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ABSTRACT

Knowledge graph (KG) representation learning for entity alignment has recently
received great attention. Compared with conventional methods, these embedding-
based ones are considered to be robuster for highly-heterogeneous and cross-lingual
entity alignment scenarios as they do not rely on the quality of machine translation
or feature extraction. Despite the significant improvement that has been made,
there is little understanding of how the embedding-based entity alignment methods
actually work. Most existing methods rest on the foundation that a small number
of pre-aligned entities can serve as anchors to connect the embedding spaces of
two KGs. But no one investigates the rationality of such foundation. In this paper,
we define a typical paradigm abstracted from the existing methods, and analyze
how the representation discrepancy between two potentially-aligned entities is
implicitly bounded by a predefined margin in the scoring function for embedding
learning. However, such a margin cannot guarantee to be tight enough for alignment
learning. We mitigate this problem by proposing a new approach that explicitly
learns KG-invariant and principled entity representations, meanwhile preserves
the original infrastructure of existing methods. In this sense, the model not only
pursues the closeness of aligned entities on geometric distance, but also aligns the
neural ontologies of two KGs to eliminate the discrepancy in feature distribution
and underlying ontology knowledge. Our experiments demonstrate consistent and
significant improvement in performance against the existing embedding-based
entity alignment methods, including several state-of-the-art ones.

1 INTRODUCTION

Knowledge Graphs (KGs), such as DBpedia (Auer et al., 2007) and Wikidata (Vrandečić & Krötzsch,
2014), have become crucial data resources for many AI applications. Although a large-scale KG
offers structured knowledge derived from millions of facts in the real world, it is still incomplete by
nature, and the downstream applications are always demanding for more knowledge. To resolve this
issue, the task of entity alignment (EA) is proposed, which exploits the potentially-aligned entities
among different KGs to facilitate knowledge fusion and exchange.

Recently, embedding-based entity alignment (EEA) methods (Chen et al., 2017; Zhu et al., 2017;
Wang et al., 2018; Guo et al., 2019; Ye et al., 2019; Wu et al., 2019; Sun et al., 2020a; Fey et al.,
2020) have been prevailing in this area. Their common idea is to encode semantics into embeddings
and estimate the similarities by embedding distance. During this process, a small number of aligned
entity pairs (a.k.a., seed alignment) are required as supervision data to align (or merge) the embedding
spaces of KGs. These methods either learn an alignment function fa to minimize the difference
between two entity embeddings in each seed (Wang et al., 2018), or directly map aligned entities to
one embedding vector (Sun et al., 2017). Meanwhile, they also leverage a shared scoring function fs
to encode semantics into representations, such that two underlying aligned entities that connect to
respective sides of a seed shall have similar characteristics in their feature expression.

Although the effectiveness of current EEA methods are empirically demonstrated (Sun et al., 2020b),
little efforts have been made on the theoretical analysis. In this paper, we fill this gap by formally
defining a paradigm leveraged by the current methods. We show that the representation discrepancy
of an underlying aligned entity pair is bounded in an indirect way by a margin λ in the scoring

1



Under review as a conference paper at ICLR 2021

function fs. Unfortunately, we further find that this margin-based bound cannot be set as tight as
expected, causing that little constrain can be put on the entities with few neighbors.

To mitigate the above problem, we propose neural ontology driven entity alignment (abbr., NeoEA) ,
in which the entity representations are optimized jointly with a neural ontology. An ontology (Baader
et al., 2005) is usually comprised of axioms that define the legitimate relationships among entities
and relations. Those axioms make a KG principled (i.e., constrained by rules). For example, an
“Object Property Domain” axiom in OWL2 (Baader et al., 2005) claims the valid head entities for
a specific relation (e.g., the head entities of relation “birthPlace” should be in class “Person”), and
it thus determines the head entity distributions of this relation. The neural ontology in this paper,
however, is reversely deduced from the entity distributions. We expect to align the high-level neural
ontology to diminish the discrepancy of feature distributions, as well as ontology knowledge, between
two KGs.

The main contributions of this paper are threefold:

• We define the paradigm of the current EEA methods, and demonstrate that the embedding
discrepancy in each potential alignment pair is implicitly bounded by the margin in the
scoring function. We show that this bound cannot be as tight as we expect.

• We propose NeoEA to learn KG-invariant as well as principled representations by aligning
the neural axioms of two KGs. We prove that minimizing the difference can substantially
align their corresponding ontology-level knowledge, without the assumption about the
existence of real ontology data.

