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Abstract

When learning task-oriented dialogue (TOD) agents, one can naturally utilize1

reinforcement learning (RL) techniques to train conversational strategies to achieve2

user-specific goals. Existing works on training TOD agents mainly focus on3

developing advanced RL algorithms, while the mechanical designs of reward4

functions are not well studied. This paper discusses how we can better learn5

and utilize reward functions for training TOD agents. Specifically, we propose6

two generalized objectives for reward function learning inspired by the classical7

learning to rank losses. Further, to address the high variance issue of policy gradient8

estimation using REINFORCE, we leverage the gumbel-softmax trick to better9

estimate the gradient for TOD policies, which significantly improves the training10

stability for policy learning. With the above techniques, we can outperform the11

state-of-the-art results on the end-to-end dialogue task on the Multiwoz 2.0 dataset.12

1 Introduction13

Task-Oriented Dialogue systems are designed to achieve a goal specified by a user in natural language.14

The classical approach to solve the task usually requires to solve several sub-tasks [1], including15

belief state tracking [2, 3], dialogue management (DM) [4], and natural language generation (NLG)16

for response generation [5]. More recently, end-to-end task-oriented dialogue based approaches [e.g.,17

6–8] have been proposed, which significantly improve the overall performance. Besides, a number of18

works developed advanced reinforcement learning algorithms [e.g., 9, 10] to further improve the over19

performance. However, the designs of reward functions are still heuristic based, which may lead to20

poor performance if they are not well tuned.21

In this paper, we study how we can better learn and utilize reward function for training TOD agents.22

To be more concrete, we propose two generalized reward learning objectives in Section 3.1, and23

discuss how we can better utilize the reward function for dialogue agent training in Section 3.224

Further we empirically evaluate our proposed methods on Multiwoz 2.0 dataset in Section 4, which25

shows significantly improvements compared with previous state of the art approaches.26

2 Background27

Task Oriented Dialogue as Reinforcement Learning. We formulate the problem of task oriented28

dialogue systems as a partially observable Markov decision process (POMDP) [11], specified by29

M = ⟨S,A,O,P,R, γ⟩, where state s ∈ S consists of the previous dialogue history h and the30

user intended goal g specified prior to the start of the dialogue; o ∈ O is the observation that can31

be the user utterance; action a ∈ A can be the system response or dialogue act; P(s′ | s, a) is the32

underlying transition probability; R(h, a, g) is the intermediate reward function for giving action a33

under dialogue history h and goal g; and γ ∈ [0, 1] is the discount factor.34
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The dialogue history ht at timestep t consists of all the previous observations and actions, i.e.,35

ht ≜ {o0, a0, . . . , ot−1, at−1, ot}. Since the TOD agent can not directly observe the user goal g, it36

makes decision based on the entire dialogue history ht so far. Specifically, the policy π is defined as37

a mapping from ht to a probability distribution over A, i.e., π ≜ π(at |ht). The training objective is38

to find a policy π that maximizes the expected (discounted) cumulative reward39

J(π) ≜ Eµg,π,P

[∑T
t=0 γ

tR(ht, at, g)
]
,

where µg is the sampling distribution of goals and T is the number of turns in a dialogue trajectory.40

Reward Design and Learning in Task Oriented Dialogue Systems. Unlike classic RL problems41

where the intermediate reward function is well designed and provided, we can only get the evaluation42

metric at the end of the dialogue [12]. As a result, most of the existing works adopt the manually43

designed intermediate reward function that only gives binary reward to indicate success or not [e.g.,44

13, 14, 10]:45

R(ht, at, g) :=

{
Rconst, if goal g achieved at t ,

−Rconst or 0, if goal g not achieved at t ,

where Rconst is a positive constant that can be 1. However, such sparse reward signals can be one of46

the reasons that the TOD agents learned by RL tend to have poor empirical performance [15].47

To address the above issue, a few number of recent works focus on learning a dense reward function48

from demonstrations or mechanical dialogue assessments [e.g., 16, 9], inspired by the reward learning49

from preferences in RL [17–19]. More precisely, suppose we are given two dialogue trajectories τi and50

