

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 UNDERSTANDING THE PROMPT SENSITIVITY

Anonymous authors

Paper under double-blind review

ABSTRACT

Prompt sensitivity, which refers to how strongly the output of a large language model (LLM) depends on the exact wording of its input prompt, raises concerns among users about the LLM’s stability and reliability. In this work, we consider LLMs as multivariate functions and perform a first-order Taylor expansion, thereby analyzing the relationship between prompts, their gradients, and the logit of the model’s next token. Furthermore, according to the Cauchy–Schwarz inequality, the logit difference can be upper bounded by the product of the gradient norm and the norm of the difference between the prompts’ embeddings or hidden states. Our analysis allows a general interpretation of why current transformer-based autoregressive LLMs are sensitive to prompts with the same meaning. In particular, we show that LLMs do not internally cluster similar inputs like smaller neural networks do, but instead disperse them. This dispersing behavior leads to an excessively large upper bound on the logit difference between the two prompts, making it difficult to be effectively reduced to zero. In our analysis, we also show which types of meaning-preserving prompt variants are more likely to introduce prompt sensitivity risks in LLMs. Our findings provide crucial evidence for interpreting the prompt sensitivity of LLMs. Code for experiments is available in the supplementary materials.

1 INTRODUCTION

Large language models (LLMs) usually show sensitivity to even minor variations in prompts, such as wording, prompt template, or even minor spelling errors, although these variations do not change the meaning of the prompt (Chatterjee et al., 2024). This phenomenon can be described as LLMs’ prompt sensitivity, which can amplify the output variance, making the model’s output unreliable. To quantify this effect, researchers (Zhuo et al., 2024; Chatterjee et al., 2024) have made considerable efforts to assess the sensitivity of LLMs to minor variations in prompts. Also, Sun et al. (2024) have attempted to improve the generalization ability of LLMs through reinforcement learning from human feedback (RLHF; Christiano et al., 2017) or instruction tuning (Wei et al., 2021). However, even minor changes such as prompt formatting to the wording of the prompts still can lead to the prompt sensitivity of these models (Sclar et al., 2024).

Although prompt sensitivity in LLMs is frequently highlighted, its generation mechanism remains poorly understood. For example, we still do not understand why a set of meaning-preserving prompts can yield completely different outputs by an LLM. This open issue leads to a lack of credibility in previous benchmark-based prompt sensitivity evaluations (Zhuo et al., 2024; Chatterjee et al., 2024) and the arbitrary practice of fine-tuning LLMs by increasing training samples (Liu et al., 2025; Dong et al., 2024). Previous studies (Zhuo et al., 2024; Chatterjee et al., 2024) calculate a metric to represent a model’s sensitivity to wording changes in prompts based on its output. However, they make only limited contributions to understanding the prompt sensitivity of LLMs and fail to guide fundamental breakthroughs.

Contrary to previous studies, we aim to understand the prompt sensitivity of LLMs using a mathematical analysis method: Taylor expansion (Taylor, 1715). In this study, we focus on the current popular transformer-based LLMs. Specifically, we formalize the transformer blocks of LLMs as a continuous multivariate function, which outputs the logit of the model’s next token. The hidden states are responsible for converting the prompts in discrete space into the continuous representation space. The hidden states of the prompt can be regarded as the multivariate input of the function. Then, we use the first-order Taylor expansion of this function to connect the hidden states of the

prompt with the output logit. Furthermore, formalizing LLMs as functions and performing Taylor expansion allows us to make connections between the gradients and hidden states of the model inputs. Monitoring their changes across the model’s layers can help us understand the underlying mechanism of the prompt sensitivity of LLMs.

Moreover, we provide a novel perspective on explaining the prompt sensitivity of LLMs. Our analysis starts with an image classification task. We observe that ResNet (He et al., 2016) internally produces a clustering behavior to achieve high accuracy. However, we find that this behavior does not exist within transformer-based LLMs. By applying the Cauchy–Schwarz (Cauchy, 1821; Schwarz, 1890) inequality to transform the Taylor expansion, we reveal that this clustering behavior influences the upper bound of the logit difference between prompts. In other words, without the clustering behavior, the upper bound on the logit difference between prompts will hardly be sufficiently small to be effectively reduced to zero. In addition, we analyze different types of meaning-preserving prompt variants, such as modifying tokens in the first or latter half of the prompt, or modifying token order to create misalignment within the prompt. Our experiments indicate that modifying the first half of a prompt carries a higher risk of prompt sensitivity than modifying the latter half, with more token misalignments posing a greater risk than fewer token misalignments. Overall, token misalignments present a higher risk of prompt sensitivity than token modifications.

2 NEURAL NETWORKS ARE FUNCTIONS

A neural network is a mathematical relationship that maps inputs to outputs (LeCun et al., 2015; Nielsen, 2015; Goodfellow et al., 2016). If the input is a vector $\mathbf{x} \in \mathbb{R}^d$ and the output is a scalar $y \in \mathbb{R}$, then a single-layer neural network can be represented as:

$$y = \sigma(\mathbf{w}^\top \mathbf{x} + b) \quad (1)$$

where \mathbf{w} is the weight vector, b is the bias, and $\sigma(\cdot)$ is the activation function, such as sigmoid (Rumelhart et al., 1986), ReLU (Nair & Hinton, 2010; Glorot et al., 2011), etc. If we consider this neural network as a function $y = f(\mathbf{x})$. The one-time inference using this neural network can be interpreted as input vector \mathbf{x} to the function $f(\mathbf{x})$, outputting the scalar y . In this section, we start by explaining why deep neural networks are composite functions. Then, we introduce intra-class mean distances, a simple representation of space distances. Finally, we interpret why deep neural networks can perform classification tasks from an interesting perspective: that a neural network is a function.

Deep neural networks are compositions of functions.

A deep neural network defines a function as a composition of simpler functions. In particular, it is composed of layer-by-layer composites of affine transformations and activation functions (Cybenko, 1989; Hornik et al., 1989; Murphy, 2012). Formally, the affine transformation of the layer l is:

$$A_l(\mathbf{x}) = \mathbf{W}_l \mathbf{x} + \mathbf{b}_l \quad (2)$$

where $\mathbf{x} \in \mathbb{R}^{d_{l-1}}$ is the output vector of layer $l-1$, $\mathbf{W}_l \in \mathbb{R}^{d_l \times d_{l-1}}$ is the weight of the layer l , and \mathbf{b} is the bias of layer l . Then, the affine transformation $A_l(\mathbf{x})$ is composed using the activation function σ_l as follows:

$$g_l = \sigma_l \circ A_l \quad (3)$$

The general mapping of the deep neural network of layer L is as follows:

$$F = g_L \circ g_{L-1} \circ \cdots \circ g_1 \quad (4)$$

where the composite function F is a continuous mapping from the input space to the output space (Hornik et al., 1989; Goodfellow et al., 2016).

Figure 1 shows the structure of a neural network used for image classification, with ResNet (He et al., 2016) connecting a projection layer and a fully connected layer. In the upper case, we consider “Stem” as the feature processing part \mathcal{F}_p , which outputs the feature map \mathbf{c}_s ; the rest of the network serves as the function part \mathcal{F}_f , taking \mathbf{c}_s as input and producing the result \hat{y} . Alternatively, in the

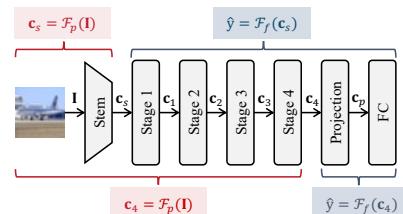


Figure 1: ResNet example.

bottom case, we consider “Stage 4” and previous stages as the feature processing part \mathcal{F}_p , which outputs the feature map \mathbf{c}_4 ; the rest of the network is the function part \mathcal{F}_f , taking \mathbf{c}_4 as input and producing the result \hat{y} . In this way, we can split the composite function F into two parts: the data processing part \mathcal{F}_p and the functional part \mathcal{F}_f . Thus, we can interpret the behavior of neural networks from a functional perspective.

Intra-class compactness. Intra-class compactness (Yan et al., 2020) refers to how close or tightly clustered the samples or data points of the same class are in the feature space. Typically, an ideal classifier requires ensuring high intra-class compactness. To remove the influence of vector dimension on distance metrics, we first perform L^2 normalization on the feature vectors, then use the Euclidean distance between the normalized vectors as the metric:

$$d(\mathbf{x}_i, \mathbf{x}_j) = \|\mathbf{x}_i - \mathbf{x}_j\| \quad (5)$$

As all vectors are normalized to the unit hypersphere, this distance reflects only directional differences and is equivalent to cosine similarity, e.g., $\|\mathbf{x}_i - \mathbf{x}_j\| = \sqrt{2 - 2 \cos \theta_{ij}}$, where θ_{ij} is the angle between the two vectors. We denote the sample set for class c as \mathcal{J}_c . We use the intra-class mean distance to measure intra-class compactness. The distance of samples in class c is defined as follows:

$$D_{\text{intra}}^{(c)} = \frac{1}{|\mathcal{J}_c|(|\mathcal{J}_c| - 1)} \sum_{\mathbf{x}_i, \mathbf{x}_j \in \mathcal{J}_c} d(\mathbf{x}_i, \mathbf{x}_j) \quad (6)$$

We use the average of the distances over all classes as the metric for intra-class compactness:

$$D_{\text{intra}} = \frac{1}{|\mathcal{C}|} \sum_{c \in \mathcal{C}} D(c) \quad (7)$$

where \mathcal{C} is the class set and $|\mathcal{C}|$ denotes the total number of classes. Enhancing intra-class compactness, i.e., decreasing D_{intra} , can improve the neural network’s classification performance (Liu et al., 2016; Yan et al., 2020).

Intra-class mean distance of ResNet on CIFAR-10. To illustrate the internal behavior of neural networks while performing classification tasks. We investigate how intra-class compactness of the feature maps changes across each stage of a neural network. We take the application of ResNet (we pick ResNet-101; He et al., 2016) on the CIFAR-10 dataset (Krizhevsky et al., 2009) as an example. ResNet is typically divided into four stages (see Figure 1), each stage consisting of multiple residual blocks stacked together, and outputs the feature map $\mathbf{c}_{\{1,2,3,4\}}$ of the input image. Here, we focus on the stage level of ResNet to analyze the feature maps output at each stage, the input feature map \mathbf{c}_s output by the stem.

We trained this neural network on the CIFAR-10 dataset for 100 epochs, achieving the highest F1 score on the testing set at epoch 91.¹ As shown in Figure 2, we compare the D_{intra} of feature maps across three epochs: the early training epoch (epoch 1), the mid-training epoch (epoch 45), and the late training epoch (epoch 90). A low D_{intra} indicates high intra-class compactness. In this example, we consider the ResNet part of the neural network as the feature processing part \mathcal{F}_p and show the trend of intra-class mean distances of the feature maps at the \mathcal{F}_p part. The projection and fully connected layers as the function part \mathcal{F}_f , and \mathbf{c}_4 are the output of the feature processing part \mathcal{F}_p as the input of the function part \mathcal{F}_f . We find that in the feature processing part \mathcal{F}_p exhibits a clustering behavior towards the feature maps. In particular, this clustering behavior becomes weaker on feature map \mathbf{c}_4 at earlier epochs (when F1 scores are relatively low). However, at later epoch,

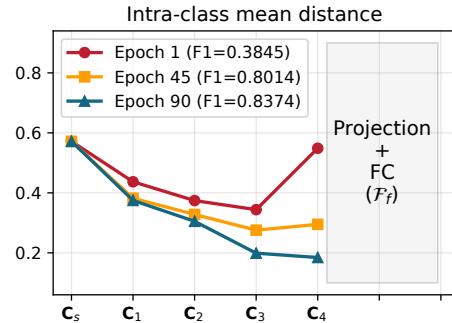


Figure 2: Intra-class mean distances for CIFAR-10 across different training epochs.

¹For more hyperparameters, see Appendix B.1.

162 when F1 scores are relatively high, this clustering behavior persists on feature map \mathbf{c}_4 . From the
 163 function perspective, clustering brings samples of the same class closer together, while continuous
 164 functions produce similar outputs for similar inputs. In other words, the classification accuracy of
 165 the functional part is influenced by the clustering effectiveness of the feature processing part. In this
 166 paper, based on the above analysis, we formulate LLMs as functions and investigate their prompt
 167 sensitivity using Taylor expansion.

169 3 INTERPRETATION OF PROMPT SENSITIVITY

171 The prompt sensitivity of LLMs usually refers to minor variations in prompts causing LLMs to
 172 respond with different results (Zhuo et al., 2024; Chatterjee et al., 2024). In this paper, we narrow
 173 it down to describe “how prompt p_0 and its meaning similar prompt p_1 cause the LLMs to respond
 174 with different logits of the model’s next token y_t .” The natural language prompts or their tokenized
 175 tokens reside in a discrete space, while their embeddings represented by the embedding layer or
 176 hidden states output by a specific transformer block can be regarded as variables in the continuous
 177 representation space.