• We conducted experiments to verify the effectiveness of NeoEA with several state-of-the-art
methods as baselines. The results show that NeoEA can consistently and significantly
improve the performance of the EEA methods.

2 EMBEDDING-BASED ENTITY ALIGNMENT

2.1 METHODOLOGY

We first summarize the common paradigm employed by most existing EEA methods (Chen et al.,
2017; Sun et al., 2017; Zhu et al., 2017; Sun et al., 2018; Wang et al., 2018; Pei et al., 2019a; Guo
et al., 2019; Wu et al., 2019; Ye et al., 2019; Sun et al., 2020a):

Definition 1 (Embedding-based Entity Alignment). The input of EEA is two KGs G1 = (E1,R1, T1),
G2 = (E2,R2, T2), and a small subset of aligned entity pairs S ⊂ E1 × E2 as seeds to connect G1
with G2. An EEA model consists of two neural functions: an alignment function fa, which is used
to regularize the embeddings of pairwise entities in S; and a scoring function fs, which scores the
representations based on the joint triple set T1∪T2. EEA estimates the alignment score of an arbitrary
entity pair (e1i , e

2
j ) by their geometric distance d(e1i , e

2
j ), where e1i , e2j denote the embeddings of e1i ,

e2i respectively.

It is worth noting that, the existing EEA methods have different settings in relation seed alignment.
Some works (Chen et al., 2017; Zhu et al., 2017) assume that all aligned relation pairs are known in
advance. Others (Sun et al., 2017; 2018) suppose that the number of relations is much smaller than
that of entities, i.e., |R| � |E|, which means that the training data for aligning relations is sufficient.
In this paper, we do not explore the details of relation seed setting. We assume that the relation
representations for a well-trained EEA model are aligned.

The existing works have explored the diversity of fa. The pioneering work MTransE (Chen et al.,
2017) proposed to learn a mapping matrix to cast an entity representation e1i to the feature space
of G2. SEA (Pei et al., 2019a) and OTEA (Pei et al., 2019b) extended this approach by leveraging
adversarial training to learn the projection matrix. Recently, a simpler yet more efficient choice
was widely-used, which directly maps (e1i , e

2
i ) ∈ S to one embedding vector ei (Sun et al., 2017;

Zhu et al., 2017; Trsedya et al., 2019; Guo et al., 2019). Also, researchers (Wang et al., 2018; Pei
et al., 2019a; Wu et al., 2019) started to leverage a softer way to incorporate seed information, in
which the distance between entities in a positive pair (i.e., supervised data in S) is minimized, while
that referred to the negative one will be enlarged. As the most common choice, we consider fa as
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Euclidean distance between two embeddings, such that the corresponding alignment loss can be
written as follows:

La =
∑

(e1i ,e
2
i )∈S

||e1i − e2i ||+
∑

(e1
i′ ,e

2
j′ )∈S

−

ReLU (α− ||e1i′ − e2j′ ||), (1)

where S− denotes the sampled set of negative pairs. α is the minimal margin allowed between
entities in each negative entity pair.

On the other hand, the scoring function fs can be also designed diversely. Most methods (Chen et al.,
2017; Sun et al., 2017; Pei et al., 2019a) choose TransE as their scoring function, i.e., fs(ei, r, ej) =
||ei + r− ej ||, (ei, r, ej) ∈ T1 ∪ T2. The corresponding loss is:

Ls =
∑

τ∈T1∪T2

ReLU (fs(τ)− λ) +
∑

τ ′∈T −1 ∪T
−
2

ReLU (λ− fs(τ ′)), (2)

where T −1 and T −2 are negative triple sets. Ls is a margin-based loss in which the distance d(ei+r, ej)
in a positive triple should at least be smaller than λ ≥ 0, while larger than λ for negative ones. Note
that, the negative triples are usually generated by randomly replacing the head or tail entity of a
positive triple. If we only look at the replaced entity, minimizing the above loss can be also understood
as randomly pushing entities away from this entity. This phenomena has also been studied in Wang &
Isola (2020).

Additionally, some graph neural network (GNN) based methods (Wang et al., 2018; Sun et al., 2020a;
Wu et al., 2019) do not directly optimize fs. They encode the semantic information inside graph
convolution. Therefore, the output vectors of GNN will be regarded as entity embeddings to feed into
fa. For example, Ye et al. (2019); Wu et al. (2019); Sun et al. (2020a) leverage TransE as scoring
function in the aggregation of relational neighbors.

