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ABSTRACT

Prompt sensitivity, which refers to how strongly the output of a large language
model (LLM) depends on the exact wording of its input prompt, raises concerns
among users about the LLM’s stability and reliability. In this work, we con-
sider LLMs as multivariate functions and perform a first-order Taylor expansion,
thereby analyzing the relationship between prompts, their gradients, and the logit
of the model’s next token. Furthermore, according to the Cauchy–Schwarz in-
equality, the logit difference can be upper bounded by the product of the gradient
norm and the norm of the difference between the prompts’ embeddings or hidden
states. Our analysis allows a general interpretation of why current transformer-
based autoregressive LLMs are sensitive to prompts with the same meaning. In
particular, we show that LLMs do not internally cluster similar inputs like smaller
neural networks do, but instead disperse them. This dispersing behavior leads to
an excessively large upper bound on the logit difference between the two prompts,
making it difficult to be effectively reduced to zero. In our analysis, we also show
which types of meaning-preserving prompt variants are more likely to introduce
prompt sensitivity risks in LLMs. Our findings provide crucial evidence for inter-
preting the prompt sensitivity of LLMs. Code for experiments is available in the
supplementary materials.

1 INTRODUCTION

Large language models (LLMs) usually show sensitivity to even minor variations in prompts, such
as wording, prompt template, or even minor spelling errors, although these variations do not change
the meaning of the prompt (Chatterjee et al., 2024). This phenomenon can be described as LLMs’
prompt sensitivity, which can amplify the output variance, making the model’s output unreliable. To
quantify this effect, researchers (Zhuo et al., 2024; Chatterjee et al., 2024) have made considerable
efforts to assess the sensitivity of LLMs to minor variations in prompts. Also, Sun et al. (2024)
have attempted to improve the generalization ability of LLMs through reinforcement learning from
human feedback (RLHF; Christiano et al., 2017) or instruction tuning (Wei et al., 2021). However,
even minor changes such as prompt formatting to the wording of the prompts still can lead to the
prompt sensitivity of these models (Sclar et al., 2024).

Although prompt sensitivity in LLMs is frequently highlighted, its generation mechanism remains
poorly understood. For example, we still do not understand why a set of meaning-preserving
prompts can yield completely different outputs by an LLM. This open issue leads to a lack of cred-
ibility in previous benchmark-based prompt sensitivity evaluations (Zhuo et al., 2024; Chatterjee
et al., 2024) and the arbitrary practice of fine-tuning LLMs by increasing training samples (Liu
et al., 2025; Dong et al., 2024). Previous studies (Zhuo et al., 2024; Chatterjee et al., 2024) calculate
a metric to represent a model’s sensitivity to wording changes in prompts based on its output. How-
ever, they make only limited contributions to understanding the prompt sensitivity of LLMs and fail
to guide fundamental breakthroughs.

Contrary to previous studies, we aim to understand the prompt sensitivity of LLMs using a math-
ematical analysis method: Taylor expansion (Taylor, 1715). In this study, we focus on the current
popular transformer-based LLMs. Specifically, we formalize the transformer blocks of LLMs as
a continuous multivariate function, which outputs the logit of the model’s next token. The hidden
states are responsible for converting the prompts in discrete space into the continuous representation
space. The hidden states of the prompt can be regarded as the multivariate input of the function.
Then, we use the first-order Taylor expansion of this function to connect the hidden states of the

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

prompt with the output logit. Furthermore, formalizing LLMs as functions and performing Tay-
lor expansion allows us to make connections between the gradients and hidden states of the model
inputs. Monitoring their changes across the model’s layers can help us understand the underlying
mechanism of the prompt sensitivity of LLMs.

Moreover, we provide a novel perspective on explaining the prompt sensitivity of LLMs. Our anal-
ysis starts with an image classification task. We observe that ResNet (He et al., 2016) internally pro-
duces a clustering behavior to achieve high accuracy. However, we find that this behavior does not
exist within transformer-based LLMs. By applying the Cauchy–Schwarz (Cauchy, 1821; Schwarz,
1890) inequality to transform the Taylor expansion, we reveal that this clustering behavior influences
the upper bound of the logit difference between prompts. In other words, without the clustering be-
havior, the upper bound on the logit difference between prompts will hardly be sufficiently small to
be effectively reduced to zero. In addition, we analyze different types of meaning-preserving prompt
variants, such as modifying tokens in the first or latter half of the prompt, or modifying token order
to create misalignment within the prompt. Our experiments indicate that modifying the first half of
a prompt carries a higher risk of prompt sensitivity than modifying the latter half, with more token
misalignments posing a greater risk than fewer token misalignments. Overall, token misalignments
present a higher risk of prompt sensitivity than token modifications.

2 NEURAL NETWORKS ARE FUNCTIONS

A neural network is a mathematical relationship that maps inputs to outputs (LeCun et al., 2015;
Nielsen, 2015; Goodfellow et al., 2016). If the input is a vector x ∈ Rd and the output is a scalar
y ∈ R, then a single-layer neural network can be represented as:

y = σ(w⊤x+ b) (1)

where w is the weight vector, b is the bias, and σ(·) is the activation function, such as sig-
moid (Rumelhart et al., 1986), ReLU (Nair & Hinton, 2010; Glorot et al., 2011), etc. If we consider
this neural network as a function y = f(x). The one-time inference using this neural network can
be interpreted as input vector x to the function f(x), outputting the scalar y. In this section, we start
by explaining why deep neural networks are composite functions. Then, we introduce intra-class
mean distances, a simple representation of space distances. Finally, we interpret why deep neural
networks can perform classification tasks from an interesting perspective: that a neural network is a
function.
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Figure 1: ResNet example.

Deep neural networks are compositions of functions.
A deep neural network defines a function as a composition
of simpler functions. In particular, it is composed of layer-
by-layer composites of affine transformations and activa-
tion functions (Cybenko, 1989; Hornik et al., 1989; Mur-
phy, 2012). Formally, the affine transformation of the layer
l is:

Al(x) = Wlx+ bl (2)
where x ∈ Rdl−1 is the output vector of layer l − 1, Wl ∈
Rdl×dl−1 is the weight of the layer l, and b is the bias of
layer l. Then, the affine transformation Al(x) is composed using the activation function σl as
follows:

gl = σl ◦Al (3)
The general mapping of the deep neural network of layer L is as follows:

F = gL ◦ gL−1 ◦ · · · ◦ g1 (4)

where the composite function F is a continuous mapping from the input space to the output
space (Hornik et al., 1989; Goodfellow et al., 2016).

