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ABSTRACT

Different nodes in a graph neighborhood generally yield different importance.
In previous work of Graph Convolutional Networks (GCNs), such differences
are typically modeled with attention mechanisms. However, as we prove in our
paper, soft attention weights suffer from over-smoothness in large neighborhoods.
To address this weakness, we introduce a novel framework of conducting graph
convolutions, where nodes are discretely selected among multi-hop neighborhoods
to construct adaptive receptive fields (ARFs). ARFs enable GCNs to get rid of
the over-smoothness of soft attention weights, as well as to efficiently explore
long-distance dependencies in graphs. We further propose GRARF (GCN with
Reinforced Adaptive Receptive Fields) as an instance, where an optimal policy of
constructing ARFs is learned with reinforcement learning. GRARF achieves or
matches state-of-the-art performances on public datasets from different domains.
Our further analysis corroborates that GRARF is more robust than attention models
against neighborhood noises.

1 INTRODUCTION

After a series of explorations and modifications (Bruna et al., 2014; Kipf & Welling, 2017; Velickovic
et al., 2017; Xu et al., 2019; Li et al., 2019; Abu-El-Haija et al., 2019), Graph Convolutional Networks
(GCNs) 1 have gained considerable attention in the machine learning community. Typically, a graph
convolutional model can be abstracted as a message-passing process (Gilmer et al., 2017) – nodes in
the neighborhood of a central node are regarded as contexts, who individually pass their messages
to the central node via convolutional layers. The central node then weighs and transforms these
messages. This process is recursively conducted as the depth of network increases. 2

Neighborhood convolutions proved to be widely useful on various graph data. However, some
inconveniences also exist in current GCNs. While different nodes may yield different importance in
the neighborhood, early GCNs (Kipf & Welling, 2017; Hamilton et al., 2017) did not discriminate
contexts in their receptive fields. These models either treated contexts equally, or used normalized
edge weights as the weights of contexts. As a result, such implementations failed to capture critical
contexts – contexts that pose greater influences on the central node, close friends among acquaintances,
for example. Graph Attention Networks (GATs) (Velickovic et al., 2017) resolved this problem with
attention mechanisms (Bahdanau et al., 2015; Vaswani et al., 2017). Soft attention weights were used
to discriminate importance of contexts, which allowed the model to better focus on relevant contexts
to make decisions. With impressive performances, GATs became widely used in later generations of
GCNs including (Li et al., 2019; Liu et al., 2019).

However, we observe that using soft attention weights in hierarchical convolutions does not fully
solve the problem. Firstly, we will show as Proposition 1 that under common conditions, soft attention
weights almost surely approach 0 as the neighborhood sizes increase. This smoothness 3 hinders the
discrimination of context importance in large neighborhoods. Secondly, we will show by experiments

1We use the name GCN for a class of deep learning approaches where information is convolved among graph
neighborhoods, including but not limited to the vanilla GCN (Kipf & Welling, 2017).

2We use the term contexts to denote the neighbor nodes, and receptive field to denote the set of contexts that
the convolutions refer to.

3The smoothness discussed in our paper is different to that in (Li et al., 2018), i.e. the phenomenon that
representations of nodes converge in very deep GNNs.
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Figure 1: A Comparison between hierarchical convolutions and convolutions with ARF. Left: GCNs
with ARFs better focus on critical nodes and filter out noises in large neighborhoods. Right: ARFs
more efficiently explore long-distance dependencies.

in Section 4.2 that GATs cannot well distinguish true graph nodes from artificial noises: attention
weights assigned to true nodes and noises are almost identical in distribution, which further leads to a
dramatic drop of performance.

Meanwhile, an ideal GCN architecture is often expected to exploit information on nodes with
various distances. Most existing GCNs use hierarchical convolutional layers, in which only one-hop
neighborhoods are convolved. As a result, one must increase the model depth to detect long-distance
dependencies (informative nodes that are distant from the central nodes). This is particularly an issue
in large graphs, as the complexity of the graph convolutions is exponential to the model depth. 4

In large graphs, the model depths are often set as 1, 2 or 3 (Hamilton et al., 2017; Velickovic et al.,
2017). Accordingly, no dependencies longer than 3 hops are exploited in these models.