2.2 UNDERSTANDING EEA

We illustarte how an EEA model works by an example. Let (e1x, e
2
y) ∈ G1 × G2 be a potentially-

aligned entity pair. Each entity in this pair has only one neighbor, connected by the same relation
r1 = r2. We assume that their neighbors are actually a pair of entities (e1i , e

2
i ) ∈ S . Therefore, if an

EEA model is well-trained and almost optimal, we should have e1i = e2i (as La is minimized) and
r1 = r2 (denoted by r for simplicity). According to Equation 2, we have:

||fs(e1x, r, e1i )|| ≈ ||fs(e2y, r, e2i )|| ≤ λ. (3)

Take the scoring function of TransE as fs, we then derive:

||e1x + r− e1i || ≤ λ, ||e2y + r− e2i || ≤ λ. (4)

As e1i = e2i , we can conclude that:
Proposition 1 (Discrepancy Bound). The representation difference of two potentially-aligned entities
is bound by ε, which is proportional to the hyper-parameter λ:

||e1x − e2y|| ≤ ε ∝ λ. (5)

The above proposition suggests that decreasing the value of margin λ will tighten the feature
discrepancy of entities in the underlying aligned entity pairs. However, we soon find that λ cannot be
set as small as we want.

We consider a more complicated yet realistic example, where each entity in (e1x, e
2
y) has a considerable

number of neighbors. We denote the corresponding triple sets of e1x, e2y as T 1
ex , T 2

ey , respectively. In
this setting, a well-trained EEA model should satisfy that:

∀τ ∈ T 1
ex ∪ T

2
ey , ||fs(τ)|| ≤ λ. (6)

Evidently, TransE with a small margin is not sufficient to fully express the semantics contained in
T 1
ex ∪ T

2
ey , which has already been explored by previous works (Trouillon et al., 2016; Kazemi &

Poole, 2018; Sun et al., 2019). Some empirical statistics (Sun et al., 2018) also illustrate such results.
However, enlarging the margin λ will bring significant variance between e1x and e2y .
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Figure 1: Example of different feature distributions. (a) Overall entity feature distributions of two KGs,
i.e., AE . Blue points denote entities in G1 and orange ones are entities in G2. The two distributions
are nearly uniformly distributed and almost aligned (based on the EEA model RDGCN (Wu et al.,
2019)). (b) The head entity feature distributions of relation “genre”. The two distributions are
only aligned partially. (c) Head entity feature distributions conditioned on “genre”, i.e., AEh|ri
(based on NeoEA with RDGCN as EEA model, the same below). Two conditioned distributions are
aligned as expected. (d) The head entity distributions conditoned on three different relations: “genre”
(colors: <blue,orange>), “writer” (colors: <purple,pink>), “brithPlace” (colors: <green,red>). The
distributions corresponding to the first two relations are overlapped, while a clear decision boundary
between them and the last one is observed. (e) Triple feature distributions conditioned on relations
“artist” (colors: <blue,orange>) and “musicalArtist” (colors: <purple,pink>), respectively. The
distributions referred to sub-relation “musicalArtist” are covered by those corresponded to “artist”.

On the other hand, if the scoring function does not belong to the TransE family, e.g., it is neural-based
like ConvE (Dettmers et al., 2018) or composition-based like ComplEx (Trouillon et al., 2016), both
of which are fully expressive (Kazemi & Poole, 2018). In this case, entities with a large number
of neighbors can be correctly modeled, while those with only few neighbors are less constrained.
Therefore, those models allow even more diversity between e1x and e2y. We believe this is why they
performed badly in EA task (Guo et al., 2019; Sun et al., 2020b).

In short, most existing works adopt the above implicit strategy to learn cross-KG representations
for EA, which makes them struggled in balancing between the bound and the expressiveness. In
this paper, we explore a new direction to explicitly align the feature distributions of two KGs, which
ensures the embeddings tight and expressive.

3 NEURAL ONTOLOGY

3.1 NEURAL AXIOM AND NEURAL ONTOLOGY ALIGNMENT

In real-world KGs, entities and their relation triples conform with the axioms in ontologies (Baader
et al., 2005). Similarly, we call the feature distributions “neural axioms“, as aligning them also allows
us to regularize the entity embeddings at a high level.

We start by defining the basic neural axiom:
Definition 2 (Basic Neural Axiom).

