
Under review as submission to TMLR

FedHERO: A Federated Learning Approach for Node Clas-
sification Task on Heterophilic Graphs

Anonymous authors
Paper under double-blind review

Abstract

Graph neural networks (GNNs) have shown significant success in modeling graph data, and
Federated Graph Learning (FGL) empowers clients to collaboratively train GNNs in a dis-
tributed manner while preserving data privacy. However, FGL faces unique challenges when
the general neighbor distribution pattern of nodes varies significantly across clients. Specif-
ically, FGL methods usually require that the graph data owned by all clients is homophilic
to ensure similar neighbor distribution patterns of nodes. Such an assumption ensures that
the learned knowledge is consistent across the local models from all clients. Therefore,
these local models can be properly aggregated as a global model without undermining the
overall performance. Nevertheless, when the neighbor distribution patterns of nodes vary
across different clients (e.g., when clients hold graphs with different levels of heterophily),
their local models may gain different and even conflict knowledge from their node-level pre-
dictive tasks. Consequently, aggregating these local models usually leads to catastrophic
performance deterioration on the global model. To address this challenge, we propose Fed-
HERO, an FGL framework designed to harness and share insights from heterophilic graphs
effectively. At the heart of FedHERO is a dual-channel GNN equipped with a structure
learner, engineered to discern the structural knowledge encoded in the local graphs. With
this specialized component, FedHERO enables the local model for each client to identify
and learn patterns that are universally applicable across graphs with different patterns of
node neighbor distributions. FedHERO not only enhances the performance of individual
client models by leveraging both local and shared structural insights but also sets a new
precedent in this field to effectively handle graph data with various node neighbor distribu-
tion patterns. We conduct extensive experiments to validate the superior performance of
FedHERO against existing alternatives.

1 Introduction

Graph Neural Network (GNN) aims to extract informative patterns from graphs (Xia et al., 2021; Wu
et al., 2020b; Zhou et al., 2020; Scarselli et al., 2008; Xu et al., 2018a). However, graph data may contain
sensitive information about the involved individuals (e.g., a user’s race in a social network (Dwork et al.,
2012; Beutel et al., 2017)). As a consequence, sharing graph data across different stakeholders is raising
concerns due to the potential risk of privacy leakage, which further prevents training GNNs in a centralized
manner (Cong & Mahdavi, 2022; Dai et al., 2022; Mei et al., 2019; Zhu & Zhu, 2020). To properly handle
the above-mentioned problems, Federated Graph Learning (FGL) has emerged as a popular collaborative
learning framework, which enables participants (clients) to derive insights from distributed graph sources
while upholding stringent privacy safeguards (Liu et al., 2022a; Lou et al., 2021; Zhu et al., 2022; Zhang
et al., 2022; Peng et al., 2021; Chen et al., 2021b). A typical scenario of FGL is that each client possesses
a single graph (local graph) and seeks to collaboratively train a global GNN model for certain tasks (e.g.,
node classification tasks (Xiao et al., 2022; Bhagat et al., 2011)) without sharing the raw graph data. In
such scenarios, current FGL approaches implicitly rely on the assumption of homophilic local graphs (Zhu
et al., 2020; Ma et al., 2021), i.e., nodes within a client’s graph are more likely to form connections with
other nodes of the same class (Ma et al., 2019; Tang et al., 2009b). Specifically, when clients hold homophilic

1

Under review as submission to TMLR

graphs, most of the neighbors of each node will have the same class as this center node (Ying et al., 2018).
The GNNs trained on different clients will thus capture a similar tendency, and aggregating these GNNs
usually makes the global model in FGL better learn such a tendency and benefit the generalization ability
of the global model (Baek et al., 2023; Zhang et al., 2021).

Figure 1: An example of financial transaction net-
works in two banks. The edges in the figure represent
transaction records. Due to the diverse customer fi-
nancial habits in distinct networks, customers (nodes)
within the same risk classification (label) across differ-
ent banks have diverse transactional relationship pat-
terns (neighbor distribution).

Nevertheless, a critical issue regarding the above-
mentioned assumption is that it overlooks the preva-
lence of heterophilic graphs (Pandit et al., 2007;
Zheng et al., 2022; 2023; Bo et al., 2021; Yang et al.,
2021; Chien et al., 2020; Liu et al., 2023a), where
nodes belonging to different classes tend to be con-
nected. For instance, in financial transaction net-
works, nodes denote bank clients, where node labels
are their credit risk and edges represent the finan-
cial interactions between them. Such a network can
be heterophilic, and we show an example in Fig-
ure 1. Specifically, a ‘Moderate Risk’ customer in
Bank A may transact with multiple ‘Low Risk’ in-
dividuals, whereas in Bank B, the ’Moderate Risk’
customer engages primarily with ’High Risk’ coun-
terparts. When training GNNs to predict customer
risk, Bank A’s GNN learns the connection between
’Moderate Risk’ and ’Low Risk,’ while Bank B’s
GNN captures the connection between ’Moderate Risk’ and ’High Risk.’ Directly aggregation models could
lead to poor performance in predicting ’Moderate Risk’ customers, as they fail to establish a consistent
pattern that generalizes well across both banks. Consequently, this mismatch can result in performance
degradation for FGL algorithms.

To properly handle the challenge discussed above, in this paper, we introduce FedHERO, a novel framework
for Federated Learning on Heterophilic Graphs. FedHERO is equipped with a carefully designed dual-
channel GNN model, including the global channel and the local channel. The dual-channel design aims
to aggregate GNNs that have learned similar patterns to facilitate knowledge sharing. To ensure each
client obtains a GNN model aligned with others, we introduce a shared structure learning model that
generates latent graphs across clients based on common patterns. By learning from and sharing the knowledge
from these latent graphs, GNNs in the global channel capture similar tendencies, enhancing their overall
performance. Meanwhile, the local channel operates directly on the original graph. With such a design,
FedHERO facilitates the sharing of common knowledge across clients while leveraging the unique structural
information in each client’s local graph to enhance overall model performance. This approach offers two key
advantages: (1) The global channel, trained on the latent graph, reduces reliance on the original neighbor
distribution. The GNN models trained on different clients could capture similar tendencies from the shared
structure learning model, and aggregating these GNNs could exploit FGL’s potential. (2) Retaining the
locally trained GNN on the original graph preserves sensitive information, enhancing privacy protection. We
summarize the contributions of our paper below.

• Problem Formulation. To the best knowledge, we take an initial step to formulate and handle
the challenge arising from the implicit heterophilic assumption of FGL.

• Algorithmic Design. We introduce an innovative FGL framework, named FedHERO, which em-
powers clients to acquire global structure learning models while preserving graph-specific structural
insights at the local level.

• Empirical Evaluation. We perform comprehensive experiments across four real-world graph
datasets and three synthetic datasets. The results demonstrate that FedHERO consistently out-
performs existing FGL alternatives significantly.

2

Under review as submission to TMLR

2 PRELIMINARIES

Notations. Let G = (V, E) be a graph containing N nodes V and E ⊆ V × V is the edge set. We define
X ∈ RN×d as the feature matrix, where xv ∈ Rd represents the attributes of node v. The initial graph
structure can be represented in an adjacency matrix A = {auv}N×N , where auv = 1 indicates the presence
of an edge between node u and v and 0 otherwise. Y ∈ RN×C denotes the label matrix, where yv represents
the label vector for node v, and C is the number of classes. GNNs operate by representing nodes based on
information from both their neighborhoods and their own attributes, which can be expressed as follows:

zl
v = UPD(zl−1

v , AGG({zl−1
u : ∀u s.t. auv = 1})), (1)

where zl
v is the embedding of the node v at l-th layer. The operation AGG aggregates the embeddings of

v’s neighbors, while UPD updates the representation of node v using its embedding from the previous layer
and the aggregated embeddings from its neighbors. Initially, z0

v is set as xv.

Federated Learning. The objective of clients in FL is to jointly train models using local data. Let’s
consider M data owners, each possessing data exclusively accessible to them, denoted as Di = (Xi,Yi),
where Xi represents the data instances and Yi is the corresponding labels. Ni signifies the number of data
samples held by client i and N =

∑
i Ni denotes the total number of data samples available. Li and wi are

the loss function and model parameters of client i, respectively. The FL process typically encompasses the
following steps: (i) At r-th round, the server selects a subset of clients that participate in the training process.
These clients receive the global model from the last round wr and initialize the local model parameters as
wr

i ← wr. (ii) Each selected client updates its local model using its own local data to minimize the task loss:
wr+1

i ← wr
i − η∇Li(wr

i). (iii) The server aggregates the updated local models to obtain an updated global
model: wr+1 =

∑
i

Ni

N wr+1
i . This process continues iteratively until convergence is achieved.

Preliminary Study. To highlight the unique challenges posed by varying neighbor distribution patterns
across clients, we conduct a preliminary study comparing the performance of local training models with the
global model produced by FedAvg. Table 1 contrasts results on heterophilic datasets (Rozemberczki et al.,
2021) (Squirrel and Chameleon) with those on homophilic datasets (PubMed (Namata et al., 2012) and
Citeseer (Sen et al., 2008)). On homophilic graphs, the global model generally shows better performance.
In contrast, for heterophilic graphs, the aggregated global model underperforms relative to local training
models. This discrepancy arises because clients with heterophilic graphs are more likely to exhibit diverse
neighbor distribution patterns, leading locally trained GNNs to capture varied tendencies. As a result, the
global model struggles to aggregate and generalize this knowledge, resulting in poor predictions. This pre-
liminary experiment underscores the impact of distinct neighbor distribution patterns on FGL performance,
reinforcing the need to address the challenges identified in our study.

Table 1: Performances of the locally trained model and FedAvg’s global model on four datasets.

Datasets Squirrel Chameleon PubMed Citeseer
heterophilic homophilic

Local 32.92±1.94 47.45±0.49 84.47±0.47 67.89±0.54
FedAvg 28.55±0.45 38.65±2.19 87.08±0.01 72.41±0.22

Problem Setup. In the FGL system, we assume that M clients hold M graphs and aim to collaboratively
train node classification models. In particular, client i owns the graph Gi = (Vi, Ei), and Ai denotes the
corresponding adjacency matrix of graph Gi.

