
Make-An-Agent: A Generalizable Policy Network
Generator with Behavior-Prompted Diffusion

Yongyuan Liang12 Tingqiang Xu3 Kaizhe Hu3 Guangqi Jiang4
Furong Huang2 Huazhe Xu13

1 Shanghai Qi Zhi Institute 2 University of Maryland, College Park
3 Tsinghua University 4 University of California, San Diego

Abstract

Can we generate a control policy for an agent using just one demonstration of
desired behaviors as a prompt, as effortlessly as creating an image from a textual
description? In this paper, we present Make-An-Agent, a novel policy parameter
generator that leverages the power of conditional diffusion models for behavior-to-
policy generation. Guided by behavior embeddings that encode trajectory informa-
tion, our policy generator synthesizes latent parameter representations, which can
then be decoded into policy networks. Trained on policy network checkpoints and
their corresponding trajectories, our generation model demonstrates remarkable ver-
satility and scalability on multiple tasks and has a strong generalization ability on
unseen tasks to output well-performed policies with only few-shot demonstrations
as inputs. We showcase its efficacy and efficiency on various domains and tasks, in-
cluding varying objectives, behaviors, and even across different robot manipulators.
Beyond simulation, we directly deploy policies generated by Make-An-Agent
onto real-world robots on locomotion tasks.

1 Introduction

Policy learning traditionally involves using sampled trajectories from a replay buffer or behavior
demonstrations to learn policies or trajectory models mapping from state s to action a, modeling a
narrow behavior distribution. In this paper, we consider a shift in paradigm: moving beyond training
a policy, can we reversely predict optimal policy network parameters using suboptimal trajectories
from offline data? This approach would obviate the need to explicitly model behavior distributions,
allowing us to learn the underlying parameter distributions in the parameter space, thus revealing the
implicit relationship between agent behaviors for specific tasks and policy parameters.

Using low-dimensional demonstrations (such as agent behavior) to guide the generation of high-
dimensional outputs (policy parameters) is a challenging problem. When diffusion models [12, 20]
have demonstrated highly competitive performance on various tasks including text-to-image synthesis,
we are inspired to approach policy network generation as a conditional denoising diffusion process.
By progressively refining noise into structured parameters, the diffusion-based generator can discover
various policies that are not only superior in performance but also more robust and efficient than the
demonstration in the policy parameter space.

While prior works on hypernetworks [10, 1, 18] explore the concept of training a hypernetwork to
generate weights for another neural network, they primarily use hypernetworks as an initialization
network of meta-learning [7] and then adapt to specific task settings. Our approach diverges from this
paradigm by leveraging agent behaviors as direct prompts or to generate optimal policies within the

iCode, dataset and video are released in https://cheryyunl.github.io/make-an-agent/.
Corresponding to: cheryunl@umd.edu

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://cheryyunl.github.io/make-an-agent/

parameter space, without the need for any downstream policy fine-tuning or adaptation with gradient
updates. Since behaviors - as the observable manifestation of deployed policies - from different
tasks often share underlying skills or environmental information, our policy generator can exploit
these potential correlations in the parameter space, such as shared parameters for similar motion
patterns, which leads to enhanced cross-task one-shot generalizability. What we need is an end-to-end
behavior-to-policy generator, not a shared base policy.

To achieve this, we introduce Make-An-Agent , featuring three key technical contributions: (1)
We propose an autoencoder that encodes policy networks into compact latent representations based
on their network layers, which can also effectively reconstruct the original policy from its latent
representation. (2) We leverage contrastive learning to capture the mutual information between
long-term trajectories and their success or future states. This approach yields a novel and efficient
behavior embedding. (3) We utilize a simple yet effective diffusion model conditioned on the learned
behavior embeddings, to generate policy parameter representations, which are then decoded into
deployable policies using the pretrained decoder. (4) We construct a pretrained dataset of policy
network parameters and corresponding deployed trajectories to train our proposed methodology.

To investigate the generation performance of Make-An-Agent, we evaluate our approach in three
continuous control domains including diverse tabletop manipulation and real-world locomotion tasks.
During test time, we generate policies using trajectories from the replay buffer of partially-trained RL
agents. The policies generated by our method demonstrate superior performance compared to policies
produced by multi-task [28, 23] or meta learning [7, 27] and other hypernetwork-based generation
methods [1]. Our generator offers several key advantages:

• Versatility: Make-An-Agent excels in generating effective policies for a wide range of
tasks by conditioning on agent behavior embeddings. Since we train the parameter generator
for latent parameter representations, it can generate policy networks of varying sizes within
the latent space, demonstrating scalability.

• Generalizability: Our diffusion-based generator demonstrates robust generalization, yield-
ing proficient policies even for unseen behaviors or unseen embodiments in unfamiliar
tasks.

• Robustness: Our method can generate diverse policy parameters, exhibiting resilient per-
formance under environmental randomness from simulators and real-world environments.
Notably, Make-An-Agent can synthesize high-performing policies when fed with noisy
trajectories, highlighting the robustness of our model.

2 Backgrounds

Policy Learning. Reinforcement Learning (RL) is structured within the formation of Markov
Decision Processes (MDPs) [2], which is defined by the tuple M = ⟨S,A, P,R, γ⟩. Here, S
signifies the state space, A the action space, P the transition probabilities, R the reward function
and γ the discount factor. RL aims to optimize an agent’s policy π : S → A, which outputs action
at based on state st at each timestep, to maximize cumulative rewards. The optimal policy can be
expressed as:

π∗ = argmax
π

Ez∼π

[∞∑
t=0

γtrt

]
, (1)

where z represents a trajectory generated by following policy π. In deep RL, policies π are represented
using neural network function approximations [22], parameterized by θπ , facilitating the learning of
intricate behaviors across high-dimensional state and action spaces.