AE ={e | e ∼ E}. (7)

Aligning the basic neural axioms A1
E and A2

E of two KGs is trivial, as we can take the advantages of
existing domain adaptation methods (Ben-David et al., 2010; Ganin & Lempitsky, 2015a;b; Courty
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et al., 2017; Shen et al., 2018), which aims to learn domain-invariant representations for various tasks.
We consider the adversarial learning based ones (Ganin & Lempitsky, 2015a; Shen et al., 2018). In
this way, a KG discriminator is leveraged to distinguish entity representations of G1 from those of
G2 (or vice versa), while the embeddings will try to confuse the discriminator. Therefore, the same
semantics in two KGs shall be encoded in the same way into the embeddings to fool the discriminator.

Specifically, if we regard two KGs G1, G2 as two different domains, and their embedding vectors
as “learnable features”, we can align the above axioms by an empirical Wasserstein distance based
loss (Arjovsky et al., 2017; Shen et al., 2018):

LAE
= EAE1 [fw(e)]− EAE2 [fw(e)], (8)

where fw is the learnable domain critic that maps the embedding vector to a scalar value. As
suggested in (Arjovsky et al., 2017), the empirical Wasserstein distance can be approximated by
maximizing LAE

, if the parameterized family of fw are all 1-Lipschitz.

However, from Figure 1a, we observe that the trained embeddings are nearly uniformly distributed
in the feature space, which we can also derive from Equation 1 and Equation 2. Recall that the
alignment loss La consists of two terms. The first is∑

(e1i ,e
2
i )∈S

||e1i − e2i ||, (9)

which aims to minimize the difference of embeddings for each positive pair. The cardinality of S
is usually small. But this contrastive requires a large size of negative samples, which means that
||S|| � ||S−||. Therefore, the model more focuses on the second term∑

(e1
i′ ,e

2
j′ )∈S

−

ReLU (α− ||e1i′ − e2j′ ||), (10)

of which the main target is to randomly push the embeddings of different entities away from each
other. Furthermore, Ls is also a contrastive loss, and has a similar effect on maximizing the pairwise
distance between each positive entity and its corresponding sampled negative ones. Therefore, we
conclude that:
Proposition 2 (Uniformity). The entity embeddings tend to be uniformly distributed in feature space
as an EEA model is optimized.

The above proposition suggests that only aligning the basic axioms may be insufficient to facilitate
EEA. Hence, we propose conditional neural axioms which are more specific and expressive.

3.2 CONDITIONAL NEURAL AXIOM

Conditional neural axioms describe the entity (or triple) feature distributions under specific semantic
conditions.
Definition 3 (Conditional Neural Axioms).

AEh|ri = {e | ri, e ∼ {e | ∀e
′, (e, ri, e

′) ∈ T }}
AEh,t|ri = {(eh, et) | ri, (eh, et) ∼ {(eh, et) | (eh, ri, et) ∈ T }}

(11)

where AEh|ri denotes the head entities feature distribution conditioned on the relation embedding ri,
the similar to AEh,t|ri (we reduce (eh, ri, et)|ri to (eh, et)|ri for simplicity).

Numerous methods are proposed to process the neural conditioning operation, ranging from addition
and concatenation (Mirza & Osindero, 2014; Wang et al., 2014; Yang et al., 2015), to matrix
multiplication (Lin et al., 2015a; Ji et al., 2015; Nguyen et al., 2016). Comparing with elaborating
this operation, we value more on its common merit, which can be understood as projecting the
entities to a relation-specific subspace (Wang et al., 2014; Lin et al., 2015a; Nguyen et al., 2016).
Hence, the corresponding feature distributions conditioned on different relation embeddings become
discriminative, rather than almost uniformly distributed in original feature space (Lin et al., 2015a).

Furthermore, conditional neural axioms capture high-level ontology knowledge.
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Figure 2: The architecture of NeoEA. The solid lines denote the forward propagation, while the dotted
lines represents the backward propagation. The architecture consists of three decoupled modules:
(1) Entity alignemnt module, in which the EEA model is unaware of the existence of other modules.
(2) KG sampling module, in which we sample sub-KGs to replace the whole KGs for efficiency. (3)
Neural ontology alignment module, in which the discrepancy between each pair of neural axioms is
estimated by Wasserstein-distance critic and minimized by gradient descent.

Theorem 1 (Expressiveness). Aligning the conditional neural axioms minimizes the discrepancy of
two KGs at ontology level.