We aim to train a universal structure learner gL parameterized by θ across local graphs. This learner should
capture the universally applicable patterns across graphs {G1,G2, ...,GM}. The trained structure learner is
expected to generate effective graph structures that enhance the downstream classification performance of
local GNN classifiers. Formally, the goal of training gL alongside the local models fi can be expressed as an
optimization problem:

min
θ,w1,...,wM

M∑
i=1
Li(fi(gL(Xi, Ai), Xi, Ai), Yi), (2)

3

Under review as submission to TMLR

𝐳𝒗
𝒍−𝟏

𝐱𝒗

Graph

learner 𝒈

MLP 𝒇𝟎
𝐳𝒗
𝟎

𝓛𝒔𝒎𝒐𝒐𝒕𝒉

Original graph
𝐞𝒗
𝒍

𝐡𝒗
𝒍

GNN 𝒇𝒈
𝒍

GNN 𝒇𝒍𝒐𝒄
𝒍

1-𝛂

𝛂

𝐳𝒗
𝒍

MLP 𝒇c

𝓛c𝒆

෤𝐲𝒗

𝐲𝒗
𝒇𝒍𝒐𝒄𝒂𝒍

𝒇𝒍𝒐𝒄𝒂𝒍

𝒇𝒈𝒍𝒐𝒃𝒂𝒍

S
er

v
e
r

⋮

𝐳𝒗
𝒐𝒖𝒕 C

lien
t 1

𝒇𝒍𝒐𝒄𝒂𝒍

𝒇𝒈𝒍𝒐𝒃𝒂𝒍
C

lien
t M

C
O

M
B

𝒍-th layer

Figure 2: The framework of FedHERO. Blue boxes represent models in the flocal channel, which are trained
locally and personalized for each client. Yellow boxes denote models in the fglobal channel, shared among
clients to train a structure learner for mutual benefit. On the right side of the figure, the model aggregation
scheme in FedHERO is depicted.

where gL takes the node feature Xi and adjacency matrix Ai of the local graph as input to generate a new
graph structure, and the local model fi predicts the node classes from the new model structure and the
original graph data.

3 Proposed Framework: FedHERO

We aim to address the issue of distinct neighbor distribution patterns, particularly for heterophilic graphs.
In this context, clients possess heterophilic graphs in which the neighbor distribution patterns of nodes vary
across different clients. As discussed in Section 1, this variability can result in diverse aggregation effects.
Models trained on graphs with distinct neighbor distributions exhibit limited generalization ability.

To address this challenge, we present FedHERO, as illustrated in Figure 2. First, we outline the implemen-
tation of structure learning and its initialization. We then demonstrate how FedHERO integrates the global
graph structure pattern and local structural information, detailing the joint optimization process involving
structure learning and personalized task models. Lastly, we explore the mechanism for sharing structural
knowledge within FedHERO.

3.1 Graph Structure Learning in FedHERO

Graph structure learning endeavors to comprehend the message-flow pattern throughout the graph (Xia et al.,
2021). Nevertheless, in FL scenarios where data is diversely distributed and privacy concerns are paramount,
directly aggregating all data to train a comprehensive structure learning model becomes unfeasible. To tackle
this challenge, we implement a structure learning model for each client, which can learn structural knowledge
from local data. By sharing the learned knowledge with other clients, the entire FGL system can acquire
a unified, globally optimized structural representation that captures universally applicable patterns across
diverse graphs.

The objective of the structure learning model is to generate relevant latent structures that facilitate effective
message passing based on the original graph. A common approach considers representing the weight of an
edge between two nodes as a distance measure between two end nodes (Zhao et al., 2021b; Kazi et al., 2022;
Chen et al., 2020). We follow this idea and employ a one-layer GNN to derive node representations Z from
the original graph. The structure learning model can be represented by learning a metric function ϕ(·, ·)
of a pair of representations: ãuv = ϕ(zu, zv), where zu is the learned embedding of node u produced by
GNN. The metric function ϕ(·, ·) can assume various forms like cosine distance (Nguyen & Bai, 2010) and
RBF kernel (Li et al., 2018b). In this study, we employ the multi-head attention mechanism as the metric
function, following the approach outlined by Chen et al. (2020):

ϕ(zu, zv) = 1
NH

NH∑
h=1

cos(w1
h ⊙ zu, w2

h ⊙ zv), (3)

4

Under review as submission to TMLR

where cos(·, ·) is cosine similarity, and ⊙ denotes the Hadamard product. By consolidating the outputs NH

heads and using w1
h, w2

h to scale the node embeddings individually, the structure learning model can poten-
tially identify connections between similar or dissimilar nodes and exhibit the necessary expressive power
to handle graphs with heterophily. First, aggregating outputs of different heads can enhance the model’s
expressiveness in capturing the underlying influence between nodes from various perspectives. Additionally,
the weight vectors w1

h and w2
h are introduced to learn element-wise scaling of input vectors, i.e., node repre-

sentations. Moreover, the use of two independent weight vectors w1
h and w2

h allows for potential alignment
or misalignment, enabling the model to connect both similar and dissimilar nodes. It’s important to high-
light that FedHERO can be integrated with various metric functions and even various structure learning
methods. Further empirical results are illustrated in Section 4.4.

To construct the latent graph Ã ∈ RN×N , we implement a post-processing step to create a kNN graph,
wherein each node connects to up to k neighbors, i.e.,

Ãij =
{

1, if ãij is a top-k element in {ãij |j ∈ [n]},
0, otherwise.

(4)

This design choice is based on the differentiability of the top-k function, which facilitates the computation of
parameter gradients and subsequent model updates in FedHERO. Additionally, we explore an alternative
method for latent graph generation. Such a method treats each edge in the latent graph as a Bernoulli random
variable. Here, each latent edge Ãij is sampled from a Bernoulli distribution with parameter ãij (Wu et al.,
2020a; Elinas et al., 2020; Zhao et al., 2023). A comparison of these methods and the impact of varying k
values is provided in Appendix C.

3.2 Optimization of the Dual-channel Model

In existing FGL frameworks (Zhang et al., 2021; Baek et al., 2023), the local models primarily employ
one or multiple GNNs in sequence. These models initiate the process of generating node representations
directly from raw features. However, as Tan et al. (2023) pointed out, directly constructing and sharing these
local models across diverse clients can significantly compromise personalized performance due to feature and
representation space misalignment. To address this challenge, divide the local model into two channels: fglobal

and flocal. The global learner fglobal takes the original input graph and refines the latent graph structure.
Through cooperation with other clients, fglobal detects patterns of universal relevance across heterophilic
graphs. On the other hand, the local task learner flocal extracts valuable client-specific information from
raw node features and structures within the local graph. This information includes biased structures or
diverse feature distributions tailored for follow-up tasks.

In a client’s local graph G = (V, E), we initiate the process by utilizing a Multi-Layer Perception (MLP) f0
to extract information from the node feature matrix X into node embeddings Z0. Next, we feed the node
embeddings Z0, the latent graph Ã, and the original graph structure A into an L-layer GNN. The middle
part of Figure 2 depicts how FedHERO leverages information from both the local graph structure A and
the structure Ã from the structure learner to obtain node representations. In the fglobal channel (models
in yellow boxes in Figure 2), the l-th layer of the GNN (denoted as f l

g) utilizes the node embeddings from
the previous layer Zl−1 and the latent graph Ã to generate hidden node embeddings that reveal patterns
that hold universally across different graphs, denoted as Hl. While feature propagation on the Ã could
potentially yield enhanced node embeddings that align with global patterns, it is important to note that the
original graph structures also contain valuable information, such as effective inductive bias (Bronstein et al.,
2017). Therefore, we leverage the information within A. It is combined with the output from the last layer,
Zl−1, and fed into the l-th layer of the GNN (denoted as f l

loc) within the flocal channel (models in blue boxes
in Figure 2). This process generates hidden node embeddings that adhere to the message-passing patterns
within the local graph, resulting in El. These embeddings play a crucial role in computing the layer-wise
updates for node representations:

Zl = σ

(
αEl + (1− α)Hl

)
, (5)

where σ is an activation function and α is a trading hyper-parameter that controls the concentration weight
on input structures. Additionally, integrating the outputs from both the fglobal and flocal channels can

5

Under review as submission to TMLR

enhance training stability. This is achieved by mitigating the influence of substantial variations in latent
structures encountered during the training process within the fglobal channel.

Recent studies show that merging intermediate node representations from multi-hops enables the GNN
to integrate nodes of the same class (Zhu et al., 2020; Abu-El-Haija et al., 2019). In addition, encod-
ing the features of the ego node separately from the aggregated neighbor representations enhances node
embedding learning (Zhu et al., 2020; Suresh et al., 2021; Yan et al., 2022). Thus, we merge the inter-
mediate node representations generated by each layer of the dual-channel GNNs with the ego feature X:
Zout = COMB(X, Z0, ..., ZL). The COMB function can be implemented in several ways, including max-
pooling, concatenation, or LSTM-attention (Xu et al., 2018b). In our approach, we specifically use con-
catenation for the COMB function. This choice is based on the observation that concatenation consistently
outperforms other methods in similar contexts (Xu et al., 2018b; Zhu et al., 2020).

In the classification stage, the prediction of the node class is based on its final embedding:

Ỹ = Softmax(fc(Zout)), (6)

where the classify layer fc gives the C dimension prediction.

Alongside the classification loss, we incorporate a regularization term to constrain Ã :

Lsmooth = λ
∑
u,v

Ãuv||xu − xv||22 + µ||Ã||2F , (7)

where || · ||F is the Frobenius norm. The first term in Eq. (7) evaluates the smoothness of the latent graph,
operating under the assumption that nodes with smoother features are more likely to be connected. The
second term in Eq. (7) serves the purpose of preventing excessively large node degrees. The hyperparameters
λ and µ govern the magnitude of the regularization effects. Hence, in conjunction with the cross-entropy
loss Lce, we fine-tune the local model using the following loss function:

Ltotal = Lce(Ỹ, Y) + Lsmooth. (8)

Minimizing the loss function in Eq. (8), the generated latent structure is leveraged to generate node embed-
dings, providing supplementary information for representation learning.

3.3 Model Aggregation in FedHERO

The right side of Figure 2 illustrates the process of clients sharing local models and receiving updated models
from the server. The model aggregation process in FedHERO resembles that of FedAvg (McMahan et al.,
2017). However, in the FedHERO framework, the server only receives and aggregates models from the
fglobal channel of clients instead of the whole model. This sharing mechanism offers two key advantages
for FedHERO. First, the structure learning model in the global channel generates latent graphs from node
embeddings with relatively low dependence on the original graph structure. By sharing this model among
clients, the global channel GNNs learn similar patterns from the generated latent graphs. Aggregating these
aligned models enhances the effectiveness of FGL, leading to improved overall performance. Second, retaining
the model flocal—which focuses on learning the message passing pattern within the local graph—as private
and training it locally allows the local model to capture client-specific information, ultimately contributing
to subsequent tasks. Let wi

g denote the parameters of the fglobal in client i. The server does the aggregation:
wg =

∑
i

Ni

N wi
g where Ni represents the number of nodes in the client i’s graph, and N denotes the total

number of nodes in the graph data of all clients. Subsequently, the server transmits wg to the clients. The
clients then update model in the fglobal channel with wg and commence local training for the ensuing round.

In FedHERO, the information in the flocal channel, including the final classifier layer fc, is not shared. This
separation distinguishes between global and personalized information within the local graph. In Section 4.5,
we evaluated the impact of sharing different parts of the model. This empirical examination underscored
the efficacy of maintaining the flocal channel in private, further emphasizing the effectiveness of bifurcating
the GNN into two distinct channels.

6

Under review as submission to TMLR

3.4 Computational and Communication Overhead

We analyze the additional computational and communication overhead introduced by the dual-channel design
in FedHERO and compare with current FGL methods, providing insights into its scalability and efficiency
in various FL environments.