τj , with τi ≜ {g(i), (o(i)0 , a
(i)
0 ), . . . , (o

(i)
T , a

(i)
T )}, and we want to learn a parameterized reward func-51

tion Rθ(ot, at, g) with parameter θ,1 such that
∑T

t=0 Rθ(o
(i)
t , a

(i)
t , g(i)) >

∑T
t=0 Rθ(o

(j)
t , a

(j)
t , g(j))52

when the preference score for τi is larger than τj ( denoted by τi ≻ τj for short). Then we can follow53

the Bradley-Terry model of preferences [20] to train the reward function by minimizing the following54

loss:55

ℓ(θ) = −
∑

τi≻τj
log

[
exp

(∑T
t=0 Rθ(o

(i)
t ,a

(i)
t ,g(i))

)
∑

k∈{i,j} exp
(∑T

t=0 Rθ(o
(k)
t ,a

(k)
t ,g(k))

)] . (1)

ℓ(θ) can also be interpreted as a pairwise ranking loss, which is formalized as a binary classification56

in the problem of learning to rank [21–23].57

3 Main Method58

In this section, we start with proposed objectives for reward function learning based on classical59

approaches from learning to rank (LTR) literature [24], then we describe how to incorporate the60

learned reward function to training of MinTL to improve the overall performance.61

3.1 Two Generalized Objectives for Reward Learning62

We introduce two objectives RewardNet and RewardMLE, both of which can utilize multiple dialogue63

trajectories to optimize the reward function in a batch. Compared with the pairwise based approach64

described in Section 2, these two objectives can improve efficiency of the reward learning training,65

especially under the stochastic training settings.66

Setup. Assume there are N (N ≥ 2) dialogue trajectories denoted by DN ≜ (τ1, τ2, . . . , τN ),67

and each dialogue trajectory τi has an automatic evaluated metric score S(τi) (here we use combine68

score). For simplicity, we further assume the N dialogue trajectories are ranked: τ1 ≻ τ2 ≻ . . . ≻ τN ,69

or equivalently S(τ1) ≥ S(τ2) ≥ . . . ≥ S(τN ). Besides, we denote the accumulated reward of the70

dialogue trajectory τi by J(τi; θ) :=
∑T

t=0 Rθ(o
(i)
t , a

(i)
t , g(i)). And our goal is to learn the reward71

function Rθ(o, a, g) such that the accumulated reward of the trajectories can reflect the ranking order:72

J(τ1; θ) ≥ . . . ≥ J(τN ; θ).73

RewardNet. The proposed RewardNet objective for reward function learning is adopted from the74

RewardNet loss [25] in the LTR literature. Specifically, given the N trajectories, we can define the75

RewardNet loss as the cross entropy between {J(τi; θ)}Ni=1 and {S(τi)}Ni=1:76

ℓRewardNet(θ;DN ) ≜ −
∑N

i=1 PS(τi) · log
(
PJ(τ ;θ)(τi)

)
, (2)

77

with PS(τi) = S(τi)
/(∑N

k=1 S(τk)
)
, PJ(τ ;θ)(τi) = Φ(J(τi; θ))

/(∑N
k=1 Φ(J(τk; θ))

)
,

1We use the belief state, action and goal as the reward function input, and the belief state is part the observation
ot. We also drop the dependency on ht for Rθ to simplify the reward function learning.
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where Φ(·) is a monotonic and positive function defined on R+, and PS(τi) is the normalized prob.78

defined by the true score of each trajectory. Also, the pairwise loss proposed in CASPI [9] can be79

viewed as a special case of RewardNet loss where the number of trajectories N = 2.80

RewardMLE. The RewardMLE objective is based on the RewardMLE loss [26], where we only81

utilize the ranking order in the batch dialogue trajectories DN , instead of the original metric scores82

{S(τi)}Ni=1. Let y = rank(S) be the random variable that represents the rank order of the dialogue83

trajectories (y(τi) = i if the batch trajectories DN are in rank order), then the RewardMLE objective84

is derived as the negative log-likelihood of the rank order y under the Plackett-Luce choice model85

[27, 28] induced by {J(τi; θ)}Ni=1:86

ℓRewardMLE(θ;DN ) :≜ − logP
(
y | {J(τi; θ)}Ni=1

)
, (3)

