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ABSTRACT

As large language models continue to advance, ensuring their trustworthiness is
critical. However, inaccessible real-world ground truth labels pose a significant
challenge in high-stakes domains. Recent studies have highlighted weak-to-strong
generalization, where a strong model trained only on a weak model’s labels sur-
passes the weak model in task performance. Yet, whether critical trustworthi-
ness properties such as robustness, fairness, and privacy can generalize similarly
remains an open question. This is the first work to study this question by ex-
amining if a stronger model can enhance trustworthiness when fine-tuned on a
weaker model’s labels, a paradigm we term weak-to-strong trustworthiness. To
address this, we introduce two fundamental fine-tuning strategies that leverage
trustworthiness regularization during the fine-tuning of the weak model and the
weak-to-strong transfer. Our experimental evaluation on real-world datasets re-
veals that while some trustworthiness properties, such as fairness, adversarial ro-
bustness, and OOD robustness, show significant improvement in trustworthiness
generalization when both models were regularized, others like privacy do not ex-
hibit signs of weak-to-strong trustworthiness. Our results highlight the potential
of weak-to-strong trustworthiness as a practical pathway for enhancing the trust-
worthiness of increasingly capable AI systems, even under imperfect real-world
conditions.

1 INTRODUCTION

In recent years, developments in large language models (LLMs) have demonstrated breakthroughs
in capability and scale (Radford et al., 2019; Bubeck et al., 2023). As models continue to improve,
trustworthiness has emerged as a critical aspect of AI systems, especially as LLMs are increasingly
deployed in high-stakes domains like healthcare, finance, and criminal justice (Wang et al., 2023).

A fundamental challenge in developing trustworthy models is that real-world supervision is often
imperfect. The lack of ground-truth labeled data is a bottleneck for training capable models, partic-
ularly in the domains where trustworthiness matters most. For instance, in medical diagnosis, we
may not always have perfect ground truth labels because even expert doctors can disagree about a
patient’s condition, or a definitive diagnosis might only be possible after invasive tests or autopsy.
As a result, the labels used for training are noisy or incomplete, rather than perfect ground truth. The
challenge of imperfect supervision parallels a question in AI alignment: if we only have access to
potentially biased supervision (like imperfect human decisions), how can we control more capable
AI systems to be more aligned with human values and trustworthiness?

A recent study demonstrated the phenomenon of weak-to-strong (WTS) generalization, where a
strong model outperforms a weak model by fine-tuning on only the weak model’s labels (Burns
et al., 2024). Weak-to-strong learning is particularly promising for studying superalignment, where
ground truth labels are unknown by humans, addressing the real-world inaccessibility of ground
truth data (Bach et al., 2017; Ratner et al., 2017) (Figure 1). A few follow-up studies have focused
on applying weak-to-strong learning to improve performance in various settings, yet none have
investigated trustworthiness (Chen et al., 2024; Yang et al., 2024).

In this work, we introduce the weak-to-strong trustworthiness paradigm. We investigate the unex-
plored question: Can trustworthiness properties be generalized to a strong model from fine-tuning
on a weak model’s labels?
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Ground Truth Labels

Weak LabelsWeak Models

Traditional ML training

Weak-to-Strong Learning
Strong Models

Ground Truth Labels

Weak Labels

Weak Model

Strong Model

Figure 1: Weak-to-strong framework for
when ground truth labels are unavailable.
The weak model (e.g. human supervision or
small LLM) has been trained to predict an in-
accessible set of complete ground truth labels.
The weak labels (weak model’s predictions)
are then used to fine-tune the strong model.

While previous work mainly use weak-to-strong learning to enhance raw predictive accuracy, our
objective is to show that trustworthiness can also be improved when fully ground truth labels remain
unavailable (Chen et al., 2024; Yang et al., 2024). In the context of the superalignment scenario, our
approach examines if superintelligent strong models trained on human weak labels can overcome
human biases to become more trustworthy.

To enable a systematic study of this phenomenon, we develop two fundamental fine-tuning strate-
gies. We perform rigorous empirical experiments using the Pythia model suite (Biderman et al.,
2023) to analyze our fine-tuning strategies on standard trustworthiness datasets. Our main contribu-
tions are:

• Weak-to-strong trustworthiness is feasible: We present the novel conceptual framework of
weak-to-strong trustworthiness. As the first study examining whether trustworthiness properties
generalize through WTS learning, our results indicate that WTS trustworthiness is indeed feasible.

• Standard weak-to-strong learning is insufficient: Standard fine-tuning a strong model on a
weak model’s labels yields inconsistent generalization of trustworthiness across properties (fair-
ness, OOD robustness, adversarial robustness, privacy).

• Fundamental fine-tuning strategies improve weak-to-strong trustworthiness: We introduce
the strategies Trustworthiness Fine-tuning (TFT), which regularizes weak model training, and
Trustworthiness Fine-tuning and Transfer (TFTT), which regularizes both weak model training
and weak-to-strong learning. TFTT consistently improves trustworthiness generalization, signif-
icantly enhancing fairness and robustness. Our strategies are summarized in Figure 2.

• Comprehensive empirical evaluation: We evaluate our strategies across 4 properties, 20
datasets, 14 definitions and tasks, and 5 model sizes ranging from 14M to 6.9B parameters. In
addition, our sensitivity analysis demonstrates consistent weak-to-strong trustworthiness across a
wide range of hyperparameter values.

Our study is critical for understanding the promising potential and limitations of weak-to-strong
trustworthiness. Our findings have broad implications for the future of AI development: by demon-
strating that trustworthiness properties can be systematically enhanced as models scale, we provide
a pathway for ensuring that increasingly powerful AI systems remain aligned with human values
even when perfect supervision is unavailable.

2 RELATED WORK

This work is the first to study trustworthiness generalization from a weak supervisor to a strong
model. We discuss related works for the topics below.

Fairness. Unfair outcomes can arise in language models when they inadvertently encode biases
present in the training data, leading to discriminatory practices against certain groups based on sen-
sitive attributes like race, gender, or age (Bolukbasi et al., 2016). Recent efforts to improve fairness
in LLMs include data pre-processing, post-processing, and adversarial training such as augmenting
training data to balance gender representations (Zhao et al., 2018) and debiasing word embeddings
(Huang et al., 2020). Our study is distinguished by its weak-to-strong setting and integration of
fairness directly into the model’s learning objective during fine-tuning.