Figure 1 shows the structure of a neural network used for image classification, with ResNet (He
et al., 2016) connecting a projection layer and a fully connected layer. In the upper case, we consider
“Stem” as the feature processing part Fp, which outputs the feature map cs; the rest of the network
serves as the function part Ff , taking cs as input and producing the result ŷ. Alternatively, in the
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bottom case, we consider “Stage 4” and previous stages as the feature processing part Fp, which
outputs the feature map c4; the rest of the network is the function part Ff , taking c4 as input
and producing the result ŷ. In this way, we can split the composite function F into two parts: the
data processing part Fp and the functional part Ff . Thus, we can interpret the behavior of neural
networks from a functional perspective.

Intra-class compactness. Intra-class compactness (Yan et al., 2020) refers to how close or tightly
clustered the samples or data points of the same class are in the feature space. Typically, an ideal
classifier requires ensuring high intra-class compactness. To remove the influence of vector dimen-
sion on distance metrics, we first perform L2 normalization on the feature vectors, then use the
Euclidean distance between the normalized vectors as the metric:

d(xi,xj) = ∥xi − xj∥ (5)

As all vectors are normalized to the unit hypersphere, this distance reflects only directional differ-
ences and is equivalent to cosine similarity, e.g., ∥xi − xj∥ =

√
2− 2 cos θij , where θij is the

angle between the two vectors. We denote the sample set for class c as Jc. We use the intra-class
mean distance to measure intra-class compactness. The distance of samples in class c is defined as
follows:

D
(c)
intra =

1

|Jc|(|Jc| − 1)

∑
xi,xj∈Jc

d(xi,xj) (6)

We use the average of the distances over all classes as the metric for intra-class compactness:

Dintra =
1

|C|
∑
c∈C

D(c) (7)

where C is the class set and |C| denotes the total number of classes. Enhancing intra-class compact-
ness, i.e., decreasing Dintra, can improve the neural network’s classification performance (Liu et al.,
2016; Yan et al., 2020).

Intra-class mean distance of ResNet on CIFAR-10. To illustrate the internal behavior of neural
networks while performing classification tasks. We investigate how intra-class compactness of the
feature maps changes across each stage of a neural network. We take the application of ResNet (we
pick ResNet-101; He et al., 2016) on the CIFAR-10 dataset (Krizhevsky et al., 2009) as an ex-
ample. ResNet is typically divided into four stages (see Figure 1), each stage consisting of multiple
residual blocks stacked together, and outputs the feature map c{1,2,3,4} of the input image. Here, we
focus on the stage level of ResNet to analyze the feature maps output at each stage, the input feature
map cs output by the stem.

Cs C1 C2 C3 C4

0.2

0.4

0.6

0.8

Projection
+
FC
(f)

Intra-class mean distance
Epoch 1 (F1=0.3845)
Epoch 45 (F1=0.8014)
Epoch 90 (F1=0.8374)

Figure 2: Intra-class mean distances for
CIFAR-10 across different training epochs.

We trained this neural network on the CIFAR-10
dataset for 100 epochs, achieving the highest F1 score
on the testing set at epoch 91.1 As shown in Fig-
ure 2, we compare the Dintra of feature maps across
three epochs: the early training epoch (epoch 1), the
mid-training epoch (epoch 45), and the late train-
ing epoch (epoch 90). A low Dintra indicates high
intra-class compactness. In this example, we consider
the ResNet part of the neural network as the feature
processing part Fp and show the trend of intra-class
mean distances of the feature maps at the Fp part. The
projection and fully connected layers as the function
part Ff , and c4 are the output of the feature process-
ing part Fp as the input of the function part Ff . We
find that in the feature processing part Fp exhibits a
clustering behavior towards the feature maps. In par-
ticular, this clustering behavior becomes weaker on
feature map c4 at earlier epochs (when F1 scores are relatively low). However, at later epoch,

1For more hyperparameters, see Appendix B.1.
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when F1 scores are relatively high, this clustering behavior persists on feature map c4. From the
function perspective, clustering brings samples of the same class closer together, while continuous
functions produce similar outputs for similar inputs. In other words, the classification accuracy of
the functional part is influenced by the clustering effectiveness of the feature processing part. In this
paper, based on the above analysis, we formulate LLMs as functions and investigate their prompt
sensitivity using Taylor expansion.

3 INTERPRETATION OF PROMPT SENSITIVITY

The prompt sensitivity of LLMs usually refers to minor variations in prompts causing LLMs to
respond with different results (Zhuo et al., 2024; Chatterjee et al., 2024). In this paper, we narrow
it down to describe “how prompt p0 and its meaning similar prompt p1 cause the LLMs to respond
with different logits of the model’s next token yt.” The natural language prompts or their tokenized
tokens reside in a discrete space, while their embeddings represented by the embedding layer or
hidden states output by a specific transformer block can be regarded as variables in the continuous
representation space.

3.1 LLMS ARE MULTIVARIABLE FUNCTIONS

In § 2, we observe that ResNet exhibits clustering behavior to achieve significantly higher accuracy
and F1 score. We split the neural network into a feature processing part Fp and a function part Ff .
From this perspective, we interpret the neural network as follows: the Fp part clusters the input sam-
ples, while the Ff part classifies the clustered samples. We also point out that any layers in a neural
network can be regarded as a function, with the previous layers serving as the feature processing part
for the input of the function part. In this section, we generalize this interpretation to transformer-
based LLMs. Unlike classification neural networks, which project the feature representations into
a class space, LLMs project the feature representations into a vocabulary space to predict the next
token.

In LLMs’ inference stage, when an LLM predicts the next token, it first maps the input tokens into
embeddings by the embedding layer and adds positional encodings to form a sequence representa-
tion. Then, the sequence representation passes through several transformer blocks sequentially. In
the self-attention module of each transformer block, a causal mask is applied to block tokens to the
right of the current position, ensuring that each current position only depends on the content to its
left. In this way, each position ultimately obtains a hidden state vector that contains only the prefix
information. When the model processes the entire input sequence, it predicts the next token using
the hidden state of the last position. This hidden state is projected to the vocabulary space via the
output layer (typically a linear layer and softmax).

Now, suppose we input a prompt containing L tokens into an LLM. The model maps each token
in this prompt to a D-dimensional embedding. Following the analysis in § 2, we can consider the
model’s embedding layer as the feature processing part Fp, while the remaining transformer blocks
and output layer as the part of a multivariate function Ff accepting an L × N input. The logit of
the model’s next token is the output of function Ff . Alternatively, the embedding layer and any
preceding blocks can be considered as the feature processing part Fp, with the remaining blocks as
the function part Ff . In this case, the hidden states output by the feature processing part Fp is the
input of the function part Ff . Ideally, to achieve approximate output logits, LLMs should cluster
the hidden states of meaning-preserving prompts at any layer.