Proof. See Appendix A for details. We take AEh|ri as an example, which can summarize the
empirical “Object Property Domain” axiom of ri in OWL2 (Baader et al., 2005). Supposed there
exists such an axiom that states the head entities of ri should belong to some specific class c (e.g.,
only head entities under class "Person" have the relation "birthPlace"). We further suppose that there
exists a classifier fc(e) ∈ [0, 1], such that fc(ej) = 1 if head entity ej belongs to class c, and 0
otherwise. Then, with the knowledge of the given axiom, one may derive the following rule:

∀e ∈ {e | ∀e′, (e, ri, e′) ∈ T1 ∪ T2}, fc(e) = 1, (12)

which is equivalent to:
EA1

Eh|ri
[fc(e)] = EA2

Eh|ri
[fc(e)] = 1, (13)

both of which means that all head entities of ri in either KG should be correctly classified to c. Then,
we have:

EA1
Eh|ri

[fc(e)]− EA2
Eh|ri

[fc(e)] = 0. (14)

In fact, we do not have such knowledge about ri and class c, instead we can leverage a neural function
fc′(e|ri) to empirically estimate fc. In this way, AsEh|ri and AtEh|ri are supposed to be aligned to
minimize the loss correponding to the above rule. Therefore, we deduce this problem back to a
similar form to Equation 8, i.e.,

LAEh|ri
= EA1

Eh|ri
[fc′(e | ri)]− EA2

Eh | ri
[fc′(e|ri)], (15)

which suggests that aligning the above conditional neural axioms can minimize the discrepancy of
potential “Object Property Domain” axioms between two KGs.
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Example 1 (OWL2 axiom: ObjectPropertyDomain). As shown in Figure 1b and Figure 1c, we
assume that the head entity of relation “genre” are under class “Work of Art” (although it does not
exist in the dataset). It is clear that the head entity feature distributions are only partially algined in
Figure 1b, while those in Figure 1c are matched well.

In Figure 1d we illustrate a more complicated example. The head entities of relations “genre”
and “writer” mainly belong to “Work of Art”, which show overlapped distributions (blue-orange,
pink-purple) in the figure. By contrast, there exists a clear decision boundary between them and
the distributions conditioned on relation “birthPlace” (red-green), as the head entities of relation

“birthPlace” are under class “Person”.

Example 2 (OWL2 axiom: SubObjectPropertyOf). We consider two relations “musicalArtist” and
“artist” as example, where the former one is the sub-relation of the later one. In Figure 1e, the triple
distributions conditioned on “musicalArtist” (pink-purple) are covered by those conditioned on

“artist” (orange-blue).

3.3 ARCHITECTURE OF NEOEA

We illustrate the overall structure of NeoEA in Figure 2. It can be divided into three modules:

Entity Alignment. This module aims at encoding the semantics of KGs into embeddings. Almost all
existing EEA models can be used here, no matter what the input data looks like (triples or a adjacency
matrix).

KG Sampling. For each KG, we choose to sample a sub-KG to estimate the data distributions of
neural axioms. Comparing with separately sampling candidates for each axiom, it is more efficient
especially when the size of KGs get bigger, because we only sample once at each iteration.

Neural Ontology Alignment. As aforementioned, for each pair of representation distributions, we
align them by minimizing the empirical Wasserstein distance. Please see Appendix B for the detailed
implementation of neural ontology alignment.

4 EXPERIMENTS

In this section, we empirically verify the effectiveness of NeoEA by a series of experiments, with
several state-of-the-art methods as baselines.

4.1 IMPLEMENTATION

We illustrate the implementation of NeoEA in Algorithm 1. The whole framework is based on the
OpenEA project (Sun et al., 2020b), which includes the implementations of latest EEA methods.
Specifically, we implemented neural ontology as an external module, based on which we modified
only the initialization of the original project. In this sense„ the EEA methods were unaware of the
existence of neural ontologies. Furthermore, we kept the optimal hyper-parameter settings in OpenEA
to ensure fair comparison.

We selected several best-performing and representative methods as our baselines:

• BootEA (Sun et al., 2018), a TransE-based EEA model with only structure data.

• SEA (Pei et al., 2019a), a TransE-based model with both structure and attribute data.

• RSN (Guo et al., 2019), an RNN-based EEA model with only structure data.

• RDGCN (Wu et al., 2019), a GCN-based model with both structure and attribute data.

The data distributions of some previous benchmarks such as JAPE (Sun et al., 2017) and BootEA (Sun
et al., 2018) are clearly different from those of real-world KGs, which means that conducting
experiments on those benchmarks cannot reflect the realistic performance of an EEA model (Guo
et al., 2019; Sun et al., 2020b). Therefore, we consider the latest benchmark (Sun et al., 2020b), which
consists of four sub-datasets, with two different density settings. Specifically, “D-W”, “D-Y” denote
“DBpedia (Auer et al., 2007)-WikiData (Vrandečić & Krötzsch, 2014)”, “DBpedia-YAGO (Fabian
et al., 2007)”, respectively. “EN-DE” and “EN-FR” denote two cross-lingual datasets, both of which
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are sampled from DBpedia. “V1” denotes the sampled KGs having the similar distributions as the
original KGs, while “V2” denotes the sampled KGs with doubled density. For detail statistics, please
refer to Sun et al. (2020b).