Diffusion Models. Denoising Diffusion Probabilistic Models (DDPMs) [12] are generative models
that frame data generation through a structured diffusion process, which involves iteratively adding
noise to the data and then denoising it to recover the original signal. Given a sample x0, the forward
diffusion process to obtain x1, x2, ..., xT of increasing noise intensity is typically denoted by:

q(xt | xt−1) = N (xt,
√

1− βtxt−1, βtI), (2)

where q is the forward process, N is Gaussian noise, and βt ∈ (0, 1) is is the noise variance.

2

The denoising process, which is the reverse of the forward diffusion, can be formulated as:

pθ (xt−1 | xt) = N (xt−1 | µθ (xt, t) ,Σθ) , (3)

where pθ denotes the reverse process, µθ and Σθ are the mean and variance of the Gaussian distribution
respectively, which can be approximated by a noise prediction neural network parameterized by θ.

Diffusion models aim to learn reverse transitions that maximize the likelihood of the forward
transitions at each time step t. The noise prediction network θ is optimized using the following
objective, as the function mapping from ϵθ(xt, t) to µθ(xt, t) is a closed-form expression:

LDM(θ) := Ex0∼q,ϵ∼N (0,1),t[||ϵ− ϵθ(
√
ᾱtx0 +

√
1− ᾱtϵ, t)||2], (4)

Here, ϵ ∼ N (0, I), is the target Gaussian noise, ᾱt :=
∏t

s=1 1− βs, and
√
ᾱtx0 +

√
1− ᾱtϵ is the

estimated distribution of xt from the closed-form relation.

Although diffusion models are typically used for image generation through the reverse process, the
variable x can be generalized to represent diverse entities for generation. In this paper, we adapt x to
represent the parameters θπ of the policy network in policy learning.

3 Methodology

Gaussian noise

Latent Diffusion
Model

Behavior
embeddings

Conditional
inputs

Latent parameter
representations

Generated
deployable

policy

denoising

Inference process
Agent’s trajectory

…

A
u

to
en

co
d

er

Forward process

decode

…

encodenoising

from training
dataset

vectorize

Figure 1: Overview: In the inference process of policy parameter generation, conditioning on
behavior embeddings from the agent’s trajectory, the latent diffusion model denoises random noise
into a latent parameter representation, which can then be reconstructed as a deployable policy using
the autoencoder. The forward process for progressively noising the data is also conducted on the
latent space after encoding policy parameters as latent representations.

vectorized

Policy
network
parameters

En
co

de
r D

ecoder

Latent
Representations

…

Autoencoder

decoding

encoding

Figure 2: Autoencoder: Encoding policy param-
eters into the latent space and decoding latent pa-
rameter representations into policy networks.

s

Contrastive
Loss

Behavior embeddings

0
a

0
s

n-1
… a

n-1
s

n
a

n

Projection 𝝓

s
K

s
K+m

…

Projection 𝝋

h v

Long trajectory with 𝑛 steps
After the first
success step 𝐾

Figure 3: Contrastive behavior embeddings:
Learning informative behavior embeddings from
long trajectories with contrastive loss.

Overview. An overview of our proposed methodology is illustrated in Figure 1. To achieve this,
we address several key challenges: (1) Developing latent representations of high-dimensional policy
parameters that can be effectively reconstructed into well-functioned policies. (2) Learning an
embedding of behavior demonstrations that serves as an effective diffusion condition. (3) Training a
conditional diffusion model specifically for policy parameter generation.

Parameter representation. We use an MLP with m layers as the common policy approximator.
Consequently, when the full parameters of a policy are flattened, they form a high-dimensional vector.

3

To enable generation with limited computational resources while retaining efficacy, and to support the
generation of policies for different domains with varying state and action dimensions, we compress
the policy network parameters into a latent space.

Based on the policy network architecture, we unfold the parameters following the architecture of the
policy network, represented as x = [x0, x1, . . . , xm−1], where xi denotes the flattened parameters
from each layer. The encoder E encodes each xi as zi, resulting in a parameter latent representation
denoted as z = [z0, z1, . . . , zm−1], where each zi in the latent space has the same dimension, while
the decoder D can decode z into x. To improve the robustness of this procedure, we introduce random
noise augmentation in both encoding and decoding during training. Given each vectorized parameter
as x, we minimize the objective as,

L = MSE(x,D(E(x+ ξD) + ξE)), (5)
where z = E(x + ξD), and ξE and ξD represent the augmented noise. The architecture of the
autoencoder is shown in Figure 2.

For each domain, the autoencoder for parameter representation only needs to be trained once before
parameter generation, which can handle policy parameters from different tasks. To facilitate the
generalizability of the policy generator across domains, we design the latent parameter representations
to have the same dimensions for different domains.

Behavior embedding. Since our goal in learning behavior embeddings is not to model the distri-
bution of states and actions, but to provide conditional information for policy parameter generation,
we aim for them to encapsulate both crucial environmental dynamics and the key information of the
task goal. The principle behind our behavior embeddings is to learn the mutual information between
preceding n step trajectories and subsequent states with success signals.

I = I(ssuccess; {si, ai}ni=0) (6)

We propose a novel contrastive method to train behavior embeddings. In Figure 3, we present a
design demonstration of our contrastive loss. For a long trajectory τ , we decouple it as the n initial
state-action pairs τn = (s0, a0, s1, a1, . . . , sn, an) and the m states after the first success time K as
τ̂ = (sK , sK+1, . . . , sK+m). Given a batch of trajectory sequences {τi}Ni=1 which can be presented
as {τni , τ̂i}Ni=1, we optimize the contrastive objective [16, 31] as:

L(ϕθ, ψθ,W) = − 1

N

N∑
i=1

log
h⊤i Wvi∑N
j=1 h

⊤
i Wvj

(7)

where hi = ϕθ(τ
n
i) and vi = ψθ(τ̂i) are embeddings from different parts of the long trajectory τi

and W is a learnable metric that measures the similarity between embeddings hi and vi.

For each trajectory τ , we obtain a set of embeddings τe = {hi, vi}. In practice, the choice of specific
embeddings can be tailored to the characteristics of different tasks and trajectories. We use (hi, vi) as
the conditional input in our experiments.