3.2 TAYLOR EXPANSION OF LLMS

Suppose we split an LLM into a feature processing part Fp and a function part Ff . The hidden
states output by Fp are denoted as z, which serve as input to Ff . We select the output of the output
layer during training, log π(yt|z), as the output value of the function. Here, π = softmax(z′) and
z′ are the logits output by the LLM. Formally, we can express the relationship between the hidden
states z0 and z1 of two meaning-preserving prompts by Taylor expansion2 as follows:

2Appendix A provides the first-order Taylor expansion for both univariate and multivariate cases.
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log π(yt|z1)︸ ︷︷ ︸
1×1

− log π(yt|z0)︸ ︷︷ ︸
1×1

= ∇z log π(yt|z0)⊤︸ ︷︷ ︸
1×[L×D]

(z1 − z0)︸ ︷︷ ︸
[L×D]×1

+O(∥z1 − z0∥2) (8)

where 1×[L×D] or [L×D]×1 means that the gradient matrix ∇zπ(yt|z0)⊤ ∈ RL×D or difference
matrix z1−z0 ∈ RD×L can be considered as a flattened matrix with shapes 1×[L×D] or [L×D]×1
and L is the prompt length and D is the dimension of the model’s hidden layer. O(∥z1 − z0∥2) is
the remainder term of the Taylor expansion.

The difference matrix ∆z = z1−z0 represents the difference between the feature representations of
the two prompts. It is calculated through element-wise subtraction, thus capturing not only semantic
differences between the two prompts but also variations in their expressive styles. In real-world
scenarios, as the number of tokens in two prompts may be different, the shapes of z0 and z1 may
also be different. If z0 and z1 have different shapes, we will use z0’s shape as the standard to pad z1
with zero vectors or trim it accordingly. This hard alignment method might more or less overestimate
the model’s prompt sensitivity. We will analyze this impact in § 4.

3.3 UPPER BOUND

From the properties of Taylor expansion, we know that when the distance of z0 and z1 is sufficiently
close, the remainder term O(∥z1 − z0∥2) will vanish faster than ∥z1 − z0∥2 as z1 → z0. Based on
this condition, we rewrite Eq. (8) in the following form:

log π(yt|z1)− log π(yt|z0) ≈ ∇z log π(yt|z0)⊤(z1 − z0) (9)

Then, we obtain the following inequality by calculating the L2 norm:

| log π(yt|z1)− log π(yt|z0)| ≤ ∥∇z log π(yt|z0)∥ · ∥z1 − z0∥ (10)

This inequality tells us that |∆ log π(yt|z)| = | log π(yt|z1) − log π(yt|z0)| has an upper bound
∥∇z log π(yt|z0)∥ · ∥z1 − z0∥. Here, ∥ · ∥ actually is the Frobenius norm. As in Eq. (8) we convert
the matrix into a one-dimensional vector, it is written here as the L2 norm. If ∥∇z log π(yt|z0)∥ ·
∥z1 − z0∥ is significantly small, | log π(yt|z1) − log π(yt|z0)| can be approximated as 0, meaning
the two meaning-preserving prompts receive equal logits of the model’s next token.

Calculate the gradient. We represent the gradient matrix as follows:

∇z log π(yt|z)⊤ = [G(z[1, :]), . . . , G(z0[L, :])] (11)

Each row G(z[i, :]) ∈ RD of the gradient matrix represents the gradient vector of each token of the
prompt. The gradient for the j-th dimension of the i-th token is calculated as follows:

g(z[i, j]) = ∇z[i,j] log π(yt|z) (12)

The gradient g(z[i, j]) is the gradient of the logits of the model’s next token, usually named saliency
score (Simonyan et al., 2013; Li et al., 2016). Unlike Yin & Neubig (2022), who use the L1 norm to
calculate the saliency score for each input token, we take the Frobenius norm of the gradient matrix
to obtain the saliency score of input z as follows:

SGN (z) = ∥∇z log π(yt|z)∥F =

√∑
i,j

|g(z[i, j])|2 (13)

SGN (z) is the overall contribution of z to the logit of the model’s next token.

4 EXPERIMENTAL VERIFICATIONS

In this section, we verify our analytical results in practical settings. We consider four datasets
commonly used to evaluate prompt sensitivity (Zhuo et al., 2024; Chatterjee et al., 2024), ARC
Challenge (Clark et al., 2018), CommonSenseQA (Talmor et al., 2019), MMLU (Hendrycks et al.,
2021), and OpenBookQA (Mihaylov et al., 2018). We randomly select 500 examples to create
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our test set from each dataset. Each sample in our test set is a multiple-choice question with a
correct answer. We consider 12 prompt templates3 provided in Zhuo et al. (2024)’s work to create
the meaning-preserving prompts for LLMs. We perform all our experiments on two model series:
Qwen1.5-0.5B/1.8B/4B (Bai et al., 2023) and Llama3.2-1B/3B (Touvron et al., 2023).
Unless otherwise specified, we only report experimental results for Llama3.2-3B on the ARC
Challenge dataset in this section. For detailed experimental results and further discussion regarding
other models and datasets, please refer to Appendix B.

4.1 PERTURBATION ANALYSIS
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Figure 3: Key results of perturbation verification for Llama3.2-3B on ARC Challenge dataset:
(a) and (b) are the Pearson’s r between ∆ log π(yt|z) and ∇z log π(yt|z0)⊤∆z of embeddings and
the last layer’s hidden states respectively. (c) and (d) are the variations of ∥∇z log π(yt|z0)∥, ∥∆z∥,
and their product across model’s layers when the perturbation radius is 0.1 and 0.5 respectively (full
results in Appendix B.4 and B.5).

Eq. (8) describes how the difference between the output logits of two hidden states z0 and z1 can
be approximated by the difference between the gradient matrix dot products of ∆z = z1 − z0. The
Taylor expansion converges in some open neighborhood of z0, which can be written as:

Br(z0) = {z1 ∈ RD | ∥z1 − z0∥ < ρ} (14)

where ρ is the perturbation radius. We start by analyzing the relationship between the term
∆ log π(yt|z) and ∇z log π(yt|z0)⊤∆z to verify the validity of Eq. (8). First, we consider the LLM’s
embedding layer as the feature processing part Fp and all the transformer blocks as the function part
Ff . We randomly pick a prompt as the seed prompt ps, the embedding vectors of the prompt ps
are z0. Then, we randomly perturb the embedding vectors z0 to obtain the perturbed embedding
vectors z1. We create 100 randomly perturbed embedding vectors as the input to the function by
constraining the norm between z0 and z1 to be less than the perturbation radius ρ. The range of
our perturbation radius ρ is from 0 to 1, with a step size of 0.01. We calculate ∆ log π(yt|z) and
∇z log π(yt|z0)⊤∆z for these 100 embedding vectors with z0. We repeated the experiment on 10
seed prompts and calculated the average results.

As shown in Figure 3a, we report the Pearson’s r (Pearson, 1895) between ∆ log π(yt|z) and
∇z log π(yt|z0)⊤∆z for the 100 perturbed samples under different perturbation radius ρ, using
Llama3.2-3B. A high Pearson’s r indicates that the first-order Taylor expansion provides a good
linear approximation to the function represented by the LLM. We observe that on the embedding
vectors, the Pearson’s r gradually decreases as the perturbation radius increases, indicating that the
first-order linear approximation progressively fails and the influence of higher-order terms becomes
increasingly evident.