179 3.1 LLMs ARE MULTIVARIABLE FUNCTIONS

181 In § 2, we observe that ResNet exhibits clustering behavior to achieve significantly higher accuracy
 182 and F1 score. We split the neural network into a feature processing part \mathcal{F}_p and a function part \mathcal{F}_f .
 183 From this perspective, we interpret the neural network as follows: the \mathcal{F}_p part clusters the input sam-
 184 ples, while the \mathcal{F}_f part classifies the clustered samples. We also point out that any layers in a neural
 185 network can be regarded as a function, with the previous layers serving as the feature processing part
 186 for the input of the function part. In this section, we generalize this interpretation to transformer-
 187 based LLMs. Unlike classification neural networks, which project the feature representations into
 188 a class space, LLMs project the feature representations into a vocabulary space to predict the next
 189 token.

190 In LLMs’ inference stage, when an LLM predicts the next token, it first maps the input tokens into
 191 embeddings by the embedding layer and adds positional encodings to form a sequence representa-
 192 tion. Then, the sequence representation passes through several transformer blocks sequentially. In
 193 the self-attention module of each transformer block, a causal mask is applied to block tokens to the
 194 right of the current position, ensuring that each current position only depends on the content to its
 195 left. In this way, each position ultimately obtains a hidden state vector that contains only the prefix
 196 information. When the model processes the entire input sequence, it predicts the next token using
 197 the hidden state of the last position. This hidden state is projected to the vocabulary space via the
 198 output layer (typically a linear layer and softmax).

199 Now, suppose we input a prompt containing L tokens into an LLM. The model maps each token
 200 in this prompt to a D -dimensional embedding. Following the analysis in § 2, we can consider the
 201 model’s embedding layer as the feature processing part \mathcal{F}_p , while the remaining transformer blocks
 202 and output layer as the part of a multivariate function \mathcal{F}_f accepting an $L \times N$ input. The logit of
 203 the model’s next token is the output of function \mathcal{F}_f . Alternatively, the embedding layer and any
 204 preceding blocks can be considered as the feature processing part \mathcal{F}_p , with the remaining blocks as
 205 the function part \mathcal{F}_f . In this case, the hidden states output by the feature processing part \mathcal{F}_p is the
 206 input of the function part \mathcal{F}_f . Ideally, to achieve approximate output logits, LLMs should cluster
 207 the hidden states of meaning-preserving prompts at any layer.

208 3.2 TAYLOR EXPANSION OF LLMs

210 Suppose we split an LLM into a feature processing part \mathcal{F}_p and a function part \mathcal{F}_f . The hidden
 211 states output by \mathcal{F}_p are denoted as \mathbf{z} , which serve as input to \mathcal{F}_f . We select the output of the output
 212 layer during training, $\log \pi(y_t | \mathbf{z})$, as the output value of the function. Here, $\pi = \text{softmax}(\mathbf{z}')$ and
 213 \mathbf{z}' are the logits output by the LLM. Formally, we can express the relationship between the hidden
 214 states \mathbf{z}_0 and \mathbf{z}_1 of two meaning-preserving prompts by Taylor expansion² as follows:

215 ²Appendix A provides the first-order Taylor expansion for both univariate and multivariate cases.

$$\underbrace{\log \pi(y_t | \mathbf{z}_1)}_{1 \times 1} - \underbrace{\log \pi(y_t | \mathbf{z}_0)}_{1 \times 1} = \underbrace{\nabla_{\mathbf{z}} \log \pi(y_t | \mathbf{z}_0)^\top}_{1 \times [L \times D]} \underbrace{(\mathbf{z}_1 - \mathbf{z}_0)}_{[L \times D] \times 1} + \mathcal{O}(\|\mathbf{z}_1 - \mathbf{z}_0\|^2) \quad (8)$$

where $1 \times [L \times D]$ or $[L \times D] \times 1$ means that the gradient matrix $\nabla_{\mathbf{z}} \pi(y_t | \mathbf{z}_0)^\top \in \mathbb{R}^{L \times D}$ or difference matrix $\mathbf{z}_1 - \mathbf{z}_0 \in \mathbb{R}^{D \times L}$ can be considered as a flattened matrix with shapes $1 \times [L \times D]$ or $[L \times D] \times 1$ and L is the prompt length and D is the dimension of the model's hidden layer. $\mathcal{O}(\|\mathbf{z}_1 - \mathbf{z}_0\|^2)$ is the remainder term of the Taylor expansion.

The difference matrix $\Delta \mathbf{z} = \mathbf{z}_1 - \mathbf{z}_0$ represents the difference between the feature representations of the two prompts. It is calculated through element-wise subtraction, thus capturing not only semantic differences between the two prompts but also variations in their expressive styles. In real-world scenarios, as the number of tokens in two prompts may be different, the shapes of \mathbf{z}_0 and \mathbf{z}_1 may also be different. If \mathbf{z}_0 and \mathbf{z}_1 have different shapes, we will use \mathbf{z}_0 's shape as the standard to pad \mathbf{z}_1 with zero vectors or trim it accordingly. This hard alignment method might more or less overestimate the model's prompt sensitivity. We will analyze this impact in § 4.

3.3 UPPER BOUND

From the properties of Taylor expansion, we know that when the distance of \mathbf{z}_0 and \mathbf{z}_1 is sufficiently close, the remainder term $\mathcal{O}(\|\mathbf{z}_1 - \mathbf{z}_0\|^2)$ will vanish faster than $\|\mathbf{z}_1 - \mathbf{z}_0\|^2$ as $\mathbf{z}_1 \rightarrow \mathbf{z}_0$. Based on this condition, we rewrite Eq. (8) in the following form:

$$\log \pi(y_t | \mathbf{z}_1) - \log \pi(y_t | \mathbf{z}_0) \approx \nabla_{\mathbf{z}} \log \pi(y_t | \mathbf{z}_0)^\top (\mathbf{z}_1 - \mathbf{z}_0) \quad (9)$$

Then, we obtain the following inequality by calculating the L2 norm:

$$|\log \pi(y_t | \mathbf{z}_1) - \log \pi(y_t | \mathbf{z}_0)| \leq \|\nabla_{\mathbf{z}} \log \pi(y_t | \mathbf{z}_0)\| \cdot \|\mathbf{z}_1 - \mathbf{z}_0\| \quad (10)$$

This inequality tells us that $|\Delta \log \pi(y_t | \mathbf{z})| = |\log \pi(y_t | \mathbf{z}_1) - \log \pi(y_t | \mathbf{z}_0)|$ has an upper bound $\|\nabla_{\mathbf{z}} \log \pi(y_t | \mathbf{z}_0)\| \cdot \|\mathbf{z}_1 - \mathbf{z}_0\|$. Here, $\|\cdot\|$ actually is the Frobenius norm. As in Eq. (8) we convert the matrix into a one-dimensional vector, it is written here as the L2 norm. If $\|\nabla_{\mathbf{z}} \log \pi(y_t | \mathbf{z}_0)\| \cdot \|\mathbf{z}_1 - \mathbf{z}_0\|$ is significantly small, $|\log \pi(y_t | \mathbf{z}_1) - \log \pi(y_t | \mathbf{z}_0)|$ can be approximated as 0, meaning the two meaning-preserving prompts receive equal logits of the model's next token.

Calculate the gradient. We represent the gradient matrix as follows:

$$\nabla_{\mathbf{z}} \log \pi(y_t | \mathbf{z})^\top = [G(\mathbf{z}[1, :]), \dots, G(\mathbf{z}_0[L, :])] \quad (11)$$

Each row $G(\mathbf{z}[i, :]) \in \mathbb{R}^D$ of the gradient matrix represents the gradient vector of each token of the prompt. The gradient for the j -th dimension of the i -th token is calculated as follows:

$$g(\mathbf{z}[i, j]) = \nabla_{\mathbf{z}[i, j]} \log \pi(y_t | \mathbf{z}) \quad (12)$$

The gradient $g(\mathbf{z}[i, j])$ is the gradient of the logits of the model's next token, usually named saliency score (Simonyan et al., 2013; Li et al., 2016). Unlike Yin & Neubig (2022), who use the L1 norm to calculate the saliency score for each input token, we take the Frobenius norm of the gradient matrix to obtain the saliency score of input \mathbf{z} as follows:

$$S_{GN}(\mathbf{z}) = \|\nabla_{\mathbf{z}} \log \pi(y_t | \mathbf{z})\|_F = \sqrt{\sum_{i,j} |g(\mathbf{z}[i, j])|^2} \quad (13)$$

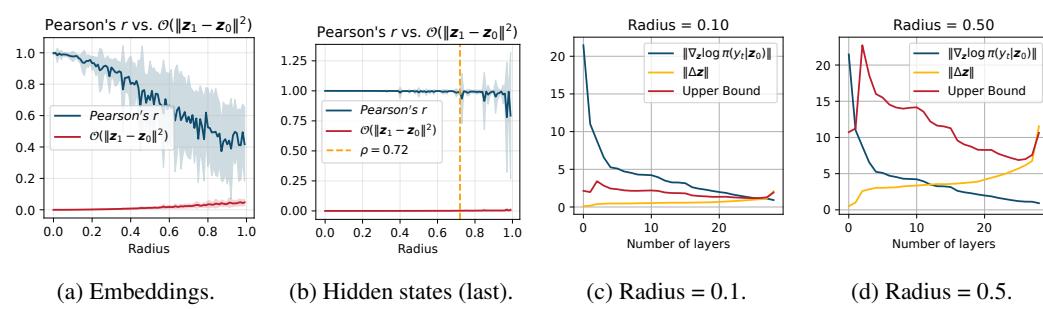
$S_{GN}(\mathbf{z})$ is the overall contribution of \mathbf{z} to the logit of the model's next token.

4 EXPERIMENTAL VERIFICATIONS

In this section, we verify our analytical results in practical settings. We consider four datasets commonly used to evaluate prompt sensitivity (Zhuo et al., 2024; Chatterjee et al., 2024), ARC Challenge (Clark et al., 2018), CommonsenseQA (Talmor et al., 2019), MMLU (Hendrycks et al., 2021), and OpenBookQA (Mihaylov et al., 2018). We randomly select 500 examples to create

270 our test set from each dataset. Each sample in our test set is a multiple-choice question with a
 271 correct answer. We consider 12 prompt templates³ provided in Zhuo et al. (2024)’s work to create
 272 the meaning-preserving prompts for LLMs. We perform all our experiments on two model series:
 273 Qwen1.5-0.5B/1.8B/4B (Bai et al., 2023) and Llama3.2-1B/3B (Touvron et al., 2023).
 274 Unless otherwise specified, we only report experimental results for Llama3.2-3B on the ARC
 275 Challenge dataset in this section. For detailed experimental results and further discussion regarding
 276 other models and datasets, please refer to Appendix B.

277 4.1 PERTURBATION ANALYSIS



290 Figure 3: Key results of perturbation verification for Llama3.2-3B on ARC Challenge dataset:
 291 (a) and (b) are the Pearson’s r between $\Delta \log \pi(y_t|\mathbf{z})$ and $\nabla_{\mathbf{z}} \log \pi(y_t|\mathbf{z}_0)^\top \Delta \mathbf{z}$ of embeddings and
 292 the last layer’s hidden states respectively. (c) and (d) are the variations of $\|\nabla_{\mathbf{z}} \log \pi(y_t|\mathbf{z}_0)\|$, $\|\Delta \mathbf{z}\|$,
 293 and their product across model’s layers when the perturbation radius is 0.1 and 0.5 respectively (full
 294 results in Appendix B.4 and B.5).

295 Eq. (8) describes how the difference between the output logits of two hidden states \mathbf{z}_0 and \mathbf{z}_1 can
 296 be approximated by the difference between the gradient matrix dot products of $\Delta \mathbf{z} = \mathbf{z}_1 - \mathbf{z}_0$. The
 297 Taylor expansion converges in some open neighborhood of \mathbf{z}_0 , which can be written as:

$$299 \quad 300 \quad B_r(\mathbf{z}_0) = \{\mathbf{z}_1 \in \mathbb{R}^D \mid \|\mathbf{z}_1 - \mathbf{z}_0\| < \rho\} \quad (14)$$

301 where ρ is the perturbation radius. We start by analyzing the relationship between the term
 302 $\Delta \log \pi(y_t|\mathbf{z})$ and $\nabla_{\mathbf{z}} \log \pi(y_t|\mathbf{z}_0)^\top \Delta \mathbf{z}$ to verify the validity of Eq. (8). First, we consider the LLM’s
 303 embedding layer as the feature processing part \mathcal{F}_p and all the transformer blocks as the function part
 304 \mathcal{F}_f . We randomly pick a prompt as the seed prompt p_s , the embedding vectors of the prompt p_s
 305 are \mathbf{z}_0 . Then, we randomly perturb the embedding vectors \mathbf{z}_0 to obtain the perturbed embedding
 306 vectors \mathbf{z}_1 . We create 100 randomly perturbed embedding vectors as the input to the function by
 307 constraining the norm between \mathbf{z}_0 and \mathbf{z}_1 to be less than the perturbation radius ρ . The range of
 308 our perturbation radius ρ is from 0 to 1, with a step size of 0.01. We calculate $\Delta \log \pi(y_t|\mathbf{z})$ and
 309 $\nabla_{\mathbf{z}} \log \pi(y_t|\mathbf{z}_0)^\top \Delta \mathbf{z}$ for these 100 embedding vectors with \mathbf{z}_0 . We repeated the experiment on 10
 310 seed prompts and calculated the average results.

