus, we choose to use the widely adopted CQL method for
our preliminary experiments, as the specific choice of offline RL algorithm is beyond the scope of
this paper.

D ADDITIONAL DISCUSSION

D.1 CS DIVERGENCE IS MUCH MORE STABLE THAN KL DIVERGENCE

Apart from Proposition 1, one can also understand the relative stable of CS divergence over conven-
tional KL divergence from another perspective.

For simplicity, let us consider two discrete distributions p and q on the finite set X = {x1, x2, . . . , xK}
(i.e., there are K different discrete states), let us denote p(xi) = p(x = xi), we have:

DKL(p; q) =

K∑
i=1

p(xi) log

(
p(xi)

q(xi)

)
,

s.t.
K∑
i=1

p(xi) =

K∑
i=1

q(xi) = 1.

(53)

DCS(p; q) = − log

( ∑
p(xi)q(xi)√∑

p(xi)2
√∑

q(xi)2

)
. (54)

Obviously, when there exists i such that q(xi) → 0, the resulting log
(

p(xi)
q(xi)

)
→ ∞.

CS divergence does not have this issue, this is because (the arithmetic mean is less or equal than the
quadratic mean): ∑

q(xi)
2

K
≥
(∑

q(xi)

K

)2

=
1

K2
. (55)

Hence, √∑
q(xi)2 ≥

√
1/K. (56)
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That is, the denominator of CS divergence is hardly to reduce to 0, unless K ≈ ∞ and q (or p) is
nearly uniform distributed.

D.2 CLARIFICATION OF PROPOSITION 2

First, we clarify the definition of Gram matrix. Let X = {x1,x2, . . . ,xN} be a dataset of N points,
each of which is a d-dimensional vector, i.e., xi ∈ Rd. The Gram matrix, which is also called the
Kernel matrix, is a N ×N symmetric and positive semi-definite matrix where each entry is the inner
product of the corresponding data points in the corresponding kernel space, i.e.,

Gij = κ(xi,xj) = ⟨ϕ(xi), ϕ(xj)⟩. (57)

For the linear kernel, the Gram matrix is simply the inner product in input space Gij = xT
i xj . In our

paper, we use the most popular Gaussian kernel, so the inner product is measured in a feature space
with feature map ϕ.

Second, we clarify our Proposition 2. Our proposition 2 provides a sample estimator to measure the
conditional divergence between Pf (st+1|st,at) and Pc(st+1|st,at) from two groups of observations:
{(st+1)i, (st,at)i}τi=1 (sampled from Pf) and{(st+1)i, (st,at)i}2τi=τ+1 (from Pc). Since we are
dealing with four variables from two distributions (st+1); and (st,at) in both Pf and Pc. Our
proposition implies that, in order to measure the conditional divergence, we need to evaluate six
Gram matrix, as shown in Fig. 16:
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Figure 16: Visualization of our computation process of Kf , Lf , Kc, Lc, Kcf (or Kfc), Lcf (or Lfc)

1) the Gram matrix K f which corresponds to concatenated variable (st,at) in distribution Pf, i.e.,
K f

ji = κ({st,at}j , {st,at}i);

2) the Gram matrix Lf which corresponds to variable st+1 in distribution Pf, i.e., Lf
ji =

κ({st+1}j , {st+1)i};

3) the Gram matrix Kc which corresponds to concatenated variable st,at in distribution Pc;

4) the Gram matrix Lc which corresponds to variable st+1 in distribution Pc;

5) the (cross) Gram matrix Kfc (or Kcf ) which measures all pairwise inner products of {st,at}
from distribution Pf to distribution Pc, i.e., (Kfc)ji = κ({st,at}j , {st,at}i), where 1 ≤ i ≤ τ and
τ + 1 ≤ j ≤ 2τ ;
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6) the (cross) Gram matrix Lfc (or Kcf ) which measures all pairwise inner products of st+1 from
distribution Pf to distribution Pc.

D.3 DIFFERENCE WITH RESPECT TO (YU ET AL., 2023)

The application of RL described in (Yu et al., 2023) depends on kernel temporal difference (KTD)
(Bae et al., 2011) as the underlying RL backbone to produce their results. Kernel Temporal Difference
(KTD) represents a straightforward expansion of conventional Q-learning through the incorporation
of kernel methods. Yet, it grapples with difficulties in deep reinforcement learning and complex
environments. Conversely, our MaxDiv exhibits the versatility to serve as an intrinsic-motivated
principle for any RL method.

Additionally, we introduce MaxCondDiv in a principled manner and highlight its connection (Propo-
sition 3) and distinction (thought experiment) from the well-known entropy maximization principle.
Within our MaxCondDiv principle, agents are incentivized to explore states that are maximally distant
from states in former trajectory portions. However, this characteristic seems to be disproven in (Yu
et al., 2023).

This is corroborated by the outcomes observed in the mountain car and maze scenarios. Our
MaxDiv results reveal prominent peaks in states located far from the initial points. In sharp contrast,
the findings outlined in (Yu et al., 2023) for mountain car and Maze failed to exhibit a similar
characteristic.