Out-of-distribution robustness. OOD robustness describes a model’s ability to perform well on
inputs that differ from its training distribution. Various methods aim to enhance OOD robust-
ness, including data augmentation techniques like adversarial perturbations (Madry et al., 2018;
Lecuyer et al., 2019), EDA (Wei & Zou, 2019), as well as training modifications like label smooth-
ing (Szegedy et al., 2016) and focal loss (Lin, 2017). However, recent research has shown that many
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of these methods do not reliably improve OOD robustness and may even degrade performance on
in-distribution tasks; standard fine-tuning often remains a strong baseline (Yuan et al., 2023). In
this work, we employ adversarial perturbation as a representative robustness technique, which has
been explored in existing LLM robustness literature (Zhu et al., 2019; Ye et al., 2023). Unlike prior
approaches, we focus on generalizing OOD robustness from weak models to larger strong models,
both with and without the use of robustness-enhancing regularization.

Adversarial robustness. Machine learning model outputs can be changed by introducing minimal
perturbations to a benign input, causing the model to malfunction (Szegedy et al., 2014; Goodfellow
et al., 2015; Madry et al., 2018). Existing adversarial attack algorithms have been shown to degrade
a large language model’s performance on natural language processing tasks such as sentiment analy-
sis, question answering, text classification, and entailment (Jin et al., 2020; Zang et al., 2020; Wang
et al., 2020; Li et al., 2020; Garg & Ramakrishnan, 2020). Our work differs from these existing
studies and is the first to examine if adversarial robustness can generalize from a weak model to a
larger strong model fine-tuned on weak labels.

Privacy and model distillation. Prior research has explored knowledge distillation as a mechanism
to mitigate privacy attacks. One example is the PATE framework (Papernot et al., 2016), where
knowledge distillation is employed to reduce an ensemble of teacher models into a single model with
provable privacy guarantees (Dwork et al., 2006). Other works have built on this idea, such as Zheng
et al. (2021) and Tang et al. (2022), to similarly construct privacy-preserving model ensembles and
consolidate them through distillation. Some research suggests that distillation alone can serve as
an effective privacy defense (Shejwalkar & Houmansadr, 2021). Building on this, Mazzone et al.
(2022) investigate the use of repeated distillation to protect against membership inference attacks.
However, Jagielski et al. (2024) demonstrate through privacy attacks that distilled models without
privacy guarantees can still leak sensitive information. In contrast to prior work, our research focuses
on the privacy implications of weak-to-strong learning. This approach is the inverse of traditional
model distillation. Nothing is known about the privacy risks when this process is reversed, making
our work an important contribution to the field.

3 OUR FRAMEWORK

In Section 3.1, we discuss how we adapt the weak-to-strong learning framework introduced by
Burns et al. (2024) for trustworthiness. Then, we introduce our fine-tuning strategies for studying
weak-to-strong trustworthiness in Section 3.2. Afterwards, in Section 3.3, we describe regularization
strategies to enhance trustworthiness properties such as fairness, robustness, and privacy.

3.1 PRELIMINARIES

Notation. We consider training datasets of the form {(xi, yi)}Ni=1 where yi ∈ Y is the ground-truth
label. We denote a classifier fθ : X → Y parametrized by θ ∈ Rd, mapping inputs x ∈ X , to labels
Y . We define the outputs of a fine-tuned smaller classifier fw(x) as weak labels, where w ∈ Rk

denotes a lower-capacity parameterization than θ where k ≪ d. Let ℓ : R × R → R represent an
appropriate loss function such as cross-entropy loss.

Weak-to-strong learning. In the weak-to-strong (WTS) framework, a pre-trained strong model ac-
complishes performance generalization by fine-tuning on a weak model’s labels. Burns et al. (2024)
defined two methods for the WTS transfer: WTS-Naive and WTS-Aux-Loss. WTS-Naive refers to
the strong model doing regular fine-tuning on weak labels. WTS-Aux-Loss consists of an additional
auxiliary loss, weighted by α ∈ [0, 1] to adjust the confidence in the strong model’s predictions
relative to the weak labels. This auxiliary loss encourages the strong model to make confident
predictions, even when they diverge from the weak labels, potentially enhancing generalization.
WTS-Naive is equivalent to setting α = 0. WTS-Aux-Loss refers to when α > 0.

Similarly to Burns et al. (2024), our loss function is a linear combination of the cross-entropy losses
from the weak and strong models. However, we incorporate trustworthiness regularization (λ):

ℓAUX
WTS = (1− α)ℓ

(
fθ(x), fw(x;λ)

)
+ αℓ

(
fθ(x;λ), f̂t,θ(x)

)
. (1)

fw(x;λ) denotes the weak model fine-tuned with trustworthiness regularization strength λ and fθ(x)

denotes the strong model. Further, f̂t,θ(x) represents the hardened strong model predictions accord-
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ing to threshold t set proportional to the dataset class weights. When λ = 0, we are in the standard
WTS setting studied by Burns et al. (2024) (No TFT). In our proposed strategies, we apply regular-
ization with λ > 0 to the weak model (TFT, TFTT) and the weak-to-strong learning (TFTT).

We distinguish between the baseline WTS transfer methods (WTS-Naive and WTS-Aux-Loss),
which are the core learning algorithms, and our overarching fine-tuning strategies (TFT and TFTT),
which are the experimental frameworks that employ them. While the transfer methods are the spe-
cific algorithms used to train the strong model on weak labels, our strategies augment this process
by incorporating trustworthiness regularization. In our experiments, each strategy is evaluated using
both WTS-Naive and WTS-Aux-Loss for the transfer step.

3.2 FINE-TUNING STRATEGIES FOR STUDYING WEAK-TO-STRONG TRUSTWORTHINESS

No Trustworthiness Fine-tuning (No TFT)

Weak-to-Strong Transfer
Weak Model Strong Model

Weak-to-Strong TransferTrustworthy
Weak Model Strong Model

Weak-to-Strong Transfer
Strong Model

Trustworthiness Fine-tuning (TFT)

Trustworthiness Fine-tuning and Transfer (TFTT)
Trustworthy
Weak Model

Trustworthy

Figure 2: Our fine-tuning strategies.

We systematically study how trustworthiness
generalizes by applying regularization at two
key stages: (1) the initial fine-tuning of the
weak model on ground truth data, and (2) the
subsequent weak-to-strong (WTS) transfer to
the strong model. This results in three distinct
strategies, each incorporating a greater degree
of regularization (Figure 2).