Let M denote the total number of clients, E represent the number of local training epochs, and L signify
the number of layers in the model architecture. For simplicity, let d denote the larger dimension between
the node feature dimension dx and the embedding feature dimension dhidden. nlink, θd, ddg, and drw regard
method-specific parameters. In Table 2, we compute the additional overhead caused by the FGL algorithms
compared to FedAvg (McMahan et al., 2017).

Regarding communication overhead, since a relatively small NH (e.g. NH = 4) enables the structure learner
to perform effectively, the additional cost is comparable with other FGL methods like FedLit. As for
computational overhead, the primary increase in computational load arises from dual-channel GNN. From
Table 2, we can observe that the computation cost of FedHERO aligns with the FGL methods that scale
linearly with the size of node and edge sets. Therefore, FedHERO’s design allows it to handle large-scale
datasets effectively without introducing much computation burden.
Table 2: Additional computational and communication over- head of FGL methods compared with FedAvg,
calculated per client per round.

Methods Computation cost Communication overhead
GCFL (Xie et al., 2021) O((M(Ld2)2 + MlogM)/E) O(1)
FedLit (Xie et al., 2023) O(2|E|nlinkdI + |V|d2 + 2n2

linkdI/E) O((nlink − 1)Ld2)
FedPub (Baek et al., 2023) O(Ld2 + Md/E) O(1)
FedStar (Tan et al., 2023) O(2Ld(d|V|+ |E|)) O(1)

FedSage (Zhang et al., 2021) O(|V|(θd + Ld2)) O(|V|d + Ld2)
FedHERO O(Ld(d|V|+ |E|) + NHd|V|) O(NHd + d2)

4 EXPERIMENTS

4.1 Experimental Settings

Datasets. We carry out experiments using well-known heterophily datasets such as Squirrel and Chameleon,
derived from Wikipedia datasets (Rozemberczki et al., 2021), along with the Actor dataset (Tang et al.,
2009a) and the Flickr dataset (Zeng et al., 2019). Given these datasets’ inherent incompatibility with the
FGL framework, we adapt them into a federated context using two prevalent graph partitioning methods: the
METIS algorithm (Karypis & Kumar, 1997) and the Louvain algorithm (Blondel et al., 2008). This approach
enables us to create semi-synthetic federated graph learning datasets. As detailed in Appendix A, the graph
partitioning process preserves the heterophilic properties of the graphs. Additionally, Appendix B demon-
strates significant differences in the neighbor distributions of same-class nodes across clients. This highlights
the challenges in FGL that we discussed in the Introduction. Following Baek et al. (2023) and Zhang et al.
(2021), we assume no overlapping nodes are shared across data owners. For further details on this process
and the overlapping scenario, please refer to Appendix A and C, respectively.

We also include three graph datasets: syn-cora (Zhu et al., 2020), ieee-fraud (Howard et al., 2019), and
credit (Yeh & Lien, 2009). These datasets naturally lend themselves to subdivision into multiple subgraphs
(e.g., distinct subgraphs within the ieee-fraud dataset correspond to different product transaction records),
and we denote them as real-world datasets. The description of the datasets is summarized in Appendix A.

Hyper-Parameter Settings. The architecture of the GNN models consists of a feature projection layer,
two graph convolutional layers, and a classifier layer. We employ Adam optimizer (Kingma & Ba, 2014) with
a learning rate of 0.005. We apply a consistent hyperparameter setting in our main results. Specifically, we

7

Under review as submission to TMLR

Table 3: Performance of FedHERO and baselines on semi-synthetic heterophilic datasets. Bold fonts
indicate the best performances among all methods, while underlines denote the next best results across all
methods. M denotes the number of clients.

Datasets
Squirrel Chameleon Actor Flickr

METIS Louvain METIS Louvain METIS Louvain METIS LouvainM=5 M=7 M=9 M=3 M=5 M=7 M=5 M=7 M=9 M=30 M=40 M=50

Local 31.32 31.44 31.33 32.92 43.77 44.34 45.15 47.45 29.27 28.75 28.37 26.14 45.03 44.98 45.37 45.02
(±1.21) (±0.11) (±0.68) (±1.94) (±1.07) (±3.16) (±1.37) (±0.49) (±0.60) (±0.50) (±0.34) (±0.90) (±0.13) (±0.36) (±0.37) (±0.26)

FedAvg 29.67 28.28 27.18 28.55 42.27 39.08 45.09 38.65 31.90 31.45 31.40 31.14 42.45 42.40 42.30 42.56
(±1.04) (±0.64) (±1.37) (±0.45) (±2.39) (±1.15) (±3.24) (±2.19) (±1.02) (±0.72) (±0.32) (±1.58) (±0.2) (±0.16) (±0.39) (±0.19)

FedPub 29.52 29.38 29.12 32.87 42.36 46.40 45.71 47.16 28.50 26.92 26.95 26.92 47.47 46.64 46.77 46.99
(±0.86) (±1.04) (±0.56) (±1.94) (±1.50) (±1.29) (±1.69) (±2.93) (±0.84) (±0.99) (±1.20) (±1.15) (±0.76) (±1.28) (±0.39) (±0.85)

FedStar 31.74 32.60 33.53 36.84 50.60 50.42 50.72 51.32 28.58 27.13 27.18 27.43 49.35 49.15 49.08 49.03
(±0.73) (±1.06) (±0.91) (±0.99) (±0.84) (±1.14) (±1.19) (±1.26) (±0.74) (±0.44) (±0.40) (±1.19) (±0.18) (±0.62) (±0.25) (±0.45)

GCFL 31.40 30.04 28.98 30.42 45.12 43.47 40.30 38.73 31.39 31.63 31.41 31.63 47.65 47.41 46.88 47.37
(±2.09) (±1.25) (±0.13) (±2.28) (±1.44) (±2.01) (±2.81) (±3.75) (±0.94) (±1.23) (±1.23) (±1.29) (±0.22) (±0.24) (±0.50) (±0.39)

FedLit 30.01 28.22 27.42 32.76 40.10 34.36 35.97 36.67 32.23 31.74 32.16 32.85 48.18 48.35 48.56 48.49
(±2.46) (±2.59) (±2.42) (±3.56) (±4.45) (±4.38) (±3.80) (±5.06) (±1.07) (±0.82) (±1.13) (±1.71) (±0.59) (±0.36) (±0.44) (±0.52)

FedSage 33.30 33.07 33.10 35.17 50.93 48.72 49.17 45.51 33.75 32.73 33.30 33.57 45.75 45.45 44.74 50.37
(±0.63) (±0.88) (±1.02) (±2.13) (±1.77) (±2.61) (±2.80) (±1.86) (±1.02) (±0.87) (±0.89) (±1.83) (±0.23) (±0.28) (±0.36) (±0.56)

FedHERO 36.63 36.08 37.83 38.00 53.93 54.06 52.65 55.63 35.25 34.60 34.32 34.54 50.51 50.33 49.96 50.45
(±0.95) (±0.87) (±1.02) (±0.92) (±0.88) (±0.56) (±1.33) (±2.00) (±0.29) (±1.03) (±0.68) (±0.89) (±0.32) (±0.25) (±0.31) (±0.25)

set α = 0.2, µ = λ = 0.1, k = 20, and NH = 4. In the supplementary material, we provide an analysis of
hyperparameters, indicating that optimizing these values could lead to further improvements in performance.
The training process involves 200 communication rounds, with each local training epoch lasting one iteration.
The nodes are randomly distributed into five groups. For each experiment, one group is chosen as the test
set, while three of the remaining groups are utilized for training and one for validation. We perform five
experiments on each dataset and report the models’ average performance. For the ieee-fraud and credit
datasets, we present the mean test Area Under the Curve (AUC), accounting for the imbalanced labels.
For the remaining datasets, we use mean test accuracy across clients for evaluation. All methodologies are
implemented using PyTorch 1.8 and executed on NVIDIA RTX A6000 GPUs. Our code can be found in the
supplementary material.

Baselines. We comprehensively compare FedHERO against five baseline methods in federated graph
learning. These baselines encompass strategies that focus on (i) promoting collaboration among clients with
similar graph distributions (GCFL (Xie et al., 2021) and Fedpub (Baek et al., 2023)), (ii) sharing structural
insights (FedStar (Tan et al., 2023)), (iii) producing missing edges between subgraphs (FedSage (Zhang
et al., 2021)), and (iv) discerning and modeling message-passing for latent link types (FedLit (Xie et al.,
2023)). To ensure the completeness of our experiments, we also include the standard FL method Fe-
dAvg (McMahan et al., 2017).

4.2 Evaluation on Semi-synthetic Datasets

We present the node classification results on four semi-synthetic heterophilic datasets. The average test
accuracy and its standard deviation are summarized in Table 3. The results indicate that FedHERO
consistently outperforms all the baseline methods by a significant margin. This is because the global channel
in FedHERO has less dependence on the local graph structure, with the GNN fglobal being updated on
the latent graph. By sharing the structure learning model across clients, FedHERO ensures that the
latent graphs generated by different clients exhibit similar neighbor distribution patterns. This allows the
aggregation of consistent information from the global channel, ultimately enhancing the performance.

We also observed that FedAvg often underperforms compared to local training in many experiments. This
suggests that heterophilic graphs are more likely to exhibit distinct neighbor distribution patterns across
them, which can negatively impact FedAvg’s performance. Notably, FedPub and GCFL demonstrate
superior overall performance compared to FedAvg. Both encourage clients to collaborate with those who
have similar model gradients or outputs. During optimization, the GNN learns to capture graph information,

8

Under review as submission to TMLR

including neighbor distribution patterns. Therefore, similar model gradients or outputs indicate similar
neighbor distribution patterns or tendencies captured by the model. As previously discussed, aggregating
models with similar tendencies enhances the performance of the aggregated model.

In our investigation of FedHERO’s performance with heterophilic data, we also observed significant improve-
ments in datasets characterized by high heterophily, particularly in the Squirrel and Chameleon datasets.
These datasets have homophily ratios of 0.22 and 0.25, respectively, as reported in (Mao et al., 2023), with
lower ratios indicating greater heterophily. In comparison to Flickr (homophily ratio: 0.32 (Kim & Oh,
2022)), FedHERO’s enhancements are more pronounced. For example, under Louvain partitioning, Fed-
HERO demonstrates improvements of 4.31%, 1.16%, and 0.08% on the Chameleon, Squirrel, and Flickr
datasets, respectively, when compared to the best-performing baseline. We believe this phenomenon occurs
because, as heterophilic ratio increases, the differences in node neighbor distribution patterns across clients’
local graphs become more pronounced, posing greater challenges to existing FGL methods.