However, as shown in Figure 3b, the correlation between ∆ log π(yt|z) and ∇z log π(yt|z0)⊤∆z
in the hidden states output by the last transformer block remains at a high and stable level when
the perturbation radius is less than 0.72. This indicates that within a small perturbation range, the
linear approximation can effectively explain the variation in ∆ log π(yt|z). As the radius continues
to increase, the correlation begins to fluctuate. This phenomenon might stem from two reasons: (1)
The mapping between the last hidden states and the output is relatively closer to linear (typically

3All templates are provided in Appendix B.2.
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a linear layer followed by softmax). Therefore, within a small perturbation range, the first-order
approximation holds well, manifesting as a high and stable Pearson’s r. As the perturbation radius
increases further, nonlinear effects such as softmax begin to become significant, causing the corre-
lation to fluctuate. (2) From the perspective that LLMs are functions, after processing by the feature
processing part Fp, perturbed samples have been “regularized” or “clustered” in the latent space,
allowing changes in ∆ log π(yt|z) to be largely explained by gradient inner products.

The first reason is obvious, as LLMs are stacks of multiple non-linear transformer blocks. However,
regarding the second reason, do LLMs actually perform internal clustering of similar meaning in-
puts? In Figure 3c and 3d, we compare the variations of ∥∇z log π(yt|z0)∥, ∥∆z∥, and their product
(i.e., the upper bound of ∆ log π(yt|z)) across the model’s layers. We find that although the gradient
gradually decreases with each layer, the distance between perturbation samples and the seed sample
in the representation space continues to increase, rising sharply at the last hidden states. The result
is that the upper bound of ∆ log π(yt|z) (the red line) fails to converge to sufficiently low values,
making it difficult for ∆ log π(yt|z) to approach zero. This indicates that the internal representations
of LLMs do not exhibit clustering behavior similar to traditional neural networks. Previous studies
have revealed clustering behaviors in transformer-based LLMs (Phang et al., 2021; Wu & Varshney,
2025), but these behaviors are typically limited to clustering the same task samples. In contrast,
our analysis requires LLMs to cluster meaning-preserving prompts together. In light of the findings
of Wu & Varshney (2025), we argue that current mainstream LLMs exhibit insufficient clustering
behavior to entail ∥∇z log π(yt|z0)∥ · ∥∆z∥ as an effective upper bound.

In summary, we have the following interpretation for prompt sensitivity of LLMs. First, LLMs do
not exhibit the clustering behavior that is found in traditional neural networks. However, this clus-
tering behavior serves as crucial evidence that neural networks can accurately perform classification
tasks. Secondly, as LLMs tend to pull meaning-preserving prompts farther apart in the representation
space, this leads to giving ∆ log π(yt|z) a large upper bound ∥∇z log π(yt|z0)∥ · ∥∆z∥. This makes
it impossible to approximate ∆ log π(yt|z) to zero via the upper bound. In other words, because
LLMs do not exhibit clustering behavior for meaning-preserving prompts, they can only learn each
sample individually during training. This cannot guarantee that the model fits meaning-preserving
prompts to the same degree, leading to different outputs during inference.

4.2 REAL-WORLD DATASET VALIDATION
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Figure 4: Key results of Llama3.2-3B on ARC Challenge dataset: (a), (b), and (c) are the ∥∆z∥ of
the last 5 layers of Llama3.2-3B under different conditions. (d) is the comparison of contributions
from the prompt template and the question. The asterisks (***) indicate p-value<0.001 (full results
in Appendix B.6).

In § 3.2, we mention that when calculating Eq. (8), if z0 and z1 have different shapes, we will use
z0’s shape as the standard to pad z1 with zero vectors or trim it accordingly. In this section, we
first discuss the impact of this hard alignment method. In particular, we use our randomly selected
test set. We fill each sample into 12 prompt templates to obtain 12 meaning-preserving prompts.
For each sample’s 12 meaning-preserving prompts, we pair them in all possible combinations and
calculate the average ∥∆z∥ under three conditions: pad, trim, and equal.4 Figure 4a shows the

4We refer to the number of tokens of the prompt z as len(z). Therefore, pad means len(z0) > len(z1), trim
means len(z0) < len(z1), and equal means len(z0) = len(z1).
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average results of Llama3.2-3B on the ARC Challenge dataset’s 500 samples. We find that the
trend of ∥∆z∥ is the same as the perturbation experiment results in § 4.1, regardless of whether
pad, trim, or equal conditions. However, pad and trim yield relatively higher ∥∆z∥ than equal.
We also note that even the relatively low ∥∆z∥ for equal is significantly higher than the ∥∆z∥ for
the perturbation radius of 0.1 and 0.5 in Figure 3c. This indicates that prompt templates designed
for real-world scenarios are highly diverse, making it challenging for LLMs to generate consistent
outputs based on these templates.

To investigate which specific types of prompts may lead to higher prompt sensitivity, we create four
types of prompts for quantitative analysis. All prompt templates are modified from a seed prompt
template. Following Zhuo et al. (2024)’s setting, we create three prompt templates for each prompt
type. Our four types of prompt templates are as follows:5

1. Modification first: replace one token in the first half of the seed prompt template with a syn-
onymous token.

2. Modification latter: replace one token in the latter half of the seed prompt template with a
synonymous token.

3. Misalignment fewer: modify a few tokens in the seed prompt template to make them slightly
token misalignment.

4. Misalignment more: modify the token order in the seed prompt template to make them signifi-
cant token misalignment.

We randomly select 500 samples from each dataset for testing. For clarity, we refer to prompts
generated using the seed template as zseed, and those created using our prompt templates 1 to 4 as
zfirst, zlatter, zfewer, and zmore respectively. From Eq. (10), we can know that when z0 remains
constant, the upper bound of ∆ log π(yt|z) is determined by ∥∆z∥. This implies that a higher ∥∆z∥
imposes less constraint on ∆ log π(yt|z). Therefore, we calculate ∥∆z∥ between zseed and our four
types of prompts for comparison. Figure 4b shows the results on the last 5 layers of Llama3.2-3B
on the ARC Challenge dataset. We find that zlatter achieves a lower ∥∆z∥ than zfirst, indicating
that modifying tokens at the beginning of the prompt has a greater impact on the output of LLMs
than modifying tokens at the end. This finding aligns with the recent work by Wu et al. (2025), which
shows that causal masking inherently biases attention toward earlier positions, as tokens in deeper
layers attend to increasingly more contextualized representations of earlier tokens. In addition,
the results in Figure 4c indicate that despite preserving the meaning, changing the token order of
prompts might lead to a greater impact.

