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Abstract

Offline reinforcement learning methods hold the promise of learning policies from
pre-collected datasets without the need to query the environment for new samples.
This setting is particularly well-suited for continuous control robotic applications
for which online data collection based on trial-and-error is costly and potentially
unsafe. In practice, offline datasets are often heterogeneous, i.e., collected in
a variety of scenarios, such as data from several human demonstrators or from
policies that act with different purposes. Unfortunately, such datasets often contain
action distributions with multiple modes and, in some cases, lack a sufficient
number of high-reward trajectories, which render offline policy training inefficient.
To address this challenge, we propose to leverage latent-variable generative model
to represent high-advantage state-action pairs leading to better adherence to data
distributions that contributes to solving the task, while maximizing reward via a
policy over the latent variable. As we empirically show on a range of simulated
locomotion, navigation, and manipulation tasks, our method referred to as latent-
variable advantage-weighted policy optimization (LAPO), improves the average
performance of the next best-performing offline reinforcement learning methods
by 49% on heterogeneous datasets, and by 8% on datasets with narrow and biased
distributions.

1 Introduction

Offline reinforcement learning (RL), also known as batch RL [26]], addresses the problem of learning
an effective policy from a static fixed-sized dataset without interacting with the environment to
collect new data. This formulation is especially important for robotics, as it avoids costly and unsafe
trial-and-error and provides an alternative way of leveraging a pre-collected dataset. However, in
practical settings, such offline datasets are often heterogeneous and are collected using different
policies, leading to a data distribution with multiple modes. These data-collection policies may aim to
accomplish tasks that are not necessarily aligned with the target task or may accomplish the same task
but provide conflicting solutions. In contrast to the prior works that have focused on the distributional
shift problem [24, 9] 25]], in this paper, we address the problem of learning from heterogeneous data.

The main challenges in learning from heterogeneous settings are the existence of conflicting actions
in the dataset, and the lack of sufficient high-return trajectories as the dataset is constructed by
re-labeling state-action pairs from some different tasks. Learning from heterogeneous datasets with
conflicting actions is particularly challenging for implicit policy constraint methods that formulate
a supervised learning objective function based on the forward Kullback-Leibler (KL)-divergence
between the parametric policy being learned and the closed-form optimal policy found through
advantage-weighted behavior cloning [39| 41| [44]]. Figure [1|illustrates an example of offline het-
erogeneous settings in which state-conditional distributions learned directly over the action space
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Figure 1: An example scenario of learning from data with heterogeneous action distributions. (left)
The dataset includes data from three different tasks, pushing, grasping, and opening boxes. (right)
The learned task is to relocate an object to a goal position. (middle up) Learning policies directly
in the action space can result in sampling from out-of-distribution actions which subsequently can
fail the learning task. (middle bottom) LAPO constructs a state-conditional latent space and learns a
latent policy to only select in distribution high-return actions.

using the forward KL-divergence objective may assign high probability to out-of-distribution (OOD)
actions which results in sub-optimal policies. Replacing the forward-KL-divergence with a reverse
KL-divergence can avoid this issue in theory, as it forces the policy to only learn a single mode of
the distribution. But in practice, it requires querying the behavior policy which is unknown, and
using an erroneous approximation of the behavior policy can negatively affect the performance
([39]). A similar problem has been reported when explicitly constraining the policy on multi-modal
distributions using maximum mean discrepancy (MMD) distances [57]. This problem however may
seem to be solved by using more expressive policies such as variational auto-encoders (VAEs) or
Gaussian mixture models (GMMs). However, in practice this does not help in heterogeneous settings
with a low density of high-return trajectories. In such settings, adhering to the data distribution using
policy constraint methods can result in sub-optimal performances.

We illustrate this problem with a toy navigation task in which an agent navigates to a goal position
while avoiding an obstacle. In this example, the demonstrated expert actions have two prominent
modes at the initial state corresponding to moving to either the right or left side of the obstacle. We
assume moving to the right leads to higher returns, but we have a lower density of such actions in the
dataset. In Figure 2] we show the action distribution learned by different offline RL algorithms, and
in Table[I] we present their averaged performance. Figure [2]a illustrates the histogram of actions
sampled from a trained policy with AWAC [39]], a policy constraint method. The method fails in
this setting since the learned action distribution includes OOD actions which result in a collision
with the obstacle. Learning a GMM policy with AWAC can avoid the OOD action problem but still
assigns a high probability distribution over low-return actions (Figure 2]b). Other offline RL methods,
including BCQ [9] and PLAS [57], which learn a VAE policy, also fail to represent the high-return
actions in this setting. PLAS can only model the low-return but high-density samples in the dataset
(Figure2]c).