4.3 Evaluation on Real-world Datasets

Figure 3 provides a comprehensive overview of the evaluation results across real-world datasets in FGL
settings. FedHERO consistently outperforms all FGL baselines on ieee-fraud and credit datasets. The
similar performance between our method and other FGL baselines on ieee-fraud and credit datasets may be
attributed to distinct class features that are easily distinguishable (e.g., a linear regression model can yield
satisfactory results) (Howard et al., 2019) or the low dimensionality of features (Yeh & Lien, 2009). The
superior performance of FedSage on the syn-cora dataset may be attributed to GraphSage’s utilization of
a hybrid design, incorporating elements of both ego-embedding and neighbor embedding. Similar findings
are also observed in (Zhu et al., 2020).

syn-cora ieee-fraud credit60

65

70

75

80

85

Av
er

ag
e

Pe
rf

or
m

an
ce

Local
FedAvg

FedPub
FedStar

GCFL
FedLit

FedSage
FedHERO

Figure 3: Performance of FedHERO and baselines on
three real-world datasets.

Notably, FedPub and FedStar face challenges
in achieving strong performance on the syn-cora
dataset. The syn-cora dataset consists of random
graphs where nodes of different classes have the
same expected degree, and different graphs share the
same degree distribution (Abu-El-Haija et al., 2019;
Zhu et al., 2020). The suboptimal performance
of FedStar also demonstrates that relying solely
on structural information from the adjacency ma-
trix, while overlooking distinctions between nodes
connected by an edge, is insufficient for handling
heterophilic graphs. Thus, structure embeddings
in FedStar don’t contain distinguishable informa-
tion across classes. Sharing the structure knowledge
doesn’t benefit training GNNs for node classification. On the other hand, FedPub assumes graphs in clients
have community structures, and it leverages the community information. However, the assumption does not
hold in syn-cora where random graphs are generated independently.

4.4 FedHERO with Different Structure Learning Methods

In this section, we explore the adaptability of FedHERO to various structure learning techniques.
For example, we substitute the similarity function with an attention-based structure learner, denoted
as FedHEROatt, and with Graph Attention Networks (GAT) (Veličković et al., 2018), denoted as
FedHEROgat. Another variant, FedHEROcos, uses cosine distance as the similarity function. We further
examine FedHERO with more complicated graph learning methods, including GLCN (Jiang et al., 2019),
GAug (Zhao et al., 2021b). We replace the structure learning model in FedHERO with these methods.
The experiments are performed on the Squirrel and Chameleon datasets, and the results are presented in
Table 4. From the results, we observe the following:

9

Under review as submission to TMLR

• The original FedHERO, integrated with multi-head weighted attention, consistently outperforms
its variants. This superior performance can be attributed to the ability of multi-head weighted
attention to capture a wide range of influences between nodes effectively, making it particularly
effective for heterophilic graphs.

• Among basic variants, FedHEROcos shows slightly better performance than the other two variants,
likely because it avoids additional model parameters, thus reducing the risk of overfitting. Addition-
ally, unlike FedHEROgat, FedHEROcos considers the entire subgraph for edge generation, which
mitigates the impact of heterophilic graphs on the GNN aggregation mechanism (Li et al., 2022;
Yang et al., 2022).

Table 4: Performance of FedHERO with different graph structure learning methods.

Variants Squirrel Chameleon
METIS M=9 Louvain METIS M=7 Louvain

FedHEROcos 34.65±0.69 37.83±1.78 51.36±2.72 52.39±1.74
FedHEROatt 34.92±1.00 36.80±1.49 51.71±1.88 54.28±1.62
FedHEROgat 34.83±0.81 37.12±1.16 51.45±1.73 53.26±2.43

FedHERO+GLCN 35.11±1.14 37.25±0.85 52.18±3.63 52.54±2.29
FedHERO+GAug 36.65±1.53 37.63±1.00 52.44±2.67 54.57±2.42

FedHERO 37.83±1.02 38.00±0.92 52.65±1.33 55.63±2.00

4.5 FedHERO with Various Sharing Mechanisms

We conduct an analysis of various FedHERO variants involving the sharing of different components of the
local model, including all model parameters, task model parameters, and none (denoted as FedHEROall,
FedHEROgcn, and FedHEROnone, respectively). Additionally, we consider whether to incorporate a
structure-task model decoupled scheme. For variants without the Dual-Channel (DC), we remove the GNN
in the flocal channel and feed the learned adjacency matrix and the original matrix into the same GNN.

In Table 5, we observe that the structure-task model decoupling scheme consistently outperforms the model
without it, indicating that independently learning the structural knowledge enhances FedHERO’s perfor-
mance across various scenarios. Furthermore, sharing all parameters or the task model results in performance
degradation compared to pure local training. This observation underscores that sharing local task model
information across heterophily graphs harms FedHERO’s performance, since the original graphs have dif-
ferent node neighbor distribution patterns and aggregating of models that capture distinct tendencies would
lead to performance degradation for the global model.

4.6 Convergence Analysis

We conduct experiments to compare the convergence speed of FedHERO with other FGL baselines on differ-
ent datasets. The results, as presented in Figure 4, demonstrate that FedHERO exhibits faster convergence
compared to most baselines on both datasets. Notably, FedHERO’s convergence speed is comparable to

Table 5: Performance of FedHERO when sharing different modules with server.

Variants DC Squirrel Chameleon
METIS M=7 Louvain METIS M=7 Louvain

FedHEROnone - 32.53±0.66 36.85±0.85 48.48±1.12 48.30±1.50
FedHEROall - 29.37±1.18 32.84±0.92 44.09±2.84 44.12±1.98

FedHEROnone ✓ 34.14±1.35 36.25±2.96 50.62±1.54 52.03±1.70
FedHEROall ✓ 32.04±1.57 34.08±2.14 45.38±1.64 46.39±3.03
FedHEROgcn ✓ 28.05±0.65 31.13±1.57 42.27±1.67 43.70±1.86

FedHERO ✓ 37.83±1.02 38.00±0.92 52.65±1.33 55.63±2.00

10

Under review as submission to TMLR

that of FedStar, since both two methods employ a dual-channel GNN in the client’s model. We conclude
that FedHERO does not require more steps to converge compared to existing methods, though it introduces
additional parameters, which underscores the efficiency of FedHERO.

0 50 100 150 200
Training Round

20

25

30

35

40

Te
st

 A
cc

0 50 100 150 200
Training Round

20

30

40

50

60

Te
st

 A
cc

FedLit
FedAvg

FedSage
FedPub

FedStar
GCFL

FedHERO

Figure 4: Convergence analysis of FedHERO and
baselines on (left) Squirrel and (right) Chameleon
datasets.

10 15 20 25
LIA Accuracy on Chameleon

10

15

20

25

30

LI
A

 A
cc

ur
ac

y
on

 A
ct

or

Better

Better
25 30 35

Classification Acc on Squirrel

35

40

45

50

55

C
la

ss
ifi

ca
tio

n
A

cc
 o

n
C

ha
m

el
eo

n

Better

Better

Local

FedAvg

FedPub

FedStar

GCFL

FedLit

FedSage

FedHERO

Figure 5: (Left) Link inference attack (LIA) accu-
racies on FedHERO and FGL baseline methods.
(Right) Performance of FedHERO and FGL base-
line methods on noisy graph datasets.

4.7 Privacy Preservation in FedHERO

FedHERO only transmits the components in the fglobal channel to the server. This subset contains fewer
parameters, thus reducing the volume of sensitive information transmitted. Furthermore, we evaluate the
leakage of structural information from FedHERO through the link inference attack (LIA) (Gong & Liu,
2018). LIA aims to infer the underlying graph structure from the learned node representations. The LIA
attack accuracies on two datasets are presented in Figure 5 (left). In general, LIA struggles to accurately
predict the graph structure due to the inherent heterophilic characteristics of the graphs. We can observe
that FedHERO offers better privacy protection compared to the FGL baseline approaches by sharing only
a portion of the model, and make LIA even harder to predict.

4.8 Robustness Study of FedHERO

We assess the robustness of FedHERO by introducing noise to the graph, flipping each edge with a proba-
bility of 0.1. As shown in Figure 5 (right), while baseline FGL methods experience significant performance
degradation under such conditions, FedHERO maintains its effectiveness. This resilience is due to Fed-
HERO’s unique design: unlike other FGL methods that rely heavily on the original graph structure, Fed-
HERO shares a global structure learner and performs message passing on a generated latent graph. This
approach reduces the impact of noise on the original graph’s structure, enhancing FedHERO’s adaptability
to noisy environments. Additionally, FedHERO exhibits reduced reliance on the local graph structure,
demonstrating its ability to address the performance deterioration brought by varying neighbor distribution
patterns and effectively handle heterophilic graphs.

5 Related Work

Graph Structure Learning. Graph Neural Networks (GNNs) have emerged as a potent tool for analyzing
graph-structured data and have found wide applications in various domains (Zhao et al., 2021a; Wu et al.,
2019; Kipf & Welling, 2016; Zhu et al., 2019; Liu et al., 2020; Fan et al., 2019; Luan et al., 2022; Yuan et al.,
2022; Dwivedi et al., 2023; Shlomi et al., 2020). In order to overcome the limitations of GNNs in effectively
propagating features within observed structures, recent efforts have aimed at simultaneous learning of graph
structures alongside the GNN model (Jin et al., 2020; Liu et al., 2022b; Li et al., 2024; Liu et al., 2023b;
Wu et al., 2022). At the heart of graph structure learning lies an encoding function responsible for modeling
optimal graph structures, often represented by edge weights (Luo et al., 2021; Kreuzer et al., 2021; Sun et al.,

11

Under review as submission to TMLR

2022; Wang et al., 2020; Gasteiger et al., 2019; Yu et al., 2021). These edge weights can be defined through
pairwise distances or learnable parameters. For example, GAUGM (Zhao et al., 2021b) calculates edge
weights by taking the inner product of node embeddings, introducing no additional parameters. Franceschi
et al. (2019) treat each edge as a Bernoulli random variable and optimize graph structures with the GNN.
IDGL (Chen et al., 2020), to make full use of information from observed structures for structure learning,
employs a multi-head self-attention network to represent pairwise relationships between nodes, while Li et
al. (Li et al., 2018a) adopt a metric learning approach based on the Radial Basis Function (RBF) kernel
for a similar goal. Moreover, DGM (Kazi et al., 2022) utilizes the Gumbel-Top-k trick to sample edges
from a Gaussian distribution and incorporates reinforcement learning, rewarding edges that contribute to
correct classifications and penalizing those leading to misclassifications. Additionally, Zhang et al. (2019)
present a probabilistic framework that views the input graph as a random sample from a collection modeled
by a parametric random graph model. However, while these methods have shown promise, they assume
that training and testing nodes originate from the same graph, and they primarily consider a single graph.
In contrast, Zhao et al. (2023) address graph structure learning in a cross-graph setting and propose a
comprehensive framework for learning a shared structure learner that can generalize to target graphs without
necessitating re-training.

Federated Graph Learning. Federated Learning (FL) is a paradigm that facilitates model training across
decentralized clients while safeguarding privacy (Li et al., 2020; Liu et al., 2024; Gafni et al., 2022; Wang
et al., 2023; Ye et al., 2023; Lei et al., 2023). As the field of FL evolves, a new specialized branch has
emerged to address the unique challenges of graph data, known as Federated Graph Learning (FGL) (Liu
et al., 2022a). This branch can be categorized into graph-level and node-level methods.