Flexibility. With the consideration that in many scenarios, rewards are often sparse or non-existent,
whereas success signals serve as a more direct indicator of whether a policy has achieved its objective.
We therefore use original trajectories that exclude reward information but include success information.

For tasks without explicit success signals, such as locomotion, we segment long trajectories into
multiple shorter trajectories. For each segment, we use the lastm states as τ̂ and the 0−n state-action
pairs as τn. The informative behavior embeddings of a long trajectory are concatenated from the
embeddings of all the trajectory segments.

This embedding approach strives to capture the essential information for generating behavior-specific
policy parameters, including environmental dynamics and task goals, using the most concise repre-
sentation possible from long trajectories and prioritizing flexibility and efficiency.

Conditional policy generator. After training the parameter autoencoder and behavior embeddings,
for policy parameter x and the corresponding trajectory g deployed by policy x, we can transfer x
as latent parameter representation z with the autoencoder E and trajectory τ as behavior embedding
τe. The conditional diffusion generator is trained on latent representation z, conditioning on τe. We
optimize the conditional latent diffusion model via the following loss function:

LLDM(θ) := Ez,ϵ∼N (0,1),t

[
∥ϵ− ϵθ(zt, τe, t)∥22

]
, (8)

4

where the neural backbone ϵθ(zt, τe, t) is implemented as a 1D convolutional UNet [19] parameterized
by θ and t is uniformly sampled from {1, . . . , T}. The outputs of our parameter generator can be
encoded by D as deployable policies. During training the diffusion model, both the parameter
autoencoder and behavior embedding layers are frozen, which ensures the training stability and
efficiency.

Dataset. We build a dataset containing tens of thousands of policy parameters and trajectories from
deploying these policies. The dataset is obtained from multiple RL training across a range of tasks.
We utilized the dataset to train both the autoencoder and behavior embedding models. Then we use
the encoded parameter representations and behavior embeddings derived from the collected trajectory
to train the conditional diffusion model for policy parameter generation.

4 Experiments

MetaWorld Robosuite Quadrupedal Locomotion

Figure 4: Visualization of MetaWorld, Robosuite, and real quadrupedal locomotion.

We conduct extensive experiments to evaluate Make-An-Agent , answering the following problems:

• How does our method compare with other multi-task or learning-to-learn approaches for
policy learning, in terms of performance on seen tasks and generalization to unseen tasks?

• How scalable is our method, and can it be fine-tuned across different domains?
• Does our method merely memorize policy parameters and trajectories of each task, or can it

generate diverse and new behaviors?

Benchmarks. We include two manipulation benchmarks for simulated experiments and real-world
robot tasks to show the performance and capabilities of our method as visualized in Figure 4.

MetaWorld. MetaWorld [29] is a benchmark suite for robotic tabletop manipulation, consisting of
a diverse set of motion patterns for the Sawyer robotic arm and interactions with different objects.
We selected 10 tasks for training as seen tasks and 8 for evaluation as unseen downstream tasks.
Detailed descriptions of these tasks can be found in Appendix C.1. The state space of MetaWorld
consists of 39 dimensions and the action space has 4 dimensions. The policy network architecture
used for MetaWorld is a 4-layer MLP with 128 hidden units, containing a total of 22,664 parameters.

Robosuite. Robosuite [33], a simulation benchmark designed for robotic manipulation, supports
various robots such as the Sawyer and Panda arms. We train models on three manipulation tasks:
Block Lifting, Door Opening and Nut Assembly, using the single-arm Panda robot. Evaluations are
conducted on the same tasks using the Sawyer robot. This experimental design aims to validate the
practicality of our approach by assessing whether the generated policy can be effectively utilized on
different robots. In the Robosuite environment, the state space comprises 41 dimensions, and the
action space consists of 8 dimensions. The policy network employed for this domain contains 23,952
parameters.

Quadrupedal locomotion. To evaluate the policies generated by Make-An-Agent in the real
world, we utilize walk-these-ways [14] to train policies on IsaacGym and use our method to generate
actor networks conditioning on trajectories from IsaacGym simulation with the pretrained adaptation
modules. Then, we deploy the generated policy on real robots in environments differ from simulations.
The policies generated for real-world locomotion deployment comprise 50,956 parameters.

Dataset. We collect 1500 policy networks for each task in MetaWorld and Robosuite. These networks
are sourced from policy checkpoints during SAC [11] training. The checkpoints are saved every

5

5000 training steps once the test success rate reaches 1. During the training stage, we fix the initial
locations of objects and goals and train the policies using different random seeds. For each task, we
require an average of 8 SAC training runs, approximately 30 GPU hours.

For evaluation, the trajectories used as generation conditions are sampled from the SAC training
buffer within the first 0.5 million timesteps, which can be highly sub-optimal, under the same
environmental initialization. During testing, the generated policies are evaluated in 5 random initial
configurations, thoroughly assessing the robustness of policies generated using trajectories from the
fixed environment settings.

In RoboSuite experiments, due to the inconsistency in policy networks, we retrain the autoencoder and
finetune the diffusion generator trained on MetaWorld data. The experimental setup for RoboSuite is
almost identical to that of MetaWorld, with the only difference being the robot used during testing.

For real-world locomotion tasks, we save 10,000 policy network checkpoints using walk-these-ways
(WTW) [14] trained on IsaacGym, requiring a total of 200 GPU hours. The 100 trajectories used as
generation conditions are sourced from the first 10,000 training iterations of WTW.

Baselines. We compare Make-An-Agent with four baselines, including multi-task imitation learn-
ing (IL), multi-task reinforcement learning (RL), meta-RL with hypernetworks, and meta-IL with
transformers. These represent state-of-the-art methods for multi-task policy learning and adaptation.
For a fair comparison, each baseline uses the same testing trajectory data for downstream adaptation.

Multi-task BC [24]: We train a multi-task behavior cloning policy using trajectories in our training
dataset, and then finetune it with test trajectories to adapt in specific tasks.

Multi-task RL, CARE [23]: We train an mixture of encoders for 2 million steps (for each task). For
RL training, we train the algorithm in dense reward environments and finetune the model using test
trajectories with sparse rewards, where feedback is only provided at the end of a trajectory.