Figure[T]also illustrates a potential solution to the problem of learning from heterogeneous datasets.
The intuition is to construct a state-conditioned latent space that represents high-return actions. In
this case, we can learn simple state-conditional distributions such as Gaussian distributions over
the latent space which, as shown in Figure [2]d, can capture task-relevant and high-reward actions
without including out-of-distribution samples. Based on this intuition, we propose to learn a latent-
space policy by alternating between training the policy and maximizing the advantage-weighted
log-likelihood of data. This biases the RL policy to choose actions supported by the training data
while effectively solving the target task.

The main contributions of this work is the introduction of a new method, which we refer to it as latent-
variable advantage-weighted policy optimization (LAPO), that can efficiently solve heterogeneous
offline RL tasks. LAPO learns an advantage function and a state-conditional latent space in which
high-advantage action samples are generated by sampling from a prior distribution over the latent
space. Furthermore, following a prior work, [57], we also train a latent policy that obtains state-
conditioned latent values which result in higher reward outcomes compared to latent samples directly
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Figure 2: The histogram of actions for the toy navigation task at the initial state in the offline dataset
(in blue), and the histogram of actions sampled from (a) the AWAC Gaussian policy (in red), (b) the
AWAC GMM policy (in red), (c) the PLAS generative model (in yellow) and the PLAS latent policy
(in pink), and (d) the LAPO generative model (in green), and the LAPO latent policy (in pink).

Table 1: The performance of policies in the toy navigation task learned by AWAC, PLAS and
LAPO. The return is averaged by 1,000 samples. The agent receives a reward of +1 to move left,
a € [-1.5,—0.5], +10 to move right, a € [0.5, 1.5], and O otherwise.

AWAC PLAS LAPO
Gaussian GMM | VAE policy | VAE latent_policy
Average return | 2.43 439 | 1.03 1.00 [ 424 10.00

drawn from a prior distribution. We compare LAPO to vanilla behavior cloning, BCQ [9], PLAS
571, AWAC [39], IQL [23]], and CQL [235] on a variety of simulated locomotion, navigation, and
manipulation tasks, provided heterogeneous offline datasets and also biased datasets with narrow
data distribution in standard offline RL benchmarks. LAPO is the only method that yields good
performance across all of these tasks and on average improves by 49% over the next best method for
heterogeneous datasets, and by 8% on other offline RL tasks with narrow data distributions.

2 Preliminaries

The goal of reinforcement learning is to obtain a policy that maximizes a notion of accumulated
reward for a task as a Markov decision process (MDP). In offline RL settings, we assume that we
are given a dataset of tuples D = {(s¢, at, 7+, St+1)}, where, s; € S and a; € A denote the state
and action at the time step ¢, 7 = r(s¢, at) is the reward given by a bounded reward function, and
st41 1s sampled from a fixed transition probability distribution p(s:11]s¢, at). Note that actions can
come from a mixture of policies which is referred to as the behavior policy. The policies may try to
accomplish different tasks and hence generate trajectories unrelated to the target task.

Given an initial state distribution yo(s) and a discount factor vy € (0, 1), the RL agent optimizes a
policy m(a|s) to maximize the expected cumulative reward

J(ﬂ-) = E50~M0,5t+1~p(-\St,'n'(st)) [Z ’ytr(staﬂ-(st))] . (1)
t=0

The state action value function (Q function), of the policy is defined as Q™ (s,a) =
E[> oo rt|so = s, ap = a], which can be approximated with the Bellman equation:

¢* = arggﬁnE(st,at,n,stJrl)ND [Tt + VV(St+1) - Q¢(St7 at))ﬂ ) (2)

where, ¢ denotes the parameters of the Q-function, V' denotes the value function V(s) =
E(a)s)[@g (5, a)] and can be approximated by sampling actions from the policy distribution and
averaging the corresponding Q value. ¢’ denotes the parameters of the Q-function at the previous
iteration. The advantage of a pair of state and action is then defined as A(s,a) = Q4(s,a) — V(s).