Graph-level FGL methods consider scenarios where each client possesses multiple graph data, as seen in
domains like molecular structures. Like traditional FL, it mainly focuses on the issue of non-independent and
identically distribution (non-IID) issues across clients (Xie et al., 2021; He et al., 2021; Tan et al., 2023; Zheng
et al., 2021; Chen et al., 2021a). On the other hand, node-level FGL assumes that each client holds a single
graph, with the objective of addressing node classification tasks. In this variant, each client usually possesses
a subgraph of the larger graph, introducing a scenario where there are missing links between subgraphs. To
address this issue, Zhang et al. introduced FedSage (Zhang et al., 2021), which involves collaboratively
learning a missing neighbor generator across clients. However, FedSage could raise privacy concerns. In
contrast, Baek et al. (2023) utilize random graphs as inputs to compute similarities between clients’ GNNs,
subsequently employing these similarities for weighted averaging on the server side. Additionally, Xie et al.
(2023) focus on detecting latent link-types during FGL and differentiating message-passing through various
types of links using multiple convolution channels. In this study, we address a specific challenge in node-level
FGL, namely the distinction in node neighbor distributions across clients. Our approach involves sharing a
structure learning model among clients, enabling the learning of message-passing patterns across the graphs.
By leveraging this information, we aim to enhance the predictive performance of the local models.

6 Conclusion

The heterophilic patterns of graphs can result in variations in the distribution of node neighbors among
different graphs, leading to performance deterioration for current FGL algorithms. The FedHERO frame-
work effectively addresses the challenge of varying neighbor distribution patterns, resolving it by sharing
structure learners across clients. The structure learner would generate latent graphs with similar tendencies
for different clients. Clients’ GNNs that capture these tendencies could be aggregated and shared among
clients to harness FGL’s ability. By decoupling the structural learning model from the local classification
model, we effectively capture and make available structural insights for global sharing. Additionally, our
proposed framework maintains the capacity for personalization based on local graph structure and node
features. Experimental results affirm that FedHERO consistently surpasses state-of-the-art methods across
various datasets.

12

Under review as submission to TMLR

References
Sami Abu-El-Haija, Bryan Perozzi, Amol Kapoor, Nazanin Alipourfard, Kristina Lerman, Hrayr Harutyun-

yan, Greg Ver Steeg, and Aram Galstyan. Mixhop: Higher-order graph convolutional architectures via
sparsified neighborhood mixing. In international conference on machine learning, pp. 21–29. PMLR, 2019.

Jinheon Baek, Wonyong Jeong, Jiongdao Jin, Jaehong Yoon, and Sung Ju Hwang. Personalized subgraph
federated learning. In International Conference on Machine Learning, pp. 1396–1415. PMLR, 2023.

Alex Beutel, Jilin Chen, Zhe Zhao, and Ed H Chi. Data decisions and theoretical implications when adver-
sarially learning fair representations. arXiv preprint arXiv:1707.00075, 2017.

Smriti Bhagat, Graham Cormode, and S Muthukrishnan. Node classification in social networks. Social
network data analytics, pp. 115–148, 2011.

Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefebvre. Fast unfolding of
communities in large networks. Journal of statistical mechanics: theory and experiment, 2008(10):P10008,
2008.

Deyu Bo, Xiao Wang, Chuan Shi, and Huawei Shen. Beyond low-frequency information in graph convolu-
tional networks. In Proceedings of the AAAI conference on artificial intelligence, volume 35, pp. 3950–3957,
2021.

Michael M Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre Vandergheynst. Geometric deep
learning: going beyond euclidean data. IEEE Signal Processing Magazine, 34(4):18–42, 2017.

Chuan Chen, Weibo Hu, Ziyue Xu, and Zibin Zheng. Fedgl: Federated graph learning framework with global
self-supervision. arXiv preprint arXiv:2105.03170, 2021a.

Mingyang Chen, Wen Zhang, Zonggang Yuan, Yantao Jia, and Huajun Chen. Fede: Embedding knowledge
graphs in federated setting. In Proceedings of the 10th International Joint Conference on Knowledge
Graphs, pp. 80–88, 2021b.

Yu Chen, Lingfei Wu, and Mohammed Zaki. Iterative deep graph learning for graph neural networks: Better
and robust node embeddings. Advances in neural information processing systems, 33:19314–19326, 2020.

Eli Chien, Jianhao Peng, Pan Li, and Olgica Milenkovic. Adaptive universal generalized pagerank graph
neural network. arXiv preprint arXiv:2006.07988, 2020.

Weilin Cong and Mehrdad Mahdavi. Grapheditor: An efficient graph representation learning and unlearning
approach. 2022.

Enyan Dai, Tianxiang Zhao, Huaisheng Zhu, Junjie Xu, Zhimeng Guo, Hui Liu, Jiliang Tang, and Suhang
Wang. A comprehensive survey on trustworthy graph neural networks: Privacy, robustness, fairness, and
explainability. arXiv preprint arXiv:2204.08570, 2022.

Vijay Prakash Dwivedi, Chaitanya K Joshi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio, and Xavier
Bresson. Benchmarking graph neural networks. Journal of Machine Learning Research, 24(43):1–48, 2023.

Cynthia Dwork, Moritz Hardt, Toniann Pitassi, Omer Reingold, and Richard Zemel. Fairness through
awareness. In Proceedings of the 3rd innovations in theoretical computer science conference, pp. 214–226,
2012.

Pantelis Elinas, Edwin V Bonilla, and Louis Tiao. Variational inference for graph convolutional networks in
the absence of graph data and adversarial settings. Advances in Neural Information Processing Systems,
33:18648–18660, 2020.

Wenqi Fan, Yao Ma, Qing Li, Yuan He, Eric Zhao, Jiliang Tang, and Dawei Yin. Graph neural networks for
social recommendation. In The world wide web conference, pp. 417–426, 2019.

13

Under review as submission to TMLR

Luca Franceschi, Mathias Niepert, Massimiliano Pontil, and Xiao He. Learning discrete structures for graph
neural networks. In International conference on machine learning, pp. 1972–1982. PMLR, 2019.

Tomer Gafni, Nir Shlezinger, Kobi Cohen, Yonina C Eldar, and H Vincent Poor. Federated learning: A
signal processing perspective. IEEE Signal Processing Magazine, 39(3):14–41, 2022.

Johannes Gasteiger, Stefan Weißenberger, and Stephan Günnemann. Diffusion improves graph learning.
Advances in neural information processing systems, 32, 2019.

Neil Zhenqiang Gong and Bin Liu. Attribute inference attacks in online social networks. ACM Transactions
on Privacy and Security (TOPS), 21(1):1–30, 2018.

Chaoyang He, Emir Ceyani, Keshav Balasubramanian, Murali Annavaram, and Salman Avestimehr. Spread-
gnn: Serverless multi-task federated learning for graph neural networks. arXiv preprint arXiv:2106.02743,
2021.

Addison Howard, Bernadette Bouchon-Meunier, IEEE CIS, inversion, John Lei, Lynn@Vesta, Marcus2010,
and Hussein Abbass. Ieee-cis fraud detection, 2019. URL https://kaggle.com/competitions/
ieee-fraud-detection.

Bo Jiang, Ziyan Zhang, Doudou Lin, Jin Tang, and Bin Luo. Semi-supervised learning with graph learning-
convolutional networks. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 11313–11320, 2019.

Wei Jin, Yao Ma, Xiaorui Liu, Xianfeng Tang, Suhang Wang, and Jiliang Tang. Graph structure learning
for robust graph neural networks. In Proceedings of the 26th ACM SIGKDD international conference on
knowledge discovery & data mining, pp. 66–74, 2020.

George Karypis and Vipin Kumar. Metis: A software package for partitioning unstructured graphs, parti-
tioning meshes, and computing fill-reducing orderings of sparse matrices. 1997.

Anees Kazi, Luca Cosmo, Seyed-Ahmad Ahmadi, Nassir Navab, and Michael M Bronstein. Differentiable
graph module (dgm) for graph convolutional networks. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 45(2):1606–1617, 2022.

Dongkwan Kim and Alice Oh. How to find your friendly neighborhood: Graph attention design with self-
supervision. arXiv preprint arXiv:2204.04879, 2022.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks. arXiv
preprint arXiv:1609.02907, 2016.

Devin Kreuzer, Dominique Beaini, Will Hamilton, Vincent Létourneau, and Prudencio Tossou. Rethinking
graph transformers with spectral attention. Advances in Neural Information Processing Systems, 34:
21618–21629, 2021.

Runze Lei, Pinghui Wang, Junzhou Zhao, Lin Lan, Jing Tao, Chao Deng, Junlan Feng, Xidian Wang, and
Xiaohong Guan. Federated learning over coupled graphs. IEEE Transactions on Parallel and Distributed
Systems, 34(4):1159–1172, 2023.

Ruoyu Li, Sheng Wang, Feiyun Zhu, and Junzhou Huang. Adaptive graph convolutional neural networks.
In Proceedings of the AAAI conference on artificial intelligence, volume 32, 2018a.

Ruoyu Li, Sheng Wang, Feiyun Zhu, and Junzhou Huang. Adaptive graph convolutional neural networks.
In Proceedings of the AAAI conference on artificial intelligence, volume 32, 2018b.

Tian Li, Anit Kumar Sahu, Ameet Talwalkar, and Virginia Smith. Federated learning: Challenges, methods,
and future directions. IEEE signal processing magazine, 37(3):50–60, 2020.

14

https://kaggle.com/competitions/ieee-fraud-detection
https://kaggle.com/competitions/ieee-fraud-detection

Under review as submission to TMLR

Xiang Li, Renyu Zhu, Yao Cheng, Caihua Shan, Siqiang Luo, Dongsheng Li, and Weining Qian. Finding
global homophily in graph neural networks when meeting heterophily. In International Conference on
Machine Learning, pp. 13242–13256. PMLR, 2022.

Zhixun Li, Xin Sun, Yifan Luo, Yanqiao Zhu, Dingshuo Chen, Yingtao Luo, Xiangxin Zhou, Qiang Liu, Shu
Wu, Liang Wang, et al. Gslb: the graph structure learning benchmark. Advances in Neural Information
Processing Systems, 36, 2024.

Meng Liu, Hongyang Gao, and Shuiwang Ji. Towards deeper graph neural networks. In Proceedings of the
26th ACM SIGKDD international conference on knowledge discovery & data mining, pp. 338–348, 2020.

Rui Liu, Pengwei Xing, Zichao Deng, Anran Li, Cuntai Guan, and Han Yu. Federated graph neural networks:
Overview, techniques and challenges. arXiv preprint arXiv:2202.07256, 2022a.

Rui Liu, Pengwei Xing, Zichao Deng, Anran Li, Cuntai Guan, and Han Yu. Federated graph neural networks:
Overview, techniques, and challenges. IEEE Transactions on Neural Networks and Learning Systems, 2024.