311 As shown in Figure 3a, we report the Pearson’s r (Pearson, 1895) between $\Delta \log \pi(y_t|\mathbf{z})$ and
 312 $\nabla_{\mathbf{z}} \log \pi(y_t|\mathbf{z}_0)^\top \Delta \mathbf{z}$ for the 100 perturbed samples under different perturbation radius ρ , using
 313 Llama3.2-3B. A high Pearson’s r indicates that the first-order Taylor expansion provides a good
 314 linear approximation to the function represented by the LLM. We observe that on the embedding
 315 vectors, the Pearson’s r gradually decreases as the perturbation radius increases, indicating that the
 316 first-order linear approximation progressively fails and the influence of higher-order terms becomes
 317 increasingly evident.

318 However, as shown in Figure 3b, the correlation between $\Delta \log \pi(y_t|\mathbf{z})$ and $\nabla_{\mathbf{z}} \log \pi(y_t|\mathbf{z}_0)^\top \Delta \mathbf{z}$
 319 in the hidden states output by the last transformer block remains at a high and stable level when
 320 the perturbation radius is less than 0.72. This indicates that within a small perturbation range, the
 321 linear approximation can effectively explain the variation in $\Delta \log \pi(y_t|\mathbf{z})$. As the radius continues
 322 to increase, the correlation begins to fluctuate. This phenomenon might stem from two reasons: (1)
 323 The mapping between the last hidden states and the output is relatively closer to linear (typically

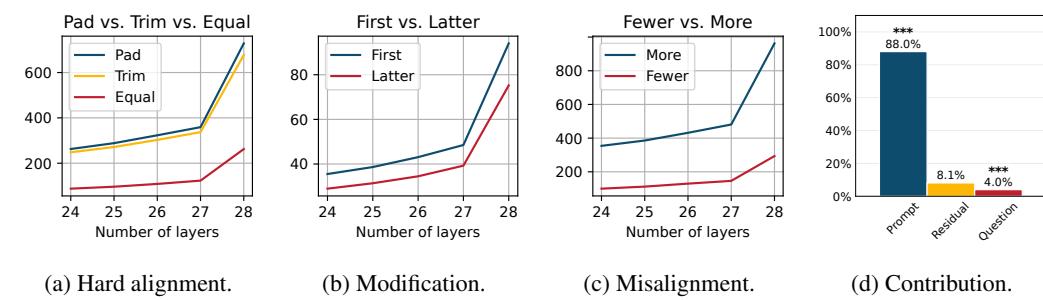
³All templates are provided in Appendix B.2.

324 a linear layer followed by softmax). Therefore, within a small perturbation range, the first-order
 325 approximation holds well, manifesting as a high and stable Pearson’s r . As the perturbation radius
 326 increases further, nonlinear effects such as softmax begin to become significant, causing the corre-
 327 lation to fluctuate. (2) From the perspective that LLMs are functions, after processing by the feature
 328 processing part \mathcal{F}_p , perturbed samples have been “regularized” or “clustered” in the latent space,
 329 allowing changes in $\Delta \log \pi(y_t|\mathbf{z})$ to be largely explained by gradient inner products.

330 The first reason is obvious, as LLMs are stacks of multiple non-linear transformer blocks. However,
 331 regarding the second reason, do LLMs actually perform internal clustering of similar meaning in-
 332 puts? In Figure 3c and 3d, we compare the variations of $\|\nabla_{\mathbf{z}} \log \pi(y_t|\mathbf{z}_0)\|$, $\|\Delta \mathbf{z}\|$, and their product
 333 (i.e., the upper bound of $\Delta \log \pi(y_t|\mathbf{z})$) across the model’s layers. We find that although the gradient
 334 gradually decreases with each layer, the distance between perturbation samples and the seed sample
 335 in the representation space continues to increase, rising sharply at the last hidden states. The result
 336 is that the upper bound of $\Delta \log \pi(y_t|\mathbf{z})$ (the red line) fails to converge to sufficiently low values,
 337 making it difficult for $\Delta \log \pi(y_t|\mathbf{z})$ to approach zero. This indicates that the internal representations
 338 of LLMs do not exhibit clustering behavior similar to traditional neural networks. Previous studies
 339 have revealed clustering behaviors in transformer-based LLMs (Phang et al., 2021; Wu & Varshney,
 340 2025), but these behaviors are typically limited to clustering the same task samples. In contrast,
 341 our analysis requires LLMs to cluster meaning-preserving prompts together. In light of the findings
 342 of Wu & Varshney (2025), we argue that current mainstream LLMs exhibit insufficient clustering
 343 behavior to entail $\|\nabla_{\mathbf{z}} \log \pi(y_t|\mathbf{z}_0)\| \cdot \|\Delta \mathbf{z}\|$ as an effective upper bound.

344 In summary, we have the following interpretation for prompt sensitivity of LLMs. First, LLMs do
 345 not exhibit the clustering behavior that is found in traditional neural networks. However, this clus-
 346 tering behavior serves as crucial evidence that neural networks can accurately perform classification
 347 tasks. Secondly, as LLMs tend to pull meaning-preserving prompts farther apart in the representation
 348 space, this leads to giving $\Delta \log \pi(y_t|\mathbf{z})$ a large upper bound $\|\nabla_{\mathbf{z}} \log \pi(y_t|\mathbf{z}_0)\| \cdot \|\Delta \mathbf{z}\|$. This makes
 349 it impossible to approximate $\Delta \log \pi(y_t|\mathbf{z})$ to zero via the upper bound. In other words, because
 350 LLMs do not exhibit clustering behavior for meaning-preserving prompts, they can only learn each
 351 sample individually during training. This cannot guarantee that the model fits meaning-preserving
 352 prompts to the same degree, leading to different outputs during inference.

353 4.2 REAL-WORLD DATASET VALIDATION



365 Figure 4: Key results of Llama3.2-3B on ARC Challenge dataset: (a), (b), and (c) are the $\|\Delta \mathbf{z}\|$ of
 366 the last 5 layers of Llama3.2-3B under different conditions. (d) is the comparison of contributions
 367 from the prompt template and the question. The asterisks (****) indicate p -value < 0.001 (full results
 368 in Appendix B.6).

370 In § 3.2, we mention that when calculating Eq. (8), if \mathbf{z}_0 and \mathbf{z}_1 have different shapes, we will use
 371 \mathbf{z}_0 ’s shape as the standard to pad \mathbf{z}_1 with zero vectors or trim it accordingly. In this section, we
 372 first discuss the impact of this hard alignment method. In particular, we use our randomly selected
 373 test set. We fill each sample into 12 prompt templates to obtain 12 meaning-preserving prompts.
 374 For each sample’s 12 meaning-preserving prompts, we pair them in all possible combinations and
 375 calculate the average $\|\Delta \mathbf{z}\|$ under three conditions: *pad*, *trim*, and *equal*.⁴ Figure 4a shows the

377 ⁴We refer to the number of tokens of the prompt \mathbf{z} as $\text{len}(\mathbf{z})$. Therefore, *pad* means $\text{len}(\mathbf{z}_0) > \text{len}(\mathbf{z}_1)$, *trim*
 means $\text{len}(\mathbf{z}_0) < \text{len}(\mathbf{z}_1)$, and *equal* means $\text{len}(\mathbf{z}_0) = \text{len}(\mathbf{z}_1)$.

average results of Llama3.2–3B on the ARC Challenge dataset’s 500 samples. We find that the trend of $\|\Delta\mathbf{z}\|$ is the same as the perturbation experiment results in § 4.1, regardless of whether *pad*, *trim*, or *equal* conditions. However, *pad* and *trim* yield relatively higher $\|\Delta\mathbf{z}\|$ than *equal*. We also note that even the relatively low $\|\Delta\mathbf{z}\|$ for *equal* is significantly higher than the $\|\Delta\mathbf{z}\|$ for the perturbation radius of 0.1 and 0.5 in Figure 3c. This indicates that prompt templates designed for real-world scenarios are highly diverse, making it challenging for LLMs to generate consistent outputs based on these templates.

To investigate which specific types of prompts may lead to higher prompt sensitivity, we create four types of prompts for quantitative analysis. All prompt templates are modified from a seed prompt template. Following Zhuo et al. (2024)’s setting, we create three prompt templates for each prompt type. Our four types of prompt templates are as follows:⁵

1. Modification first: replace one token in the first half of the seed prompt template with a synonymous token.
2. Modification latter: replace one token in the latter half of the seed prompt template with a synonymous token.
3. Misalignment fewer: modify a few tokens in the seed prompt template to make them slightly token misalignment.
4. Misalignment more: modify the token order in the seed prompt template to make them significant token misalignment.

We randomly select 500 samples from each dataset for testing. For clarity, we refer to prompts generated using the seed template as \mathbf{z}_{seed} , and those created using our prompt templates 1 to 4 as \mathbf{z}_{first} , \mathbf{z}_{latter} , \mathbf{z}_{fewer} , and \mathbf{z}_{more} respectively. From Eq. (10), we can know that when \mathbf{z}_0 remains constant, the upper bound of $\Delta \log \pi(y_t|\mathbf{z})$ is determined by $\|\Delta\mathbf{z}\|$. This implies that a higher $\|\Delta\mathbf{z}\|$ imposes less constraint on $\Delta \log \pi(y_t|\mathbf{z})$. Therefore, we calculate $\|\Delta\mathbf{z}\|$ between \mathbf{z}_{seed} and our four types of prompts for comparison. Figure 4b shows the results on the last 5 layers of Llama3.2–3B on the ARC Challenge dataset. We find that \mathbf{z}_{latter} achieves a lower $\|\Delta\mathbf{z}\|$ than \mathbf{z}_{first} , indicating that modifying tokens at the beginning of the prompt has a greater impact on the output of LLMs than modifying tokens at the end. This finding aligns with the recent work by Wu et al. (2025), which shows that causal masking inherently biases attention toward earlier positions, as tokens in deeper layers attend to increasingly more contextualized representations of earlier tokens. In addition, the results in Figure 4c indicate that despite preserving the meaning, changing the token order of prompts might lead to a greater impact.

The work by Wu & Varshney (2025) indicates that LLMs tend to cluster the same task samples. This inspires us to evaluate whether the outputs of LLMs are more influenced by the prompt template or the question itself. In particular, we construct an ordinary least squares regression model that uses different prompt templates and questions to predict the logit of the model’s next token. Subsequently, we perform an analysis of variance (ANOVA) on the regression results to calculate each factor’s contribution to the total variance and its statistical significance, and further determine each factor’s proportion of contribution relative to the total sum of squares. Figure 4d shows the results of Llama3.2–3B on the ARC Challenge dataset. The prompt template is the primary factor explaining the logit variation, with an explanatory rate of 88.0%. Although the question factor explains only 4.0% of the logit variation, its effect is statistically significant, indicating that different questions still exert a systematic influence on logits. Meanwhile, the residual accounts for 8.1%, suggesting that a portion of the variation remains unexplained by either the prompt or question. This residual variance may arise from data noise or factors not modeled by the LLM.

5 RELATED WORK

5.1 PROMPT SENSITIVITY OF LLMs

LLMs have strong in-context learning capabilities (Brown et al., 2020), enabling them to perform diverse tasks based on prompts, often without requiring additional fine-tuning (Radford et al., 2019;

⁵For details of the prompt templates, please refer to Appendix B.3.

Raffel et al., 2020; Gao et al., 2021). However, the stability and reliability of this learning approach remain controversial (Weber et al., 2023). Existing studies indicate that model outputs are highly dependent on multiple factors, such as the choice and order of examples (Liu et al., 2022; SU et al., 2023; Lu et al., 2022; Zhao et al., 2021), the definition of input labels (Min et al., 2022), and the phrasing of prompts (Gu et al., 2023; Sun et al., 2024). Beyond these factors, LLMs exhibit extreme sensitivity to minor changes in prompt structure or phrasing, even when such alterations preserve semantic meaning. This phenomenon has been systematically explored in numerous studies (Voronov et al., 2024; Mizrahi et al., 2024), indicating that subtle modifications to prompts can significantly impact model outputs. Furthermore, to characterize and compare the prompt sensitivity of different models, numerous studies (Zhu et al., 2023; Zhuo et al., 2024; Chatterjee et al., 2024) have constructed specialized benchmarks to quantify and evaluate models’ robustness to prompt perturbations. Contrary to previous work, this study attempts to represent LLMs as functions, leveraging Taylor expansion to explain the mechanism behind prompt sensitivity from the function perspective. It provides both theoretical foundations and empirical evidence to explain why LLMs exhibit prompt sensitivity.