The baseline strategy, No Trustworthiness
Fine-tuning (No TFT), follows Burns et al.
(2024) and applies no regularization at either
stage (λ = 0). A standard weak model is
trained, and its labels are used for a standard WTS transfer.

Our first proposed strategy, Trustworthiness Fine-tuning (TFT), introduces regularization to the
first stage only. We fine-tune the weak model with a trustworthiness objective (λ > 0) to create a
trustworthy weak model. This model’s labels are then used in a standard WTS transfer.

Our second and most comprehensive strategy, Trustworthiness Fine-tuning and Transfer (TFTT),
applies regularization at both stages. It uses the same trustworthy weak model from TFT, but then
additionally incorporates a trustworthiness objective into the WTS transfer process itself. We detail
this trustworthy weak-to-strong transfer objective in Appendix A.1.

3.3 REGULARIZATION FOR ENHANCING TRUSTWORTHINESS PROPERTIES

We enhance trustworthiness by incorporating one of the following regularization techniques during
fine-tuning.

Fairness. We enforce statistical fairness criteria such as Demographic Parity, which requires that
the prediction rates be equal across groups based on a protected attribute a (e.g., gender). Following
Zafar et al. (2017), we use an objective that balances the standard loss with a regularization term
that minimizes the covariance between model outputs fw(xi) and the sensitive attribute ai:

min
w

1

N

N∑
i=1

ℓ(fw(xi), yi) + λFair(ai − ā)fw(xi), (2)

where ā is the base rate of the attribute. The hyperparameter λFair controls the accuracy-fairness
trade-off. We use a similar objective to enforce Equalized Odds.

Adversarial Robustness. To improve robustness against adversarial attacks, we train the model on
both clean and adversarially perturbed samples. The training objective is a weighted average of the
loss on the original inputs xi and their adversarial counterparts x′

i:

min
w

1

N

N∑
i=1

(1− λAdv)ℓ(fw(xi), yi) + λAdvℓ(fw(x
′
i), yi), (3)

where λAdv controls the emphasis on robustness.
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Out-of-Distribution (OOD) Robustness. Following prior work (Madry et al., 2018; Lecuyer et al.,
2019; Zhu et al., 2019; Bowman et al., 2015; Li et al., 2019), we enhance OOD robustness by adding
Gaussian noise z ∼ N (0, λOOD · Id) to the word embeddings e(x) before they are processed by the
model. The objective is the standard cross-entropy loss on these noisy inputs:

min
w

1

N

N∑
i=1

ℓ
(
yi, fw(xi;λOOD))

)
, (4)

where λOOD controls the noise variance and thus the strength of the regularization.

Privacy. We use Differentially Private SGD (DP-SGD) (Abadi et al., 2016) to provide formal
(λP , δ)-differential privacy guarantees. An algorithm is differentially private if its output is nearly
identical whether or not any single data point is included in its training set:

P(A(D1) ∈ S) ≤ exp(λP ) · P(A(D2) ∈ S) + δ. (5)

DP-SGD achieves this by modifying the standard training process: for each batch, it computes per-
sample gradients, clips their L2 norm to a constant C, aggregates them, and adds calibrated Gaussian
noise before applying the update. The amount of noise is tuned for the desired privacy level (λP , δ).

4 EXPERIMENTAL EVALUATION

In Section 4.1, we empirically evaluate weak-to-strong trustworthiness using the three fine-tuning
strategies discussed in Section 3. Then, in Sections 4.3 and Appendix C, we perform a comprehen-
sive sensitivity analysis, varying the model size, regularization strength, and other hyperparameters
specific to weak-to-strong learning. We begin by describing the real-world datasets used in our ex-
periments, followed by an overview of the models and the strong ceiling upper bounds we use. Table
3 provides an overview of all properties, metrics, datasets, and tasks.

Datasets. We evaluate trustworthiness generalization using 20 datasets, including the Enron Email
dataset (Klimt & Yang, 2004), the AG News dataset, the Adult dataset (Ding et al., 2021), the
PUMS ACS dataset (Ding et al., 2021), the OOD Style Transfer datasets (Wang et al., 2023), and the
AdvGLUE++ datasets (Wang et al., 2023). For all datasets, we show average results from multiple
runs and report ±1 standard deviation. While the main paper’s plots focus on Enron, Adult, OOD
Style Transfer, and AdvGlue++ datasets, supporting results on the other datasets can be found in
Appendix C. Additional dataset and experimental details are in Appendix D.

Large language models. We fine-tune models from the Pythia suite spanning five model sizes:
14M, 70M, 410M, 1B, 6.9B parameters (Biderman et al., 2023). The wide range of sizes allows us
to systematically explore how model size impacts weak-to-strong trustworthiness.

Metrics. We evaluate a model’s trustworthiness as follows:

• Fairness: We evaluate fairness using the demographic parity and equalized odds. For both def-
initions, lower values indicate better fairness, as they reflect minimal disparity in predictions
between protected groups. We conduct comprehensive experiments using Demographic Parity
Difference (DPD), defined as DPD = P(fθ(x) = 1|a = 1) − P(fθ(x) = 1|a = 0). Additional
experiments on Equalized Odds Difference support the trends observed (Figure A12).

• Robustness: For robustness, we measure both OOD accuracy and adversarial accuracy, abbrevi-
ated as Robust Accuracy (RA), by evaluating the model’s performance on OOD and adversarially
perturbed test data. Specifically, we compute the RA = 1

ntest

∑ntest
i=1 I[fθ(x′

i) = yi], where x′

represents either an OOD sample or an adversarially perturbed input, and I denotes the indicator
function that equals 1 if the prediction is correct.

• Privacy: We evaluate privacy using targeted data extraction attacks and membership inference
attacks (Shokri et al., 2017; Carlini et al., 2021). We conduct comprehensive experiments using
extraction attacks, where given a prefix sequence and a generated response of k tokens, we com-
pute the extraction rate by determining what fraction of the k-token continuation (suffix) matches
the ground truth continuation of the sample. A higher extraction rate indicates a greater risk
that the model memorizes and extracts private information. Additional experiments on standard
membership inference attacks support the trends observed (Figure A13b).
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Strong ceiling upper bound. For comparison, we establish upper bounds for a strong model’s
trustworthiness by fine-tuning it using ground truth labels and regularization. This value, referred to
as the strong ceiling, represents the strong model utilizing its full capabilities. Section A.2 provides
more details on determining the strong ceiling.