Based on our experiments using KTD, we discovered that KTD can efficiently explore tabular
environments such as Mountain Car and Maze on its own by simply fixing the reward to be zero,
without utilizing divergence, and still achieve similar outcomes as shown in (Yu et al., 2023).
Consequently, we believe that the exploration in (Yu et al., 2023) is primarily attributed to KTD rather
than conditional divergence.

Furthermore, we have also discovered the relationship between CS divergence and KL divergence.
We clarify why we choose CS divergence over its KL counterpart using Proposition 1.

In summary, our approach is the first to propose the MaxCondDiv principle, whose prototype idea
can be traced back to 1995 (Storck et al., 1995), within the era of deep reinforcement learning. We
also first have successfully implemented this principle using popular deep learning methods such as
PPO.

D.4 LIMITAION AND FUTURE WORKS

A limitation of our work is its inapplicability to video-oriented environments such as Atari or Mario.
These environments have high-dimensional data with spatial information. However, we believe
that this limitation can be addressed in the future by implementing approaches akin to those works
centered around the maximum entropy principle, such as employing Variational Autoencoders (VAE)
to encode images into latent vectors (Yuan et al., 2022; Zhang et al., 2021).

E CODES IN PYTORCH

We have included two demo files in the folder: demo_MountainCar.py and demo_thought_exp.py. The
demo_MountainCar.py demonstrates the application of our method on the MountainCar environment,
while the demo_thought_exp.py replicates our radical exploration in the thought experiments.

We also provide PyTorch structure for CCSD estimation.

1 d e f G a u s s i a n M a t r i x (X, Y, s igma ) :
2 s i z e 1 = X. s i z e ( )
3 s i z e 2 = Y. s i z e ( )
4 G = (X*X ) . sum ( −1)
5 H = (Y*Y ) . sum ( −1)
6 Q = G. unsqueeze ( − 1 ) . r e p e a t ( 1 , s i z e 2 [ 0 ] )
7 R = H. unsqueeze ( − 1 ) . T . r e p e a t ( s i z e 1 [ 0 ] , 1 )
8
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9
10 H = Q + R − 2*X@(Y. T )
11 H = t o r c h . exp ( −H/ 2 / s igma **2)
12
13
14 r e t u r n H
15
16 d e f CCSD( x1 , x2 , y1 , y2 , s igma = 1 ) : # c o n d i t i o n a l c s d i v e r g e n c e
17 x1 = t o r c h . t e n s o r ( x1 )
18 x2 = t o r c h . t e n s o r ( x2 )
19 y1 = t o r c h . t e n s o r ( y1 )
20 y2 = t o r c h . t e n s o r ( y2 )
21
22
23 K1 = G a u s s i a n M a t r i x ( x1 , x1 , s igma )
24 K2 = G a u s s i a n M a t r i x ( x2 , x2 , s igma )
25
26 L1 = G a u s s i a n M a t r i x ( y1 , y1 , s igma )
27 L2 = G a u s s i a n M a t r i x ( y2 , y2 , s igma )
28
29 K12 = G a u s s i a n M a t r i x ( x1 , x2 , s igma )
30 L12 = G a u s s i a n M a t r i x ( y1 , y2 , s igma )
31
32 K21 = G a u s s i a n M a t r i x ( x2 , x1 , s igma ) ;
33 L21 = G a u s s i a n M a t r i x ( y2 , y1 , s igma ) ;
34
35 H1 = K1*L1
36 s e l f _ t e r m 1 = ( H1 . sum ( − 1 ) / ( ( K1 . sum ( − 1 ) ) * * 2 ) ) . sum ( 0 )
37
38 H2 = K2*L2
39 s e l f _ t e r m 2 = ( H2 . sum ( − 1 ) / ( ( K2 . sum ( − 1 ) ) * * 2 ) ) . sum ( 0 )
40
41 H3 = K12*L12 ;
42 c r o s s _ t e r m 1 = ( H3 . sum ( − 1 ) / ( ( K1 . sum ( − 1 ) ) * ( K12 . sum ( − 1 ) ) ) ) . sum ( 0 )
43
44 H4 = K21*L21 ;
45 c r o s s _ t e r m 2 = ( H4 . sum ( − 1 ) / ( ( K2 . sum ( − 1 ) ) * ( K21 . sum ( − 1 ) ) ) ) . sum ( 0 )
46
47 cs1 = −2* t o r c h . l og2 ( c r o s s _ t e r m 1 ) + t o r c h . l og2 ( s e l f _ t e r m 1 )
48 + t o r c h . l og2 ( s e l f _ t e r m 2 )
49 cs2 = −2* t o r c h . l og2 ( c r o s s _ t e r m 2 ) + t o r c h . l og2 ( s e l f _ t e r m 1 )
50 + t o r c h . l og2 ( s e l f _ t e r m 2 )
51
52
53 r e t u r n ( ( cs1 + cs2 ) / 2 ) . i t em ( )
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