87

with P
(
y | {J(τi; θ)}Ni=1

)
=

∏N
i=1 Φ(J(τi; θ))

/(∑N
k=i Φ(J(τk; θ))

)
,

where the trajectories in DN are in ranked order as we described in the problem setup: τ1 ≻ . . . τN .88

In Eqs. (2) and (3), the monotonic function Φ transforms the unnormalized inputs {J(τi; θ)}Ni=1 to89

a N -dimensional probabilistic simplex. We consider Φ as exponential function exp(·) and power90

function (·)p (p ∈ N), which are also known as the softmax and escort transforms [29].91

3.2 Policy Gradient Estimation with Learned Reward Function92

With the learned reward function Rθ(o, a, g), the next step is to improve the parametric dialogue93

agents πϕ via policy gradient [30]. Classical approach to estimate the policy gradient is via REIN-94

FORCE method [31]:95

∇ϕJREINFORCE(πϕ) = Eπ[∇ϕ log πϕ(at|ht)G
π(ht, at, g)] , (4)

where Gπ(ht, at, g) is the discounted accumulated reward that the agents πϕ receives, starting from96

observation ot (part of ht) and action at, given goal g. Previous work [9] indicates that when the97

discounted factor γ > 0, estimating Gπ(at, ht, g) requires monte carlo sampling (on-policy) or98

temporal difference learning (off-policy), bot of which would require to learn an additional value99

function network. As a result, empirically we observe that it would introduce additional instability to100

the followed up end-to-end dialogue training. To simplify the training pipeline, we simply set the101

discounted factor γ = 0, and we know Gπ(ht, at, g) = Rθ(ot, at, g).102

Though the policy gradient estimator defined in Eq. (4) is unbiased, it tends to have high variance,103

especially when the action space is large. As a result, the policy optimization with the REINFORCE104

estimator may diverge during the training. To address the high variance issue of REINFORCE105

estimator, we utilize gumbel-softmax trick [32, 33] to reduce the variance:106

JGS(πϕ) = Eat∼π(·|ht)[Rθ(ot, at, g)] = Eϵϵϵ∼Gumbel(0,1)[Rθ(ot, fϕ(ht, ϵϵϵ), g)] , (5)

with107

fϕ(ht, ϵϵϵ) = [f
(1)
ϕ (ht, ϵϵϵ), . . . , f

(|A|)
ϕ (ht, ϵϵϵ)] ∈ R|A|, and f

(i)
ϕ (ht, ϵϵϵ) =

exp((σi(ht;ϕ)+ϵi)/λ)∑|A|
j=1 exp((σj(ht;ϕ)+ϵj)/λ)

,

where {σi(ht;ϕ)}|A|i=1 are the logits of the categorical distribution defined by agent πϕ. Note that
JGS(πϕ) is a biased gradient estimator for policy πϕ. To achieve bias-variance tradeoff, we combine
these two estimators to obtain the loss function for agent response generation:

ℓGEN(ϕ) := −(αJREINFORCE(πϕ) + (1− α)JGS(πϕ)) ,

where α is a coefficient specified by users. Combining with the dialogue state tracking (DST) loss108

proposed in MinTL [6], we have the final loss for the end-to-end dialogue agent training:109

ℓ(ϕ) = ℓGEN(ϕ) + ℓDST(ϕ) . (6)

4 Experiments110

Dataset. We evaluate our proposed methods on the MultiWOZ 2.0 dataset [12], which is a111

representative TOD benchmark. MultiWOZ 2.0 is a large-scale and multi-domain dialogue corpus,112

consisting of conversations between a tourist (user) and a clerk (system) at an information center of a113

touristic city. This dataset has 8438 dialogues for the training set and 1000 dialogues for each of the114

validation and test set.115
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Table 1: Results of the end-to-end response generation task on the MultiWOZ 2.0 dataset. The best result on
each metric is bold. The results of UBAR is from the reproduction by Jang et al. [10]. The results of CASPI is
from our reproduction. All our provided results are the average over five random seeds.