4.1 EVALUATING WEAK-TO-STRONG TRUSTWORTHINESS

We define weak-to-strong trustworthiness as a monotonic trend – starting from the weak model and
increasing through the WTS-Naive and WTS-Aux-Loss models, with the strong ceiling as the upper
bound. Despite only fine-tuning on the weak model’ labels, the strong model is able to generalize
trustworthiness and recover part of the trustworthiness gap from the weak model to the strong ceiling
upper bound.

We present our results for all four trustworthiness properties across the three strategies in Table 1,
and throughout Figures 3-6. Figure A2 shows the properties across all three strategies side-by-side.

No TFT. The No TFT fine-tuning strategy does not achieve consistent weak-to-strong trustworthi-
ness (Figure 3). For fairness experiments, the level of unfairness (demographic parity difference)
remains constant at around 35% across all weak and strong models. Similarly, we do not observe
privacy generalization (Figure 6). We expected no consistent weak-to-strong trustworthiness for No
TFT (standard weak-to-strong) as the strategy lacks regularization to explicitly enforce trustwor-
thiness. Surprisingly, we observe a weak-to-strong trustworthiness trend for OOD and adversarial
robustness. Despite the absence of regularization, the WTS-Naive and WTS-Aux-Loss models ex-
hibited improved robustness compared to the weak models, suggesting that some trustworthiness
properties may naturally generalize without explicit constraints.

(a) Fairness (b) OOD Robustness (c) Adv. Robustness

Figure 3: No TFT (standard
weak-to-strong) is insufficient
for trustworthiness generaliza-
tion. Weak-to-strong trustworthi-
ness is inconsistent across proper-
ties, from no generalization of fair-
ness to generalization of OOD and
adversarial robustness.

TFT. The TFT fine-tuning strategy significantly improves the trustworthiness of weak models across
all four properties (Figures 4, 6). The effect of the additional regularization applied to weak models
aligns with our expectations, as weak models are now explicitly regularized to enhance trustworthi-
ness. Compared to No TFT, the weak models achieve lower unfairness (5% from 35%), increased
OOD robustness (72% from 69%), increased adversarial robustness (78% from 71%), and lower pri-
vacy extraction (15% from 19%). Despite the trustworthy weak models, TFT does not achieve con-
sistent weak-to-strong trustworthiness. We only observe generalization for OOD robustness (Figure
4b). The strong models are not more trustworthy than the weak models for fairness, adversarial
robustness, and privacy (Figures 4a, 4c, 6).

TFTT. The TFTT fine-tuning strategy significantly improves the trustworthiness of strong models
across all four properties (Figures 5, 6). The effect of the additional regularization applied to weak
and strong models aligns with our expectations, as both models are now explicitly regularized to
enhance trustworthiness. Compared to No TFT, the strong models achieve lower unfairness (2%

(a) Fairness (b) OOD Robustness (c) Adv. Robustness

Figure 4: TFT improves trust-
worthiness of weak models.
However, weak-to-strong trust-
worthiness is still inconsistent
across properties, from no gener-
alization of fairness and adversar-
ial robustness to generalization of
OOD robustness.
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(a) Fairness (b) OOD Robustness (c) Adv. Robustness

Figure 5: TFTT achieves con-
sistent WTS trustworthiness.
TFTT significantly improves
trustworthiness generalization for
fairness, OOD robustness, and
adversarial robustness.

from 35%), increased OOD robustness (78% from 75%), increased adversarial robustness (80%
from 75%), and lower privacy extraction (26% from 45%).

Unlike previous strategies, TFTT achieves consistent weak-to-strong trustworthiness for fairness,
OOD robustness, and adversarial robustness (Figure 4a). The strong models are significantly more
trustworthy than the weak models, indicating successful trustworthy generalization through TFTT.
For fairness and adversarial robustness, the WTS-Aux-Loss models generalize more effectively than
the WTS-Naive models, suggesting that the auxiliary loss enables more weak-to-strong trustworthi-
ness.

Through TFTT, strong models are able to recover a significant portion of the trustworthiness gap
between the weak model and strong ceiling. Despite their lack of ground truth labels, strong models
recover 88% of the fairness gap (2.8% out of 3.2%), 41% of the OOD robustness gap (5.5% out of
13.5%), and 31% of the adversarial robustness gap (2% out of 6.5%) (Figure 5).

Trade-off between trustworthiness and task performance. For fairness and adversarial robust-
ness, weak-to-strong trustworthiness includes a slight decline in task performance (Figure A2).
However, the performance decrease does not exceed 1% from weak to strong models while trust-
worthiness generalized to recover up to 88% of the trustworthiness gap. Our results demonstrate that
significant trustworthiness generalization can be achieved with minimal impact on task performance.

Fairness OOD
Robustness

Adv.
Robustness Privacy

No TFT × ✓ ✓ ×
TFT × ✓ × ×

TFTT ✓ ✓ ✓ ×

Table 1: Weak-to-strong trustworthiness
across properties and fine-tuning strate-
gies. TFTT achieves consistent weak-to-
strong trustworthiness in fairness, OOD ro-
bustness, and adversarial robustness.

4.2 PROPERTY-SPECIFIC GENERALIZATION BEHAVIORS

(a) Extraction Attack (b) Membership Inference

Figure 6: No weak-to-strong privacy. While TFTT
does not achieve privacy generalization, it still im-
proves the privacy of strong models compared to other
strategies.

Privacy. As the only property to
not demonstrate consistent weak-to-strong
trustworthiness under the TFTT strategy,
privacy presents a unique situation. How-
ever, note that the strong ceiling does
not achieve better privacy than the weak
model, which prevents any monotonic
weak-to-strong privacy trend.

One reason for this distinction is that pri-
vacy is measured with respect to the under-
lying training dataset (see Appendix D).
Larger models are more capable of mem-
orizing information, leading to a greater
risk of private information leakage (Lee-
mann et al., 2024). As a result, larger mod-
els are more susceptible to leaking private data than smaller models. Therefore, we observe that pri-
vacy, measured by the extraction rate or membership inference attack success in Figure 6, degrades
when learning from a weak model to a strong model. This inherent relationship between model
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capacity and memorization makes privacy fundamentally different from properties like robustness,
where a larger model’s capacity can be leveraged to improve the property rather than degrade it.