5.2 LLMs AS FUNCTIONS

In recent years, some studies have attempted to characterize LLMs from the perspective of function mapping (Brown et al., 2020; Wei et al., 2022). This perspective abstracts LLMs as conditional probability distribution functions mapping input spaces to output spaces. In other words, given a prompt x , the model defines a distribution $P(y|x)$ for an output y . This functional representation facilitates a unified understanding of model behavior across different tasks and provides a theoretical framework for analyzing LLM generalization and robustness. Notably, it has also been shown that transformers themselves serve as universal approximators of sequence-to-sequence functions (Yun et al., 2020), further reinforcing the perspective that LLMs are functions. Building on this idea of function mapping, some studies consider prompt engineering as a design problem for function call interfaces, investigating how different prompt formats alter the properties of the function mapping (Liu et al., 2023). In our study, we consider LLMs as composite functions that can be split into the feature processing part and the function part between any transformer blocks. This split allows us to perform a Taylor expansion on any part of the models for analysis.

6 CONCLUSION AND LIMITATIONS

Prompt sensitivity, which describes how LLMs produce different outputs in response to meaning-preserving prompts, raises user concerns about the stability and reliability of LLMs. To investigate the underlying mechanisms of prompt sensitivity and to better understand LLMs, we start by considering LLMs as multivariate continuous functions. We point out that improving classification accuracy requires the internal clustering behavior within neural networks. Then, we apply the first-order Taylor expansion to LLMs. By observing changes in hidden states across all layers, we find that transformer-based LLMs lack this clustering behavior, which leads to the models failing to approximate the difference of logits between meaning-preserving prompts to zero. We also note that modifying the first half of the prompt is more likely to trigger prompt sensitivity than modifying the latter half, and the risk increases with the number of misaligned tokens. Overall, misalignment of tokens poses a greater risk of prompt sensitivity than token modification. We also find that the prompt template has a greater impact on model output than the question.

One limitation of this work is the hard alignment method in Eq. (8), as mentioned in the paper, which might more or less overestimate the model’s prompt sensitivity. Another limitation is that we only considered the logit of a single dimension for the model’s next token, implicitly requiring the entire logit distribution of the next token to remain consistent across meaning-preserving prompts. This requirement poses a significant challenge for LLMs. Finally, we employed only a first-order Taylor expansion. Given that LLMs are naturally highly complex functions, this linear approximation may introduce some errors. As illustrated by the perturbation analysis in § 4.1, the Pearson’s r , which reflects the accuracy of the linear approximation, gradually decreases as the perturbation radius increases. In the future, introducing higher-order Taylor expansions could be considered to achieve more precise approximations.

ETHICS STATEMENT

Our study aims to reveal the underlying mechanisms of prompt sensitivity of LLMs, thereby inspiring future works to develop more stable and reliable LLMs based on our findings. We acknowledge the contributions of previous efforts and cite relevant works in our paper.

REPRODUCIBILITY

To ensure the reproducibility of our findings, details of the experimental procedures are provided in Appendix B. Additionally, we will open-source our code on GitHub. These measures are intended to facilitate verification and replication of our results by other researchers in the field.

REFERENCES

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei Huang, et al. Qwen technical report. *arXiv preprint arXiv:2309.16609*, 2023.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), *Advances in Neural Information Processing Systems*, volume 33, pp. 1877–1901. Curran Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf.

Augustin Louis Baron Cauchy. *Cours d'analyse de l'École Royale Polytechnique*. Imprimerie royale, 1821.

Anwoy Chatterjee, H S V N S Kowndinya Renduchintala, Sumit Bhatia, and Tanmoy Chakraborty. POSIX: A prompt sensitivity index for large language models. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen (eds.), *Findings of the Association for Computational Linguistics: EMNLP 2024*, pp. 14550–14565, Miami, Florida, USA, November 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.findings-emnlp.852. URL <https://aclanthology.org/2024.findings-emnlp.852/>.

Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep reinforcement learning from human preferences. *Advances in neural information processing systems*, 30, 2017.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge. *arXiv preprint arXiv:1803.05457*, 2018.

George Cybenko. Approximation by superpositions of a sigmoidal function. *Mathematics of control, signals and systems*, 2(4):303–314, 1989.

Guanting Dong, Hongyi Yuan, Keming Lu, Chengpeng Li, Mingfeng Xue, Dayiheng Liu, Wei Wang, Zheng Yuan, Chang Zhou, and Jingren Zhou. How abilities in large language models are affected by supervised fine-tuning data composition. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar (eds.), *Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 177–198, Bangkok, Thailand, August 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.12. URL <https://aclanthology.org/2024.acl-long.12/>.

Tianyu Gao, Adam Fisch, and Danqi Chen. Making pre-trained language models better few-shot learners. In Chengqing Zong, Fei Xia, Wenjie Li, and Roberto Navigli (eds.), *Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International*

540 *Joint Conference on Natural Language Processing (Volume 1: Long Papers)*, pp. 3816–3830, On-
 541 line, August 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.acl-long.
 542 295. URL <https://aclanthology.org/2021.acl-long.295/>.

543 Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep sparse rectifier neural networks. In
 544 *Proceedings of the fourteenth international conference on artificial intelligence and statistics*, pp.
 545 315–323. JMLR Workshop and Conference Proceedings, 2011.

546 Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. *Deep learning*, volume 1.
 547 MIT Press, 2016.

548 Jiasheng Gu, Hongyu Zhao, Hanzi Xu, Liangyu Nie, Hongyuan Mei, and Wenpeng Yin. Robustness
 549 of learning from task instructions. In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki
 550 (eds.), *Findings of the Association for Computational Linguistics: ACL 2023*, pp. 13935–13948,
 551 Toronto, Canada, July 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.
 552 findings-acl.875. URL <https://aclanthology.org/2023.findings-acl.875/>.

553 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
 554 nition. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp.
 555 770–778, 2016.

556 Thomas Little Heath. *A history of Greek mathematics*, volume 1. Courier Corporation, 1981.

557 Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Ja-
 558 cob Steinhardt. Measuring massive multitask language understanding. In *International Confer-
 559 ence on Learning Representations*, 2021. URL <https://openreview.net/forum?id=d7KBjmI3GmQ>.

560 Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks are uni-
 561 versal approximators. *Neural networks*, 2(5):359–366, 1989.

562 Alex Inglis. James gregory. tercentenary memorial volume. edited by hw turnbull. pp. viii, 524; 5
 563 plates. 25s. 1939.(published for the royal society of edinburgh by g. bell & sons). *The Mathemat-
 564 ical Gazette*, 24(259):125–129, 1940.

565 Alex Krizhevsky et al. Learning multiple layers of features from tiny images. 2009.

566 Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. *nature*, 521(7553):436–444,
 567 2015.

568 Jiwei Li, Xinlei Chen, Eduard Hovy, and Dan Jurafsky. Visualizing and understanding neural models
 569 in nlp. In *Proceedings of the 2016 Conference of the North American Chapter of the Association
 570 for Computational Linguistics: Human Language Technologies*, pp. 681–691, 2016.

571 David C. Lindberg. *The Beginnings of Western Science: The European Scientific Tradition in Philo-
 572 sophical, Religious, and Institutional Context, 600 B.C. to A.D. 1450*. University of Chicago
 573 Press, Chicago, 1992. ISBN 9780226482316.

574 Jiachang Liu, Dinghan Shen, Yizhe Zhang, Bill Dolan, Lawrence Carin, and Weizhu Chen. What
 575 makes good in-context examples for GPT-3? In Eneko Agirre, Marianna Apidianaki, and Ivan
 576 Vulić (eds.), *Proceedings of Deep Learning Inside Out (DeeLIO 2022): The 3rd Workshop on
 577 Knowledge Extraction and Integration for Deep Learning Architectures*, pp. 100–114, Dublin,
 578 Ireland and Online, May 2022. Association for Computational Linguistics. doi: 10.18653/v1/
 579 2022.deelio-1.10. URL <https://aclanthology.org/2022.deelio-1.10/>.

580 Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and Graham Neubig. Pre-
 581 train, prompt, and predict: A systematic survey of prompting methods in natural language pro-
 582 cessing. *ACM computing surveys*, 55(9):1–35, 2023.

583 Weiyang Liu, Yandong Wen, Zhiding Yu, and Meng Yang. Large-margin softmax loss for convo-
 584 lutional neural networks. In *Proceedings of the 33rd International Conference on International
 585 Conference on Machine Learning - Volume 48*, ICML’16, pp. 507–516. JMLR.org, 2016.

594 Yang Liu and Chenhui Chu. Do llms align human values regarding social biases? judging and
 595 explaining social biases with llms. *arXiv preprint arXiv:2509.13869*, 2025.
 596

597 Ziche Liu, Rui Ke, Yajiao Liu, Feng Jiang, and Haizhou Li. Take the essence and discard the dross:
 598 A rethinking on data selection for fine-tuning large language models. In Luis Chiruzzo, Alan
 599 Ritter, and Lu Wang (eds.), *Proceedings of the 2025 Conference of the Nations of the Americas*
 600 *Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers)*, pp. 6595–6611, Albuquerque, New Mexico, April 2025. Association for
 601 Computational Linguistics. ISBN 979-8-89176-189-6. doi: 10.18653/v1/2025.nacl-long.336.
 602 URL <https://aclanthology.org/2025.nacl-long.336/>.
 603

604 Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. *arXiv preprint*
 605 *arXiv:1711.05101*, 2017.
 606

607 Yao Lu, Max Bartolo, Alastair Moore, Sebastian Riedel, and Pontus Stenetorp. Fantastically ordered
 608 prompts and where to find them: Overcoming few-shot prompt order sensitivity. In Smaranda
 609 Muresan, Preslav Nakov, and Aline Villavicencio (eds.), *Proceedings of the 60th Annual Meeting*
 610 *of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 8086–8098,
 611 Dublin, Ireland, May 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.
 612 acl-long.556. URL <https://aclanthology.org/2022.acl-long.556/>.
 613

614 Jean-Claude Martzloff. *A history of Chinese mathematics*. Springer, 2007.
 615

616 Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
 617 electricity? a new dataset for open book question answering. In *EMNLP*, 2018.
 618

619 Sewon Min, Xinxi Lyu, Ari Holtzman, Mikel Artetxe, Mike Lewis, Hannaneh Hajishirzi, and Luke
 620 Zettlemoyer. Rethinking the role of demonstrations: What makes in-context learning work? In
 621 Yoav Goldberg, Zornitsa Kozareva, and Yue Zhang (eds.), *Proceedings of the 2022 Conference on*
 622 *Empirical Methods in Natural Language Processing*, pp. 11048–11064, Abu Dhabi, United Arab
 623 Emirates, December 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.
 624 emnlp-main.759. URL <https://aclanthology.org/2022.emnlp-main.759/>.
 625

626 Moran Mizrahi, Guy Kaplan, Dan Malkin, Rotem Dror, Dafna Shahaf, and Gabriel Stanovsky.
 627 State of what art? a call for multi-prompt LLM evaluation. *Transactions of the Association*
 628 *for Computational Linguistics*, 12:933–949, 2024. doi: 10.1162/tacl_a_00681. URL
 629 <https://aclanthology.org/2024.tacl-1.52/>.
 630

631 Kevin P Murphy. *Machine learning: a probabilistic perspective*. MIT press, 2012.
 632

633 Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltzmann machines. In
 634 *Proceedings of the 27th international conference on machine learning (ICML-10)*, pp. 807–814,
 635 2010.
 636

637 Michael A Nielsen. *Neural networks and deep learning*, volume 25. Determination press San
 638 Francisco, CA, USA, 2015.
 639

640 Karl Pearson. Vii. note on regression and inheritance in the case of two parents. *proceedings of the*
 641 *royal society of London*, 58(347-352):240–242, 1895.
 642

643 Jason Phang, Haokun Liu, and Samuel R. Bowman. Fine-tuned transformers show clusters of sim-
 644 ilar representations across layers. In Jasmijn Bastings, Yonatan Belinkov, Emmanuel Dupoux,
 645 Mario Giulianelli, Dieuwke Hupkes, Yuval Pinter, and Hassan Sajjad (eds.), *Proceedings of the*
 646 *Fourth BlackboxNLP Workshop on Analyzing and Interpreting Neural Networks for NLP*, pp.
 647 529–538, Punta Cana, Dominican Republic, November 2021. Association for Computational Lin-
 648 guistics. doi: 10.18653/v1/2021.blackboxnlp-1.42. URL <https://aclanthology.org/2021.blackboxnlp-1.42/>.
 649

650 Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever.
 651 Language models are unsupervised multitask learners. 2019. URL <https://api.semanticscholar.org/CorpusID:160025533>.
 652

648 Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
 649 Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-
 650 text transformer. *Journal of Machine Learning Research*, 21(140):1–67, 2020. URL <http://jmlr.org/papers/v21/20-074.html>.

652 David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning representations by back-
 653 propagating errors. *nature*, 323(6088):533–536, 1986.

655 Hermann Amandus Schwarz. Ueber ein die flächen kleinsten flächeninhalts betreffendes problem
 656 der variationsrechnung: Festschrift zum siebzigsten geburtstage des herrn karl weierstrass. In
 657 *Gesammelte Mathematische Abhandlungen: Erster Band*, pp. 223–269. Springer, 1890.