Yixin Liu, Yu Zheng, Daokun Zhang, Hongxu Chen, Hao Peng, and Shirui Pan. Towards unsupervised deep
graph structure learning. In Proceedings of the ACM Web Conference 2022, pp. 1392–1403, 2022b.

Yixin Liu, Yizhen Zheng, Daokun Zhang, Vincent CS Lee, and Shirui Pan. Beyond smoothing: Unsupervised
graph representation learning with edge heterophily discriminating. In Proceedings of the AAAI conference
on artificial intelligence, volume 37, pp. 4516–4524, 2023a.

Zhaowei Liu, Dong Yang, Yingjie Wang, Mingjie Lu, and Ranran Li. Egnn: Graph structure learning based
on evolutionary computation helps more in graph neural networks. Applied Soft Computing, 135:110040,
2023b.

Guannan Lou, Yuze Liu, Tiehua Zhang, and Xi Zheng. Stfl: A temporal-spatial federated learning framework
for graph neural networks. arXiv preprint arXiv:2111.06750, 2021.

Sitao Luan, Chenqing Hua, Qincheng Lu, Jiaqi Zhu, Mingde Zhao, Shuyuan Zhang, Xiao-Wen Chang, and
Doina Precup. Revisiting heterophily for graph neural networks. Advances in neural information processing
systems, 35:1362–1375, 2022.

Dongsheng Luo, Wei Cheng, Wenchao Yu, Bo Zong, Jingchao Ni, Haifeng Chen, and Xiang Zhang. Learn-
ing to drop: Robust graph neural network via topological denoising. In Proceedings of the 14th ACM
international conference on web search and data mining, pp. 779–787, 2021.

Jianxin Ma, Chang Zhou, Peng Cui, Hongxia Yang, and Wenwu Zhu. Learning disentangled representations
for recommendation. Advances in neural information processing systems, 32, 2019.

Yao Ma, Xiaorui Liu, Neil Shah, and Jiliang Tang. Is homophily a necessity for graph neural networks?
arXiv preprint arXiv:2106.06134, 2021.

Haitao Mao, Zhikai Chen, Wei Jin, Haoyu Han, Yao Ma, Tong Zhao, Neil Shah, and Jiliang Tang. Demysti-
fying structural disparity in graph neural networks: Can one size fit all? arXiv preprint arXiv:2306.01323,
2023.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial intelligence and
statistics, pp. 1273–1282. PMLR, 2017.

Guangxu Mei, Ziyu Guo, Shijun Liu, and Li Pan. Sgnn: A graph neural network based federated learning
approach by hiding structure. In 2019 IEEE International Conference on Big Data (Big Data), pp. 2560–
2568. IEEE, 2019.

Galileo Namata, Ben London, Lise Getoor, Bert Huang, and U Edu. Query-driven active surveying for
collective classification. In 10th international workshop on mining and learning with graphs, volume 8,
pp. 1, 2012.

15

Under review as submission to TMLR

Hieu V Nguyen and Li Bai. Cosine similarity metric learning for face verification. In Asian conference on
computer vision, pp. 709–720. Springer, 2010.

Shashank Pandit, Duen Horng Chau, Samuel Wang, and Christos Faloutsos. Netprobe: a fast and scalable
system for fraud detection in online auction networks. In Proceedings of the 16th international conference
on World Wide Web, pp. 201–210, 2007.

Hao Peng, Haoran Li, Yangqiu Song, Vincent Zheng, and Jianxin Li. Differentially private federated knowl-
edge graphs embedding. In Proceedings of the 30th ACM International Conference on Information &
Knowledge Management, pp. 1416–1425, 2021.

Benedek Rozemberczki, Carl Allen, and Rik Sarkar. Multi-scale attributed node embedding. Journal of
Complex Networks, 9(2):cnab014, 2021.

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini. The graph
neural network model. IEEE transactions on neural networks, 20(1):61–80, 2008.

Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-Rad. Collec-
tive classification in network data. AI magazine, 29(3):93–93, 2008.

Jonathan Shlomi, Peter Battaglia, and Jean-Roch Vlimant. Graph neural networks in particle physics.
Machine Learning: Science and Technology, 2(2):021001, 2020.

Qingyun Sun, Jianxin Li, Hao Peng, Jia Wu, Xingcheng Fu, Cheng Ji, and S Yu Philip. Graph structure
learning with variational information bottleneck. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 36, pp. 4165–4174, 2022.

Susheel Suresh, Vinith Budde, Jennifer Neville, Pan Li, and Jianzhu Ma. Breaking the limit of graph neural
networks by improving the assortativity of graphs with local mixing patterns. In Proceedings of the 27th
ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 1541–1551, 2021.

Yue Tan, Yixin Liu, Guodong Long, Jing Jiang, Qinghua Lu, and Chengqi Zhang. Federated learning on
non-iid graphs via structural knowledge sharing. In Proceedings of the AAAI conference on artificial
intelligence, volume 37, pp. 9953–9961, 2023.

Jie Tang, Jimeng Sun, Chi Wang, and Zi Yang. Social influence analysis in large-scale networks. In
Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining,
pp. 807–816, 2009a.

Jie Tang, Jimeng Sun, Chi Wang, and Zi Yang. Social influence analysis in large-scale networks. In
Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining,
pp. 807–816, 2009b.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua Bengio.
Graph attention networks. In International Conference on Learning Representations, 2018.

Bin Wang, Jun Fang, Hongbin Li, Xiaojun Yuan, and Qing Ling. Confederated learning: Federated learning
with decentralized edge servers. IEEE Transactions on Signal Processing, 71:248–263, 2023.

Xiao Wang, Meiqi Zhu, Deyu Bo, Peng Cui, Chuan Shi, and Jian Pei. Am-gcn: Adaptive multi-channel
graph convolutional networks. In Proceedings of the 26th ACM SIGKDD International conference on
knowledge discovery & data mining, pp. 1243–1253, 2020.

Qitian Wu, Wentao Zhao, Zenan Li, David P Wipf, and Junchi Yan. Nodeformer: A scalable graph structure
learning transformer for node classification. Advances in Neural Information Processing Systems, 35:
27387–27401, 2022.

Shu Wu, Yuyuan Tang, Yanqiao Zhu, Liang Wang, Xing Xie, and Tieniu Tan. Session-based recommendation
with graph neural networks. In Proceedings of the AAAI conference on artificial intelligence, volume 33,
pp. 346–353, 2019.

16

Under review as submission to TMLR

Tailin Wu, Hongyu Ren, Pan Li, and Jure Leskovec. Graph information bottleneck. Advances in Neural
Information Processing Systems, 33:20437–20448, 2020a.

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and S Yu Philip. A comprehensive
survey on graph neural networks. IEEE transactions on neural networks and learning systems, 32(1):4–24,
2020b.

Feng Xia, Ke Sun, Shuo Yu, Abdul Aziz, Liangtian Wan, Shirui Pan, and Huan Liu. Graph learning: A
survey. IEEE Transactions on Artificial Intelligence, 2(2):109–127, 2021.

Shunxin Xiao, Shiping Wang, Yuanfei Dai, and Wenzhong Guo. Graph neural networks in node classification:
survey and evaluation. Machine Vision and Applications, 33(1):4, 2022.

Han Xie, Jing Ma, Li Xiong, and Carl Yang. Federated graph classification over non-iid graphs. Advances
in Neural Information Processing Systems, 34:18839–18852, 2021.

Han Xie, Li Xiong, and Carl Yang. Federated node classification over graphs with latent link-type hetero-
geneity. In Proceedings of the ACM Web Conference 2023, pp. 556–566, 2023.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural networks?
arXiv preprint arXiv:1810.00826, 2018a.

Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi Kawarabayashi, and Stefanie Jegelka.
Representation learning on graphs with jumping knowledge networks. In International conference on
machine learning, pp. 5453–5462. PMLR, 2018b.

Yujun Yan, Milad Hashemi, Kevin Swersky, Yaoqing Yang, and Danai Koutra. Two sides of the same
coin: Heterophily and oversmoothing in graph convolutional neural networks. In 2022 IEEE International
Conference on Data Mining (ICDM), pp. 1287–1292. IEEE, 2022.

Liang Yang, Mengzhe Li, Liyang Liu, Chuan Wang, Xiaochun Cao, Yuanfang Guo, et al. Diverse message
passing for attribute with heterophily. Advances in Neural Information Processing Systems, 34:4751–4763,
2021.

Tianmeng Yang, Yujing Wang, Zhihan Yue, Yaming Yang, Yunhai Tong, and Jing Bai. Graph pointer neural
networks. In Proceedings of the AAAI conference on artificial intelligence, volume 36, pp. 8832–8839, 2022.

Zhilin Yang, William Cohen, and Ruslan Salakhudinov. Revisiting semi-supervised learning with graph
embeddings. In International conference on machine learning, pp. 40–48. PMLR, 2016.

Rui Ye, Zhenyang Ni, Chenxin Xu, Jianyu Wang, Siheng Chen, and Yonina C Eldar. Fedfm: Anchor-based
feature matching for data heterogeneity in federated learning. IEEE Transactions on Signal Processing,
2023.

I-Cheng Yeh and Che-hui Lien. The comparisons of data mining techniques for the predictive accuracy of
probability of default of credit card clients. Expert systems with applications, 36(2):2473–2480, 2009.

Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton, and Jure Leskovec. Graph
convolutional neural networks for web-scale recommender systems. In Proceedings of the 24th ACM
SIGKDD international conference on knowledge discovery & data mining, pp. 974–983, 2018.

Donghan Yu, Ruohong Zhang, Zhengbao Jiang, Yuexin Wu, and Yiming Yang. Graph-revised convolutional
network. In Machine Learning and Knowledge Discovery in Databases: European Conference, ECML
PKDD 2020, Ghent, Belgium, September 14–18, 2020, Proceedings, Part III, pp. 378–393. Springer, 2021.

Hao Yuan, Haiyang Yu, Shurui Gui, and Shuiwang Ji. Explainability in graph neural networks: A taxonomic
survey. IEEE transactions on pattern analysis and machine intelligence, 45(5):5782–5799, 2022.

Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Viktor Prasanna. Graphsaint:
Graph sampling based inductive learning method. arXiv preprint arXiv:1907.04931, 2019.

17

Under review as submission to TMLR

Kai Zhang, Yu Wang, Hongyi Wang, Lifu Huang, Carl Yang, Xun Chen, and Lichao Sun. Efficient federated
learning on knowledge graphs via privacy-preserving relation embedding aggregation. arXiv preprint
arXiv:2203.09553, 2022.

Ke Zhang, Carl Yang, Xiaoxiao Li, Lichao Sun, and Siu Ming Yiu. Subgraph federated learning with missing
neighbor generation. Advances in Neural Information Processing Systems, 34:6671–6682, 2021.

Yingxue Zhang, Soumyasundar Pal, Mark Coates, and Deniz Ustebay. Bayesian graph convolutional neural
networks for semi-supervised classification. In Proceedings of the AAAI conference on artificial intelligence,
volume 33, pp. 5829–5836, 2019.