Algorithm 1 NeoEA

1: Input: two KGs G1, G2, the alignment seed set S, the EEA modelM(fs, fa), number of steps
for NeoEA n;

2: Initialize all variables;
3: repeat
4: for i := 1 to n do
5: Sample sub-KGs from respective KGs G1, G2;
6: Compute the Wasserstain distance based loss Lw for each pair of neural axioms;
7: Optimize the Wasserstain distance critic fw by maximizing Lw.
8: end for
9: Sample sub-KGs from respective KGs G1, G2;

10: Compute Wasserstain distance based loss Lw for each pair of neural axioms;
11: Compute the losses Lr, Ls of the EEA modelM;
12: Optimize the EEA model and embeddings by minimizing Lr, Ls, Lw;
13: until the alignment loss on validation set converged.

4.2 EMPIRICAL COMPARISONS

The main results are shown in Table 1, from which we find that: (1) The performance of four
baseline models varied from different datasets, but all of them gained improvement with NeoEA.
(2) The performance improvement on SEA and RDGCN was more significant than that on BootEA
and RSN, as both BootEA and RSN are not typical EEA models. BootEA has a sophisticated
bootstrapping procedure, which may be difficult to be injected with NeoEA. RSN tries to capture
long-term dependencies among entities and relations. The complicated objective may be conflict
with NeoEA more or less. However, on some datasets (e.g., EN-DE, V1), we still observe relatively
significant improvement. Therefore, we believe the performance of these two models can be further
refined through a joint hyper-parameter turning with NeoEA, which we leave to future work.

Table 1: Entity alignment results (5-fold cross-validation).

Models V1-Original V1-NeoEA V2-Original V2-NeoEA

H@1 H@5 MRR H@1 H@5 MRR H@1 H@5 MRR H@1 H@5 MRR

E
N

-F
R

BootEA .507 .718 .603 .521 .733 .617 .660 .850 .745 .665 .853 .749
SEA .280 .530 .397 .320 .584 .443 .360 .651 .494 .375 .666 .508
RSN .393 .595 .487 .399 .597 .490 .579 .759 .662 .583 .760 .666
RDGCN .755 .854 .800 .775 .868 .817 .847 .919 .880 .864 .933 .896

E
N

-D
E BootEA .675 .820 .740 .676 .820 .740 .833 .912 .869 .834 .916 .870

SEA .530 .718 .617 .586 .766 .668 .606 .779 .687 .637 .800 .712
RSN .587 .752 .662 .600 .759 .673 .791 .890 .837 .794 .892 .839
RDGCN .830 .895 .859 .846 .908 .874 .833 .891 .860 .849 .902 .874

D
-W

BootEA .572 .744 .649 .579 .753 .658 .821 .926 .867 .822 .926 .869
SEA .360 .572 .458 .389 .608 .490 .567 .770 .660 .588 .784 .677
RSN .441 .615 .521 .450 .624 .530 .723 .854 .782 .729 .858 .787
RDGCN .515 .669 .584 .527 .671 .592 .623 .757 .684 .632 .760 .690

D
-Y

BootEA .739 .849 .788 .756 .859 .797 .958 .984 .969 .958 .984 .969
SEA .500 .706 .591 .549 .752 .638 .899 .950 .923 .917 .959 .936
RSN .514 .655 .580 .522 .663 .588 .933 .974 .951 .935 .976 .953
RDGCN .931 .969 .949 .941 .972 .955 .936 .966 .950 .940 .970 .953

The results improved most are boldfaced.

4.3 ABLATION STUDY

We designed an ablation study which is expected to empirically prove some claims in Section 3.
We choose the current state-of-the-art model RDGCN as our baseline. As shown in Table 2, “Full”
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Table 2: Results of ablation study based on the best-performing model RDGCN, on V1 datasets.

Models EN-FR EN-DE D-W D-Y

H@1 H@5 MRR H@1 H@5 MRR H@1 H@5 MRR H@1 H@5 MRR

Full .775 .868 .817 .846 .908 .874 .527 .671 .592 .941 .972 .955
Partial .771 .863 .813 .840 .900 .871 .523 .669 .590 .936 .971 .952
Basic .755 .853 .799 .827 .895 .858 .512 .656 .578 .931 .969 .948
Original .755 .854 .800 .830 .895 .859 .515 .669 .584 .931 .969 .949

Figure 3: Normalized histgrams of alignment
rankings on EN-FR, V1 (left, long-tail enti-
ties; right, popular entities).