658 Melanie Sclar, Yejin Choi, Yulia Tsvetkov, and Alane Suhr. Quantifying language models’ sen-
 659 sitivity to spurious features in prompt design or: How i learned to start worrying about prompt
 660 formatting. In *The Twelfth International Conference on Learning Representations*, 2024. URL
 661 <https://openreview.net/forum?id=RIu51yNXjT>.

662 Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Deep inside convolutional networks: Vi-
 663 sualising image classification models and saliency maps. *arXiv preprint arXiv:1312.6034*, 2013.

664 Hongjin SU, Jungo Kasai, Chen Henry Wu, Weijia Shi, Tianlu Wang, Jiayi Xin, Rui Zhang, Mari
 665 Ostendorf, Luke Zettlemoyer, Noah A. Smith, and Tao Yu. Selective annotation makes language
 666 models better few-shot learners. In *The Eleventh International Conference on Learning Re-
 667 presentations*, 2023. URL <https://openreview.net/forum?id=qY1h1v7gwg>.

668 Jiuding Sun, Chantal Shaib, and Byron C Wallace. Evaluating the zero-shot robustness of
 669 instruction-tuned language models. In *The Twelfth International Conference on Learning Re-
 670 presentations*, 2024. URL <https://openreview.net/forum?id=g9diuvxN6D>.

672 Alon Talmor, Jonathan Herzig, Nicholas Lourie, and Jonathan Berant. CommonsenseQA: A ques-
 673 tion answering challenge targeting commonsense knowledge. In Jill Burstein, Christy Doran, and
 674 Thamar Solorio (eds.), *Proceedings of the 2019 Conference of the North American Chapter of
 675 the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long
 676 and Short Papers)*, pp. 4149–4158, Minneapolis, Minnesota, June 2019. Association for Com-
 677 putational Linguistics. doi: 10.18653/v1/N19-1421. URL <https://aclanthology.org/N19-1421/>.

678 Brook Taylor. *Methodus incrementorum directa*. 1715.

679 Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
 680 Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
 681 efficient foundation language models. *arXiv preprint arXiv:2302.13971*, 2023.

682 Anton Voronov, Lena Wolf, and Max Ryabinin. Mind your format: Towards consistent evaluation
 683 of in-context learning improvements. In Lun-Wei Ku, Andre Martins, and Vivek Srikanth (eds.),
 684 *Findings of the Association for Computational Linguistics: ACL 2024*, pp. 6287–6310, Bangkok,
 685 Thailand, August 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.
 686 findings-acl.375. URL <https://aclanthology.org/2024.findings-acl.375/>.

687 Lucas Weber, Elia Bruni, and Dieuwke Hupkes. The icl consistency test. *arXiv preprint
 688 arXiv:2312.04945*, 2023.

689 Jason Wei, Maarten Bosma, Vincent Y Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du,
 690 Andrew M Dai, and Quoc V Le. Finetuned language models are zero-shot learners. *arXiv preprint
 691 arXiv:2109.01652*, 2021.

692 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
 693 Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. *Advances in
 694 neural information processing systems*, 35:24824–24837, 2022.

695 Xinbo Wu and Lav R. Varshney. Transformer-based causal language models perform clustering. In
 696 Luis Chiruzzo, Alan Ritter, and Lu Wang (eds.), *Findings of the Association for Computational
 697 Linguistics: NAACL 2025*, pp. 5347–5372, Albuquerque, New Mexico, April 2025. Association
 698 for Computational Linguistics. ISBN 979-8-89176-195-7. doi: 10.18653/v1/2025.findings-naacl.
 699 296. URL <https://aclanthology.org/2025.findings-naacl.296/>.

702 Xinyi Wu, Yifei Wang, Stefanie Jegelka, and Ali Jadbabaie. On the emergence of position bias
 703 in transformers. In *Forty-second International Conference on Machine Learning*, 2025. URL
 704 <https://openreview.net/forum?id=YufVkJ6IIi>.

705 Luo Yan, Wong Yongkang, Mohan Kankanhalli, and Qi Zhao. G-softmax: Improving intraclass
 706 compactness and interclass separability of features. *IEEE TRANSACTIONS ON NEURAL NET-
 707 WORKS AND LEARNING SYSTEMS*, 31(2):685, 2020.

708 Kayo Yin and Graham Neubig. Interpreting language models with contrastive explanations. In
 709 Yoav Goldberg, Zornitsa Kozareva, and Yue Zhang (eds.), *Proceedings of the 2022 Conference
 710 on Empirical Methods in Natural Language Processing*, pp. 184–198, Abu Dhabi, United Arab
 711 Emirates, December 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.
 712 emnlp-main.14. URL <https://aclanthology.org/2022.emnlp-main.14/>.

713 Chulhee Yun, Srinadh Bhojanapalli, Ankit Singh Rawat, Sashank Reddi, and Sanjiv Kumar. Are
 714 transformers universal approximators of sequence-to-sequence functions? In *International Con-
 715 ference on Learning Representations*, 2020. URL [https://openreview.net/forum?id=ByxRM0Ntv](https://openreview.net/forum?

 716 id=ByxRM0Ntv).

717 Zihao Zhao, Eric Wallace, Shi Feng, Dan Klein, and Sameer Singh. Calibrate before use: Im-
 718 proving few-shot performance of language models. In Marina Meila and Tong Zhang (eds.),
 719 *Proceedings of the 38th International Conference on Machine Learning*, volume 139 of *Pro-
 720 ceedings of Machine Learning Research*, pp. 12697–12706. PMLR, 18–24 Jul 2021. URL
 721 <https://proceedings.mlr.press/v139/zhao21c.html>.

722 Kaijie Zhu, Jindong Wang, Jiaheng Zhou, Zichen Wang, Hao Chen, Yidong Wang, Linyi Yang, Wei
 723 Ye, Yue Zhang, Neil Zhenqiang Gong, et al. Promptbench: Towards evaluating the robustness of
 724 large language models on adversarial prompts. *arXiv e-prints*, pp. arXiv–2306, 2023.

725 Jingming Zhuo, Songyang Zhang, Xinyu Fang, Haodong Duan, Dahua Lin, and Kai Chen. ProSA:
 726 Assessing and understanding the prompt sensitivity of LLMs. In Yaser Al-Onaizan, Mohit Bansal,
 727 and Yun-Nung Chen (eds.), *Findings of the Association for Computational Linguistics: EMNLP
 728 2024*, pp. 1950–1976, Miami, Florida, USA, November 2024. Association for Computational
 729 Linguistics. doi: 10.18653/v1/2024.findings-emnlp.108. URL <https://aclanthology.org/2024.findings-emnlp.108/>.

734 A TAYLOR EXPANSION

735 A.1 BACKGROUND

736 The roots of Taylor expansion can be traced back to early thoughts on infinity, such as the para-
 737 doxes of divisibility proposed by the ancient Greek philosopher Zeno (Lindberg, 1992), as well as
 738 the “method of exhaustion” developed by Archimedes (Heath, 1981) and later by Liu Hui (Mart-
 739 zloff, 2007), which laid the foundation for approximating infinite processes through finite steps. In
 740 the 14th century, Indian mathematician Madhava of Sangamagrama and his successors in the Ker-
 741 ala school developed series expansions for functions such as sine, cosine, and arctangent, marking
 742 the earliest concrete examples of power series methods analogous to later Taylor expansions (Lind-
 743 berg, 1992). In the 17th century, Newton and Gregory independently developed general methods for
 744 expanding functions (Inglis, 1940). Later, Brook Taylor first systematically proposed an expansion
 745 method applicable to general functions in 1715, forming the basis of today’s Taylor expansions (Tay-
 746 lor, 1715). In our study, we consider LLMs as functions and employ first-order Taylor expansions
 747 to connect prompts, their gradients, and the logit of the model’s next token, thereby analyzing the
 748 constraint relationships among them.

749 A.2 THE FIRST-ORDER TAYLOR EXPANSION

750 In mathematics, the Taylor series or Taylor expansion of a function is an infinite sum of terms that
 751 are expressed in terms of the function’s derivatives at a single point. The partial sum formed by the
 752 first $n+1$ terms of a Taylor series is a polynomial of degree n that is called the n th Taylor polynomial

of the function. Taylor polynomials are approximations of a function, which become generally more accurate as n increases. The first-order Taylor expansion in one variable of $f(x)$ about $x = a$ is as follows:

$$f(x) = f(a) + f'(a)(x - a) + \mathcal{O}((x - a)^2) \quad (x \rightarrow a). \quad (15)$$

where $\mathcal{O}(x - a)$ indicates the infinitesimal term of higher order than $(x - a)$, and $x \rightarrow a$ indicates that this equality holds as x approaches a . In other words, this expansion is a local approximation describing the behavior of $f(x)$ near $x = a$.

For more complex multivariate scenarios, we suppose $f : \mathbb{R}^n \rightarrow \mathbb{R}$ is differentiable at the point $\mathbf{a} = (a_1, a_2, \dots, a_n)$. Then the first-order Taylor expansion of f at $\mathbf{x} = (x_1, x_2, \dots, x_n)$ is:

$$f(\mathbf{x}) = f(\mathbf{a}) + \nabla f(\mathbf{a}) \cdot (\mathbf{x} - \mathbf{a}) + \mathcal{O}(\|\mathbf{x} - \mathbf{a}\|^2) \quad (\mathbf{x} \rightarrow \mathbf{a}). \quad (16)$$

where $\nabla f(\mathbf{a}) = \left(\frac{\partial f}{\partial x_1}(\mathbf{a}), \frac{\partial f}{\partial x_2}(\mathbf{a}), \dots, \frac{\partial f}{\partial x_n}(\mathbf{a}) \right)$ is the gradient. In the expression $\mathcal{O}(\|\mathbf{x} - \mathbf{a}\|)$, the norm $\|\cdot\|$ can be any norm (such as the Euclidean norm (2-norm) or vector norm) on \mathbb{R}^n , because all norms in finite-dimensional spaces are equivalent. The $\mathcal{O}(\|\mathbf{x} - \mathbf{a}\|^2)$ means the remainder term that vanishes faster than $\|\mathbf{x} - \mathbf{a}\|^2$ as $\mathbf{x} \rightarrow \mathbf{a}$. The operator \cdot denotes the dot product.

B MORE ABOUT EXPERIMENTS

B.1 THE HYPERPARAMETERS FOR TRAINING RESNET.

To ensure stable optimization and efficient convergence of the ResNet-101 network on the CIFAR-10 dataset, a carefully designed hyperparameter configuration scheme was employed during training.

As shown in Figure 1, our network architecture is a ResNet connected to a projection layer and a fully connected layer. This section provides more details. We preprocess images using the following pipeline before feeding them into ResNet:

```
783 transform = transforms.Compose([
784     transforms.Resize(112),
785     transforms.CenterCrop(112),
786     transforms.ToTensor()
787 ])
788
```

We project the 2048-dimensional features from ResNet's stage 4 output onto a 128-dimensional embedding space, then classify them using a fully connected (classification) layer. The specific network architecture is as follows:

```
792 proj = nn.Sequential(
793     nn.Linear(2048, 512),
794     nn.BatchNorm1d(512),
795     nn.PReLU(),
796     nn.Dropout(p=0.2),
797     nn.Linear(512, 128)
798 )
799
800 clf = nn.Linear(128, num_classes)
```

Our experiment employs the cross-entropy loss function with the AdamW optimizer (Loshchilov & Hutter, 2017), using the macro F1 score as the primary evaluation metric. The training process utilizes a batch size of 128 and runs for 100 epochs.

B.2 MEANING-PRESERVING PROMPT TEMPLATES

In this section, we provide the 12 prompt templates provided by Zhuo et al. (2024) mentioned in § 4. For multiple-choice questions with 4 options, the templates are shown in Table 1. We choose 12 prompts for experimentation to ensure data diversity and avoid inaccurate results caused by individual edge cases.