Jianan Zhao, Xiao Wang, Chuan Shi, Binbin Hu, Guojie Song, and Yanfang Ye. Heterogeneous graph struc-
ture learning for graph neural networks. In Proceedings of the AAAI conference on artificial intelligence,
volume 35, pp. 4697–4705, 2021a.

Tong Zhao, Yozen Liu, Leonardo Neves, Oliver Woodford, Meng Jiang, and Neil Shah. Data augmentation
for graph neural networks. In Proceedings of the aaai conference on artificial intelligence, volume 35, pp.
11015–11023, 2021b.

Wentao Zhao, Qitian Wu, Chenxiao Yang, and Junchi Yan. Graphglow: Universal and generalizable structure
learning for graph neural networks. arXiv preprint arXiv:2306.11264, 2023.

Longfei Zheng, Jun Zhou, Chaochao Chen, Bingzhe Wu, Li Wang, and Benyu Zhang. Asfgnn: Automated
separated-federated graph neural network. Peer-to-Peer Networking and Applications, 14(3):1692–1704,
2021.

Xin Zheng, Yixin Liu, Shirui Pan, Miao Zhang, Di Jin, and Philip S Yu. Graph neural networks for graphs
with heterophily: A survey. arXiv preprint arXiv:2202.07082, 2022.

Yizhen Zheng, He Zhang, Vincent Lee, Yu Zheng, Xiao Wang, and Shirui Pan. Finding the missing-
half: Graph complementary learning for homophily-prone and heterophily-prone graphs. In International
Conference on Machine Learning, pp. 42492–42505. PMLR, 2023.

Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Lifeng Wang, Changcheng
Li, and Maosong Sun. Graph neural networks: A review of methods and applications. AI open, 1:57–81,
2020.

Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann, Leman Akoglu, and Danai Koutra. Beyond homophily
in graph neural networks: Current limitations and effective designs. Advances in neural information
processing systems, 33:7793–7804, 2020.

Mengxiao Zhu and Haogang Zhu. Mixedad: A scalable algorithm for detecting mixed anomalies in attributed
graphs. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 34, pp. 1274–1281, 2020.

Rong Zhu, Kun Zhao, Hongxia Yang, Wei Lin, Chang Zhou, Baole Ai, Yong Li, and Jingren Zhou. Aligraph:
A comprehensive graph neural network platform. arXiv preprint arXiv:1902.08730, 2019.

Wei Zhu, Jiebo Luo, and Andrew D White. Federated learning of molecular properties with graph neural
networks in a heterogeneous setting. Patterns, 3(6), 2022.

18

Under review as submission to TMLR

A Experiment Setups

In our experiments, we utilize seven distinct benchmark datasets, the specifics of which are outlined in
Table 6. This table provides detailed statistics for each dataset, including the number of nodes, edges,
classes, and node feature dimensions. Additionally, we describe the process of partitioning the original
graphs into multiple subgraphs to create semi-synthetic federated graph learning datasets.

For graph partitioning, we employ well-established algorithms commonly used in federated graph learning.
Specifically, we utilize the METIS algorithm (Karypis & Kumar, 1997) and the Louvain algorithm (Blondel
et al., 2008). With METIS, we ensure an even distribution of nodes across subsets, with each subset
representing a client’s data in a federated learning context. Using Louvain, we follow the methodology of
Baek et al. (2023) and (Zhang et al., 2021). We initially partition the graph and select subgraphs containing
a minimum of 50 nodes. The smaller subgraphs are then randomly merged into these larger ones to guarantee
adequate training data. For example, if Louvain results in 20 subgraphs but only 5 have over 50 nodes, we
consolidate the remaining 15 subgraphs into these 5, effectively simulating a federated learning scenario with
5 clients.

We further provide the description of real-world datasets. The syn-cora dataset (Zhu et al., 2020) generates
nodes and edges based on the expected homophily ratio within the graph, with feature vectors of nodes in each
class derived by sampling from the corresponding class in the Cora dataset (Yang et al., 2016). The ieee-fraud
dataset comprises transaction records for products, with edges determined by the proximity of transaction
occurrences. The objective is to predict fraudulent transactions (Howard et al., 2019). Meanwhile, the credit
dataset has 30,000 nodes, each representing an individual, and their connections are determined by the
similarity of their spending and payment patterns (Yeh & Lien, 2009). The objective is to predict whether
an individual will default on their credit card payment or not.

Table 6: Dataset statistics

Dataset Squirrel Chameleon Actor Flickr syn-cora ieee-fraud credit
Nodes 5,201 2,277 7,600 89,250 14,900 144,233 30,000
Edges 198,493 31,421 15,009 899,756 29,674 28,053,717 1,436,858

Features 2,089 2,235 932 500 1433 371 13
Classes 5 5 5 7 5 2 2

We follow the previous work (Mao et al., 2023) to compute the homophily ratios of both the original graphs
and the averaged homophily ratios of partitioned graphs. As in Table 7, the partitioned graphs exhibit
comparable homophily ratios when compared to the original graphs. It means that the partitioning process
does not compromise the heterophilic property of the graphs.

Table 7: Homophily ratio of different partitioning methods.

Dataset Squirrel Chameleon Actor Flickr
METIS 0.22±0.02 0.26±0.05 0.17±0.02 0.33±0.04
Louvain 0.21±0.02 0.27±0.06 0.19±0.04 0.32±0.04
Origin 0.22 0.25 0.22 0.32

B Neighbor node distributions of clients in two datasets

In this section, we also give an example in two real-world datasets: Squirrel and Chameleon (Rozemberczki
et al., 2021). In these datasets, nodes correspond to web pages, and edges represent hyperlinks between them.
To simulate the FL scenario, we apply the community detection algorithm METIS (Karypis & Kumar, 1997)
to partition these graphs, and variations in the structures of the resulting subgraphs also arise. As illustrated
in Figure 6, we compare the neighbor distributions of two clients in two datasets, respectively. (The neighbor
distributions across all clients can refer to Figure 7.) Each bar illustrates, for a specific class of nodes, the

19

Under review as submission to TMLR

5-5 5-1 5-2 5-3 5-4

10%

30%

50%
R

at
io

 o
f c

on
ne

ct
io

s
Squirrel

Client 1
Client 2

(a) connections of class 5 nodes
1-1 1-2 1-3 1-4 1-5

10%

30%

50%

70%

R
at

io
 o

f c
on

ne
ct

io
s

Chameleon
Client 1
Client 2

(b) connections of class 1 nodes
Figure 6: Neighbor node distributions of two clients in two datasets respectively. Each bar represents the
ratio of edges connecting nodes of one class to the total number of edges with nodes of that class as an
endpoint. For example, in Figure (a), the orange bar at ’5-1’ indicates the proportion of edges from class 5
to class 1 nodes relative to total edges originating from class 5 nodes in client 1.

ratio of edges connecting them to other types of nodes of one type to the total number of edges serving this
class node as an endpoint. For instance, in Figure 6 (a), the orange bar with the x-axis ’5-1’ signifies the
proportion of edges linking class 5 nodes to class 1 nodes in relation to the overall number of edges originating
from class 5 nodes. The results indicate distinct neighbor distributions among different clients. For instance,
in the Chameleon dataset, almost 70% of edges originating from class 1 nodes are intra-class connections
in client 1, implying class 1 nodes tend to establish hyperlinks with similar web pages. Conversely, less
than 10% of the neighbors of class 1 nodes are nodes in the same class in client 2, indicating a preference
for establishing hyperlinks with diverse web pages. To safeguard data privacy, the structural details of
subgraphs cannot be directly shared between clients. Consequently, this leads to distinct message-passing
patterns of information transfer between these subgraphs. Traditional FL methods like FedAvg (McMahan
et al., 2017) simply aggregate GNN models, potentially hindering the global model’s ability to account for
the aggregation discrepancies among various subgraphs effectively.

5-1 5-2 5-3 5-4 5-5

0.1

0.3

0.5

R
at

io
 o

f c
on

ne
ct

io
s

Client 1

5-1 5-2 5-3 5-4 5-5

Client 2

5-1 5-2 5-3 5-4 5-5

Client 3

5-1 5-2 5-3 5-4 5-5

Client 4

5-1 5-2 5-3 5-4 5-5

Client 5

(a) Neighbor distribution of class 5 nodes in Squirrel

1-1 1-2 1-3 1-4 1-5

0.1

0.3

0.5

0.7

R
at

io
 o

f c
on

ne
ct

io
s

Client 1

1-1 1-2 1-3 1-4 1-5

Client 2

1-1 1-2 1-3 1-4 1-5

Client 3

1-1 1-2 1-3 1-4 1-5

Client 4

1-1 1-2 1-3 1-4 1-5

Client 5

(b) Neighbor distribution of class 1 nodes in Chameleon
Figure 7: Neighbor node distributions of clients in two datasets split by METIS.

20

Under review as submission to TMLR

C Case study

In this section, we present a series of case studies designed to further illustrate the practical applications and
effectiveness of FedHERO under diverse conditions. These case studies encompass a range of scenarios,
each highlighting different aspects of our approach.

C.1 Overlapping subgraphs scenario

Despite the commonality of the non-overlapping node assumption, some research investigates scenarios with
overlapping nodes. We have followed the data partitioning approach from (Baek et al., 2023) in our exper-
iments, focusing on the Flickr and Actor datasets. The results, as illustrated in Table 8, show FedHERO
consistently outperforming most baselines across these datasets. This indicates its robust capability to man-
age overlapping scenarios effectively. We theorize that overlapping subgraphs provide client subgraphs with
additional connections, hinting at the potential for developing FL algorithms specifically designed to cater
to overlapping environments.

Table 8: Results on the overlapping subgraphs scenario.

Method Local FedAvg FedPub FedStar GCFL FedLit FedSage FedHERO
Flickr 55.70±0.25 55.34±0.69 55.50±0.31 55.92±0.42 56.47±0.21 56.64±0.50 56.70±0.42 56.74±0.30
Actor 32.46±0.38 32.30±1.21 28.67±0.89 27.98±0.77 42.48±1.23 42.50±0.66 41.57±0.89 43.46±1.11

C.2 Latent graph generation

In graph structure learning, there are various methods for generating latent graphs. In our ap-
proach, we define ã(i,j) as the learned edge weight between nodes u and v, and subsequently ap-
ply a post-processing step to form a kNN graph (where each node is connected to up to k
neighbors) as the latent graph. This choice is informed by the differentiability of the top k
function, which aids in calculating parameter gradients and updating the model in FedHERO.

5 10 20 50
36

38

40

42

A
cc

Squirrel

5 10 20 50
52

54

56

58

A
cc

Chameleon

5 10 20 50
k

33

34

35

36

A
cc

Actor

5 10 20 50
k

50

51

52

A
cc

Flickr

Figure 8: The sensitivity study of hyperparameter k.
The star point in the figure corresponds to the default
result reported in the main text.