The work by Wu & Varshney (2025) indicates that LLMs tend to cluster the same task samples.
This inspires us to evaluate whether the outputs of LLMs are more influenced by the prompt tem-
plate or the question itself. In particular, we construct an ordinary least squares regression model
that uses different prompt templates and questions to predict the logit of the model’s next token.
Subsequently, we perform an analysis of variance (ANOVA) on the regression results to calculate
each factor’s contribution to the total variance and its statistical significance, and further determine
each factor’s proportion of contribution relative to the total sum of squares. Figure 4d shows the
results of Llama3.2-3B on the ARC Challenge dataset. The prompt template is the primary fac-
tor explaining the logit variation, with an explanatory rate of 88.0%. Although the question factor
explains only 4.0% of the logit variation, its effect is statistically significant, indicating that differ-
ent questions still exert a systematic influence on logits. Meanwhile, the residual accounts for 8.1%,
suggesting that a portion of the variation remains unexplained by either the prompt or question. This
residual variance may arise from data noise or factors not modeled by the LLM.

5 RELATED WORK

5.1 PROMPT SENSITIVITY OF LLMS

LLMs have strong in-context learning capabilities (Brown et al., 2020), enabling them to perform
diverse tasks based on prompts, often without requiring additional fine-tuning (Radford et al., 2019;

5For details of the prompt templates, please refer to Appendix B.3.
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Raffel et al., 2020; Gao et al., 2021). However, the stability and reliability of this learning approach
remain controversial (Weber et al., 2023). Existing studies indicate that model outputs are highly
dependent on multiple factors, such as the choice and order of examples (Liu et al., 2022; SU et al.,
2023; Lu et al., 2022; Zhao et al., 2021), the definition of input labels (Min et al., 2022), and the
phrasing of prompts (Gu et al., 2023; Sun et al., 2024). Beyond these factors, LLMs exhibit extreme
sensitivity to minor changes in prompt structure or phrasing, even when such alterations preserve se-
mantic meaning. This phenomenon has been systematically explored in numerous studies (Voronov
et al., 2024; Mizrahi et al., 2024), indicating that subtle modifications to prompts can significantly
impact model outputs. Furthermore, to characterize and compare the prompt sensitivity of differ-
ent models, numerous studies (Zhu et al., 2023; Zhuo et al., 2024; Chatterjee et al., 2024) have
constructed specialized benchmarks to quantify and evaluate models’ robustness to prompt pertur-
bations. Contrary to previous work, this study attempts to represent LLMs as functions, leveraging
Taylor expansion to explain the mechanism behind prompt sensitivity from the function perspective.
It provides both theoretical foundations and empirical evidence to explain why LLMs exhibit prompt
sensitivity.

5.2 LLMS AS FUNCTIONS

In recent years, some studies have attempted to characterize LLMs from the perspective of function
mapping (Brown et al., 2020; Wei et al., 2022). This perspective abstracts LLMs as conditional
probability distribution functions mapping input spaces to output spaces. In other words, given a
prompt x, the model defines a distribution P (y|x) for an output y. This functional representation
facilitates a unified understanding of model behavior across different tasks and provides a theoretical
framework for analyzing LLM generalization and robustness. Notably, it has also been shown that
transformers themselves serve as universal approximators of sequence-to-sequence functions (Yun
et al., 2020), further reinforcing the perspective that LLMs are functions. Building on this idea
of function mapping, some studies consider prompt engineering as a design problem for function
call interfaces, investigating how different prompt formats alter the properties of the function map-
ping (Liu et al., 2023). In our study, we consider LLMs as composite functions that can be split into
the feature processing part and the function part between any transformer blocks. This split allows
us to perform a Taylor expansion on any part of the models for analysis.

6 CONCLUSION AND LIMITATIONS

Prompt sensitivity, which describes how LLMs produce different outputs in response to meaning-
preserving prompts, raises user concerns about the stability and reliability of LLMs. To investigate
the underlying mechanisms of prompt sensitivity and to better understand LLMs, we start by con-
sidering LLMs as multivariate continuous functions. We point out that improving classification
accuracy requires the internal clustering behavior within neural networks. Then, we apply the first-
order Taylor expansion to LLMs. By observing changes in hidden states across all layers, we find
that transformer-based LLMs lack this clustering behavior, which leads to the models failing to ap-
proximate the difference of logits between meaning-preserving prompts to zero. We also note that
modifying the first half of the prompt is more likely to trigger prompt sensitivity than modifying
the latter half, and the risk increases with the number of misaligned tokens. Overall, misalignment
of tokens poses a greater risk of prompt sensitivity than token modification. We also find that the
prompt template has a greater impact on model output than the question.

One limitation of this work is the hard alignment method in Eq. (8), as mentioned in the paper, which
might more or less overestimate the model’s prompt sensitivity. Another limitation is that we only
considered the logit of a single dimension for the model’s next token, implicitly requiring the entire
logit distribution of the next token to remain consistent across meaning-preserving prompts. This
requirement poses a significant challenge for LLMs. Finally, we employed only a first-order Taylor
expansion. Given that LLMs are naturally highly complex functions, this linear approximation may
introduce some errors. As illustrated by the perturbation analysis in § 4.1, the Pearson’s r, which
reflects the accuracy of the linear approximation, gradually decreases as the perturbation radius
increases. In the future, introducing higher-order Taylor expansions could be considered to achieve
more precise approximations.
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A TAYLOR EXPANSION

A.1 BACKGROUND

The roots of Taylor expansion can be traced back to early thoughts on infinity, such as the para-
doxes of divisibility proposed by the ancient Greek philosopher Zeno (Lindberg, 1992), as well as
the “method of exhaustion” developed by Archimedes (Heath, 1981) and later by Liu Hui (Mart-
zloff, 2007), which laid the foundation for approximating infinite processes through finite steps. In
the 14th century, Indian mathematician Madhava of Sangamagrama and his successors in the Ker-
ala school developed series expansions for functions such as sine, cosine, and arctangent, marking
the earliest concrete examples of power series methods analogous to later Taylor expansions (Lind-
berg, 1992). In the 17th century, Newton and Gregory independently developed general methods for
expanding functions (Inglis, 1940). Later, Brook Taylor first systematically proposed an expansion
method applicable to general functions in 1715, forming the basis of today’s Taylor expansions (Tay-
lor, 1715). In our study, we consider LLMs as functions and employ first-order Taylor expansions
to connect prompts, their gradients, and the logit of the model’s next token, thereby analyzing the
constraint relationships among them.

A.2 THE FIRST-ORDER TAYLOR EXPANSION

In mathematics, the Taylor series or Taylor expansion of a function is an infinite sum of terms that
are expressed in terms of the function’s derivatives at a single point. The partial sum formed by the
first n+1 terms of a Taylor series is a polynomial of degree n that is called the nth Taylor polynomial
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of the function. Taylor polynomials are approximations of a function, which become generally more
accurate as n increases. The first-order Taylor expansion in one variable of f(x) about x = a is as
follows:

f(x) = f(a) + f ′(a)(x− a) +O((x− a)2) (x → a). (15)
where O(x− a) indicates the infinitesimal term of higher order than (x− a), and x → a indicates
that this equality holds as x approaches a. In other words, this expansion is a local approximation
describing the behavior of f(x) near x = a.