810
 811 Table 1: The meaning-preserving prompt templates for ARC Challenge, MMLU, and OpenBookQA
 812 datasets. For the CommonSenseQA dataset, the number of options changes from four to five, so
 813 option ‘E’ should be added accordingly. Gray text indicates template slots that need to be replaced.
 814

815 prompt 1	<code>{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}\nAnswer:</code>
817 prompt 2	<code>Question:\n{question}\nA. {A}\nB. {B}\nC. {C}\nD.\nAnswer:</code>
819 prompt 3	<code>Question:\n{question} A. {A} B. {B} C. {C} D. {D}\nAnswer:</code>
822 prompt 4	<code>Could you provide a response to the following question: {question} A. {A} B. {B} C. {C} D. {D}</code>
825 prompt 5	<code>Please answer the following question:\n{question}\nA. {A}\nB. {B}\nC. {C}\nD.\nAnswer:</code>
829 prompt 6	<code>Please address the following question:\n{question}\nA. {A}\nB. {B}\nC. {C}\nD.\nAnswer:</code>
832 prompt 7	<code>You are a very helpful AI assistant. Please answer the following questions: {question} A. {A} B. {B} C. {C} D. {D}</code>
835 prompt 8	<code>As an exceptionally resourceful AI assistant, I'm at your service. Address the questions below:\n{question}\nA. {A}\nB. {B}\nC. {C}\nD. {D}</code>
839 prompt 9	<code>As a helpful Artificial Intelligence Assistant, please answer the following questions\n{question} A. {A}\nB. {B}\nC. {C}\nD. {D}</code>
844 prompt 10	<code>Could you provide a response to the following question: {question} A. {A} B. {B} C. {C} D. {D}\nAnswer the question by replying A, B, C or D.</code>
848 prompt 11	<code>Please answer the following question:\n{question}\nA. {A}\nB. {B}\nC. {C}\nD.\nAnswer the question by replying A, B, C or D.</code>
852 prompt 12	<code>Please address the following question:\n{question}\nA. {A}\nB. {B}\nC. {C}\nD.\nAnswer this question by replying A, B, C or D.</code>

856
 857
 858 **B.3 MODIFICATION AND MISALIGNMENT PROMPT TEMPLATES**
 859

860 To evaluate which types of prompts may lead to higher prompt sensitivity, we create four prompt
 861 templates for quantitative analysis. These four prompt templates are shown in Table 2. These prompt
 862 templates are modified from a seed prompt template, which is: “You are a very helpful
 863 AI assistant. Please answer the following questions:\nQuestion:
 {question}\nA. {A} B. {B} C. {C} D.\nPlease choose the best

864 option and respond only with the option of the correct answer (A,
 865 B, C, or D). \nAnswer:"

866
 867 Our experimental implementation process is as follows: We first randomly select 500 samples from
 868 each of the four datasets. We then combine these samples with both the seed prompt template and
 869 our modified 12 prompt templates, creating 6,500 prompts for each dataset. These prompts feed into
 870 the LLMs for testing.

871

872 Table 2: Our prompt templates for ARC Challenge, MMLU, and OpenBookQA datasets. For the
 873 CommonSenseQA dataset, the number of options changes from four to five, so option ‘E’ should be
 874 added accordingly. Gray text indicates template slots that need to be replaced. **Green** indicates the
 875 modified token in the first half of the prompt. **Red** indicates the modified token in the latter half of
 876 the prompt. **Orange** indicates the token causing the misalignment in the prompt. **Blue** indicates that
 877 the prompt is completely misaligned.

878

879	Seed prompt	You are a very helpful AI assistant. Please answer the following 880 questions:\nQuestion: {question}\nA. {A} B. {B} C. {C} D. 881 {D}\nPlease choose the best option and respond only with the option of the correct answer (A, B, C, or D).\nAnswer:
882	Modification first	You are a very useful AI assistant. Please answer the following 883 questions:\nQuestion: {question}\nA. {A} B. {B} C. {C} D. {D}\nPlease choose the best option and respond only with the option of the correct answer (A, B, C, or D).\nAnswer:
884		You are a very smart AI assistant. Please answer the following 885 questions:\nQuestion: {question}\nA. {A} B. {B} C. {C} D. {D}\nPlease choose the best option and respond only with the option of the correct answer (A, B, C, or D).\nAnswer:
886		You are a very friendly AI assistant. Please answer the following 887 questions:\nQuestion: {question}\nA. {A} B. {B} C. {C} D. {D}\nPlease choose the best option and respond only with the option of the correct answer (A, B, C, or D).\nAnswer:
888	Modification latter	You are a very helpful AI assistant. Please answer the following 889 questions:\nQuestion: {question}\nA. {A} B. {B} C. {C} D. {D}\nPlease choose the best option and respond only with the option of the suitable answer (A, B, C, or D).\nAnswer:
890		You are a very helpful AI assistant. Please answer the following 891 questions:\nQuestion: {question}\nA. {A} B. {B} C. {C} D. {D}\nPlease choose the best option and respond only with the letter of the correct answer (A, B, C, or D).\nAnswer:
892		You are a very helpful AI assistant. Please answer the following 893 questions:\nQuestion: {question}\nA. {A} B. {B} C. {C} D. {D}\nPlease choose the best option and respond only with the letter of the correct answer (A, B, C, or D).\nAnswer:
894		You are a very helpful AI assistant. Please answer the following 895 questions:\nQuestion: {question}\nA. {A} B. {B} C. {C} D. {D}\nPlease choose the best option and respond only with the choice of the correct answer (A, B, C, or D).\nAnswer:
896	Misalignment fewer	You are a very helpful AI assistant. Please answer the following 897 questions:\nQuestion: {question}\nA. {A} B. {B} C. {C} D. {D}\nPlease choose the best option and respond only with the option of the answer (A, B, C, or D) carefully .\nAnswer:
898		You are a very helpful AI assistant. Please answer the following 899 questions:\nQuestion: {question}\nA. {A} B. {B} C. {C} D. {D}\nPlease choose the best option and respond only with the option of the answer (A, B, C, or D) now .\nAnswer:
900		Please choose the best option and respond only with the option 901 of the answer (A, B, C, or D) now .\nYou are a very helpful AI 902 assistant. Please answer the following questions:\nQuestion: 903 {question}\nA. {A} B. {B} C. {C} D.\nAnswer:
904	Misalignment more	Please choose the best option and respond only with the option 905 of the answer (A, B, C, or D) carefully .\nYou are a very helpful 906 AI assistant. Please answer the following questions:\nQuestion: 907 {question}\nA. {A} B. {B} C. {C} D.\nAnswer:
908		Please choose the best option and respond only with the option 909 of the answer (A, B, C, or D) now .\nYou are a very helpful AI 910 assistant. Please answer the following questions:\nQuestion: 911 {question}\nA. {A} B. {B} C. {C} D.\nAnswer:
912		Please choose the best option and respond only with the option 913 of the answer (A, B, C, or D) now .\nYou are a very helpful AI 914 assistant. Please answer the following questions:\nQuestion: 915 {question}\nA. {A} B. {B} C. {C} D.\nAnswer:
916		Please choose the best option and respond only with the option 917 of the answer (A, B, C, or D) now .\nYou are a very helpful AI 918 assistant. Please answer the following questions:\nQuestion: 919 {question}\nA. {A} B. {B} C. {C} D.\nAnswer:

918
919

B.4 MORE RESULTS OF PERTURBATION ANALYSIS

920
921
922
923

Figures 5, 6, 7, and 7 illustrate the Pearson’s r between $\Delta \log \pi(y_t|\mathbf{z})$ and $\nabla_{\mathbf{z}} \log \pi(y_t|\mathbf{z}_0)^\top \Delta \mathbf{z}$ on Qwen1.5-0.5B, Qwen1.5-1.8B, Qwen1.5-4B, Llama3.2-1B, and Llama3.2-3B, respectively. We pick the 5 layers from each model for demonstration. In particular, we include the embedding layer, denoted as layer 0.

924
925
926
927
928
929
930

We can observe that all models exhibit the same trend as discussed in the main text, i.e., the Pearson’s r between $\Delta \log \pi(y_t|\mathbf{z})$ and $\nabla_{\mathbf{z}} \log \pi(y_t|\mathbf{z}_0)^\top \Delta \mathbf{z}$ decreases as the perturbation radius increases. The remainder term $\mathcal{O}(\|\mathbf{z}_1 - \mathbf{z}_0\|^2)$ increases accordingly with the perturbation radius increasing. Furthermore, as shown in Figure 5, 6, and 8, $\mathcal{O}(\|\mathbf{z}_1 - \mathbf{z}_0\|^2)$ increases more rapidly for smaller models than for larger ones, indicating that smaller models are less stable. Specifically, Llama3.2-1B shows a significant increase in variance as the perturbation radius increases. This suggests that Llama3.2-1B might be “unfamiliar” with portions of the data, indicating underfitting.

931

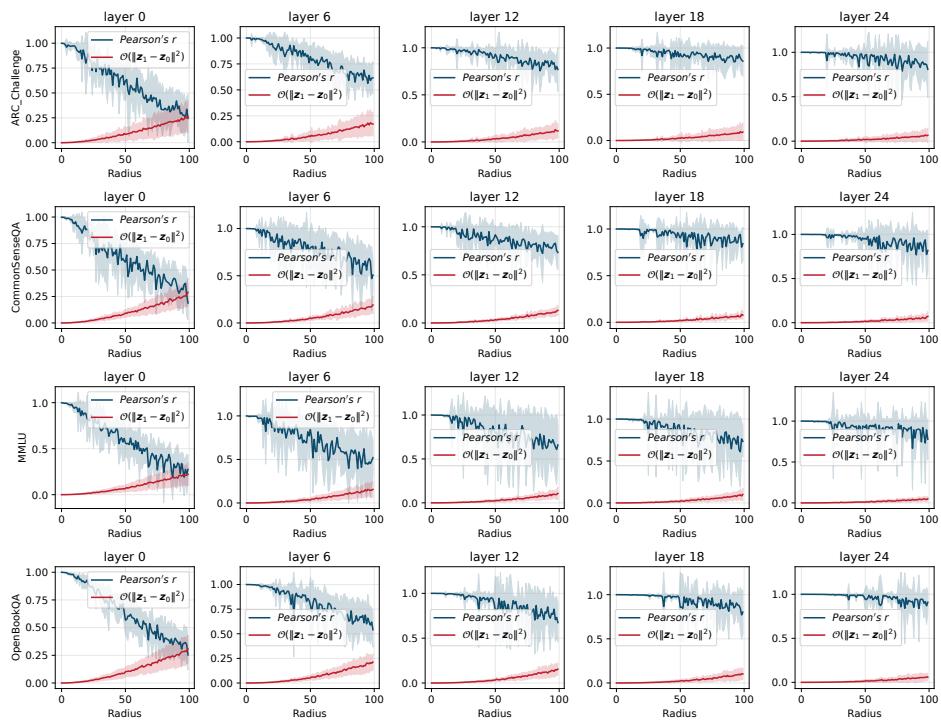


Figure 5: The Pearson’s r between $\Delta \log \pi(y_t|\mathbf{z})$ and $\nabla_{\mathbf{z}} \log \pi(y_t|\mathbf{z}_0)^\top \Delta \mathbf{z}$ of different layers of Qwen1.5-0.5B. The same trend is observed as in § 4.1.

955
956
957

B.5 MORE RESULTS ABOUT THE UPPER BOUND

958
959
960
961
962
963
964
965
966
967
968
969
970
971

Next, we show more experimental results regarding upper bounds as mentioned in § 4.1. To compare the impact of different perturbation radius on the upper bound, we choose four perturbation radius for comparison: 0.1, 0.2, 0.4, and 0.8. Figure 10 shows the changes of the upper bound of $|\Delta \log \pi(y_t|\mathbf{z})|$ across LLMs’ layers. We first observe that the gradient $\nabla_{\mathbf{z}} \log \pi(y_t|\mathbf{z}_0)$ exhibits a decreasing trend as the number of layers in the LLMs increases. The changes in upper bounds exhibit similar trends across LLMs within the same series, while showing slightly different trends between different series. For instance, the Qwen series shows gradients rising to a peak before steadily declining, only to surge dramatically at the end. In contrast, the Llama series exhibits gradients climbing to a peak followed by a continuous decline, with only a slight increase observed on the ARC Challenge and CommonSenseQA datasets. Large-scale models exhibit lower upper bounds than smaller ones, but unfortunately, the upper bounds of any model are insufficient to bring $\Delta \log \pi(y_t|\mathbf{z})$ close to 0.

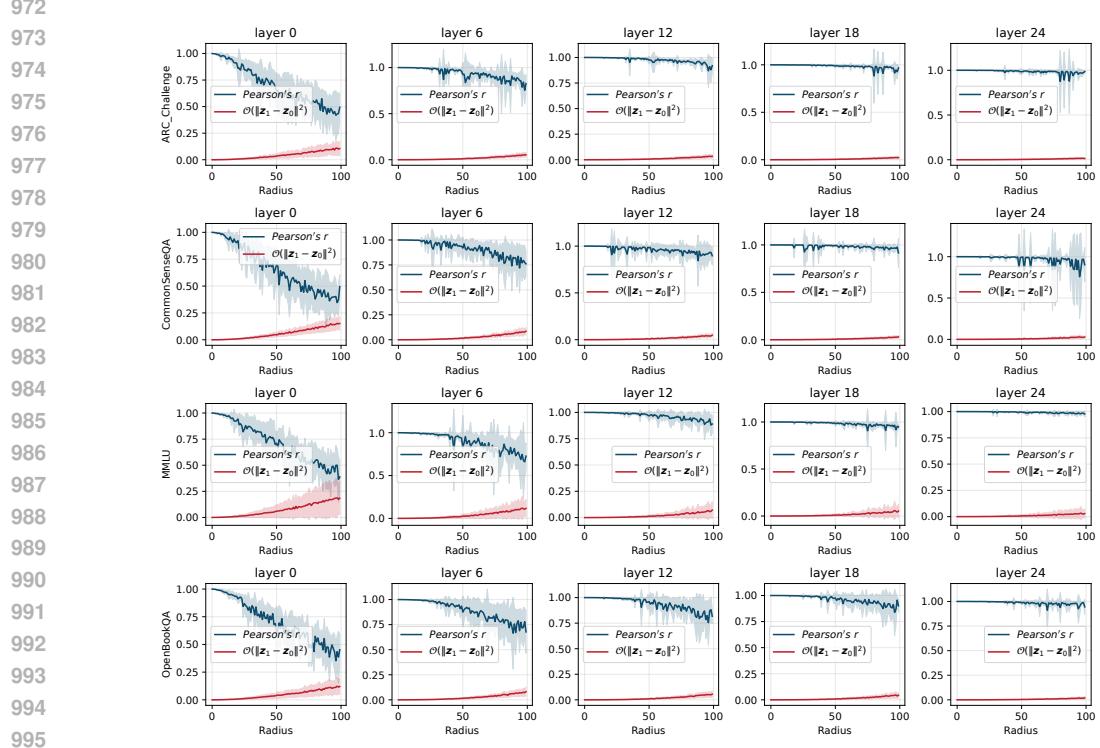


Figure 6: The Pearson's r between $\Delta \log \pi(y_t|\mathbf{z})$ and $\nabla_{\mathbf{z}} \log \pi(y_t|\mathbf{z}_0)^\top \Delta \mathbf{z}$ of different layers of Qwen1.5-1.8B. The same trend is observed as in § 4.1.