Motivated by the discussions above, we propose the idea of adaptive receptive fields (ARFs).
Figure 1 illustrates the differences between hierarchical convolutions and convolutions with ARFs.
An ARF is defined as a subset of contexts that are most informative for a central node, and is
constructed via selecting contexts among the neighborhood. Nodes in an ARF can be at various
distances from the central node. The discrete selection process of contexts gets rid of the undesired
smoothness of soft weights (see Section 2). In addition, by allowing ARFs to choose contexts on
different hops from the central node, one can efficiently explore dependencies with longer distances.
Experiments also show that ARFs are more robust to noises (see Section 4). We further propose
GRARF (GCNs with Reinforced Adaptive Receptive Fields) as an instance for using ARFs in
node-level tasks. In GRARF, an optimal policy of constructing ARFs is learned with reinforcement
learning (RL). An RL agent (constructor) successively expands the ARF via a two-stage process: a
contact node in the intermediately-constructed ARF is firstly selected; a context among the direct
neighbors of the contact node is then added to the ARF. The reward of the constructor is defined as
the performance of a trained GCN (evaluator) on the constructed ARF.

GRARF is validated on datasets from different domains including three citation networks, one
social network, and an inductive protein-protein interaction dataset. GRARF matches or improves
performances on node classification tasks compared with strong baselines. 5 Moreover, we design
two tasks to test the models’ abilities in focusing on informative contexts and leveraging long-distance
dependencies by injecting node noises in graphs with different strategies.

2 PRELIMINARIES AND THEORIES

Notations. In our paper, we consider node-level supervised learning tasks on attributed graphs. An
attributed graph G is generally represented as G = (V,A,X), where V = {v1, · · · , vn} denotes the
set of nodes, A ∈ {0, 1}n×n denotes the (binary) adjacency matrix, and X ∈ Rn×d0 denotes the
input node features, xv ∈ Rd0 the features of node v. E is used as the set of edges. We use N(vi) to
denote the one-hop neighborhood of node vi, with vi itself included. We use H(l) ∈ Rn×dl as the
matrix containing dl-dimensional hidden representations of nodes in the l-th layer, h(l)v that of node

4With sparse adjacency matrices, the average complexity of graph convolutions is O(dL), where L is the
model depth and d is the graph degree (or the neighborhood-sampling sizes in (Hamilton et al., 2017)).

5We mainly show the results of node classification tasks in our paper, whereas GRARF is intrinsically adapted
to all node-level supervised learning tasks.
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v. Â denotes the symmetrically normalized adjacency matrix with Â = D−1/2(A+ In)D−1/2 and
D = diag(d), di =

∑
j(A+ In)ij . We use bold letters for neural network parameters.

The smoothness of Graph Attention Networks. As a pioneering work of simplifying architectures
of graph neural networks, the vanilla GCN layers in (Kipf & Welling, 2017) were defined as

H(l+1) = σ
(
ÂH(l)W(l)

)
= σ

 ∑
j∈N(vi)

Âijh
(l)
j W(l)

 , l = 0, 1, · · · (1)

In each layer, the node representations in one-hop neighborhoods were transformed with W and
averaged by normalized edge weights Âij . Graph Attention Networks (GATs) (Velickovic et al.,
2017) elaborated the average scheme in Eq. (1) with attention mechanisms (Bahdanau et al., 2015;
Vaswani et al., 2017). Instead of using Âij , an attention weight αij between node vi and vj was
calculated in GAT layers as

eij = fθ (hi, hj) , αij = softmaxj (eij) =
exp(eij)∑

k∈N(vi)
exp(eik)

, (2)

where fθ(·) is often called the energy function with parameter θ. GATs implicitly enabled specifying
different weights in a neighborhood. However, under some common assumptions and as the neigh-
borhood size increases, these attention weights, normalized with the softmax function, suffer from
over-smoothness: all attention weights approach 0 as the neighborhood size increases. We formally
introduce and prove this claim as Lemma 1 and Proposition 1:
Lemma 1 (the smoothness of softmax). If random variables X1, X2, · · · are uniformly bounded
with probability 1, that is, for any i and some C, P (|Xi| > C) = 0, then the softmax values taking
{Xi}ni=1 as inputs approach 0 almost surely when n→∞, i.e.

eXi

/
n∑
j=1

eXj → 0 a.s. (3)

Proof. The proof is simple noting that eXi/
∑n
j=1 e

Xj > 0, and that with probability 1,

eXi

/
n∑
j=1

eXj < eC
/
ne−C → 0, n→∞.