Meta-RL with hypernetworks [1]: We train a hypernetwork with our training data with dense
rewards, which can adapt to different task-specific policies during testing with test trajectories.

Meta Imitation Learning with decision transformer(DT) [4] We train the pre-trained DT model
using the training trajectories in our dataset, then use the test trajectories from replay to adapt it to
test tasks.

4.1 Performance Analysis

Figure 5: Evaluation of seen tasks with 5 random initializations on MetaWorld and Robosuite.
Our method generate policies using 5/10/50/100 test trajectories. Baselines are finetuned/adapted by
the same test trajectories. Results are averaged over training with 4 seeds.

By using test trajectories as conditions, our policy generator can produce an equivalent number of
policy parameters. Compared with baselines, we report both the best result among the generated
policies and the average performance of the top 5 policies. All algorithms use the same task-specific
replay trajectories. The difference is that we use them as generation conditions, whereas other
methods use them for adaptation.

We define policies achieving a 100% success rate during evaluation as qualified policies. The analysis
of qualification rates for policies generated by our model is presented in Appendix C.2.

6

Figure 6: Evaluation of 8 unseen tasks with 5 random initializations on MetaWorld and Robo-
suite. Our method generates policies using 50/100 test trajectories without any finetuning. Baselines
are adapted using the same test trajectories. Average results are from training with 4 seeds.

Adaptability to environmental randomness on seen tasks. Figure 5 demonstrates the significant
advantage of our algorithm over other methods on seen tasks. This is attributed to the fact that,
despite test trajectories originating from the same environment initialization, the generated policy
parameters are more diverse, thus possessing a strong ability to adapt to environmental randomness.
In contrast, other algorithms, when adapted using such singular trajectories, exhibit more limited
adaptability in these scenarios. Our experimental design aligns with practical requirements, as
real-world randomness is inherently more complex.

Generalizability to unseen tasks. Figure 6 showcases the superior performance of our algorithm
on unseen tasks. Test trajectories originate from the same environment setting for each task, while
evaluation occurs in randomly initialized environments. Our policy generator, without fine-tuning,
directly utilizes test trajectories as input, demonstrating a remarkable ability to generate parameters
that work on unseen tasks. The agent’s behavior in unseen tasks exhibits similarities to seen
task behaviors, such as arm dynamics and the path to goals. By effectively combining parameter
representations related to these features, the generative model successfully generates effective policies.
In contrast, baseline methods struggle to adapt in environmental randomness.

These results strongly suggest that our algorithm, compared to other policy adaptation methods, may
offer a superior solution for unseen scenarios. To further investigate robustness in generalization, we
added Gaussian noise with a standard deviation of 0.1 to actions in test trajectories used for policy
generation or adaptation on unseen tasks. Figure 7 demonstrates that our method remains resilient
to noisy inputs, while the performance of the baselines is significantly impacted. We believe this is
because our behavior embeddings only need to capture key dynamic information as conditions to
generate policies, without directly learning state-action relationships from trajectories, resulting in
better robustness.

Trajectory difference. To compare the difference between using test trajectories as conditions and
the trajectories obtained by deploying the generated policies, we visualize the trajectories during
unseen task evaluations. As shown in Figure 9, our diffusion generator can synthesize various policies,
which is significantly different from policy learning methods that learn to predict actions or states
from trajectory data. We believe that this phenomenon fully illustrates the value of our proposed
policy parameter generation paradigm.

Parameter distinction. Beyond trajectory differences, we also investigate the distinction between
synthesized parameters and RL policy parameters. We calculate the cosine similarity between the RL
policies used to obtain the test trajectories and the parameters generated from these trajectories. As
a benchmark, we include the RL policies after 100 steps of finetuning with the test data. For tasks
seen during training, the parameters generated by our approach demonstrate significantly greater
diversity compared to the RL parameters after fine-tuning, indicating that our generator does not
simply memorize training data. On unseen tasks, the similarity between our generated parameters
and those learned by RL is almost negligible, with most similarities falling below 0.2. This further
highlights the diversity and novelty of the policy parameters generated by our method.

Real-world Evaluation We further deploy policies generated from simulation trajectories onto a
quadruped robot, instructing it to complete tasks as illustrated in Figure 10. Our synthesized policies

7

Figure 7: Evaluation of unseen tasks on Meta-
World using noised trajectories.

Figure 8: Ablation studies about using different
embeddings as conditions in policy generation on
MetaWorld 5 unseen tasks. (Top 5 models)

Handle press side Door lockFaucet openWindow close

Figure 9: Trajectory difference: trajectories as conditional inputs v.s. trajectories from synthesized
policies as outputs on MetaWorld 4 unseen tasks.

exhibit smooth and effective responses when faced with these challenging tasks, which highlights the
stability of the generated policies under the dynamics randomness of real-world environments.ii

Navigating to circumvent the goal and
ball while swiftly moving backward.

Making agile turns to avoid stepping on a
bouquet while moving across a mat

Figure 10: Real-world locomotion tasks,
including turning, fast backward movement,
and obstacle avoidance on a mat.

Figure 11: Parameter Similarity: Parameter
cosine similarity between RL-trained policies and
our generated policies or fine-tuned policies.

4.2 Ablation Studies

To better investigate the impact of each design choice in our method on the final results, we conduct
a series of comprehensive ablation studies. All ablation studies report average results of the Top 5
generation models on MetaWorld.

Choice of behavior embeddings. Regarding the choice of conditional embeddings, as illustrated
in Figure 3, we concatenate h and v as generation conditions to maximally preserve trajectory
information. Figure 8 shows that utilizing either embedding individually also achieves comparable
performance due to our contrastive loss, ensuring efficient capture of dynamics information. Our
contrastive behavior embeddings significantly outperform a baseline that adds an embedding layer in
the diffusion model to encode trajectories as input. These ablation results underscore the effectiveness
of our behavior embeddings.