We also examine the influence of another preva-
lent latent graph generation method (Wu et al.,
2020a; Elinas et al., 2020; Zhao et al., 2023). This
method treats each edge in the latent graph as a
Bernoulli random variable, resulting in edge distri-
butions represented by a product of N×N indepen-
dent Bernoulli variables.

Table 9 presents an analysis of FedHERO’s per-
formance when employing the Bernoulli sampling
method for latent graph generation during infer-
ence. Using ã(i,j) as a Bernoulli parameter in-
troduces greater variance, potentially leading to
less stable model performance. Despite this, Fed-
HERO still surpasses most baselines, as evidenced
by the comparative results in Table 3. Our experi-
ments also suggest that an asymmetric latent graph
may impact model performance. Investigating op-
timal strategies for utilizing the Bernoulli sampling
method in latent graph generation offers a promis-
ing direction for future research and development in
our work.

21

Under review as submission to TMLR

Table 9: Results on the different latent graph generation.

Datasets Squirrel Chameleon
METIS M=7 Louvain METIS M=7 Louvain

Bernoulli 33.62±1.81 36.97±4.43 48.82±3.52 51.59±2.99
top k 36.08±0.87 38.00±0.92 52.65±1.33 55.63±2.00

To assess the impact of the node degree k in the latent graph, we conducted tests with k set to 5, 10, 20, and
50. Generally, a larger k value results in a denser latent graph. The outcomes of these tests are illustrated
in Figure 8. When these findings are combined with the baseline methods’ performance from Table 2 in the
main paper, we can deduce the following:

• Across varying values of k, FedHERO consistently outperforms all the baseline methods.

• For datasets with a smaller average node degree, such as Actor and Flickr, selecting a relatively
smaller k value is advantageous. Conversely, for datasets with a larger average node degree, like
Squirrel and Chameleon, opting for a larger k value is preferable.

These insights provide valuable guidance for choosing appropriate k values based on the characteristics of
the dataset, thereby optimizing the performance of FedHERO.

C.3 Federated graph learning baselines

We provide detailed explanations of the federated graph learning baselines employed in our experiments.
These include:

• GCFL (Xie et al., 2021): It incorporates a gradient sequence-based clustering mechanism using
dynamic time warping. This mechanism enables multiple data owners with non-IID structured
graphs and diverse features to collaboratively train robust graph neural networks.

• FedStar (Tan et al., 2023): It relies on structural embeddings and a feature-structure decou-
pled graph neural network to address non-IID data challenges through shared structural knowledge.
Within the FL framework, it exclusively exchanges the structure encoder. This allows clients to
collectively learn global structural knowledge while maintaining personalized learning of node rep-
resentations based on their features.

• FedLit (Xie et al., 2023): It tackles the variability in link characteristics within graphs, where
ostensibly uniform links may convey varying degrees of similarity or significance. It dynamically
identifies latent link types through an EM-based clustering algorithm during federated learning and
adapts message-passing strategies using multiple convolution channels tailored to different link types.

• FedPub (Baek et al., 2023): It leverages functional embeddings of the local GNNs with random
graphs as inputs to calculate similarities between them. These similarities are then employed for
weighted averaging during server-side aggregation. Additionally, the method learns a personalized
sparse mask at each client, allowing for the selection and update of only the subset of aggregated
parameters relevant to the specific subgraph.

• FedSage (Zhang et al., 2021): It introduces NeighGen, an innovative missing neighbor generator
integrated with federated training procedures. This endeavor is geared towards achieving a universal
node classification model within a distributed subgraph framework, eliminating the need for direct
data sharing.

22

Under review as submission to TMLR

0.0 0.1 0.2 0.3 0.4 0.5
34

36

38

40

A
cc

Squirrel

0.0 0.1 0.2 0.3 0.4 0.5
52
54
56
58

A
cc

Chameleon

0.0 0.1 0.2 0.3 0.4 0.5
30

32

34

36

A
cc

Actor

0.0 0.1 0.2 0.3 0.4 0.5
48

49

50

51

A
cc

Flickr

(a) Sensitivity study of λ

0.0 0.1 0.2 0.3 0.4 0.5
34

36

38

40

A
cc

Squirrel

0.0 0.1 0.2 0.3 0.4 0.5
50

53

56

59

A
cc

Chameleon

0.0 0.1 0.2 0.3 0.4 0.5
30

32

34

36

A
cc

Actor

0.0 0.1 0.2 0.3 0.4 0.5
48

50

52

54

A
cc

Flickr

(b) Sensitivity study of µ

0.0 0.2 0.4 0.6 0.8 1.0
32

34

36

38

A
cc

Squirrel

0.0 0.2 0.4 0.6 0.8 1.0
51
53
55
57

A
cc

Chameleon

0.0 0.2 0.4 0.6 0.8 1.0
30

32

34

36

A
cc

Actor

0.0 0.2 0.4 0.6 0.8 1.0

48

49

50

51

A
cc

Flickr

(c) Sensitivity study of α

2 4 6 8 10
34

36

38

40

A
cc

Squirrel

2 4 6 8 10
52

54

56

58

A
cc

Chameleon

2 4 6 8 10
NH

30

32

34

36
A

cc
Actor

2 4 6 8 10
NH

49
50
51
52

A
cc

Flickr

(d) Sensitivity study of NH

Figure 9: Performance of FedHERO with different hyperparameter settings. The star point in the figure
corresponds to the default result reported in the main text.

D Influence of Hyperparameters in FedHERO

D.1 Hyperparameter Settings.

The architecture of the GNN models consists of a feature projection layer, two graph convolutional layers,
and a classifier layer. We employ Adam optimizer (Kingma & Ba, 2014) with a learning rate of 0.005. We
apply a consistent hyperparameter setting in our main results. Specifically, we set α = 0.2, µ = λ = 0.1,
k = 20, and NH = 4. The training process involves 200 communication rounds, with each local training
epoch lasting 1 iteration. The nodes are randomly distributed into five groups. For each experiment, one
group is chosen as the test set, while the remaining groups are utilized for training and validation. We
perform five experiments on each dataset and report the models’ average performance. For the ieee-fraud
and credit datasets, we present the mean test Area Under the Curve (AUC), accounting for the imbalanced
labels. For the remaining datasets, we use mean test accuracy across clients for evaluation.

In an ideal scenario, a grid search for hyperparameter optimization would be conducted to determine the
optimal combination for each set of experiments. It’s noteworthy that our experimental results consistently
demonstrate the superior performance of FedHERO compared to all baseline methods, even without hy-
perparameter tuning. Additionally, we conducted an investigation into the impact of these hyperparameters
under the Louvain data partitioning method to provide recommended values for these aggregation and
smoothing hyperparameters and their potential impact. The results are illustrated in Figure 9.

23

Under review as submission to TMLR

D.2 Influence of Smoothing Hyperparameters λ and µ

No distinct trend related to the intrinsic nature of the data was observed for λ and µ. However, it is
noteworthy that removing regularization on structures (i.e., setting λ or µ to 0) resulted in more pronounced
performance degradation. In fact, the regularization loss plays a constructive role in offering guidance for
structure learning, as highlighted in prior work (Zhao et al., 2023). Conversely, increasing λ or µ to a
certain value proved beneficial in enhancing the performance of FedHERO. However, further increases had
a negative impact on the model’s focus on the classification task, leading to a decline in performance.

D.3 Influence of Aggregation Hyperparameters α

For the Squirrel, Chameleon, and Actor datasets, optimal results were observed at α = 0.2, while α = 0.4
exhibited the best performance for the Flickr dataset, as illustrated in Figure 9(c). This variation in optimal
α values is attributed to the homophily ratios of the datasets. According to Mao et al. (2023) and Kim &
Oh (2022), the homophily ratios for Squirrel, Chameleon, and Actor are 0.22, 0.25, and 0.22, respectively.
In contrast, Flickr has a higher homophily ratio of 0.32. Given Flickr’s relatively elevated homophily ratio,
employing a larger α to increase the proportion of local models proves beneficial, effectively leveraging the
structural information within the subgraph. Conversely, for datasets with lower homophily ratios, superior
performance is achieved by placing more emphasis on the homophily properties introduced by the global
structure learner. In summary, we posit that, for graph data with a larger homophily ratio (indicating lower
heterophily), higher values of α can be advantageous.

D.4 Influence of the Number of Heads NH

Figure 9(d), we investigate FedHERO’s performance under varying values of NH . We observe that increas-
ing NH up to a certain point enhances FedHERO’s performance. This improvement can be attributed to
the aggregation of multi-head results, bolstering the model’s ability to capture underlying influences between
nodes from diverse perspectives.

However, beyond a certain threshold, further increases in NH do not yield additional performance improve-
ments. This phenomenon could be attributed to factors such as the saturation of connections between nodes,
potential overfitting concerns, and the increased time and computing resources required with larger NH .

E Comparative Analysis with FedStar

This subsection offers a detailed comparison between FedHERO and FedStar due to their similarity.
We observe that the design of FedHERO shares similarities with the concept in FedStar (Tan et al.,
2023), which involves decoupling the GNN into feature and structure encoders. However, FedHERO dis-
tinguishes itself from FedStar in both purpose and the utilization of structural information. In FedStar,
structural information is integrated into features to capture additional domain-invariant characteristics (Tan
et al., 2023). Conversely, FedHERO is tailored for scenarios where graphs in clients originate from the
same domain but possess distinct node neighbor distributions. Its objective is to learn generally applicable
message-passing patterns that are conducive to different heterophilic graphs and can be shared across clients.
While FedStar introduces degree-based and random walk-based structure embedding techniques to extract
structural information for each node, these embeddings might prove simplistic for the problem outlined in
the Introduction. For instance, if one node has three neighbor nodes with the same class and another node
has three neighbor nodes with different classes, the degree-based method would yield identical embeddings
for both nodes. Additionally, in situations where two graphs share the same adjacency matrix but feature
different node class distributions, the random walk-based method might not reach its potential. In contrast,
the structure learning model in FedHERO is designed to generate a desired graph structure, bypassing
the challenges encountered by the structure embedding method in FedStar. This is corroborated by the
experimental results outlined in the Experiment Section.

24

	Introduction
	PRELIMINARIES
	Proposed Framework: FedHERO
	Graph Structure Learning in FedHERO
	Optimization of the Dual-channel Model
	Model Aggregation in FedHERO
	Computational and Communication Overhead

	EXPERIMENTS
	Experimental Settings
	Evaluation on Semi-synthetic Datasets
	Evaluation on Real-world Datasets
	FedHERO with Different Structure Learning Methods
	FedHERO with Various Sharing Mechanisms
	Convergence Analysis
	Privacy Preservation in FedHERO
	Robustness Study of FedHERO

	Related Work
	Conclusion
	Experiment Setups
	Neighbor node distributions of clients in two datasets
	Case study
	Overlapping subgraphs scenario
	Latent graph generation
	Federated graph learning baselines

	Influence of Hyperparameters in FedHERO
	Hyperparameter Settings.
	Influence of Smoothing Hyperparameters and
	Influence of Aggregation Hyperparameters
	Influence of the Number of Heads NH

	Comparative Analysis with FedStar

