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ABSTRACT

Large language models (LLMs) consistently benefit from further fine-tuning on
various tasks. However, we observe that directly tuning the INSTRUCT (i.e., instruc-
tion tuned) models often leads to marginal improvements and even performance
degeneration. Notably, paired BASE models, the foundation for these INSTRUCT
variants, contain highly similar weight values (i.e., less than 2% on average for
Llama 3.1 8B). The BASE model tends to be a good learner yet a weak backbone
without post-training. Therefore, we propose a novel Shadow-FT framework to
tune the INSTRUCT models by leveraging corresponding BASE models. The key
insight is to fine-tune the BASE model, and then directly graft the learned weight
updates to the INSTRUCT model. Our proposed Shadow-FT introduces no addi-
tional parameters, is easy to implement, and significantly improves performance.
We conduct extensive experiments on tuning mainstream LLMs, such as Qwen
3 and Llama 3 series, and evaluate them across 19 benchmarks covering coding,
reasoning, and mathematical tasks. Experimental results demonstrate that Shadow-
FT consistently outperforms conventional full-parameter and parameter-efficient
tuning approaches. Further analyses indicate that Shadow-FT can be applied to
multimodal large language models (MLLMs) and combined with direct preference
optimization (DPO).

1 INTRODUCTION

Large Language Models (LLMs), such as Qwen (Bai et al., [2023), Llama (Al@Meta, |2024)), and
Gemma (Team et al.| 2025a), have demonstrated remarkable performance across diverse disci-
plines (Zhang et al., 2023} [Wang et al., |2024a). Such a strong capability is always attributed to
the pre-training on massive data with billions of parameters (Bi et al.l |2024; [Tao et al., [2024).
When applied in real-world scenarios, there are several challenges. The users want the LLMs to
follow their instructions helpfully and honestly (Li et al.| [2024), which is not covered during the
pre-training (Zhang et al., 2023} Liu et al., |2024)). Meanwhile, the downstream tasks always involve
specific domain knowledge requiring adaptation (Wang et al., 2023} Luo et al.| 2024)).

To tackle these issues, one predominant approach is further tuning LLMs on desired tasks, including
full parameter fine-tuning and parameter-efficient fine-tuning (Liu et al.| 2021} |Hu et al., [2022]).
Typically, for each model size, two paired variants are provided: the pretrained base model (denoted as
BASE) and its instruction-tuned version (denoted as INSTRUCT). The BASE model exhibits relatively
poor instruction-following ability (i.e., a weak backbone), while the INSTRUCT model performs better.
However, we observe that tuning the INSTRUCT models brings marginal improvements and even a
performance degeneration. Therefore, how to tune the INSTRUCT model effectively gains increasing
importance.

In this paper, we first analyze the weights of paired BASE and INSTRUCT models considering the
relative absolute difference o. Fortunately, we find that the weights of BASE and INSTRUCT are
highly similar. As shown in Figure[I] the gap o is quite low, with an average o of 0.016 for the
Llama-3.1-8B model. Intuitively, the contained instruction-following ability of INSTRUCT model
disturbs the learning of new knowledge, while BASE can avoid it. We further provide a deep analysis
to prove this conclusion. Motivated by these, we thus propose a novel Shadow-FT framework to
employ the BASE model as ’shadow’ of INSTRUCT. The key is to tune the BASE for better weight
updates and directly graft these updates to INSTRUCT, as they share the same structures.
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Figure 1: Performance of vanilla SFT (part a), similarity on weights(part b), and the Shadow-FT
framework (part c). The progress bars in brown and denote the different abilities, the fuller, the
better. Based on the SFT dynamics and weight similarity (gap o less than 0.03), we propose to tune
the paired BASE model and then graft the weight updates onto INSTRUCT model.

To evaluate the performance, we conduct extensive experiments tuning mainstream LLMs such as
Qwen 3 (Bai et al.,2023) and Llama 3 (AI@Metal 2024)). For the tuning data, we employ the BAAI-
Infinity-Instruct Datase and extract 2000 samples named as BAAI-2k following (Zhou et al.||2023;
Muennighoff et al.| [2025). Without the loss of generality, we apply Shadow-FT on full parameter
and low-rank settings, and then report the performance on 19 datasets. Experimental results indicate
that Shadow-FT consistently outperforms the baselines under various settings, demonstrating its
effectiveness and robustness. Further analyses show that Shadow-FT can be applied to MLLMs and
combined with DPO for alignment. Our contributions can be concluded as follows:

* We find that paired BASE and INSTRUCT are highly similar considering weight values, and
thus propose a novel Shadow-FT framework. The key is to tune the BASE for better weight
updates and directly graft these updates to INSTRUCT.