Choice of trajectory length. The trajectory length n used in behavior embeddings can also impact
experimental results. Figure 12a demonstrates that overly short trajectories lead to performance
degradation, probably due to the absence of crucial behavior information. However, beyond 40 steps,
trajectory length minimally impacts policy generation, indicating that our method is not sensitive to
the length of trajectories.

iiWe thank Kun Lei and Qingwei Ben for their help and support in real-robot applications.

8

Impact of policy network size. The impact of policy network size on generated parameters is also
worth discussing, as the network’s hidden size influences the dimensionality of parameters to be
generated. Figure 12b suggests that a hidden size of 128 is a suitable choice. Smaller networks may
hinder policy performance, while larger ones increase parameter reconstruction complexity.

Impact of parameter number used in training. We study the impact of the number of policy
checkpoints included per task in the training dataset, as shown in Figure 12c. Insufficient training data
(<=1000) leads to a significant performance decline across all tasks. With more than 1000 parameters,
there is no notable improvement in performance.

Impact of latent representation size. Additionally, Figure 12d illustrates the impact of varying
the size of the latent parameter representation. Larger latent representations can negatively affect
the performance of the generative model. Conversely, when the size of parameter representations is
too small, it may hinder the autoencoder’s capacity to decode representations to deployable policies.
This underscores the influence of the parameter autoencoder on the overall effectiveness of the policy
network generator.

(a) Trajectory Length (b) Policy Model Size (c) Parameter Number (d) Representation Size
Figure 12: Ablation studies of our technical designs on MetaWorld with 50 test trajectories (Top 5
models).

5 Related Works
Parameter Generation. Learning to generate neural networks has long been a compelling area of
research. Since the introduction of Hypernetworks [10] and the subsequent extensions [3], several
studies have explored neural network weight prediction. Hypertransformer [32] utilizes Transformers
to generate weights for each layer of convolutional neural networks (CNN) using task samples for
supervised and semi-supervised learning. Additionally, previous work [21] employs self-supervised
learning to learn hyper representations of neural network weights. In the context of using diffusion
models for parameter generation, G.pt [17] trains a diffusion transformer to generate parameters
conditioned on learning metrics such as test losses and prediction errors, enabling the optimization
of unseen parameters with a single update. Similarly, p-diff [25] propose a diffusion-based method
to generate the last two normalization layers without any conditions for classification tasks. In
contrast to these prior works, our focus is on policy learning problems. We develop a latent diffusion
parameter generator that is more generalizable and scalable, based on agents’ behaviors as prompts.

Learning to Learn for Policy Learning. When discussing learning to learn in policy learning, the
concept of meta-learning [7] has been widely explored. The goal of meta-RL [7, 6, 9, 15] is to learn
a policy that can adapt to any new task from a given task distribution. During the meta-training or
meta-testing process, prior meta-RL methods require rewards as supervision for policy adaptation.
Meta-imitation learning [8, 5, 27] addresses a similar problem but assumes the availability of expert
demonstrations. Diffusion models have also been used in meta-learning. Metadiff [30] models the
gradient descent process for task-specific adaptation as a diffusion process to propose a diffusion-
based meta-learning method. Our work departs from these learning-to-learn works. Instead, we shift
the focus away from data distributions across tasks and simply leverage behavior embeddings as
conditional inputs for policy synthesis in the parameter space.

6 Conclusion

In this paper, we introduced a novel policy generation method based on conditional diffusion models.
Targeting the generation of policies in high-dimensional parameter spaces, we employ an autoencoder
to encode and reconstruct parameters, incorporating a contrastive loss to learn efficient behavior

9

embeddings. By prompting with these behavior embeddings, our policy generator can effectively
produce diverse and well-performing policies. Extensive empirical results across various domains
demonstrate the versatility of our approach in multi-task settings, the generalization ability on
unseen tasks, and the resilience to environmental randomness. Our work not only introduces a
fresh perspective on policy learning, but also establishes a new paradigm that delves into the latent
connections between agent behaviors and policy parameters.

Limitation. Due to the vast number of parameters involved, we have not yet explored larger and
more diverse policy networks. Additionally, the capabilities of the parameter diffusion generator
are limited by the parameter autoencoder. We believe there is substantial room for future research
to explore more flexible parameter generation methods. It would also be interesting to apply our
proposed generation framework to generate other structures, further facilitating exploration in policy
learning within the parameter space.

10

References
[1] Jacob Beck, Matthew Thomas Jackson, Risto Vuorio, and Shimon Whiteson. Hypernet-

works in meta-reinforcement learning. In Karen Liu, Dana Kulic, and Jeff Ichnowski, editors,
Proceedings of The 6th Conference on Robot Learning, volume 205 of Proceedings of Machine
Learning Research, pages 1478–1487. PMLR, 14–18 Dec 2023.

[2] Richard Bellman. A markovian decision process. Journal of mathematics and mechanics, pages
679–684, 1957.

[3] Vinod Kumar Chauhan, Jiandong Zhou, Ping Lu, Soheila Molaei, and David A Clifton. A brief
review of hypernetworks in deep learning. arXiv preprint arXiv:2306.06955, 2023.

[4] Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha Laskin, Pieter
Abbeel, Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning
via sequence modeling. Advances in neural information processing systems, 34:15084–15097,
2021.

[5] Yan Duan, Marcin Andrychowicz, Bradly Stadie, OpenAI Jonathan Ho, Jonas Schneider, Ilya
Sutskever, Pieter Abbeel, and Wojciech Zaremba. One-shot imitation learning. Advances in
neural information processing systems, 30, 2017.

[6] Yan Duan, John Schulman, Xi Chen, Peter L. Bartlett, Ilya Sutskever, and Pieter Abbeel. Rl$ˆ2$:
Fast reinforcement learning via slow reinforcement learning. CoRR, abs/1611.02779, 2016.

[7] Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adap-
tation of deep networks. In International conference on machine learning, pages 1126–1135.
PMLR, 2017.