Proposition 1 (the smoothness of attention weights). If the representation of nodes (random vectors)
H1, H2, · · · ∈ Rd are uniformly bounded with probability 1 (for any i and some C, P (‖H1‖ > C) =
0), and for any (fixed) node vi, the energy function fθ(hi, ·) is continuous on any closed set D ∈ Rd,
then the attention weights in the neighborhood of vi approach 0 almost surely when n→∞, i.e.

αij =
exp(fθ(hi, Hj))∑

k∈N(vi)
exp(fθ(hi, Hk))

→ 0 a.s. (4)

Proof. Following the a.s. boundedness {Hi}s and the continuity condition on fθ(·), the random
energies Eij = fθ(hi, Hj) are also bounded a.s.. The desired result then follows Lemma 1.

Note that the continuity condition on fθ(hi, ·) in Proposition 1 can be satisfied with almost any
commonly used non-linear functions and (regularized) parameters in deep learning, specifically, those
in the official version of GATs (eij = aT [Whi‖Whj ], where ‖ is the operator of concatenation).
Also, the boundedness of inputs is trivial in deep learning.

GCNs with ARFs overcome smoothness. What Proposition 1 shows is that in large neighborhoods,
attention weights are smoothed to 0, thus hindering the discrimination of context importance. In
addition, such smoothness can be immediately generated to any other form of normalized weights
as long as αij > 0 uniformly and

∑
j∈N(vi)

αij = 1. We alleviate the smoothness with ARFs by
incorporating discreteness. Specifically, let us denote the convolution in the evaluator as

h′i = σ

 ∑
j∈Na(u)

ηijhjW

 = σ

 ∑
j∈Nk(u)

η̃ijhjW

 , η̃ij =

{
ηij , j ∈ Na(u),
0, j /∈ Na(u),

(5)
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where Na(u) is an ARF, k is the maximum hop that the ARF explores, and Nk is the entire k-hop
neighborhood. Accordingly, η̃ij is not subjected to smoothness: if ηij has a uniform lower bound
D > 0, then for p ∈ Na(u) and q /∈ Na(u), we have η̃ip − η̃iq > D, regardless of the sizes of N (k).
Note that ηij > 0 uniformly can be guaranteed in most cases when the maximum ARF size is limited,
for example, with uniform weights or softmax weights of bounded energies.

It should be noted that the discrimination of nodes in ARFs is different to that in MixHop (Abu-El-
Haija et al., 2019), which directly takes multi-hop nodes as inputs. MixHop can specify different
parameters 6 for contexts on different hops (hop-level discrimination), while it CANNOT specify
different weights for contexts on the same hop (node-level discrimination) as they were uniformly
treated (averaged). The two levels of discrimination are orthogonal, and we focus on the latter.

Deep reinforcement learning on graphs. As the discrete context selection process is non-
differentiable, we apply deep reinforcement learning approaches to learn the policy of construting
ARFs in GRARF, specifically, the Deep Q-Learning (DQN) (Mnih et al., 2015) algorithm. DQN uses
deep neural networks to approximate the action value function (Q-function), and chooses the action
that maximizes it in each step. The Q-function is defined iteratively as

Q∗(st, at) = R(st, at, st+1) + γmax
a∈A

Q∗(st+1, a), (6)

where s is the state, R(·) is the reward function, A is the action space, and γ is a discount factor. A
reward shaping technique (Ng et al., 1999) is also used in GRARF to alleviate the sparsity of rewards,
which decorates the original reward R(·) with a potential energy F (·), yielding an immediate reward
R̂(·). Denoted in formula,

F (s, a, s′) = Φ(s′)− Φ(s), R̂(s, a, s′) = R(s, a, s′) + F (s, a, s′), (7)

where Φ(·) is a fixed potential function of states that does not change during training. (Ng et al.,
1999) proved that the optimal policies of MDPs remain invariant if R(·) is replaced by R̂(·).