Table 3: Average ranking improvement.

Datasets Overall Popular Long-tail

EN-FR 63.5 36.9 116.7
EN-DE 13.0 8.1 23.4
D-W 43.5 34.5 61.3
D-Y 119.3 59.2 214.2

denote NeoEA with full set of neural axioms. “Partial” denotes NeoEA that removed the conditional
triple axioms. We further removed the conditional entity axioms from “Partial” to construct “Basic”,
and the last one “Original” denotes the original EEA model. From the results we observe that: (1)
Aligning basic axioms was less effective or even harmful to the model, which verifies Proposition 2
(Uniformity). (2) Aligning only a part of conditional axioms AEh|ri ,AEt|ri that describe entity
feature distributions conditioned on relation representations was significantly helpful for the model.
(3) Additional improvement was observed on the model with the full conditional axioms. Note that,
the improvement from “Partial” to “Full” was not as significant as that from "Basic" to “Partial”.
This is because that the conditional triple axioms mainly describe the axioms between relations
(see Appendix A). Due to the sampling strategy of the existing datasets, the number of relations is
relatively small. Few correlated relation pairs exist in the datasets, resulting in limited improvement
with conditional triple neural axiom alignment.

4.4 FURTHER ANALYSIS ON THE BOUND

We have shown that the discrepancy between each underlying aligned pair is bounded by ε associated
with λ, in Section 2. But we still expect to obverse empirical statistics to verify this point. To this
end, we manually split the entities into two group: (1) long-tail entities, which are disconnected to
seeds and have at most two neighbors; (2) popular entities, the remaining. We draw the histgrams
of alignment rankings w.r.t. respective groups based on the EEA model SEA. From Figure 3, we
can find that the proportion of the inexact alignments (i.e., ranking > 5) for long-tail entities is
evidently larger than that of popular entities, especially for the bins [50, 100]. This verified that the
long-tail entities are less constrained compared to those popular entities. Furthermore, with NeoEA,
the rankings of those long-tail entities were also improved more significantly compared with those of
popular entities, which empirically proved that NeoEA tightened the representation discrepancy of
those entities that were less restrained. We report the average ranking improvement on four datasets
(V1) in Table 3, which shows consistent observations.

5 CONCLUSION

In this paper, we proposed a new approach to learn representations for entity alignment. We proved
its expressiveness theoretically and demonstrated its efficiency by conducting experiments on the
latest benchmarks. We observed that four state-of-the-art EEA methods gained evident improvements
with NeoEA. Finally, we showed that the proposed conditional neural axioms are the key to improve
the performance of current EEA methods.
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A PROOF FOR THEOREM 1

Aligning the conditional neural axioms minimizes the discrepancies of two KGs at ontology level.

Proof. We split the proofs by different axioms referred to OWL2 (Baader et al., 2005).

ObjectPropertyDomain | ObjectPropertyRange. The proof for ObjectPropertyDomain has been
presented in Section 3, and that for ObjectPropertyRange is similar.

ReflexiveObjectProperty | IrreflexiveObjectProperty. If we say that a relation ri is reflexive, it
must satisfy

∀(e, ri, e′) ∈ T , (e, ri, e) ∈ T , (16)

which means each head entities of ri must be connected by ri to itself. The above rule suggests that
we can align such axioms by minimizing the discrepancy between triple distributions conditioned on
relation ri, i.e., aligning A1

E(h,t)|ri with A2
E(h,t)|ri . The similar to IrreflexiveObjectProperty axiom.

FunctionalObjectProperty | InverseFunctionalObjectProperty. We first introduce FunctionalOb-
jectProperty axiom. It compels each head entity e connected by relation ri to have exact one tail
entity, implying the following rule:

∀(e, ri, e′) ∈ T ,∀e′′ ∈ E , (e, ri, e′′) /∈ T . (17)

Evidently, the above rule is also related to the triple distribution conditioned on ri. The similar to the
InverseFunctionalObjectProperty axiom.

SymmetricObjectProperty | AsymmetricObjectProperty. The first axiom can state a relation ri
is symmetric, that is,

∀(e, ri, e′) ∈ T , (e′, ri, e) ∈ T . (18)

It is also related to the triple distributions referred to ri, implying that directly aligning A1
E(h,t)|ri

with A2
E(h,t)|ri is sufficient to minimize the difference. The proof for AsymmetricObjectProperty

axiom is similar.