For more complex multivariate scenarios, we suppose f : Rn → R is differentiable at the point
a = (a1, a2, . . . , an). Then the first-order Taylor expansion of f at x = (x1, x2, . . . , xn) is:

f(x) = f(a) +∇f(a) · (x− a) +O(∥x− a∥2) (x → a). (16)

where ∇f(a) =
(

∂f
∂x1

(a), ∂f
∂x2

(a), . . . , ∂f
∂xn

(a)
)

is the gradient. In the expression O(∥x−a∥), the
norm ∥ · ∥ can be any norm (such as the Euclidean norm (2-norm) or vector norm) on Rn, because
all norms in finite-dimensional spaces are equivalent. The O(∥x− a∥2) means the remainder term
that vanishes faster than ∥x− a∥2 as x → a. The operator · denotes the dot product.

B MORE ABOUT EXPERIMENTS

B.1 THE HYPERPARAMETERS FOR TRAINING RESNET.

To ensure stable optimization and efficient convergence of the ResNet-101 network on the
CIFAR-10 dataset, a carefully designed hyperparameter configuration scheme was employed during
training.

As shown in Figure 1, our network architecture is a ResNet connected to a projection layer and a
fully connected layer. This section provides more details. We preprocess images using the following
pipeline before feeding them into ResNet:

transform = transforms.Compose([
transforms.Resize(112),
transforms.CenterCrop(112),
transforms.ToTensor()

])

We project the 2048-dimensional features from ResNet’s stage 4 output onto a 128-dimensional
embedding space, then classify them using a fully connected (classification) layer. The specific
network architecture is as follows:

proj = nn.Sequential(
nn.Linear(2048, 512),
nn.BatchNorm1d(512),
nn.PReLU(),
nn.Dropout(p=0.2),
nn.Linear(512, 128)

)

clf = nn.Linear(128, num_classes)

Our experiment employs the cross-entropy loss function with the AdamW optimizer (Loshchilov
& Hutter, 2017), using the macro F1 score as the primary evaluation metric. The training process
utilizes a batch size of 128 and runs for 100 epochs.

B.2 MEANING-PRESERVING PROMPT TEMPLATES

In this section, we provide the 12 prompt templates provided by Zhuo et al. (2024) mentioned
in § 4. For multiple-choice questions with 4 options, the templates are shown in Table 1. We
choose 12 prompts for experimentation to ensure data diversity and avoid inaccurate results caused
by individual edge cases.
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Table 1: The meaning-preserving prompt templates for ARC Challenge, MMLU, and OpenBookQA
datasets. For the CommonSenseQA dataset, the number of options changes from four to five, so
option ‘E’ should be added accordingly. Gray text indicates template slots that need to be replaced.

prompt 1 {question}\nA. {A}\nB. {B}\nC. {C}\nD.
{D}\nAnswer:

prompt 2 Question:\n{question}\nA. {A}\nB. {B}\nC.
{C}\nD. {D}\nAnswer:

prompt 3 Question:\n{question} A. {A} B. {B} C. {C} D.
{D}\nAnswer:

prompt 4 Could you provide a response to the following
question: {question} A. {A} B. {B} C. {C} D.
{D}

prompt 5 Please answer the following
question:\n{question}\nA. {A}\nB. {B}\nC.
{C}\nD. {D}

prompt 6 Please address the following
question:\n{question}\nA. {A}\nB. {B}\nC.
{C}\nD. {D}\nAnswer:

prompt 7 You are a very helpful AI assistant. Please
answer the following questions: {question} A.
{A} B. {B} C. {C} D. {D}

prompt 8 As an exceptionally resourceful AI assistant,
I’m at your service. Address the questions
below:\n{question}\nA. {A}\nB. {B}\nC. {C}\nD.
{D}

prompt 9 As a helpful Artificial Intelligence
Assistant, please answer the following
questions\n{question} A. {A}\nB. {B}\nC. {C}\nD.
{D}

prompt 10 Could you provide a response to the following
question: {question} A. {A} B. {B} C. {C} D.
{D}\nAnswer the question by replying A, B, C or
D.

prompt 11 Please answer the following
question:\n{question}\nA. {A}\nB. {B}\nC.
{C}\nD. {D}\nAnswer the question by replying
A, B, C or D.

prompt 12 Please address the following
question:\n{question}\nA. {A}\nB. {B}\nC.
{C}\nD. {D}\nAnswer this question by replying
A, B, C or D.

B.3 MODIFICATION AND MISALIGNMENT PROMPT TEMPLATES

To evaluate which types of prompts may lead to higher prompt sensitivity, we create four prompt
templates for quantitative analysis. These four prompt templates are shown in Table 2. These prompt
templates are modified from a seed prompt template, which is: “You are a very helpful
AI assistant. Please answer the following questions:\nQuestion:
{question}\nA. {A} B. {B} C. {C} D. {D}\nPlease choose the best
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option and respond only with the option of the correct answer (A,
B, C, or D).\nAnswer:”

Our experimental implementation process is as follows: We first randomly select 500 samples from
each of the four datasets. We then combine these samples with both the seed prompt template and
our modified 12 prompt templates, creating 6,500 prompts for each dataset. These prompts feed into
the LLMs for testing.

Table 2: Our prompt templates for ARC Challenge, MMLU, and OpenBookQA datasets. For the
CommonSenseQA dataset, the number of options changes from four to five, so option ‘E’ should be
added accordingly. Gray text indicates template slots that need to be replaced. Green indicates the
modified token in the first half of the prompt. Red indicates the modified token in the latter half of
the prompt. Orange indicates the token causing the misalignment in the prompt. Blue indicates that
the prompt is completely misaligned.