3 Implicit Policy Constraints with KL-divergence

A central challenge for offline RL methods is to limit the state-conditional action distribution of the
learned policy to the empirical conditional action distribution of the dataset. It is very likely for
off-policy algorithms to have overly optimistic values, as they tend to query the Q-function for action



inputs outside the training distribution. Policy constraints methods [24} 51] deal with this problem
by keeping the learned policy close to the behavior policy using the following constrained policy
optimization formulation:

argmax Eqp Er (45 [A(s, a)],s.t. Esop[D(mg(als), ma(als))] < e 3)

where, mg(als) denotes the unknown empirical conditional action distribution of the dataset, and D
denotes a distance measure such as KL-divergence [39] 44] or maximum mean discrepancy (MMD)
[24], and € is a threshold parameter. In case, we use the KL-divergence as the divergence in Equation
the optimal 7* can be expressed as

" (als) o< mp(als) exp(A(s, a) /), @)
where, ) is a temperature parameter that depends on the e.

Prior work [39} 44, 41]] suggested to incrementally solve Equation 4| by representing the optimal
policy 7*(a|s) as a non-parametric policy, and then project it onto the parametric policy mg(als) via
supervised regression:

arg;nin Ep[DkL(7*(a|s)||me(als))] = argznax Ep[Er+(a)s)[log ma(als)] ], (5)

where, the expectation is estimated by sampling from the dataset. In practice, the non-parametric
policy can be implemented by weighting samples from the dataset D using importance weights
w = exp(A(s,a)/N), and the projection via KL-divergence can be done via weighted supervised
learning using these weights [29].

4 Latent-Variable Advantage-Weighted Policy Optimization

In this work, we aim to address the problem of learning from heterogeneous offline datasets collected
by policies with different purposes. The challenge arises from the fact that the dataset contains
conflicting actions distributed with multiple modes. Besides, the dataset often does not include
a sufficient number of high-return trajectories to learn the task properly, as the dataset may be
constructed by re-labeling rewards for state-action pairs collected for some other tasks that not
necessarily aligned with the target task. We argue that in this setting we not only need a more
expressive policy class to represent the multi-modal action distributions, but also need a mechanism
that can select which samples to use for the given target task.

We present a novel method, named latent-space advantage-weighted policy training (LAPO), which
learns a policy by maximizing the Q function over a latent space that is trained to approach the
distribution of actions that leads to higher returns in solving the task. The overall objective of the
LAPO can be defined as follows:
argmaXE 2oy (+]s) [Q¢(57 a)} + IE(S,a)m’D [w * log[p9 (Q‘S)” .
90 anpi(:]s.2) ©)

s~D

The objective consists of two main components: (1) an advantage-weighted log-likelihood of the
actions in the dataset and, (2) a state-action value function. This objective is optimized iteratively by
alternating between maximizing each component separately. The weighted log-likelihood is maxi-
mized by training a latent-variable state-conditioned generative model pg(als) = E.p2)[po(als, 2)].
Here, z denotes a latent variable, p(z) is the prior distribution, pg(a|s, z) is a generative model
(decoder), and 6’ denotes the parameters of the decoder in the previous iteration. This component
extends advantage-weighted regression (AWR, Equation 3 [41]] using more expressive policy classes.
Also, as illustrated in Figure 2t and d, weighting by advantages allows the generative model to
effectively represent high-return state-action transitions.The state-action value function Q4(s, a) is
updated in every iteration, and is then improved by updating the latent policy 7y(z|s). The latent
policy outputs a latent variable z which is then mapped to an action a € A by the decoder py(als, z)
with the parameters updated in the previous iteration. The latent policy is trained with a standard
actor-critical RL approach to maximize the state-action value function. Next, we will describe each
of these components in detail.

Maximizing the weighted log-likelihood: LAPO incrementally learns to maximize the weighted
log-likelihood by alternating between two steps: (1) estimating the importance weight of each action,



Algorithm 1 Latent-Variable Advantage-Weighted Policy Optimization

Input D= {(St, ag, St+1) } 1= ]. N

Initialize: ¢, 0, v, ¥ randomly, 6’ = 9 and w = 1.0.

repeat
Update the decoder py using Equation
Update the Q-function @)y using Equations[2|and
Estimate the advantage weights for every state-action pair.
Update the latent policy 7y using Equation 9]
Update 0 according to 6

until M iterations completed

and (2) regressing the actions in the dataset with the importance weight of each action. In practice, to
characterize the importance of high-return trajectories, we can use the exponential advantages as the
importance weight, w = exp(A(s,a)/\), where X is a temperature parameter. Following [21], we
derive a weighted variational lower bound that maximizes the weighted log-likelihood of data:

Ho}iXEs,aND[w Egy (215,0)[10g(po(als, z)) — BDkwr(gy(zls, a) |[p(2)) 1], 7

where gy (z|s, a) is the variational posterior distribution, p(z) is the prior distribution over the latent
variable and typically modelled by a standard normal distribution, and g is a hyper-parameter to
balance the two loss terms [[17]].