SubObjectPropertyOf | EquivalentObjectProperties | DisjointObjectProperties | InverseOb-
jectProperties. We show that these axioms also define rules related to triple distributions condionted
on relations. We start from SubObjectPropertyOf, which can state that relation ri is a subproperty of
relation rj (e.g., “hasDog” is one of the subproperties of “hasPet”). We formulate it as:

∀(e, ri, e′) ∈ T , (e′, rj , e) ∈ T . (19)

To algin the potential SubObjectPropertyOf axioms between two KGs, we can respectively align
(A1

E(h,t)|ri ,A
2
E(h,t)|ri) and (A1

E(h,t)|rj ,A
2
E(h,t)|rj ), such that the joint one (A1

E(h,t)|ri,rj ,A
2
E(h,t)|ri,rj )

will also be aligned.

Similarly, if ri and rj are equivalent, we can interpret the axiom as

∀(e, ri, e′) ∈ T , (e′, rj , e) ∈ T ; ∀(e, rj , e′) ∈ T , (e′, ri, e) ∈ T . (20)

If they are disjoint, the corresponding rule will be

∀(e, ri, e′) ∈ T , (e, rj , e′) /∈ T . (21)

If they are inverse to each other, the rule is

∀(e, ri, e′) ∈ T , (e′, rj , e) ∈ T . (22)

TransitiveObjectProperty. We show that this axiom are also related to triple distributions condi-
tioned on ri. Supposed that a relation ri is transitive, then one can derive the following rule:

∀(e, ri, e′) ∈ T &(e′, ri, e
′′) ∈ T , (e, ri, e′′) ∈ T , (23)

which means we can align the potential TransitiveObjectProperty axioms via minimizing the distribu-
tion discrepancy between A1

E(h,t)|ri and A2
E(h,t)|ri .

12
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B NEURAL ONTOLOGY ALIGNMENT

There exist several ways to implement the neural ontology alignment module. But it must satisfy two
requirements: (1) Suitability. As mentioned in Section 2, different EEA benchmarks have different
assumptions about the relation alignments, which means that in some cases we cannot obtain all
aligned relation pairs in advance. (2) Efficiency. As there may exist millions of triples, we should
consider the efficiency of performing the conditioning operations.

Therefore, in our implementation, we do not perform pair-wise sampling, either the pair-wise neural
axiom alignment. We share the parameters of Wasserstein-distance critic only in each type of neural
axiom, which saves parameters and avoid the situation that some relations only have a small number of
corresponding triples. Furthermore, this also allows us to perform fast mini-batch training by aligning
the axioms belonging to the same type in one operation. Given the sample KGs G′1 = (E ′1,R′1, T ′1 ),
G′2 = (E ′2,R′2, T ′2 ), the corresponding batch loss is:

Lsep = LAE′ + (
∑
r′∈R′1

EAE′
h
|r′
[fh|r(e|r′)]−

∑
r′∈R′2

EAE′
h
|r′
[fh|r(e|r′)])

+ (
∑
r′∈R′1

EAE′
h,t
|r′
[fh,t|r(eh, et|r′)]−

∑
r′∈R′2

EAE′
h,t
|r′
[fh,t|r(eh, et|r′)]),

(24)

where LAE′ is the basic axiom loss under the sampled KGs. fh|r and fh,t|r are the critic functions of
the two types of neural axioms, respectively. The loss Lbatch will approximate to that in a pair-wise
calculation when the batch size is considerably greater than the number of relations. We take the
second term of the above equation as example. For pair-wise estimation, the corresponding loss
should be: ∑

(r1,r2)∈Sr

(EAE′
h
|r1

[fh|r(e|r1)]− EAE′
h
|r2

[fh|r(e|r2)])

=
∑

(r1,r2)∈Sr

EAE′
h
|r1

[fh|r(e|r1)]−
∑

(r1,r2)∈Sr

EAE′
h
|r2

[fh|r(e|r2)],
(25)

where Sr ⊂ R1 × R2 denotes the set of all aligned relation pairs. The above equation suggests
that the pair-wise loss is based to the respective relation sets of two KGs, not constrained by each
pair of aligned relations. Oftentimes, the number of relations is much smaller than the number of
sampled triples in one batch, which means thatR′1,R′2 in Equation 24 can cover a large proportion
of elements in the full relation setsR1,R2. Therefore, we used Lsep to approximate the pair-wise
loss in the implementation.
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