Robustness and Fairness. Unlike privacy, which fails to generalize, and fairness, which requires
full regularization via TFTT, OOD and adversarial robustness exhibit a tendency to generalize even
in the baseline No TFT setting. One possible explanation is that robustness is a more localized
property tied to the model’s feature representations and the geometry of its decision boundary in the
immediate vicinity of an input (Madry et al., 2018). A strong model, with its higher capacity, can
learn a smoother and more effective representation even from the noisy labels of a weak supervisor,
leading to these natural improvements.

In contrast, fairness is a global statistical property of the output distribution across entire protected
groups (Zafar et al., 2017). This aggregate statistical constraint may be too complex to infer from
weak labels alone, requiring explicit regularization during the WTS transfer to be enforced effec-
tively.

4.3 SENSITIVITY ANALYSIS

We conduct a comprehensive sensitivity analysis to explore how various parameter values influence
trustworthiness generalization. Specifically, we examine the impact of model size and regularization
strength (λ). This analysis validates the robustness of our main results and demonstrates the condi-
tions under which our strategies are most effective. Further analysis on the auxiliary loss parameter
(α) can be found in Appendix C.

Impact of Model Size. Our analysis reveals that the trustworthiness generalization trends hold con-
sistently across all five weak/strong model configurations we tested (see Figures A7-A11). Beyond
this consistency, we find that the capacities of the weak and strong models play distinct and impor-
tant roles. While increasing the strong model size led to some trustworthiness improvements, we
saw significant improvement in weak-to-strong trustworthiness after increasing the weak model size

As illustrated with OOD robustness in Figure 7, increasing the weak model’s capacity (e.g., from
14M to 70M parameters, comparing Fig. 7a and 7b) boosts the trustworthiness of both the weak
supervisor and the resulting strong model. In contrast, increasing the strong model’s capacity (e.g.,
from 410M to 6.9B, comparing Fig. 7a and 7c) primarily improves the generalization of the strong
model itself. This suggests that while a more capable strong model is better at learning, starting with
a more capable weak supervisor provides a better foundation for the entire WTS trustworthiness
pipeline.
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Figure 7: Impact of model size on OOD Robustness. Increasing the weak model’s size improves
trustworthiness for both weak and strong models (7a vs. 7b), while increasing the strong model’s
size primarily enhances the strong model’s generalization (7a vs. 7c).

Impact of Regularization Strength (λ). Our TFTT strategy demonstrates robustness to the specific
choice of the regularization strength, λ. As shown in Figure 8, for fairness, OOD robustness, and ad-
versarial robustness, the monotonic trend of WTS trustworthiness is maintained across a wide range
of λ values. This indicates that the effectiveness of TFTT is not reliant on fragile hyperparameter
tuning, making it a practical and reliable method. This stability contrasts with the TFT strategy,
where the final outcome is more sensitive to the initial regularization of the weak model (Figure
A3). Depending on the regularization strength and property, the strong model’s improvement over
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the weak model is not as significant (OOD robustness), or the strong model may not improve over
the weak model at all (fairness, adversarial robustness).

The success of TFTT across various λ values confirms our central finding: applying regularization
during the WTS transfer itself is the key to achieving significant and consistent trustworthiness
generalization.

(a) Fairness (b) OOD Robustness (c) Adv. Robustness

Figure 8: TFTT consistently improves trustworthiness across regularization strengths (λ). The
monotonic WTS trend (Weak < WTS-Naive/Aux-Loss < Strong Ceiling) holds for a wide range of
λ values.

5 CONCLUSION

Our work provides the first systematic investigation into whether critical trustworthiness properties
like fairness, robustness, and privacy can be generalized through weak-to-strong learning in lan-
guage models. We term this process weak-to-strong trustworthiness. Based on our novel conceptual
framework, we make several key contributions.

First, we show that standard weak-to-strong learning alone is insufficient for consistent trustworthi-
ness generalization, underlining the need for integrating regularization in weak-to-strong learning.
Consequently, we introduce two fundamental fine-tuning strategies, TFT and TFTT, that signifi-
cantly improve the trustworthiness of weak labels and achieve consistent weak-to-strong trustwor-
thiness. Our TFTT strategy, in particular, demonstrates remarkable success in recovering up to 88%
of the trustworthiness gap between weak models and strong ceiling baselines, while simultaneously
maintaining strong task performance. While our results show consistent weak-to-strong trustwor-
thiness for properties like fairness and robustness, the distinct behavior we observed with privacy
generalization highlights the nuanced and property-specific nature of trustworthiness transfer in lan-
guage models.

Our findings have broad implications for the development of trustworthy AI systems. By demon-
strating that trustworthiness properties can be systematically enhanced through our proposed strate-
gies, we provide a practical pathway for ensuring increasingly powerful models remain aligned with
human values - even in real-world settings with inaccessible ground truth labels. As AI systems con-
tinue to grow in capability and autonomy, ensuring that trustworthiness generalize without requiring
perfect supervision will be crucial for their safe deployment in high-stakes domains.
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A WEAK TO STRONG LEARNING PROCESS

A.1 TRAINING OBJECTIVE FOR TFTT

In this section, we give a detailed description of the loss used for the third fine-tuning strategy
presented in Section 3.2.

Fairness. To incorporate the fairness constraint into the fine-tuning process, we apply regularization
twice yielding the following objective

θ∗ ∈ argmin
θ

LWTS
Fair (θ;λ

W
Fair, λ

WTS
Fair , α, fw)

= argmin
θ

1

N

N∑
i=1

ℓWTS-AUX(xi, fθ;α, λ
W
Fair, fw) + λWTS

Fair · (ai − ā) · fθ(xi),
(6)

where α ∈ [0, 1] is the auxiliary confidence loss weight and where ā = 1
N

∑N
i=1 ai is the base rate

of the protected attribute. The first term in equation 6 encourages the weak-to-strong model to make
correct predictions while the second term acts as an additional fairness regularizer. The hyperpa-
rameter λW

Fair corresponds to the regularization strength of the weak model while λWTS
Fair controls the

regularization strength for training in this stage.

Out-of-distribution robustness. The objective during fine-tuning is to minimize the following loss

θ∗ ∈ argmin
θ

LOOD(θ;λ
W
OOD, λ

WTS
OOD, α, fw)

= argmin
θ

1

N

N∑
i=1

ℓWTS-AUX
(
xi, fθ(xi;λ

WTS
OOD);α, λ

W
OOD, fw

)
,

(7)

where α ∈ [0, 1] is the auxiliary confidence loss weight. Further, λW
OOD controls the regularization

strength of the fixed weak classifier, while λWTS
OOD controls the regularization strength of the transfer

process. As λWTS
OOD = 0, we are back to our TFT strategy, and as λWTS

OOD = λW
OOD = 0 the model is

trained without any regularization, reverting to the No TFT strategy.