Algorithms Inform Success BLEU Combined Score

SFN + RL [34] 73.80 53.60 16.90 83.10
DAMD [35] 76.40 64.35 17.96 88.34
SimpleTOD [7] 84.40 70.10 15.01 92.26
MinTL [6] 84.88 74.91 17.89 97.78
SOLOIST [8] 85.50 72.90 16.54 95.74
UBAR [36] 87.47 74.43 17.61 98.56
GPT-Critic [10] 90.07 76.63 17.83 101.13
CASPI[9] 91.37 82.80 17.70 104.78

RewardNet: N = 3 (p=1) 92.77 84.28 17.74 106.27
RewardMLE: N = 5(softmax) 91.49 83.38 18.97 106.40
RewardNet:N = 3 (p=1) + GS 92.63 84.32 18.35 106.83
RewardMLE: N = 5 (softmax) + GS 93.09 83.90 18.04 106.54

Table 2: Results on the simulated low resource settings, where 5%, 10%, and 20% of the training data is used to
train the model. The best result on each metric under each setting is bold. “Comb." is the Combined Score. All
our provided results are the average over five random seeds. Baseline results are from Lin et al. [6].

Model 5% 10% 20%
Inform Success BLEU Comb. Inform Success BLEU Comb. Inform Success BLEU Comb.

DAMD 56.60 24.50 10.60 51.15 62.00 39.40 14.50 65.20 68.30 42.90 11.80 67.40
MinTL 75.48 60.96 13.98 82.20 78.08 66.87 15.46 87.94 82.48 68.57 13.00 88.53

RewardNet: N = 3 81.22 67.37 12.82 87.11 92.39 78.98 13.36 99.05 89.83 79.30 15.18 99.75
RewardMLE: N = 5 82.90 69.61 14.26 90.51 89.67 77.48 14.80 98.38 90.15 78.70 15.81 100.24

Evaluation Metrics. Our proposed method is evaluated on the end-to-end dialogue modeling116

task of the MultiWOZ 2.0 dataset. Following the standard setup [e.g., 12, 34], we use four automatic117

evaluations metrics: 1) Inform rate: the fraction of the dialogues where the system has provided118

an appropriate entity; 2) Success rate: the fraction of the dialogues where the system answered all119

the requested information; 3) BLEU score [37]: measures the fluency of the generated response;120

4) Combined Score [34]: an overall quality measure defined as Combined Score ≜ (Inform +121

Success)× 0.5 + BLEU. All our provided results are the average over five random seeds.122

Main evaluation. Table 1 compares the performance of our methods with several classical and123

recent benchmarks, in the end-to-end response-generation task. As shown in Table 1, our proposed124

method not only improves the dialogue-task completion, measured by the Inform rate and the Success125

rate; but also generates fluent responses, reflected by the competitive BLEU scores. We note that the126

prior work CASPI is a special case of our proposed method when using the pairwise version of the127

RewardNet loss and when the probabilistic transform in Eq. (2) is the escort transform with power128

one. Comparing the result of CASPI with that of simply adding one more trajectory to estimate the129

RewardNet loss Eq. (2), we see that the RewardNet reward-learning loss improves the performance.130

As discussed in Section 3.1, our RewardNet approach considers more information for each update of131

the reward function, and thus could learn a more effective reward function.132

We further improve the performance by changing the RewardNet loss Eq. (2) to the RewardMLE loss133

Eq. (3), with the softmax transform as in Xia et al. [26] and using two more trajectories to calculate134

the loss. This gain may come from the relative robustness of the RewardMLE loss to small errors in135

the scoring process, since the RewardMLE loss only uses the ranking of the provided scores, but not136

the numerical score values as in the RewardNet loss.137

Adding policy-gradient updates via the Gumbel-softmax method improves the performance of both138

the RewardNet and RewardMLE models. This shows the efficacy of directly optimizing the response139

generation model w.r.t. the learned reward function.140

Low resource experiment. We evaluate our models on the limited-data setting by following the141

testing strategy in Lin et al. [6]. Specifically, we use 5%, 10%, and 20% of the training data to train142

our models, RewardNet: N = 3 (p=1) and RewardMLE: N = 5 (softmax), and compare them with143

the baseline scores in Lin et al. [6]. Table 2 reports the results. It is clear that our models outperform144

the baselines, MinTL and DAMD, showing the efficacy of our proposed method. Comparing with145

Table 1, our models with 20% of the training data perform competitively with the baseline methods146

trained on the full training set.147
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