Seed prompt You are a very helpful AI assistant. Please answer the following
questions:\nQuestion: {question}\nA. {A} B. {B} C. {C} D.
{D}\nPlease choose the best option and respond only with the option
of the correct answer (A, B, C, or D).\nAnswer:

Modification first

You are a very useful AI assistant. Please answer the following
questions:\nQuestion: {question}\nA. {A} B. {B} C. {C} D.
{D}\nPlease choose the best option and respond only with the option
of the correct answer (A, B, C, or D).\nAnswer:

You are a very smart AI assistant. Please answer the following
questions:\nQuestion: {question}\nA. {A} B. {B} C. {C} D.
{D}\nPlease choose the best option and respond only with the option
of the correct answer (A, B, C, or D).\nAnswer:

You are a very friendly AI assistant. Please answer the following
questions:\nQuestion: {question}\nA. {A} B. {B} C. {C} D.
{D}\nPlease choose the best option and respond only with the option
of the correct answer (A, B, C, or D).\nAnswer:

Modification latter

You are a very helpful AI assistant. Please answer the following
questions:\nQuestion: {question}\nA. {A} B. {B} C. {C} D.
{D}\nPlease choose the best option and respond only with the option
of the suitable answer (A, B, C, or D).\nAnswer:

You are a very helpful AI assistant. Please answer the following
questions:\nQuestion: {question}\nA. {A} B. {B} C. {C} D.
{D}\nPlease choose the best option and respond only with the letter
of the correct answer (A, B, C, or D).\nAnswer:

You are a very helpful AI assistant. Please answer the following
questions:\nQuestion: {question}\nA. {A} B. {B} C. {C} D.
{D}\nPlease choose the best option and respond only with the choice
of the correct answer (A, B, C, or D).\nAnswer:

Misalignment fewer

You are a very helpful AI assistant. Please answer the following
questions:\nQuestion: {question}\nA. {A} B. {B} C. {C} D.
{D}\nPlease choose the best option and respond only with the option
of the answer (A, B, C, or D) below.\nAnswer:

You are a very helpful AI assistant. Please answer the following
questions:\nQuestion: {question}\nA. {A} B. {B} C. {C} D.
{D}\nPlease choose the best option and respond only with the option
of the answer (A, B, C, or D) carefully.\nAnswer:

You are a very helpful AI assistant. Please answer the following
questions:\nQuestion: {question}\nA. {A} B. {B} C. {C} D.
{D}\nPlease choose the best option and respond only with the option
of the answer (A, B, C, or D) now.\nAnswer:

Misalignment more

Please choose the best option and respond only with the option
of the answer (A, B, C, or D) below.\nYou are a very helpful AI
assistant. Please answer the following questions:\nQuestion:
{question}\nA. {A} B. {B} C. {C} D. {D}\nAnswer:

Please choose the best option and respond only with the option
of the answer (A, B, C, or D) carefully.\nYou are a very helpful
AI assistant. Please answer the following questions:\nQuestion:
{question}\nA. {A} B. {B} C. {C} D. {D}\nAnswer:

Please choose the best option and respond only with the option
of the answer (A, B, C, or D) now.\nYou are a very helpful AI
assistant. Please answer the following questions:\nQuestion:
{question}\nA. {A} B. {B} C. {C} D. {D}\nAnswer:
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B.4 MORE RESULTS OF PERTURBATION ANALYSIS

Figures 5, 6, 7, and 7 illustrate the Pearson’s r between ∆ log π(yt|z) and ∇z log π(yt|z0)⊤∆z on
Qwen1.5-0.5B, Qwen1.5-1.8B, Qwen1.5-4B, Llama3.2-1B, and Llama3.2-3B, re-
spectively. We pick the 5 layers from each model for demonstration. In particular, we include the
embedding layer, denoted as layer 0.

We can observe that all models exhibit the same trend as discussed in the main text, i.e., the Pearson’s
r between ∆ log π(yt|z) and ∇z log π(yt|z0)⊤∆z decreases as the perturbation radius increases.
The remainder term O(∥z1 − z0∥2) increases accordingly with the perturbation radius increasing.
Furthermore, as shown in Figure 5, 6, and 8, O(∥z1−z0∥2) increases more rapidly for smaller mod-
els than for larger ones, indicating that smaller models are less stable. Specifically, Llama3.2-1B
shows a significant increase in variance as the perturbation radius increases. This suggests that
Llama3.2-1B might be “unfamiliar” with portions of the data, indicating underfitting.
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Figure 5: The Pearson’s r between ∆ log π(yt|z) and ∇z log π(yt|z0)⊤∆z of different layers of
Qwen1.5-0.5B. The same trend is observed as in § 4.1.

B.5 MORE RESULTS ABOUT THE UPPER BOUND

Next, we show more experimental results regarding upper bounds as mentioned in § 4.1. To com-
pare the impact of different perturbation radius on the upper bound, we choose four perturbation
radius for comparison: 0.1, 0.2, 0.4, and 0.8. Figure 10 shows the changes of the upper bound
of |∆ log π(yt|z)| across LLMs’ layers. We first observe that the gradient ∇z log π(yt|z0) exhibits
a decreasing trend as the number of layers in the LLMs increases. The changes in upper bounds
exhibit similar trends across LLMs within the same series, while showing slightly different trends
between different series. For instance, the Qwen series shows gradients rising to a peak before
steadily declining, only to surge dramatically at the end. In contrast, the Llama series exhibits gra-
dients climbing to a peak followed by a continuous decline, with only a slight increase observed
on the ARC Challenge and CommonSenseQA datasets. Large-scale models exhibit lower upper
bounds than smaller ones, but unfortunately, the upper bounds of any model are insufficient to bring
∆ log π(yt|z) close to 0.
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Figure 6: The Pearson’s r between ∆ log π(yt|z) and ∇z log π(yt|z0)⊤∆z of different layers of
Qwen1.5-1.8B. The same trend is observed as in § 4.1.
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Figure 7: The Pearson’s r between ∆ log π(yt|z) and ∇z log π(yt|z0)⊤∆z of different layers of
Qwen1.5-4B. The same trend is observed as in § 4.1.
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Figure 8: The Pearson’s r between ∆ log π(yt|z) and ∇z log π(yt|z0)⊤∆z of different layers of
Llama3.2-1B. The same trend is observed as in § 4.1.
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Figure 9: The Pearson’s r between ∆ log π(yt|z) and ∇z log π(yt|z0)⊤∆z of different layers of
Llama3.2-3B. The same trend is observed as in § 4.1.
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From Figure 10, we can observe that the gradient decreases as layers increase. Therefore, in Fig-
ure 11, we show the trends of another factor affecting the upper bound, ∥∆z∥. It is evident that
∥∆z∥ is always minimal at the embedding layer and then continues to increase. The differences in
the increasing trends between the Qwen and Llama series are as follows: the Qwen series increases
slowly at first, then grows sharply toward the latter half of the layers. The Llama series, however,
increases sharply at the beginning, stabilizes, and then increases sharply again in the latter half of
the layers. It is worth noting that relatively larger Qwen models (1.5-4B) attempt to decrease in the
final layer, but the effect is far from sufficient. Overall, a larger perturbation radius leads to a larger
upper bound.
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Figure 10: The changes of the upper bound of |∆ log π(yt|z)| across LLMs’ layers.

B.6 MORE RESULTS OF REAL-WORLD DATASET VALIDATION

In this section, we will continue from § 4.2 by first reporting additional experimental results for the
pad, trim, and equal conditions (see § B.6.1). Subsequently, we will report further experimental re-
sults on how prompt modifications affect ∥∆z∥ (see § B.6.2). Finally, we will provide experimental
details and more results for Figure 4d (see B.6.3).