[8] Chelsea Finn, Tianhe Yu, Tianhao Zhang, Pieter Abbeel, and Sergey Levine. One-shot visual
imitation learning via meta-learning. In Conference on robot learning, pages 357–368. PMLR,
2017.

[9] Abhishek Gupta, Benjamin Eysenbach, Chelsea Finn, and Sergey Levine. Unsupervised
meta-learning for reinforcement learning. arXiv preprint arXiv:1806.04640, 2018.

[10] David Ha, Andrew Dai, and Quoc V Le. Hypernetworks. arXiv preprint arXiv:1609.09106,
2016.

[11] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In ICML, volume 80 of
Proceedings of Machine Learning Research, pages 1856–1865. PMLR, 2018.

[12] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances
in neural information processing systems, 33:6840–6851, 2020.

[13] Tianying Ji, Yongyuan Liang, Yan Zeng, Yu Luo, Guowei Xu, Jiawei Guo, Ruijie Zheng, Furong
Huang, Fuchun Sun, and Huazhe Xu. Ace: Off-policy actor-critic with causality-aware entropy
regularization. arXiv preprint arXiv:2402.14528, 2024.

[14] Gabriel B Margolis and Pulkit Agrawal. Walk these ways: Tuning robot control for generaliza-
tion with multiplicity of behavior. Conference on Robot Learning, 2022.

[15] Russell Mendonca, Abhishek Gupta, Rosen Kralev, Pieter Abbeel, Sergey Levine, and Chelsea
Finn. Guided meta-policy search. Advances in Neural Information Processing Systems, 32,
2019.

[16] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive
predictive coding. arXiv preprint arXiv:1807.03748, 2018.

[17] William Peebles, Ilija Radosavovic, Tim Brooks, Alexei Efros, and Jitendra Malik. Learning to
learn with generative models of neural network checkpoints. arXiv preprint arXiv:2209.12892,
2022.

11

[18] Sahand Rezaei-Shoshtari, Charlotte Morissette, François Robert Hogan, Gregory Dudek, and
David Meger. Hypernetworks for zero-shot transfer in reinforcement learning. In AAAI, pages
9579–9587. AAAI Press, 2023.

[19] Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation
and approximate inference in deep generative models. In International conference on machine
learning, pages 1278–1286. PMLR, 2014.

[20] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pages 10684–10695, 2022.

[21] Konstantin Schürholt, Boris Knyazev, Xavier Giró-i Nieto, and Damian Borth. Hyper-
representations as generative models: Sampling unseen neural network weights. Advances in
Neural Information Processing Systems, 35:27906–27920, 2022.

[22] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driess-
che, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mas-
tering the game of go with deep neural networks and tree search. nature, 529(7587):484–489,
2016.

[23] Shagun Sodhani, Amy Zhang, and Joelle Pineau. Multi-task reinforcement learning with context-
based representations. In International Conference on Machine Learning, pages 9767–9779.
PMLR, 2021.

[24] Faraz Torabi, Garrett Warnell, and Peter Stone. Behavioral cloning from observation. arXiv
preprint arXiv:1805.01954, 2018.

[25] Kai Wang, Zhaopan Xu, Yukun Zhou, Zelin Zang, Trevor Darrell, Zhuang Liu, and Yang You.
Neural network diffusion, 2024.

[26] Guowei Xu, Ruijie Zheng, Yongyuan Liang, Xiyao Wang, Zhecheng Yuan, Tianying Ji, Yu Luo,
Xiaoyu Liu, Jiaxin Yuan, Pu Hua, et al. Drm: Mastering visual reinforcement learning through
dormant ratio minimization. arXiv preprint arXiv:2310.19668, 2023.

[27] Mengdi Xu, Yuchen Lu, Yikang Shen, Shun Zhang, Ding Zhao, and Chuang Gan. Hyper-
decision transformer for efficient online policy adaptation. arXiv preprint arXiv:2304.08487,
2023.

[28] Ruihan Yang, Huazhe Xu, Yi Wu, and Xiaolong Wang. Multi-task reinforcement learning
with soft modularization. Advances in Neural Information Processing Systems, 33:4767–4777,
2020.

[29] Tianhe Yu, Deirdre Quillen, Zhanpeng He, Ryan Julian, Karol Hausman, Chelsea Finn, and
Sergey Levine. Meta-world: A benchmark and evaluation for multi-task and meta reinforcement
learning. In Conference on Robot Learning (CoRL), 2019.

[30] Baoquan Zhang, Chuyao Luo, Demin Yu, Xutao Li, Huiwei Lin, Yunming Ye, and Bowen
Zhang. Metadiff: Meta-learning with conditional diffusion for few-shot learning. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 38, pages 16687–16695, 2024.

[31] Ruijie Zheng, Yongyuan Liang, Xiyao Wang, Shuang Ma, Hal Daumé III, Huazhe Xu, John
Langford, Praveen Palanisamy, Kalyan Shankar Basu, and Furong Huang. Premier-TACO
is a few-shot policy learner: Pretraining multitask representation via temporal action-driven
contrastive loss. In Forty-first International Conference on Machine Learning, 2024.

[32] Andrey Zhmoginov, Mark Sandler, and Maksym Vladymyrov. Hypertransformer: Model
generation for supervised and semi-supervised few-shot learning. In ICML, volume 162 of
Proceedings of Machine Learning Research, pages 27075–27098. PMLR, 2022.

[33] Yuke Zhu, Josiah Wong, Ajay Mandlekar, Roberto Martín-Martín, Abhishek Joshi, Soroush
Nasiriany, and Yifeng Zhu. robosuite: A modular simulation framework and benchmark for
robot learning. arXiv preprint arXiv:2009.12293, 2020.

12

A Broader Impact

The broader impact of our research on generating policy parameters using diffusion models is a
complex interplay of potential benefits and risks. On the one hand, by enhancing the sample efficiency
of policy learning in robotics, our method could accelerate the development and deployment of robotic
systems across various sectors, from manufacturing and healthcare to agriculture. This could lead
to increased automation, potentially improving efficiency, safety, and accessibility in these fields,
ultimately enhancing the quality of life and productivity for society. Additionally, our work introduces
the robotics community to the potential of policy learning in a new and promising paradigm—which
could inspire further research, leading to more advanced and efficient algorithms for robot learning
and control.