There are other recent papers implementing reinforcement learning on graphs. For example, GCPN
(You et al., 2018) proposed an RL agent for generating graph representations of biomedical molecules,
and DGN (Jiang et al., 2020) introduced a multi-agent reinforcement learning approach where the
agents in the system formed a dynamic network. The successive molecule generation process in
GCPN inspired us in designing the ARF constructor in GRARF, whereas the two models are of
different motivations and applications.

ARFs and neighborhood sampling. It should be noted that GRARF can also be interpreted as a
neighborhood sampling approach. Neighborhood sampling was proposed as a necessary process to
apply GCNs to large graphs with arbitrarily large neighborhoods. GraphSAGE (Hamilton et al., 2017)
proposed a general framework of neighborhood sampling and aggregation, where contexts were
uniformly sampled. Later work improved the sampling strategy with importance sampling (Chen
et al., 2018) and explicit variance reduction (Huang et al., 2018; Hamilton et al., 2017). Sub-graphs
instead of subsets of neighborhoods were directly sampled in (Zeng et al., 2020). Indeed, selecting
ARF nodes takes a specific form of neighborhood sampling. However, the aim of constructing
ARFs is to ignore trivial information and to focus on critical contexts, rather than to estimate the
neighborhood average as is the primary target of neighborhood sampling. Therefore, despite the
similarity, the two approaches are in different directions.

3 PROPOSED METHOD: GRARF

3.1 ARF CONSTRUCTION AS MARKOV DECISION PROCESS

An adaptive receptive field is defined as a set of nodes Na(u) with regard to a central node u. Nodes
in Na(u) can be at various distances from u, and u itself should be contained in its ARF. We also
assume that the induced subgraph of an ARF must be (weakly) connected, under the motivation that
if a far context poses great influence on the central node, then at least one path connecting it to the
central node should be included in the ARF. The ARF construction process is modeled as a Markov

6For clarity, we use the term parameters for parameters in the transformation matrix W (see Eq.(1) in the
original paper), and weights for the weights of different contexts (e.g. the attention weights).
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Figure 2: The general architecture of GRARF. Red and blue arrows together demonstrate the training
process. Blue arrows along demonstrate the prediction process.

Decision Process (MDP) M = (S,A, P,R, γ), where S = {si} is the state space of all possible
ARFs;A = {ai} describes all possible (two-stage) actions a = (a1, a2); P is the transition dynamics
p(st+1|st, at) which describes how nodes are added to ARFs; R is the reward function of an ARF,
and γ is the discount factor.

Figure 2 introduces the general structure of our model. GRARF is composed of a constructor and an
evaluator. The constructor implements an RL agent to learn an optimal policy of the MDP with DQN,
and the evaluator conducts graph convolutions on constructed ARFs. Specifically, in the training
phase, the constructor and the evaluator are trained alternately, where rewards of the constructor are
derived from the performances of the evaluator; in the prediction phase, the evaluator convolves over
the ARFs constructed for the target node by the constructor and then predicts the result. No gradient
flows between the constructor and the evaluator.

3.2 MODEL ARCHITECTURE

We hereby specify the MDP of ARF construction, the evaluator, and the training scheme.

States. At step t, the state st is defined as the intermediately generated ARF, which is encoded as a
vector representation ~st by a function fs, and then observed by the constructor. Formally,

st , N (t)
a (u), ~st , fs(N

(t)
a (u)), (8)

We initialize the ARF as N (0)
a (u) = {u}. The transition dynamics in GRARF is deterministic: nodes

selected by the RL agent is added to the ARF, i.e. N (t+1)
a (u) = N

(t)
a (u) ∪ a2t .

Actions. For each action, the constructor chooses a node to add to the ARF among all nodes adjacent
to the ARF. The average complexity of directly choosing among all adjacent candidates is O(nt × d),
where nt is the ARF size at step t and d is the graph degree. We reduce the complexity to O(nt + d)
by decomposing the action into two stages, denoted as at = (a1t , a

2
t ). In the first stage, the constructor

chooses a contact node a1t ∈ N
(t)
a (u), who limits the candidates of the next stage in its own direct

neighborhood. In the second stage, the constructor searches among the neighborhood of a1t for a
node a2t to add to the ARF. The optimal Q-function can accordingly be rewritten as

Q∗1(st, a
1
t ) = max

a2∈N(a1t )
Q∗2(st, a2), (9)

Q∗2(st, a
2
t ; a

1
t ) = R(st, a

2
t , st+1) + γ max

a1∈N(t+1)
a (u)

Q∗1(st+1, a1). (10)

We do not design explicit stop actions, and the process stops after a fixed number of steps (T ).
Meanwhile, we do not require that a2t /∈ N

(t)
a (u), so a node may be selected multiple times in an ARF.