Policy evaluation: As explained earlier, the estimated advantage of each state-action pair is used to
update the decoder. These advantage estimations are incrementally found through a policy evaluation
process in which the overall policy, formed by combining the latent policy and the decoder, is being
evaluated. The state-conditional action distribution of the overall policy 7y ¢-(a|s), is found by first
sampling a latent value from the latent policy z ~ my(z|s), and then feeding the latent value to the
decoder to sample the action a ~ py(als, z). In the policy evaluation step, we update the value
function by minimizing the squared temporal difference error using Equation 2] To calculate the
expected value of a state, we sample actions from the overall policy, i.e.,

V(S) = EaNpg/('|S7Z),ZN7T19("S) [Q¢’(57 a)] ®)

Since the latent values z will be used as the input to the decoder, an unbounded z can lead to
generating out-of-distribution actions. Therefore, to better ensure sampling in-distribution actions,
7o (2|s) can be modeled as a truncated Gaussian [3]]. For deterministic versions of the latent policy,
the policy output can be limited to [—2zax, Zmax] Using a tanh function.

Policy improvement: LAPO optimizes the latent policy my(z|s) in every iteration to directly
maximize the return. It is trained based on standard RL approaches such as DDPG [30]] or TD3 [8] to
maximize the RL objective in Equation[I] by learning latent actions which result in high returns after
being converted to the original action space using the decoder.

The latent policy is updated by maximizing the Q-function over states sampled from the dataset,
latent variables from the latent policy, and actions from the decoder pg::
argmax Eq p,, (.|s,2),zmg (-]s),s~D Qo (@5 8)]- ©)

™

A summary of our method is presented in Algorithm[I] We randomly initialize the parameters of the
state-action Q function, the decoder, the amortized variational distribution, and the latent policy. In
every training iteration, we first update the decoder and the variational distribution ¢ using Equation 7]
given the latest values of the advantage weights. Then, we update the Q function using Equations 2]
and[§] provided the updated action and latent policies. Then, for every state-action pair in the dataset,
we compute the advantage using the updated Q function, the latent policy and the decoder, and then
estimate the weights. Finally, we update the latent policy using Equation [0}

5 Related Works

Offline Reinforcement Learning: Offline RL methods generally address the problem of distribution
shift between the behavior policy and the policy being learned [9, 24], which can cause issues



due to out-of-distribution actions sampled from the learned policy and passed into the learned
critic. To address this issue, prior methods constrain the learned policy to stay close to the behavior
policy via explicit policy regularization [32, (18} [51} 24} 22| [13]], via implicit policy constraints
[441149,142, 141} 139, 22, 12311531 135]], by regularizing based on importance sampling [37, 311150, 52]],
by learning of conservative value functions [25) 46], by leveraging auxiliary behavioral cloning
losses [[7,138]], and through model-based training with conservative penalties [56, 20} 3|47, 136} 28| 53]
Compared to these prior works, we opt to develop a method that uses an implicit policy constraint.
However, prior implicit policy constraint methods have been largely limited to Gaussian policies,
leading to OOD action samplings and sub-optimal performance on heterogeneous datasets, We
overcome this challenge by introducing a new method that leverages latent variable models. As we
will find in Section [6] our method also outperforms state-of-the-art prior methods in other categories,
particularly when learning from heterogeneous datasets.

Prior works [[1}, [19} [54] also studied the problem of learning from heterogeneous dataset in the
offline RL with heterogeneous dynamics setting [[1] and multi-task offline RL with data sharing
scenario [[19,154] respectively. Both settings require knowledge of the agent/task identifier. Here, we
study a more general problem setting including datasets with conflicting actions without assuming
access to the ground-truth identifier of the source of the heterogeneity.