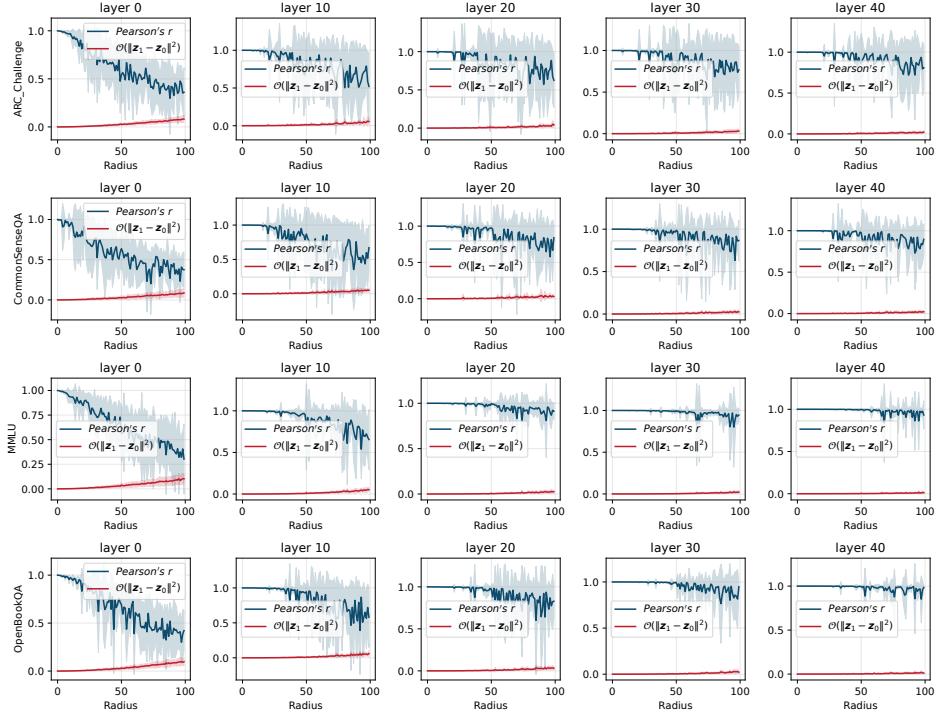


Figure 7: The Pearson's r between $\Delta \log \pi(y_t|\mathbf{z})$ and $\nabla_{\mathbf{z}} \log \pi(y_t|\mathbf{z}_0)^\top \Delta \mathbf{z}$ of different layers of Qwen1.5-4B. The same trend is observed as in § 4.1.

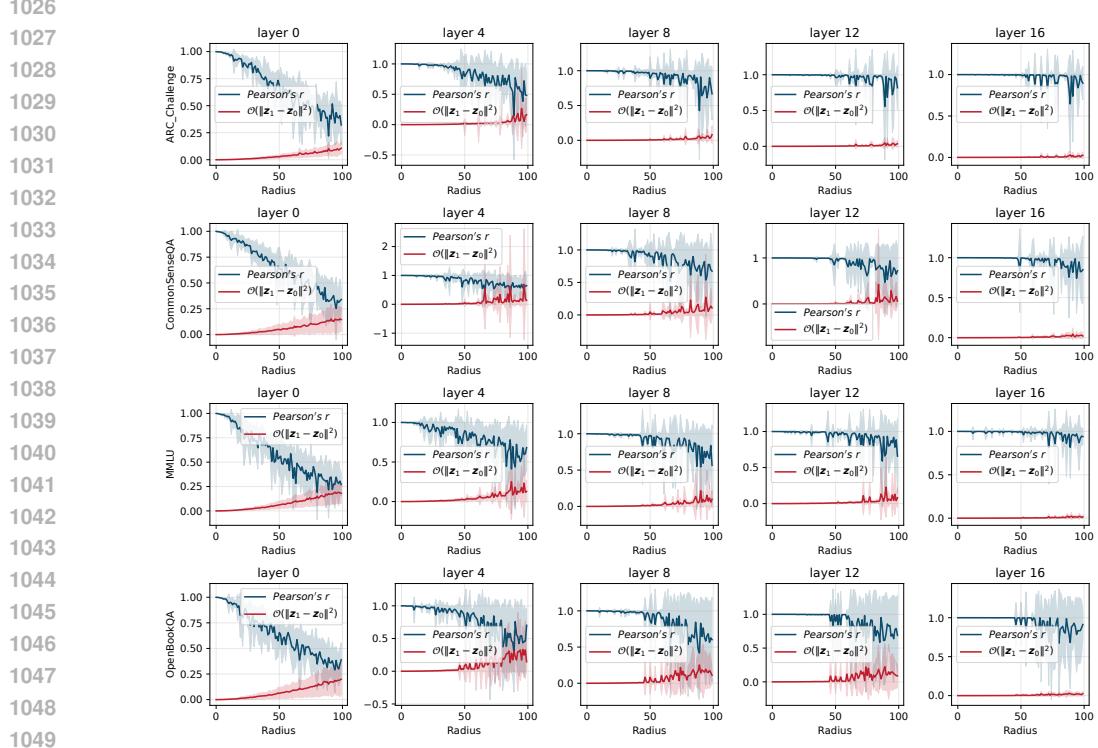


Figure 8: The Pearson's r between $\Delta \log \pi(y_t | \mathbf{z})$ and $\nabla_{\mathbf{z}} \log \pi(y_t | \mathbf{z}_0)^\top \Delta \mathbf{z}$ of different layers of Llama3.2-1B. The same trend is observed as in § 4.1.

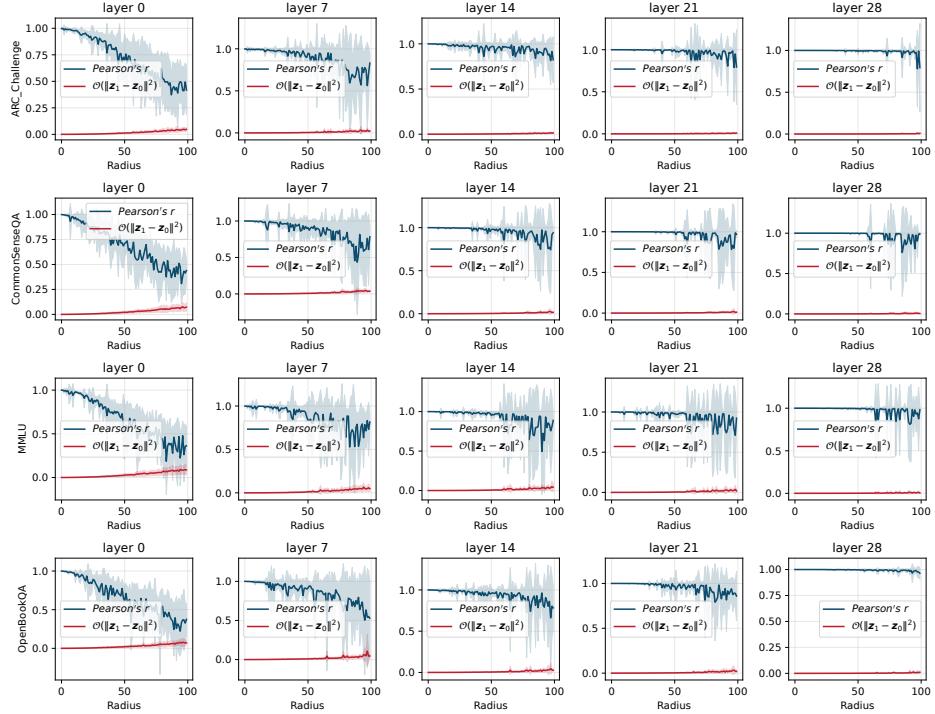


Figure 9: The Pearson's r between $\Delta \log \pi(y_t | \mathbf{z})$ and $\nabla_{\mathbf{z}} \log \pi(y_t | \mathbf{z}_0)^\top \Delta \mathbf{z}$ of different layers of Llama3.2-3B. The same trend is observed as in § 4.1.

From Figure 10, we can observe that the gradient decreases as layers increase. Therefore, in Figure 11, we show the trends of another factor affecting the upper bound, $\|\Delta\mathbf{z}\|$. It is evident that $\|\Delta\mathbf{z}\|$ is always minimal at the embedding layer and then continues to increase. The differences in the increasing trends between the Qwen and Llama series are as follows: the Qwen series increases slowly at first, then grows sharply toward the latter half of the layers. The Llama series, however, increases sharply at the beginning, stabilizes, and then increases sharply again in the latter half of the layers. It is worth noting that relatively larger Qwen models (1.5-4B) attempt to decrease in the final layer, but the effect is far from sufficient. Overall, a larger perturbation radius leads to a larger upper bound.

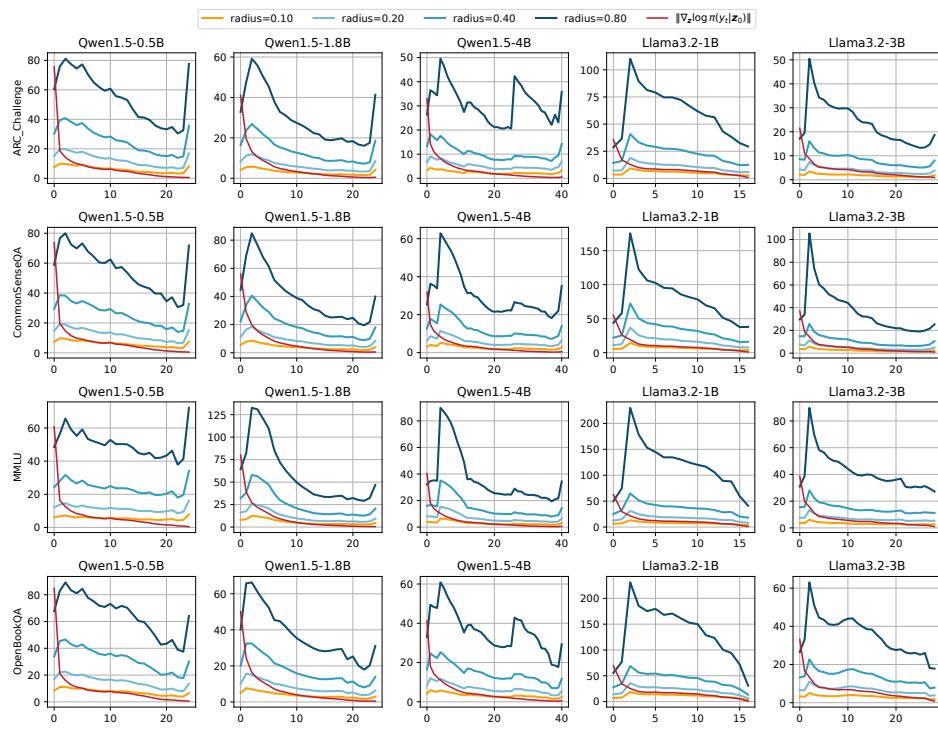


Figure 10: The changes of the upper bound of $|\Delta \log \pi(y_t|\mathbf{z})|$ across LLMs’ layers.

B.6 MORE RESULTS OF REAL-WORLD DATASET VALIDATION

In this section, we will continue from § 4.2 by first reporting additional experimental results for the *pad*, *trim*, and *equal* conditions (see § B.6.1). Subsequently, we will report further experimental results on how prompt modifications affect $\|\Delta\mathbf{z}\|$ (see § B.6.2). Finally, we will provide experimental details and more results for Figure 4d (see B.6.3).