Note that if a node already in the ARF is selected, the state ceases to change, and no new nodes will
be selected. Therefore, various ARF sizes are implicitly allowed. The actions (i.e. candidate nodes)
in both stages are encoded with fa, and the approximated Q-function in GRARF is parameterized as

Q1(st, a
1
t ) = wT

1

[
fa(a1t )‖fs(st)

]
+ b1, (11)

Q2(st, a
2
t ; a

1
t ) = wT

2

[
fa(a1t )‖fa(a2t )‖fs(st)

]
+ b2. (12)
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Rewards. The reward of the constructor is defined as the performance of the GCN evaluator. As
conducting step-wise evaluations is much time-costly, we sample the reward once the ARF is fully
constructed, that is,

R(st, a
2
t , st+1) ,

{
0, t < T,

eval
(
N

(t)
a (u)

)
= −loss

(
GCN

(
N

(t)
a (u)

))
, t = T.

(13)

The loss in Eq. (13) is specified by the downstream supervised node-level (or node-pair-level) tasks,
such as node classification, link prediction, etc. We further adopt the reward shaping technique (Ng
et al., 1999) to guide and accelerate the training process. Considering the desired properties of critical
contexts and ARFs, we propose the following heuristic potential functions: i) Φ1(s) = |N (t)

a (u)|,
the sizes of ARFs, to encourage the variety of contexts; ii) Φ2(s) =

∑
v∈Na(u)

deg(v), the sum of
degrees in the ARF, as nodes with higher degrees are intuitively more informative; iii) Φ3(s) =∑
v∈Na(u)

sim(v, u) =
∑
v∈Na(u)

xv · xu, the inner product of input features between the central
node and the ARF nodes, to empirically encourage more relevant contexts. According to Eq. (7) with
so-defined Φs, the immediate rewards of the constructor is

R̂(st, a
2
t , st+1) =


0, t < T and a2t ∈ N

(t)
a (u),

1 + deg(a2t ) + xa2t · xu, t < T and a2t /∈ N
(t)
a (u),

−loss
(

GCN
(
N

(t)
a (u)

))
, t = T.

(14)

Evaluator. Given a central node u and the constructed ARF Na(u), the evaluator takes the ARF as
neighborhood and convolves over it, generating the representation of the central node. An example of
evaluator would be the one defined in Eq. (5). The representation is then used to conduct downstream
tasks. Theoretically, any graph convolutional layers can be used as the evaluator. It is worth noting
that although in our experiments we only perform a one-layer graph convolution on the constructed
ARF, multiple convolutional layers can be applied on the subgraph induced by the ARF node set. We
leave this as future work.

Training. In order to mutually train the constructor and the evaluator in GRARF, we propose
an alternate training strategy, somehow analogous to the training of GAN (Goodfellow et al.,
2014). Specifically, the evaluator is first pre-trained for the given downstream task, taking direct
neighborhoods as receptive fields. We then fix the evaluator to derive constant task-aware rewards for
the training of the constructor. The alternate process goes recursively until convergence. In details, as
the training of the evaluator converges much faster than the constructor, we train the constructor with
more steps in the alternate process. Empirically, 10 : 1 is a promising choice of the ratio.

4 EXPERIMENTS

4.1 EXPERIMENT SETUP

Datasets. We evaluate GRARF on public real-world datasets including 3 citation networks, a social
network, and a protein-protein interaction dataset. Some interesting statistics of the datasets are
shown in Table 1. In the citation networks (cora, citeseer and pubmed), 7 nodes correspond to
publications in disjoint fields, and edges to (undirected) citation relationships. The social network
(github) 8 consists of website users (nodes) and their friendships (edges). We reduce the number
of input features of social networks to the figures in Table 1 by selecting most frequent ones (all
features binary and sparse). The protein-protein interaction (ppi) dataset9 contains 24 graphs, each
representing a human tissue, where nodes denote different proteins and edges denotes the interactions
in between. We use the preprocessed data of GraphSAGE (Hamilton et al., 2017).