RL with Generative Models: Generative models have been used by prior works for improving
training performance [45 [11} [12], enabling transfer learning [4} [10], implementing hierarchical RL
[2, 1331 134, [40], avoiding distributional shift in offline RL settings [9} I57]], and learning dynamics
models [27, [16} 143, [15]]. Our proposed method resembles PLAS [57]], which learns a generative
model and latent policy; but, unlike this prior work, our method trains an advantage-weighted
generative model by alternating between learning the generative model, the advantage function,
and the latent policy. This allows LAPO to capture different high-reward solutions using a simple
Gaussian distribution in the latent space. As we will find in Section@ this distinction is crucial, as
LAPO significantly outperforms PLAS on heterogeneous datasets.

6 Experiments

Our experiments aim to answer the following questions: (1) How does LAPO compare to other
offline RL methods on a set of standard offline RL tasks, including learning from heterogeneous and
homogeneous offline datasets? (2) How does LAPO compare to prior methods implemented with
GMM policies when learning behaviors offline from heterogeneous datasets? and (3) In which setting
does LAPO benefit from the latent policy training, versus only using the generative model? Can
LAPO learn without constraining the latent values?

We study the first question by evaluating LAPO and comparing it to several prior methods on
offline RL benchmarks with heterogeneous datasets. We consider a range of simulated robotic tasks,
including navigation, locomotion, and manipulation, each with a corresponding static dataset with a
heterogeneous data distribution. We also consider datasets with narrow and biased data distributions,
containing near-optimal or random trajectories. To answer the second question, we include a
comparison of AWAC [39] with a GMM policy, since AWAC trains using a similar advantage-
weighted objective as the actor policy in LAPO. This comparison is only performed on heterogeneous
datasets, since this is where we expect to see the most improvement from a multi-modal policy. Finally,
the questions in (3), we conduct two ablation studies in which we train LAPO without learning the
latent policy, i.e. evaluating only LAPO’s action policy, and without limiting the latent values to the
range [—Zmax, Zmax)- We compare this version of the method to the original LAPO on four offline RL
tasks that differ in the amount of high-performing task-relevant data contained in the offline dataset.
Our implementation is available at https://github.com/pcchenxi/LAPO-offlienRL.

6.1 Comparisons

We compare LAPO to 7 offline RL approaches: (1) vanilla behavioral cloning (BC), (2) the BCQ
method [9]], which approximates the dataset distribution with a generative model and manually selects
the action with the maximum Q value among a set of generated actions, (3) the PLAS method [57],
which learns a generative model via maximum likelihood and a latent-space policy to maximize the
RL objective in the latent space, (4) the AWAC method [39]], which performs advantage-weighted
imitation learning with a forward-KL objective for the policy projection step, (5) the IQL method


https://github.com/pcchenxi/LAPO-offlienRL

B )2 )

Figure 3: D4RL environments used in our evaluations: (from left to right) Walker 2D, Hopper,
Halfcheetah, Antmaze, Maze2d, and Kitchen environments.

[23]], which learns the value function using expectile regression without an explicit policy, and then
extracts the policy using advantage weighted regression (AWR), (6) the CQL method [25] which
learns a conservative Q-function, and (7) AWAC gy Which trains GMM policies using AWAC.

In our experiments, we train each method three times using three different random seeds each for one
million steps, and report the return averaged over 10 test episodes from the trained policies. We used
the implementation provided by [48]] for the BCQ and AWAC, the original implementation for the
PLAS, IQL and CQL, and our implementation for the BC method. We report the implementation
details in the Appendix

6.2 Tasks and Datasets

We compare LAPO to the introduced prior methods on learning from both heterogeneous and
homogeneous offline datasets. We evaluate the methods on three simulated task domains, locomotion,
navigation, and manipulation domains (Figure [3), with heterogeneous data distributions, and also
a locomotion task with random, narrow and biased data distribution. We consider two sources of
heterogeneous datasets: (1) data collected by policies accomplishing different tasks, and (2) data
collected by different policies that accomplish one task but in different ways. For (1), we use the
multi-task heterogeneous datasets introduced by [54]], and for (2), we leverage heterogeneous datasets
from the standard D4RL benchmark [6]. More details about our tasks and datasets are provided in
the Appendix [F

6.3 Experimental Results

Heterogeneous datasets: Table [2|reports the results of our experiments on heterogeneous datasets,
and in Figure 6] (Appendix [C)), we present the learning performance of LAPO with 95% confidence
interval on Heterogeneous tasks. Among the 12 tasks introduced in the previous section, LAPO
(our method) achieves the best performance on nine tasks and the second-best performance on one
task. Besides, on average, LAPO improves by 49% over the next best method on the heterogeneous
datasets.