Adversarial Robustness. The training objective combines the losses from both clean and adversar-
ial samples:

θ∗ ∈ argmin
θ

LAdv(θ;λ
W
Adv, λ

WTS
Adv , α, fw)

= argmin
θ

1

N

N∑
i=1

(1− λWTS
Adv ) ℓWTS-AUX(xi, fθ;α, λ

W
Adv, fw) + λWTS

Adv ℓWTS-AUX(x
′
i, fθ;α, λ

W
Adv, fw),

(8)

where λW
Adv controls the regularization strength of the fixed weak classifier, while λWTS

Adv controls the
regularization strength of the transfer process. As λWTS

Adv = 0, we are back to our TFT strategy, and as
λWTS

Adv = λW
Adv = 0 the model is trained without any regularization, reverting to the No TFT strategy.

A.2 CHOOSING THE HYPERPARAMETERS BASED ON TRADE-OFF CURVES

In this section, we provide an illustrative example of how we selected the parameters for the strong
baselines, using adversarial robustness as a case study. We plotted trade-off curves between the
trustworthiness properties and task performance, selecting the parameter that corresponds to the
optimal trade-off in the top right corner of the Figure A1. We set λAdv for the weak and strong
model by independently fine-tuning them on training subset and evaluating on the test subset. We
plot original task performance vs. adversarial performance for different values of λAdv and pick the
value that offers the best trade-off between clean and adversarial accuracy. Figures A1a and A1b
show that λAdv = 0.3 achieves the best combined accuracies on original and adversarial samples
for both models. Fixing λAdv for the weak model to 0.3, we repeat the same analysis for the weak-
to-strong model trained with the naive loss function. Figure A1c shows that λAdv = 0.3 offers
the best trade-off for the weak-to-strong model as well. Fixing the λAdv parameter to 0.3 for the
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weak and weak-to-strong models, we vary the α parameter for the auxiliary loss function and plot in
figure A1d. We observe that α = 0.1 achieves the highest accuracy on both original and adversarial
samples. We perform similar analyses for the warm-up period, α, and the number of fine-tuning
epochs in Figures A1e and A1f. We select the values 0.2 and 6, respectively, for these training
parameters.

(a) Weak model λAdv (b) Strong model λAdv (c) Weak-to-strong λAdv

(d) Weak-to-strong α (e) Warm-up period. (f) Number of epochs for WTS.

Figure A1: Trade-off between original and adversarial accuracy for different training parameters.

Similarly, for OOD robustness, we set the standard deviation of the Gaussian Noise to 2e − 3 for
both the weak model (Pythia 14M) and the strong model (Pythia 410M). This value was chosen as it
allows both models to achieve a balanced trade-off between OOD robustness and task performance.
With the noise standard deviation fixed, we conduct trade-off experiments by separately adjusting
the maximum α value for auxiliary loss, the warm-up period, and the number of training epochs. For
optimal balance between OOD robustness and task performance, these parameters are set to 0.25,
0.2, and 1, respectively.
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B COMPREHENSIVE PLOTS ACROSS STRATEGIES

(a) Fairness
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Figure A2: Weak-to-strong trustworthiness for Pythia 14M/410M models. Trustworthiness
properties and task performance for our four properties: Fairness, OOD Robustness, Adversarial
Robustness, and Privacy. Note that lower values are better for the top plot in Figure A2a as the
y-axis is Unfairness (DPD). Similarly, lower values are better for the top plot in Figure A2d as the
the y-axis is Extraction Rate. Results for WTS-Aux-Loss for privacy are omitted since it was the
only task involving free data generation, making the auxiliary loss function inapplicable.

C DETAILED SENSITIVITY ANALYSIS

In this section, we study the sensitivity of our fine-tuning strategies to key training parameters like
λ and α.

Impact of Auxiliary Loss Weighting (αmax). The auxiliary loss weighting parameter αmax (max-
imum alpha) plays a crucial role in balancing the adherence to the weak model’s outputs and the
strong model’s confidence in its predictions. Higher values of αmax place more emphasis on the
strong model’s own predictions rather than closely following the weak model’s outputs. We exam-
ine the effect of varying αmax from 0 to 1 on the performance of the weak-to-strong models. Our
experiments showed a degradation of performance with increasing αmax. As αmax increases from 0
to 1, the performance of the weak-to-strong models trained with the auxiliary loss (WTS-Aux-Loss)
tends to worsen. Therefore, selecting an appropriate value of αmax is essential to maintain a balance
between leveraging the weak model’s trustworthiness and allowing the strong model to develop its
capabilities. Our results suggest that lower αmax values are preferable for effective weak-to-strong
trustworthiness transfer. For our models, we chose αmax values from 0.1 to 0.4.

Impact of Larger Models (6.9B). We show that WTS trustworthiness trends are consistent when
scaling up the strong model. As referenced in Section 4.3, Figures A7 to A10, show four different
weak/strong model size configurations (14M/410M, 70M/410M, 14M/1B, 70M/1B) with consistent
property-specific weak-to-strong trustworthiness trends holding across model sizes. We also ex-
tended our model size sensitivity analysis to include Pythia 6.9B as the strong model for fairness,
OOD robustness, and adversarial robustness. The 6.9B model required multiple GPUs to train, and
DP-SGD currently does not support multi-GPU computations, so we did not provide 6.9B results
for privacy. Figure A11 displays the results and demonstrates similar weak-to-strong trustworthiness
trends as the previous model configurations. While weak-to-strong trustworthiness is inconsistent at
the TFT strategy, we see consistent weak-to-strong trustworthiness at the TFTT strategy.
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Figure A3: Full Plot for Varying Lambda for TFT. Results for WTS-Aux-Loss for privacy are
omitted since it was the only task involving free data generation, making the auxiliary loss function
inapplicable.
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Figure A4: Full Plot for Varying Lambda for TFTT. Results for WTS-Aux-Loss for privacy are
omitted since it was the only task involving free data generation, making the auxiliary loss function
inapplicable.