Baselines. We pick up 5 GCN baselines to compare GRARF against, including vanilla GCN (Kipf
& Welling, 2017), GraphSAGE (Hamilton et al., 2017), GAT (Velickovic et al., 2017), GIN (Xu
et al., 2019) and MixHop (Abu-El-Haija et al., 2019). For fairness, the dimensions of all hidden

7Available at https://linqs.soe.ucsc.edu/data.
8Available at http://snap.stanford.edu/data/.
9Available at http://snap.stanford.edu/graphsage/ppi.zip.
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Table 1: Interesting statistics of the datasets used in this paper. (∗: multi-label task)
cora citeseer pubmed github ppi∗

# Nodes 2,708 3,327 19,717 37,700 56,944
# Links 5,429 4,732 44,338 289,003 818,716
# Classes 7 6 3 2 121∗

# Features 1,433 3,703 500 600 50
Avg. Degree 2.00 1.42 2.25 7.67 28.8

Table 2: Performances of GRARF and baselines on node classification tasks. (% micro-f1)
cora citeseer pubmed github ppi

Vanilla GCN (Kipf & Welling, 2017) 87.40 ± 0.36 78.09 ± 0.35 86.18 ± 0.10 81.72 ± 0.14 59.26 ± 0.03
GraphSAGE (Hamilton et al., 2017) 82.02 ± 0.31 70.23 ± 0.51 86.26 ± 0.33 78.09 ± 1.23 56.97 ± 0.94
GAT (Velickovic et al., 2017) 87.80 ± 0.11 76.43 ± 0.73 85.39 ± 0.12 81.78 ± 0.52 47.29 ± 2.30
GIN (Xu et al., 2019) 85.08 ± 0.83 73.87 ± 0.52 84.88 ± 0.17 79.05 ± 0.88 60.35 ± 1.14
MixHop (Abu-El-Haija et al., 2019) 88.70 ± 0.19 74.59 ± 0.27 85.60 ± 0.10 79.68 ± 1.00 58.55 ± 0.14

Random RF 86.93 ± 1.22 77.31 ± 1.37 86.87 ± 1.30 79.81 ± 7.82 63.27 ± 2.38
GRARF 88.34 ± 0.82 79.24 ± 0.88 88.20 ± 0.33 87.30 ± 2.54 66.54 ± 1.12

representations are set as d = 128 and an identical two-layer setup is used in all baselines. Hyper-
parameters such as learning rates in all models are tuned to achieve best performances on the
validation sets. All neural models are trained with adequate epochs with the early-stopping strategy.
More details of baselines are included in the Appendix.

GRARF implementation. In the constructor, all graph nodes are first encoded with a Graph-
SAGE layer (hcu = elu(Wc[xu‖ 1n

∑
v∈N(u) xv] + bc)). For the state encoder fs, we use linear

transformations of concatenations of central node representations and ARF-averaged node rep-
resentations, i.e. fs(Na(u)) = Ws[h

c
u‖ 1n

∑
v∈Na(u)

hcv] + bs. For the action encoder fa, we
directly use the hidden representations of nodes, i.e. fa(v) = hcv. The discount factor is chosen
as γ = 0.9. In the evaluator, a simple GraphSAGE layer convolves over constructed ARFs as
heu = elu(We[xu‖ 1n

∑
v∈Na(u)

xv]+be). The hidden representations heu are later used in node-level
tasks with only one fully-connected layer. The same as all baselines, dimensions of all hidden
representations in GRARF (hcu, heu and ~st) are 128. To demonstrate the effectiveness of ARFs, we
also conduct experiments with a random baseline, Random RF, where actions are chosen completely
randomly, but strictly following the setup of GRARF.

4.2 RESULTS

Performances of node classification tasks. Table 2 shows the micro-f1s of GRARF and baselines
on the node classification tasks including means and standard deviations across 10 replicas. The
datasets are uniformly split to 5 : 2 : 3 as training, validation and test sets, except for ppi, where 20
graphs are used as training set, 2 as validation set and 2 as test set, identical to that in (Hamilton et al.,
2017). Tasks are transductive on citation and social network and inductive on ppi. GRARF shows
very competitive performances on both types of tasks: on citation graphs where neighborhoods are
small (degree ≈ 2), GRARF matches or improves by margin the performances of other baselines; on
github and ppi datasets with larger neighborhoods (degree > 7), GRARF displays a significant
advantages over other baselines. This is in concordance with our expectations, as we have shown
that GRARF overcomes the smoothness and thus better focuses on informative contexts in larger
neighborhoods.