The heterogeneous locomotion tasks can be accomplished more easily by the prior methods since still
33% of the data comes from the target task. However, from the prior works, AWAC and CQL are the
only methods that can accomplish the tasks. LAPO performs well on all tasks and on average yields
the best performance on one out of the three tasks. This shows that LAPO is capable of learning from
heterogeneity introduced by multi-task datasets.

The navigation tasks are in general more challenging especially for those with medium and large map
sizes. The main challenge is to learn policies for long-horizon planning from datasets that do not
contain optimal trajectories, and there are only very few states with rewards. LAPO significantly
outperforms all prior works for all of the navigation tasks. Similarly, the manipulation tasks are
also challenging, as they require the assembly of sub-trajectories related to completing a given task
consisting of multiple sub-tasks. In addition, the agent has access to fewer training samples while
having to learn to interact with complicated dynamics. LAPO outperforms previous approaches by
a large margin on Kitchen-partial and Kitchen-mixed for which only a few optimal trajectories are
provided by the dataset. It also performs competitively on the Kitchen-complete task and yields the
second-best performance.

we observe that GMM policy training does not perform well on heterogeneous offline RL settings.
The AWAC method with GMM policies yields similar or even worse performance compared to the
original AWAC. These results suggest that the VAE is more robust to model the high-reward regions
in heterogeneous data.



Table 2: The normalized performance of all methods on tasks with heterogeneous dataset. 0 represents
the performance of a random policy and 100 represents the performance of an expert policy. The
scores are averaged over the final 10 evaluations and 3 seeds. LAPO achieves the best performance
on 9 tasks and achieves competitive performance on the rest 3 tasks. Results with 95%-confidence
interval are reported in Appendix [C.2]

Task ID BC BCQ PLAS AWAC AWAC (GMM) IQL CQL LAPO(ours)
Walker2d-mix-forward-v1 -5.65 091 2291 71.89 78.09 28.25 102.75 74.17
Walker2d-mix-backward-vl  -84.56 -1.37 -27.58 -7.95 71.33 -46.25 66.64 99.22
Walker2d-mix-jump-v1 -72.92 -41.43 0.56 51.08 28.01 -46.41 37.28 43.20
Maze2d-umaze-v1 0.99 1891 80.12 9453 19.45 51.00 22.86 118.86
Maze2d-medium-v1 334 1279 5.19 3140 46.53 3326 12.25 142.75
Maze2d-large-v1 -1.14  27.17 45.80 43.85 9.04 64.30 7.00  200.56
Antmaze-umaze-diverse-vl  60.00 62.00 7.00 72.00 0.00 69.33 16.71 91.33
Antmaze-medium-diverse-vl 0.00 11.33 8.67 0.33 0.00 73.00 1.00 85.67
Antmaze-large-diverse-v1 0.00 0.67 133 0.00 0.00 48.00 11.89 61.67
Kitchen-complete-v0 450 9.08 38.08 3.83 1.08 66.67 4.67 53.17
Kitchen-partial-v0 31.67 17.58 27.00 0.25 0.42 32.33  0.55 53.67
Kitchen-mixed-v0 30.00 11.50 29.92 0.00 3.92 49.92 1.86 62.42

Table 3: The normalized performance of all methods on locomotion tasks with random, narrow and
biased dataset. O represents the performance of a random policy and 100 represents the performance
of an expert policy. The scores are averaged over the final 10 evaluations and 3 seeds. LAPO achieves
the best performance on 4 tasks and achieves competitive performance on the rest of the tasks. Results
with 95%-confidence interval are reported in Appendix[C.2]

Task ID BC BCQ PLAS AWAC IQL CQL LAPO0urs)
Hopper-random-v2 2.23 7.80 6.68 8.01 7.89 8.33 23.46
Walker2d-random-v2 1.11 4.87 9.17 0.42 5.41 -0.23 1.28
Halfcheetah-random-v2 ~ 2.25 2.25 26.45 15.18 13.11 2220  30.55
Hopper-medium-v2 49.23  56.44 50.96 69.55 65.75 71.59 51.63