Impact of Additional Metrics. We include multiple trustworthiness definitions to further support
the weak-to-strong trustworthiness trends we observed. In Figure A12, we examine an additional
fairness metric: equalized odds (true positive rate). The consistent weak-to-strong fairness trend
is maintained across both demographic parity and equalized odds. In Figure A13, we examine an
additional privacy metric: membership inference attack. We continue to see no weak-to-strong
privacy across both extraction and membership inference attacks.
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Figure A5: Varying Max Alpha for TFT. Results on privacy are omitted since it was the only task
involving free data generation, making the auxiliary loss function inapplicable.
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Figure A6: Varying Max Alpha for TFTT. Results for WTS-Aux-Loss for privacy are omitted
since it was the only task involving free data generation, making the auxiliary loss function inappli-
cable.

D DATASET AND EVALUATION DETAILS

D.1 DATASET DETAILS

• Adult: The Adult dataset is derived from the 1994 U.S. Census database and contains 48,842
instances with 14 attributes. The task is to classify whether an individual’s income exceeds $50K
(USD) per year. We selected the “sex” feature as the sensitive attribute to evaluate fairness-related
properties. Extraction was done by Barry Becker from the 1994 Census database. Adult dataset
has a CC-BY-4.0 license, which we abide by.

• ACS PUMS Employment: The Census Bureau’s American Community Survey (ACS) Public
Use Microdata Sample (PUMS) includes information about U.S. residents’ age, sex, race, edu-
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(a) 14M - 410M (b) 70M - 410M (c) 14M - 1B (d) 70M - 1B

Figure A7: Varying model size for fairness. Weak-to-strong trustworthiness trends hold for fair-
ness cross multiple model size configurations.
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(b) 70M - 410M
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(c) 14M - 1B
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(d) 70M - 1B

Figure A8: Varying model size for OOD Robustness. Weak-to-strong trustworthiness trends hold
for OOD robustness cross multiple model size configurations.

cation, employment, and other demographics. The task is to classify whether an individual is
employed. ACS PUMS dataset has a CC-BY-4.0 license, which we abide by.

• OOD Style Transfer: The OOD Style Transfer dataset is based on the SST-2 sentiment classi-
fication dataset but incorporates a variety of text and style transformations. The transformations
(e.g., shifts in language style, vocabulary, syntax, and tone) are applied at both the word and
sentence level while preserving the original meaning (Wang et al., 2023). The task is to correctly
classify the sentiment of inputs. OOD Style Transfer dataset has a CC-BY-SA-4.0 license, which
we abide by.

• AdvGLUE++: AdvGLUE++ is a collection of six datasets contain clean and adversarial input
samples for six NLP tasks: Sentiment analysis (SST-2), duplicate question detection (QQP),
multi-genre natural language inference (MNLI, MNLI-mm), recognizing textual entailment
(RTE), and question answering (QNLI) (Wang et al., 2023). It contains around 2K to 15K sam-
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(a) 14M - 410M (b) 70M - 410M (c) 14M - 1B (d) 70M - 1B

Figure A9: Varying model size for adversarial robustness. Weak-to-strong trustworthiness trends
hold for adversarial robustness cross multiple model size configurations.

(a) 14M - 410M (b) 70M - 410M

Figure A10: Varying model size for privacy. No weak-to-strong trustworthiness trends hold for
privacy cross multiple model size configurations. Due to memory limitations of training models
with DP-SGD we did not train the 1B or 6.9B models.

ples for each of the six tasks. We randomly sample up to 10K samples for each task and aggregate
the performance by averaging over these six tasks. AdvGLUE++ datasets have a CC-BY-SA-4.0
license, which we abide by.

• Enron Emails: The Enron Emails dataset contains over 600K emails generated by employees of
the Enron Corporation (Klimt & Yang, 2004). it includes sensitive personal information, such as
email addresses, phone numbers, credit card numbers, and Social Security Numbers, which could
be memorized and extracted by language models. For fine-tuning, we randomly subsampled 10K
data points. Enron Emails dataset has a Apache License 2.0, which we abide by.

• AG News: The AG News dataset consists of 120,000 training samples and 7,600 test samples of
news articles categorized into 4 classes: World, Sports, Business, and Science/Technology. Each
sample contains a title and description extracted from AG’s news corpus, with balanced distri-
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(c) OOD Robustness

Figure A11: Model Size Analysis on Pythia 6.9B. Results for model size sensitivity with Pythia
14M as the weak model and Pythia 6.9B as the strong model for fairness, adversarial robustness,
and OOD robustness properties. We see that the WTS trends we identified earlier are maintained for
the larger strong model.

(a) Demographic Parity (b) Equalized Odds

Figure A12: Sensitivity to Fairness Metrics. Side-by-side results for two fairness metrics: Demo-
graphic Parity and Equalized Odds (True Positive Rate). The weak-to-strong trustworthiness trends
are maintained across both metrics.

bution across classes. AG News data was made by Antonio Gulli (http://groups.di.
unipi.it/˜gulli/AG_corpus_of_news_articles.html) and permitted for non-
commercial use, which we abide by.

D.2 DATA USAGE DURING TRAINING AND EVALUATION

Figure A15 describes which data is used for training the weak and the weak-to-strong models as
well as for evaluating of the weak-to-strong model.
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(a) Extraction Attack (b) Membership Inference Attack

Figure A13: Sensitivity to Privacy Metrics. Side-by-side results for two privacy metrics: Ex-
traction Attack and Membership Inference Attack. While TFTT does not achieve weak-to-strong
trustworthiness, it still leads to simultaneous improvement of privacy and performance for weak-to-
strong models.

Figure A14: Additional Fairness Dataset: ACS PUMS Employment

Data used to train the WTS model. The weak model fw is trained on the labeled dataset DW =
{(xi, yi)}. Once trained, we use the weak model fw to label the weak-to-strong learning dataset
DWTS = {(xi, yi)} resulting in DWTS′ = {(xi, fw(xi))}. We use DWTS′ to train the weak-to-strong
model fθ. Notably, there is no overlap between DWTS and DW.

Trustworthiness Evaluation. We evaluate the trustworthiness properties adversarial robustness,
OOD robustness as well as Demographic Parity and Equalized Odds for all models (weak model,
weak-to-strong model, and strong ceiling) on the same held out test set for the respective problem.
For privacy, we evaluate the trustworthiness properties of the weak and the weak-to-strong model
on their training set DW while the privacy leakage for the WTS model is evaluated on DWTS. For
privacy considerations, we evaluated the trustworthiness properties of models on their training set
DW, while the privacy leakage for the WTS model is assessed on DWTS.
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Table 2: Additional Privacy Dataset: AG News

Strategy Model Extraction Rate

No TFT Weak 0.059
No TFT WTS-Naive 0.081
TFT Weak 0.050
TFT WTS-Naive 0.102
TFTT Weak 0.051
TFTT WTS-Naive 0.092

DW fw DWTS′ fθ

λW λWTS

Weak Model
trained on DW

Query Weak Model

on DWTS

WTS Model
trained on DWTS′

Regularizer ≥ 0 Regularizer ≥ 0

(a) Model training overview. The weak model fw is trained on DW = {(xi, yi)}. Subsequently, we use
the weak model fw to label the weak-to-strong learning dataset DWTS = {(xi, yi)} resulting in DWTS′ =
{(xi, fw(xi))}. We use DWTS′ to train the weak-to-strong model fθ .