B.6.1 PAD VS. TRIM VS. EQUAL

We first perform experiments on all models across four datasets, calculating $\|\Delta\mathbf{z}\|$ for each layer and the number of tokens in the prompt. Subsequently, we group our experimental data based on *pad*, *trim*, and *equal* to calculate the average value for each layer. Figure 12 shows a comparison of *pad*, *trim*, and *equal* across all models and datasets. We can observe that $\|\Delta\mathbf{z}\|$ for *pad* and *trim* are generally higher than those for *equal* in most cases, indicating that our hard alignment method introduces some degree of bias. Moreover, counterintuitively, the gap between *pad*, *trim*, and *equal* is more significant on larger-scale models than on smaller ones. This serves as a cautionary note that larger models do not necessarily perform better, aligning with recent findings by Liu & Chu (2025). Specifically, the errors of Qwen1.5-0.5B and Qwen1.5-1.8B on the CommonsenseQA dataset are nearly negligible.

Figure 11: The changes of $\|\Delta z\|$ across LLMs’ layers.

B.6.2 FIRST VS. LATTER & FEWER VS. MORE

In § 4.2, we already observed that modifying the first half of the prompt has a greater impact on $\|\Delta z\|$ than modifying the latter half. More misalignments have a greater effect on $\|\Delta z\|$ than fewer misalignments. In this section, we report experimental results across all models and datasets. By observing Figures 13 and 15, we conclude that the findings from § 4.2 hold true across all models and datasets, particularly becoming more pronounced in larger-scale models.

B.6.3 PROMPT TEMPLATE VS. QUESTION

To investigate the relative impact of different prompt templates and questions on the output results (logits) of LLMs, we designed a two-factor ANOVA experiment. We selected questions from multiple datasets (ARC Challenge, CommonsenseQA, MMLU, OpenBookQA). We used the 12 prompts listed in Table 1. For each question, we input it with each of the 12 different prompt templates to obtain the model’s logit outputs. To ensure a balanced design, we consistently selected the first 12 questions from each dataset. Combining these with the 12 prompts forms a 12×12 factorial combination, yielding a total of 144 experimental samples. We take question and prompt as classification factors respectively. Construct an ordinary least squares (OLS) regression model $\text{logit} \sim C(\text{question}) + C(\text{prompt})$. We perform an ANOVA on the model results to quantitatively evaluate the explanatory power of the question factor and prompt factor on logit variation. Simultaneously, we calculate the contribution ratio of each factor to the total sum of squares and compare it with the residual term.

As shown in Figure 15, we present the experimental results of all models across all datasets. It is not difficult to observe that, in all cases, prompts exert a greater influence on logits than questions do. In most cases, the prompt explains between 70% and 90% of the variance, while the question typically contributes less than 10%. The residual generally accounts for 5% to 20%, indicating that the primary variation in the model’s output can be attributed to the prompt factor. This indicates that LLMs recognize prompt templates more than questions. This finding serves as a warning that when evaluating the performance of LLMs, the importance of prompt design may outweigh differences in dataset questions, posing challenges for fair model comparisons.

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

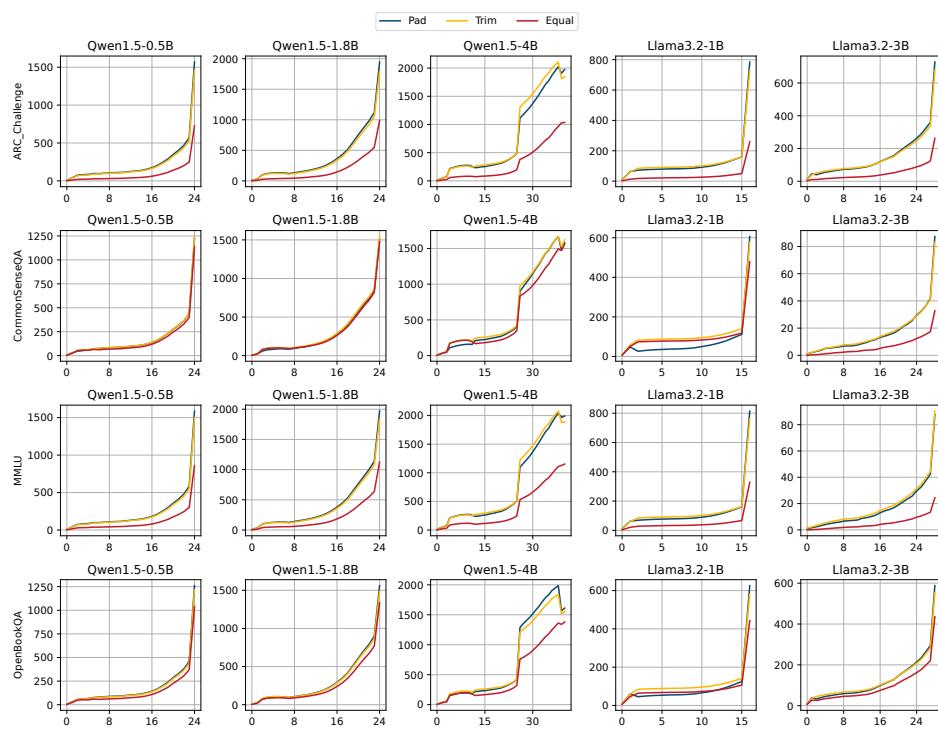
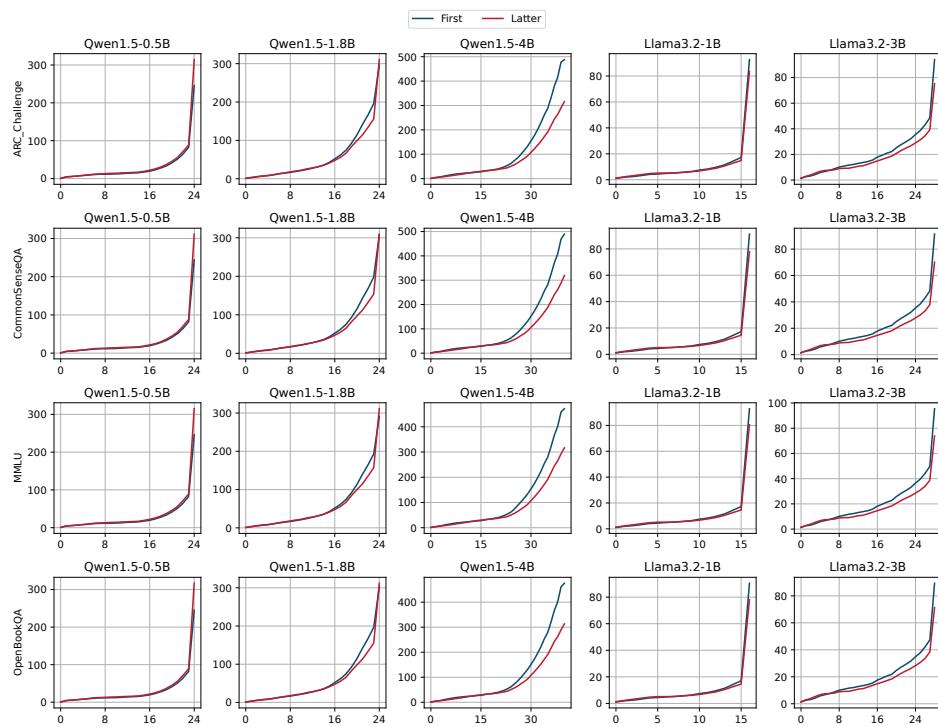
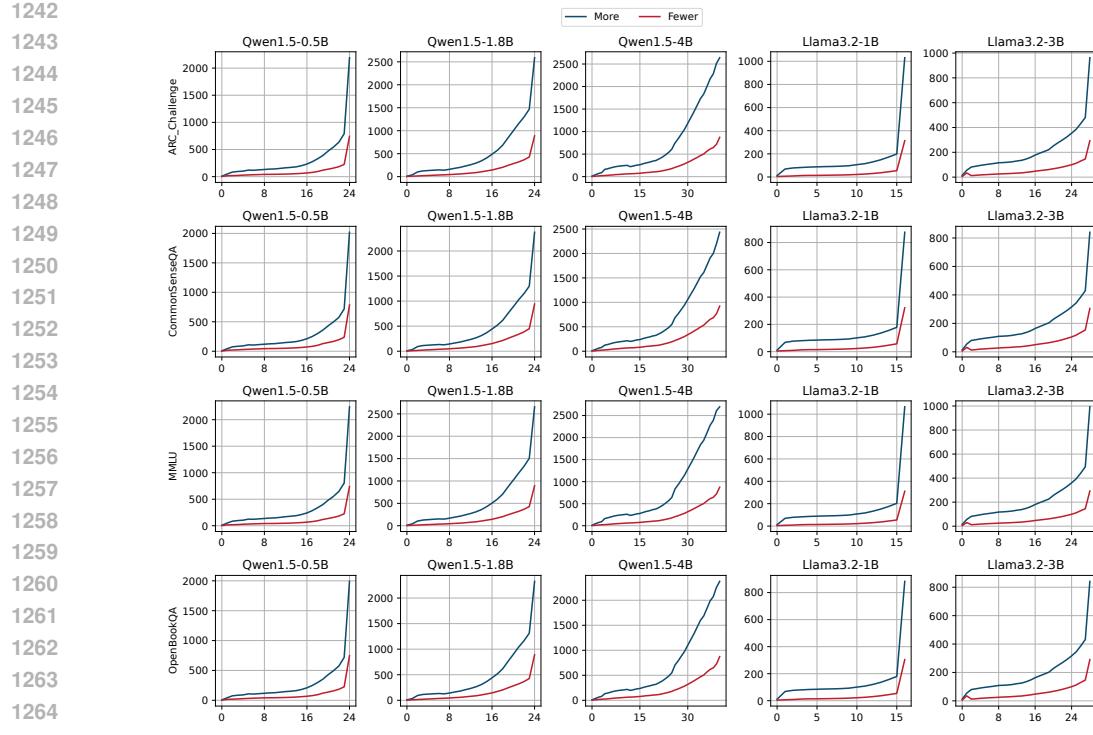


Figure 12: The biases caused by the hard alignment.

Figure 13: The comparison of $\|\Delta z\|$ between modify the first half and latter half of the prompt.

Figure 14: The comparison of $\|\Delta z\|$ between prompts with fewer and more misalignments.

C THE USE OF LLMs

To convey information more clearly, this paper employs ChatGPT to simplify certain complex expressions during the writing process.

1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

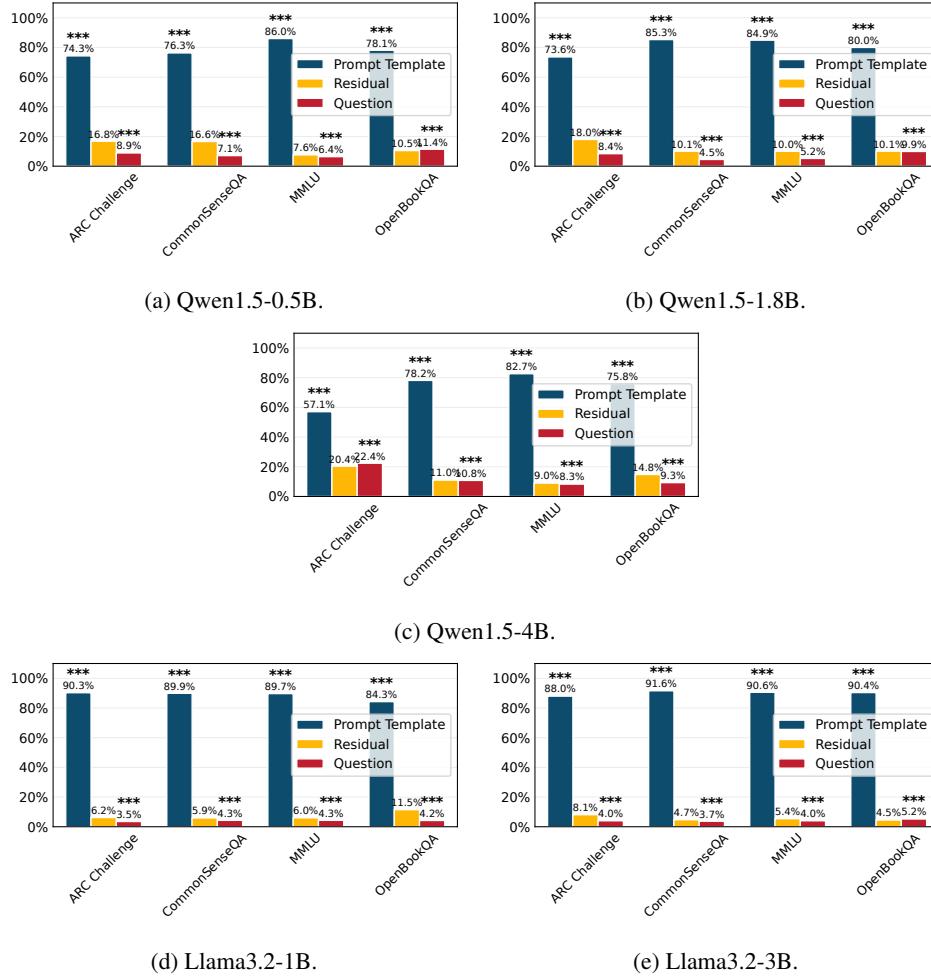


Figure 15: The comparison of contributions from the prompt template and the question. The asterisks (****) indicate $p\text{-value} < 0.001$.