However, it’s important to acknowledge the potential negative consequences of increased automation.
Job displacement due to automation is a significant concern, as robots could replace human workers in
various industries, leading to economic disruption and social unrest. Furthermore, as robots become
more autonomous and capable, concerns about safety and ethical implications arise. Ensuring the
safe and responsible use of robots will be paramount as our research progresses.

B Implementation Details

All model training are conducted on NVIDIA A40 GPUs.

Autoencoder. The autoencoder implementation consists of a three-layer MLP encoder and a decoder.
Prior to training, each layer of the policy network is flattened and encoded separately. The final mean
and std layers are concatenated with the middle layer for encoding.

The hyperparameters used for the autoencoder are detailed in Table 1. On average, training an
autoencoder requires 5 GPU hours.

Behavior embedding.

The behavior embedding model consists of two three-layer MLP embeddings. During training, we
concatenate the state and action sequences from the first n = 60 steps (each sequence having a length
of 3) to form the input for the h embedding layer. Subsequently, we concatenate them = 3 states after
success as inputs for the v embedding layer. Both embedding layers output 128-dimensional vectors.
When utilizing these embeddings as conditional inputs, we concatenate the h and v embeddings as
256-dimenional conditions.

All hyperparameters about the training of the behavior embeddings can be found in Table 2. A single
training for the embeddings requires less than 1 GPU hour.

Conditional diffusion generator. Our diffusion model employs a 1D convolutional U-Net architec-
ture as its backbone, utilizing behavior embeddings as global conditions. It outputs latent parameter
representations with the same dimensionality as the autoencoder’s output.

Training a single diffusion generator requires only 4 GPU hours. All relevant hyperparameters are
detailed in Table 3.

Hyperparameters We conduct all experiments with this single set of hyperparameters.

Data collection. Our dataset is collected with [13, 26] using RTX 3090 Ti.

C Experiments

C.1 Task Description

MetaWorld Descriptions of tasks and random initialization:

Seen tasks (Training):

• window open: Push and open a window. Randomize window positions
• door open: Open a door with a revolving joint. Randomize door positions
• drawer open: Open a drawer. Randomize drawer positions

13

Table 1: Hyperparameters for Autoencoder
Hyper-parameter Value

backbone MLP

input dim 22664

hidden size 1024

output dim [2, 1024]

encoder depth 1

decoder depth 1

input noise factor 0.0001

output noise factor 0.001

batch size 32

optimizer AdamW

learning rate 1e-3

weight decay 5e-3

training epoch 3000

lr scheduler CosineAnnealingWarmRestarts

Table 2: Hyperparameters for Behavior Embedding
Hyper-parameter Value

backbone MLP

trajectory dim 1020

success state dim 117

hidden size 1024

output dim 128

batch size 16

optimizer AdamW

learning rate 1e-4

weight decay 1e-4

training epoch 300

lr scheduler CosineAnnealingWarmRestarts

Table 3: Hyperparameters for Diffusion Model

Hyper-parameter Value Hyper-parameter Value
behavior embedding shape [256] kernel size 3

parameter shape [2, 1024] noise scheduler DDIM
num inference steps 10 batch size 128

embedding dim in diffusion steps 128 optimizer AdamW
learning rate 2.0e-4 beta [0.95, 0.999]

eps 1.0e-8 weight decay 5.0e-4
training epoch 1000 lr_scheduler cosine

lr warmup steps 500

• dial turn: Rotate a dial 180 degrees. Randomize dial positions

• faucet close: Rotate the faucet clockwise. Randomize faucet positions

• button press: Press a button. Randomize button positions

• door unlock: Unlock the door by rotating the lock clockwise. Randomize door positions

• handle press: Press a handle down. Randomize the handle positions

• plate slide: Slide a plate into a cabinet. Randomize the plate and cabinet positions

• reach: reach a goal position. Randomize the goal positions

Unseen tasks (Downstream):

• window close: Push and close a window. Randomize window positions

• door close: Close a door with a revolving joint. Randomize door positions

• drawer close: Open a drawer. Randomize drawer positions

• faucet open: Rotate the faucet counter-clockwise. Randomize faucet positions

• button press wall: Bypass a wall and press a button. Randomize the button positions

• door lock: Lock the door by rotating the lock clockwise. Randomize door positions

• handle press side: Press a handle down sideways. Randomize the handle positions

• coffee-button: Push a button on the coffee machine. Randomize the position of the button

• reach wall: Bypass a wall and reach a goal. Randomize goal positions

14

Robosuite Descriptions of tasks, robots, and random initialization:

Tasks:

• Door: A door with a handle is mounted in free space in front of a single robot arm. The
robot arm must learn to turn the handle and open the door. The door location is randomized
at the beginning of each episode.

• Lift: A cube is placed on the tabletop in front of a single robot arm. The robot arm must lift
the cube above a certain height. The cube location is randomized at the beginning of each
episode.

• Nut Assembly - Single: Two colored pegs (one square and one round) are mounted on the
tabletop, and two colored nuts (one square and one round) are placed on the table in front of
a single robot arm. The goal is to place either one round nut or one square nut into its peg.

Robots:

• Panda: Panda is a 7-DoF and relatively new robot model produced by Franka Emika, and
boasts high positional accuracy and repeatability. The default gripper for this robot is
the PandaGripper, a parallel-jaw gripper equipped with two small finger pads, that comes
shipped with the robot arm.

• Sawyer: Sawyer is Rethink Robotic’s 7-DoF single-arm robot. Sawyer’s default RethinkGrip-
per model is a parallel-jaw gripper with long fingers and useful for grasping a variety of
objects.

C.2 More Results

In addition to reporting the average performance of the top 5 generated results in the main paper, we
rigorously define "qualified policies" as those achieving a 100% success rate in the test environment.
Table 4 presents the proportion of qualified policies among 100 policy parameters generated from
100 trajectories. Notably, we maintain an average qualification rate of over 30% on seen tasks.