Capturing informative contexts and long-distance dependencies (LDD). To demonstrate the
benefits of using ARFs, we design two experiments through adding artifical noises in cora with
different strategies. In the denoising setup, we generate r× |V | noise nodes and randomly connects
them to true nodes. An amount of r × |E| edges between true nodes and noises are added, so that
the proportion of noises in the neighborhood is approximately r

1+r . In the LDD setup, we assign
a split number k drawn from Poisson(λ) on each edge, and then split each edge to a (k + 1)-hop
path (do nothing if k = 0) by inserting k noises. The one-hop dependencies are hence stretched
longer and more difficult for the models to detect. In both experiments, features of noises are drawn
from marginal distributions of individual dimensions. We conduct experiments with 5 replicas per
model and report the averaged performances and 95% confidence intervals. Figure 3 shows examples
and performances of GRARF, vanilla GCNs under two setups. We also show the performances of
raw-feature baseline for comparison (which fully ignores the noises).
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Figure 3: Examples and results of two designed experiments. (a)(b) The denoising experiment. (c)(d)
The long-distance dependency experiment. GRARF displays robustness to noises in both experiments,
whereas performances of vanilla GCNs and GATs drop dramatically.

Figure 4: Analysis of behaviors in GAT and GRARF. (a) A box-plot of attention weights on cora
with regard to node degrees, where medians, Q1s, Q3s and a 95% intervals are displayed. (b)-(d)
Histograms of attention weights assigned to true nodes and noises in the denoising experiments
(r = 1), with different node degrees (d = 2, 5, 10). (e) The ratios of noises in constructed ARFs with
regard to node degrees, in the denoising experiments (r = 1).

In the denoising experiment, GRARF displays a significantly better ability in capturing informative
nodes while ignoring noises. The performances of vanilla GCNs and GATs drop dramatically as r
increases and even below the raw baseline when r > 1, whereas the performances of GRARF drops
only marginally. A similar phenomenon is observed in the LDD experiment, which corroborates
that the constructed ARFs in GRARF better collect the information from far-hop neighbors through
exploring the neighborhood in a more flexible manner.

We further analyzed the behavior of GATs and GRARF on real and noisy data. Figure 4 (a) shows
the distributions of attention weights that GATs assign to neighbors of central nodes (with degree
ds) on original cora. The majority of attention weights lie in a very thin interval around 1/d which
continues to shrink as d increases. This is empirical evidence of Proposition 1. Figure 4 (b)-(d) show
distributions of attention weights assigned to true nodes and noises in the denoising experiment with
r = 1 and d = 2, 5, 10 (calculated in true nodes’ neighborhoods only.). Attention weights assigned to
true nodes and noises are almost identical, especially with larger d. This indicates that GATs cannot
well distinguish noises from true nodes with attention weights. We also report the ratios of noises in
constructed ARFs in the same experiment. The noise ratios in the ARFs stay far below the noise ratio
in the graph, and remain almost invariant to the sizes of neighborhoods. This suggests that the ARF
constructor learns to ignore noises in the graph neighborhoods.

5 CONCLUSION & FUTURE WORK

In this paper, we proposed the idea of adaptive receptive fields and GRARF as an instance. We
showed both theoretically and empirically that GCNs with ARFs address the smoothness of attention
weights, and hence better focus on critical contexts instead of common ones or noises. Meanwhile,
as nodes in ARFs can be at various distances from the central node, GCNs with ARFs explore
long-distance dependencies more efficiently. Nevertheless, the ARFs in our paper are simplified as
sets of nodes, whose structures are mostly ignored.

For future work, a straight direction is to learn an optimal convolutional structures on constructed
ARFs, or to jointly learn both. Finding fast approximations of RL is also attracting. Another
promising prospect is to provide the constructor with more global-level information, for currently
constructor only observes local neighborhoods.
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