Walker2d-medium-v2 4711 73.72 76.47 84.02 77.89 82.10 80.75
Halfcheetah-medium-v2  37.84 47.22 44.54 48.13 47.47 49.76 45.97

Hopper-expert-v2 76.16  68.86 107.05 109.32 109.36 102.27 106.76
Walker2d-expert-v2 79.22 11051 109.56 11046 109.93 108.76 112.27
Halfcheetah-expert-v2 85.63 93.15 93.79 14.01 94.98 87.40 95.93

Random/Narrow datasets: Table |3|reports the results of the locomotion tasks with random, narrow
and biased datasets. Our method yields the best performance for four out of nine tasks. It also
achieves competitive performance on the rest of the tasks, showing that LAPO is applicable to general
offline RL settings and is not limited to learning from heterogeneous datasets. However, the most
significant gain is when it is applied to offline settings with heterogeneous datasets. Learning curves
and results with 95%-confidence interval are reported in Appendix [C]

6.4 Ablations

Latent Policy Training: To study the importance of the latent policy training in achieving good
performances, we conduct an ablation study on 4 different tasks by eliminating the latent policy
training from LAPO. The main motivation is that, as described in Section E], the latent variable
generative model is trained to incrementally learn the action distribution that lead to higher return,
hence training the latent policy on top of that may seem redundant. In this case, another option for
sampling latent variables is to sample from the prior distribution, which changes Equation [§]to:

V(S) = anpe/(ﬂs,z)zwp(z) [Qd)/ (S, a)]v
where, the latent 2 is now sampled from a fixed prior.

As shown in Fig. 4] training a latent policy does not significantly contribute to higher performance
for tasks such as the Walker2D-medium and Walker2d-mix-backward which contain sufficient task-
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Figure 4: Comparison of LAPO with and without the latent policy on Maze2D-medium, Antmaze-
medium-diverse, Walker2D-medium, and Walker2D-mix-backward task. The shaded area represents
+95%-confidence intervals, computed using 10 evaluations and 3 random seeds. For tasks with less
optimal task-relevant data like Maze2D-medium, Antmaze-medium-diverse, the learned latent policy
results in high-performance gains.
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Figure 5: Comparison of LAPO with and without limiting the latent values. The policy performance
is significantly worse when the latent values are not limited to the range [—Zmax, Zmax|-

relevant data. However, latent policy training results in large performance gains when learning
from datasets which contain fewer optimal task-related data such as Maze2D and Antmaze. LAPO
overcomes this challenge by explicitly optimizing the RL objective through learning the latent policy.

Limiting the latent values: We also study the importance of limiting the latent variable z to be
within the range [— Zmax, Zmax]- This is important to understand the limits of using the latent variable
decoder as a generative model of in-distribution actions. Figure [5]illustrates the result of LAPO
policy training using unbounded latent actions on four tasks. The policy training performance is
significantly worse when we do not limit the latent values. This suggests that the the action policy
can generate in-distribution actions only when in-distribution latent values (close to samples drawn
from the prior distribution p(z)) are given as the input.

7 Conclusion

In this paper, we study an offline RL setup for learning from heterogeneous datasets where trajectories
are collected using policies with different purposes, leading to a multi-modal data distribution, and
in some cases, do not contain sufficient high-reward trajectories. Through empirical analysis, we
find that in such cases, policies constrained methods may contain out-of-distribution actions and
lead to suboptimal performance for continuous control tasks, especially for heterogeneous datasets.
To address this challenge, we present the latent-variable advantage-weighted policy optimization
(LAPO) algorithm, which learns a latent variable model that generates high-advantage actions when
sampling from a prior distribution over the latent space. In addition, we train a latent policy that
obtains state-conditioned latent actions which result in higher reward outcomes compared to sampling
from the prior distribution. We compare our method to 6 prior methods on a variety of simulated
locomotion, navigation, and manipulation tasks provided heterogeneous offline datasets, and also on
standard offline RL benchmarks with narrow and biased datasets. We find that our proposed method
consistently outperforms prior methods by a large margin on tasks with heterogeneous datasets, while
being competitive on other offline RL tasks with narrow data distributions. For our future work,
we will extend LAPO to multi-task offline RL settings in which an agent learns multiple RL tasks
provided a heterogeneous dataset of diverse behaviors.
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