B.6.1 PAD VS. TRIM VS. EQUAL

We first perform experiments on all models across four datasets, calculating ∥∆z∥ for each layer
and the number of tokens in the prompt. Subsequently, we group our experimental data based on
pad, trim, and equal to calculate the average value for each layer. Figure 12 shows a comparison
of pad, trim, and equal across all models and datasets. We can observe that ∥∆z∥ for pad and trim
are generally higher than those for equal in most cases, indicating that our hard alignment method
introduces some degree of bias. Moreover, counterintuitively, the gap between pad, trim, and equal
is more significant on larger-scale models than on smaller ones. This serves as a cautionary note that
larger models do not necessarily perform better, aligning with recent findings by Liu & Chu (2025).
Specifically, the errors of Qwen1.5-0.5B and Qwen1.5-1.8B on the CommonSenseQA dataset
are nearly negligible.
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Figure 11: The changes of ∥∆z∥ across LLMs’ layers.

B.6.2 FIRST VS. LATTER & FEWER VS. MORE

In § 4.2, we already observed that modifying the first half of the prompt has a greater impact on
∥∆z∥ than modifying the latter half. More misalignments have a greater effect on ∥∆z∥ than fewer
misalignments. In this section, we report experimental results across all models and datasets. By
observing Figures 13 and 15, we conclude that the findings from § 4.2 hold true across all models
and datasets, particularly becoming more pronounced in larger-scale models.

B.6.3 PROMPT TEMPLATE VS. QUESTION

To investigate the relative impact of different prompt templates and questions on the output re-
sults (logits) of LLMs, we designed a two-factor ANOVA experiment. We selected questions from
multiple datasets (ARC Challenge, CommonSenseQA, MMLU, OpenBookQA). We used the 12
prompts listed in Table 1. For each question, we input it with each of the 12 different prompt tem-
plates to obtain the model’s logit outputs. To ensure a balanced design, we consistently selected
the first 12 questions from each dataset. Combining these with the 12 prompts forms a 12×12 fac-
torial combination, yielding a total of 144 experimental samples. We take question and prompt
as classification factors respectively. Construct an ordinary least squares (OLS) regression model
logit ∼ C(question) + C(prompt). We perform an ANOVA on the model results to quantitatively
evaluate the explanatory power of the question factor and prompt factor on logit variation. Simulta-
neously, we calculate the contribution ratio of each factor to the total sum of squares and compare it
with the residual term.

As shown in Figure 15, we present the experimental results of all models across all datasets. It is
not difficult to observe that, in all cases, prompts exert a greater influence on logits than questions
do. In most cases, the prompt explains between 70% and 90% of the variance, while the question
typically contributes less than 10%. The residual generally accounts for 5% to 20%, indicating that
the primary variation in the model’s output can be attributed to the prompt factor. This indicates that
LLMs recognize prompt templates more than questions. This finding serves as a warning that when
evaluating the performance of LLMs, the importance of prompt design may outweigh differences in
dataset questions, posing challenges for fair model comparisons.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

0 8 16 24
0

500

1000

1500

AR
C_
Ch

al
le
ng

e

Qwen1.5-0.5B

0 8 16 24
0

500

1000

1500

2000
Qwen1.5-1.8B

0 15 30
0

500

1000

1500

2000

Qwen1.5-4B

0 5 10 15
0

200

400

600

800
Llama3.2-1B

0 8 16 24
0

200

400

600

Llama3.2-3B

0 8 16 24
0

250

500

750

1000

1250

Co
m
m
on

Se
ns
eQ

A

Qwen1.5-0.5B

0 8 16 24
0

500

1000

1500
Qwen1.5-1.8B

0 15 30
0

500

1000

1500

Qwen1.5-4B

0 5 10 15
0

200

400

600
Llama3.2-1B

0 8 16 24
0

20

40

60

80

Llama3.2-3B

0 8 16 24
0

500

1000

1500

M
M
LU

Qwen1.5-0.5B

0 8 16 24
0

500

1000

1500

2000
Qwen1.5-1.8B

0 15 30
0

500

1000

1500

2000
Qwen1.5-4B

0 5 10 15
0

200

400

600

800
Llama3.2-1B

0 8 16 24
0

20

40

60

80

Llama3.2-3B

0 8 16 24
0

250

500

750

1000

1250

Op
en

Bo
ok
QA

Qwen1.5-0.5B

0 8 16 24
0

500

1000

1500
Qwen1.5-1.8B

0 15 30
0

500

1000

1500

2000
Qwen1.5-4B

0 5 10 15
0

200

400

600
Llama3.2-1B

0 8 16 24
0

200

400

600
Llama3.2-3B

Pad Trim Equal

Figure 12: The biases caused by the hard alignment.
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Figure 13: The comparison of ∥∆z∥ between modify the first half and latter half of the prompt.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

0 8 16 24
0

500

1000

1500

2000

AR
C_
Ch

al
le
ng

e

Qwen1.5-0.5B

0 8 16 24
0

500

1000

1500

2000

2500
Qwen1.5-1.8B

0 15 30
0

500

1000

1500

2000

2500

Qwen1.5-4B

0 5 10 15
0

200

400

600

800

1000
Llama3.2-1B

0 8 16 24
0

200

400

600

800

1000
Llama3.2-3B

0 8 16 24
0

500

1000

1500

2000

Co
m
m
on

Se
ns
eQ

A

Qwen1.5-0.5B

0 8 16 24
0

500

1000

1500

2000

Qwen1.5-1.8B

0 15 30
0

500

1000

1500

2000

2500
Qwen1.5-4B

0 5 10 15
0

200

400

600

800

Llama3.2-1B

0 8 16 24
0

200

400

600

800

Llama3.2-3B

0 8 16 24
0

500

1000

1500

2000

M
M
LU

Qwen1.5-0.5B

0 8 16 24
0

500

1000

1500

2000

2500

Qwen1.5-1.8B

0 15 30
0

500

1000

1500

2000

2500

Qwen1.5-4B

0 5 10 15
0

200

400

600

800

1000

Llama3.2-1B

0 8 16 24
0

200

400

600

800

1000
Llama3.2-3B

0 8 16 24
0

500

1000

1500

2000

Op
en

Bo
ok
QA

Qwen1.5-0.5B

0 8 16 24
0

500

1000

1500

2000

Qwen1.5-1.8B

0 15 30
0

500

1000

1500

2000

Qwen1.5-4B

0 5 10 15
0

200

400

600

800

Llama3.2-1B

0 8 16 24
0

200

400

600

800

Llama3.2-3B

More Fewer

Figure 14: The comparison of ∥∆z∥ between prompts with fewer and more misalignments.

C THE USE OF LLMS

To convey information more clearly, this paper employs ChatGPT to simplify certain complex
expressions during the writing process.
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Figure 15: The comparison of contributions from the prompt template and the question. The aster-
isks (***) indicate p-value<0.001.
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