DT fθ
WTS Model

evaluated on DT

(b) Trustworthiness property evaluation. Typically,
the trustworthiness properties for the WTS model are
evaluated on a separate test set DT.

DWTS fθ
WTS Model

evaluated on DWTS

(c) Privacy Leakage Evaluation. The privacy leak-
age for the WTS model is evaluated using the ground
truth train set DWTS.

Figure A15: Data usage during training and evaluation. In Figure A15a, we describe which data
is used to train the weak and the weak-to-strong models, while Figures A15b and A15c describe
which data is used for evaluation.

D.3 ADDITIONAL ADVERSARIAL ROBUSTNESS DATASET DETAILS

We create training, holdout and test subsets of the AdvGLUE++ dataset using 40%, 40% and 20%
of samples, respectively, from each task in the dataset. We use the training subset to fine-tune our
models to be adversarially robust. We use the holdout subset to generate labels from the weak
model to be used in the weak-to-strong learning process. To evaluate the clean and adversarial
accuracy of our models, we evaluate them on a test subset of the AdvGLUE++ dataset and average
the performance across the six NLP tasks in this dataset.

In particular, to evaluate weak-to-strong trends in adversarial robustness, we use the AdvGLUE++
dataset (Wang et al., 2023), an extension of the AdvGLUE dataset (Wang et al., 2021). Ad-
vGLUE++ is a comprehensive benchmark designed to test adversarial robustness across multiple
natural language processing (NLP) tasks and adversarial attack algorithms. This dataset includes
adversarial examples for six widely used NLP tasks, each representing a distinct domain or linguis-
tic challenge. The Stanford Sentiment Treebank (SST-2) task involves sentiment analysis, requiring
the classification of sentences as having a positive or negative sentiment. The Quora Question Pairs
(QQP) task identifies whether two questions convey the same meaning. The Multi-Genre Natural
Language Inference (MNLI) task requires reasoning about entailment, contradiction, or neutrality
between pairs of sentences. It includes a mismatched variant, MNLI-mm, where validation and
test data originate from out-of-domain sources, increasing the challenge of generalization. The
Question-answering NLI (QNLI) task is framed as an entailment problem between a question and
an answer candidate. The Recognizing Textual Entailment (RTE) is a binary entailment task that
aims to determine whether the meaning of one text can be inferred from another.
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Adversarial examples in AdvGLUE++ are generated using a variety of attack algorithms, each
representing a distinct perturbation strategy. TextBugger introduces typo-based perturbations that
minimally alter characters while preserving the utility of benign text. TextFooler generates embed-
ding similarity-based perturbations by substituting words with contextually plausible alternatives.
BERT-ATTACK leverages BERT’s language modeling capabilities to create context-aware adver-
sarial samples. SememePSO relies on semantic representations and combinatorial optimization to
generate knowledge-guided perturbations. SemAttack employs semantic optimization-based tech-
niques by manipulating various semantic spaces to produce natural-looking adversarial texts.

The experimental results for adversarial robustness are presented as aggregated accuracy values
across all six tasks and five attack algorithms. This approach enables us to evaluate the weak-
to-strong trends in a comprehensive and robust manner. The results show that our findings are
consistent across a wide range of NLP tasks and adversarial attacks, indicating that they are not
influenced by the specific characteristics of any single setting.

D.4 ADDITIONAL OOD DATASET DETAILS

We use the same OOD data created by Wang et al. (2023). For ID data, we use the original SST-2
dataset but exclude the samples that are source samples for creating the OOD data. We split the
ID data into training, validation, and heldout subsets. Specifically, 50% of the ID data is allocated
for training and validation, where 95% of that portion is used for training and the remaining 5% is
for validation. The other half represents the held-out data that is used for generating labels from
the weak model for weak-to-strong fine-tuning. For evaluation, we use the in-distribution validation
samples to measure ID performance and the OOD test samples to obtain OOD performance.
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E OVERVIEW TABLE

Table 3: Overview table. Trustworthiness properties, their corresponding metrics, datasets used,
and tasks performed on each dataset.

Property Metrics Datasets Tasks

Fairness
• Demographic Parity
• Equalized Odds

• Adult
• ACS PUMS

• Income classification with “sex”
as the sensitive attribute

OOD
Robustness • Robust Accuracy (RA) on

OOD test data
• OOD Style Transfer: a

collection of 10 datasets
with different text and
style transformations
(based on the SST-2
dataset)

• Sentiment classification on 10
different text and style transfor-
mations

Adversarial
Robustness • Robust Accuracy (RA) on

adversarial test data
• AdvGLUE++: a collec-

tion of six datasets
1. SST-2
2. QQP
3. MNLI
4. MNLI-mm
5. RTE
6. QNLI

• Sentiment analysis
• Duplicate question detection
• Multi-genre natural language in-

ference
• Recognizing textual entailment
• Question answering

Privacy
• Extraction attack
• Membership inference at-

tack

• Enron Emails
• AG-News

• Sensitive data leakage detection

F EXPERIMENTAL DETAILS

Models: We use the Pythia models from EleutherAI (Biderman et al., 2023). They have a Apache
License 2.0, which we abide by.

Statistical Significance: We report 1 standard deviations for our experiments over multiple trials
(10 for fairness, 15 for OOD robustness, 15 for adversarial robustness, 3 for privacy).

Compute: Each experiment was run on 1 NVIDIA A100 80GB GPU on an internal cluster.

Table 4: Hyperparameters

Hyperparameter Fairness OOD Robustness Adversarial Robustness Privacy
Epochs 5 1 6 1
Learning rate 5e-5 1e-5 1e-5 5e-5
Optimizer AdamW AdamW AdamW Adam
Lambda 4.25 0.002 0.3 1e6
Alpha 0.3 0.2 0.1 N/A
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