Furthermore, even on unseen tasks, we can generate high-performing policies using an average
of only 20 trajectories. Considering that our method does not rely on expert demonstrations, the
quality and success rate of our generated policies significantly enhance the sample efficiency of policy
learning.

Table 4: Qualified rate and success rate of Top 5/10 models from the generated polices with 100
trajectories on MetaWorld

Seen Tasks window open door open drawer open dial turn plate slide button press handle press faucet close

Qualified Rate 0.33 ± 0.02 0.27 ± 0.04 0.42 ± 0.03 0.23 ± 0.02 0.45±0.04 0.32±0.14 0.5 ± 0.08 0.45±0.13

Generated Top 5 1.0 ± 0.0 1.0 ± 0.0 1.0 ± 0.0 0.82 ±0.09 1.0 ± 0.0 0.87 ± 0.10 1.0 ± 0.0 0.98 ± 0.01

Generated Top 10 1.0 ± 0.0 0.87 ± 0.06 1.0 ± 0.0 0.73 ± 0.06 0.94 ± 0.05 0.80 ± 0.05 0.96 ± 0.02 0.97 ± 0.01

Unseen Tasks drawer close faucet open button press
wall

coffee button handle press
side

reach wall door lock window close

Qualified Rate 0.55 ± 0.04 0.16 ± 0.06 0.11 ± 0.01 0.08 ± 0.03 0.04 ± 0.03 0.13 ± 0.05 0.13 ± 0.04 0.10 ± 0.01

Generated Top 5 1.0 ± 0 1.0 ± 0 0.97 ± 0.02 0.74 ± 0.21 0.45 ± 0.17 0.94 ± 0.03 1.0 ± 0.0 0.92 ± 0.05

Generated Top 10 1.0 ± 0 0.85 ± 0.13 0.95 ± 0.02 0.64 ± 0.23 0.30 ± 0.12 0.72 ± 0.11 0.85 ± 0.05 0.85 ± 0.08

C.3 Details of Real-world Robots

In this section, we detail the real-world robot applications of our method. We deploy synthesized
policies on the Unitree Go2 quadruped, designing diverse real-world testing environments to evaluate
two key aspects of agent performance: (1) stability during high-speed turning and backward locomo-
tion, and (2) robustness of movements on uneven terrain (mats). Our deployment process consists of
four key steps:

• Obtain actor network parameters and corresponding test trajectories from IsaacGym simula-
tions, where the actors are trained using walk-these-ways [14].

• Train Make-An-Agent using the acquired training data.

15

• Generate actor networks from randomly sampled IsaacGym trajectories, covering a variety
of training periods.

• Equip the Unitree Go2 quadruped with the generated actors and a pretrained adaptor,
enabling it to complete designed, challenging locomotion tasks.

16

100 200 300 400 500
Trajectory Length of Conditions

100

200

300

400

500

Tr
aj

ec
to

ry
 L

en
gt

h
of

 G
en

er
at

ed
 P

ol
ici

es

Seen Tasks (Average)

Ours
Multi-task IL
Multi-task RL
Meta RL
Meta IL

100 200 300 400 500
Trajectory Length of Conditions

100

200

300

400

500

Unseen Tasks (Average)

Ours
Multi-task IL
Multi-task RL
Meta RL
Meta IL

100 200 300 400 500
Trajectory Length of Conditions

100

200

300

400

500

Unseen Tasks with Noise Trajectories

Ours
Multi-task IL
Multi-task RL
Meta RL
Meta IL

Figure 13: Correlation between condition trajectories and generated policies. Trajectory length
accurately reflects the effectiveness of the policies compared to the success rate. The maximum
episode length in all the tasks is 500 (represents failure).

Single RL Multi-task RL Meta RL OursOurs (Training+Evaluation)
Methods

10

20

30

40

GP
U

Ho
ur

s

7.8

20.4

31.4
34.1

4.1

Computational Budget

Figure 14: Computational budgets of ours and baselines

Multi-task training (seen): 13 tasks

Unseen task/robot generalization: 11 tasks

Avoid stepping on a bouquet while moving across a mat

Navigating to circumvent the goal and ball swiftly

Real-world locomotion: 2 tasks

Figure 15: Visualization of experimental tasks

17

NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We conduct comprehensive experiments, and the results included in our paper
support the main claims made in the abstract and introduction well.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We add a paragraph in the Conclusion section, addressing the scope and
performance limits of our work.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: This paper empirically proposes one effective method to generate policy
networks from demonstrations, and it doesn’t contain theoretical proof.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We include detailed descriptions of our methods in the main paper and the
Appendix, the information provided should be adequate to reproduce the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We provide all the code used to produce the main results in an anonymous
GitHub repo in the supplementary material.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The training and test details are included in the Experiment section and the
Appendix to facilitate a comprehensive understanding of our design choices and results.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: An error bar or the variance value is included in all the results, either in a table
or a figure.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

18

Answer: [Yes]
Justification: We provide training GPU hours and the type of computing resources in the
Experiments section.

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: After reading through the NeurIPS code of ethics carefully, we are confident
that our research conform well with the spirit of the Code of Ethics.

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We provide a broader impact section in Appendix A to discuss the positive
and negative impacts of our research.

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our method does not fall into any category of pretrained language models,
image generators, or scraped datasets. While we do provide a dataset for trained agents,
these are no different than providing model checkpoints and does not contain any sensitive
data that may relate to a real person or entity.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: Yes, we’ve cited any paper or code we use in the paper, and follow their license
and terms of use correctly.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The open-sourced code and dataset we provided are licensed appropriately,
please refer to the anonymous repo for details.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.

19

https://neurips.cc/public/EthicsGuidelines

	Introduction
	Backgrounds
	Methodology
	Experiments
	Performance Analysis
	Ablation Studies

	Related Works
	Conclusion
	Broader Impact
	Implementation Details
	Experiments
	Task Description
	More Results
	Details of Real-world Robots