* We conduct extensive experiments tuning various mainstream LLMs and report the perfor-
mance on 19 benchmarks across math, code, and reasoning. Experimental results demon-
strate the effectiveness and robustness of Shadow-FT.

* This work highlights the potential of leveraging BASE models to enhance their INSTRUCT
counterparts, and we hope it inspires further research and broader applications in the future.

2  PRELIMINARIES AND MOTIVATION

2.1 BACKGROUND

Basic tuning methods. Supervised Fine-tuning (SFT) is a fundamental approach to updating the
knowledge of LLMs. Vanilla SFT methods update all the parameters by gradient descent following
W+ < W + AW, where W € R%*% j5 an arbitrary weight and W is the updated variant. To
reduce the update costs, LORA (Hu et al., [2022) introduces a low-rank branch to learn the weight
updates following W+ « W + AB, where A € R4*" B € R™*% and r < min{dy, d2}. The
original weight W is frozen during training, and only the low-rank branch is updated.

BASE and INSTRUCT. Current LLMs typically follow a two-stage training pipeline, including
pre-training and post-training. During pre-training, LLMs are trained on massive training data on
next token prediction tasks (Brown et al.,[2020)), and the weights would be released as BASE version.
The INSTRUCT variant, post-trained upon the BASE model, is further aligned with human preference
and tuned for reasoning tasks (Ouyang et al.,|2022). Therefore, INSTRUCT model performs better
than BASE model regarding instruction-following ability.

"https://huggingface.co/datasets/BA Al/Infinity-Instruct
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Figure 2: Weight distributions for Llama-3.1-8B. We visualize the same linear layer (layer.0.k_proj)
for BASE model (left), INSTRUCT model (middle), and their gap (right). Though zoomed in 10x in
the z-axis, the gap is negligible and the average o value is 0.016.

2.2 DIRECTLY TUNING INSTRUCT

However, tuning the INSTRUCT models often leads to marginal improvements and even performance
degeneration. Table[I]shows the tuned performance of the INSTRUCT models using the BAAI-2k.
We report the average scores of popular benchmarks. Compared to the vanilla INSTRUCT, the tuned
version shows marginal improvement, and even degeneration in more cases. Specifically, as shown in
Table[T] tuning Qwen-3-4B on the BAAI-2k dataset via conventional LoORA would lead to a drop of
2.6 in Math-7 (from 73.8 to 71.2), 6.8 in Code-3 (from 66.4 to 59.6), and 2.6 in Knowledge-9 (from
63.7 to 61.1). Therefore, how to effectively tune INSTRUCT remains a challenge.

2.3  SIMILAR WEIGHTS: BASE & INSTRUCT

Fortunately, we observe that the weights of BASE and INSTRUCT are highly similar. To calculate the
similarity, we first define the relative gap ratio o as follows:

g 2 Ws = Wi )
X Wa|+ Wi’

where Y is the element-wise sum and | - | means the absolute operations. The o would be 1 if one
is much larger than the other, and be 0 if the two matrices are exactly the same. The smaller the o,
the more similar the two matrices are. Figure[2]shows the weights of the same layer from BASE and
INSTRUCT, and also their differences with ¢ = 0.016. We can find that the gaps are quite small and
negligible after zooming in 10x in the z-axis. Please refer to Appendix|[C|for more o regarding various
LLMs. In summary, these paired BASE and INSTRUCT models are highly similar with o < 0.03.

3 METHODOLOGY

3.1 SHADOW-FT

To tackle the issue that directly tuning INSTRUCT fails, we propose a novel framework, Shadow-FT,
to tune the INSTRUCT on BASE. Motivated by the observation that BASE and INSTRUCT models are
highly similar, we argue that the weight updates of BASE can be directly added to INSTRUCT. Since
they share the same structures, no extra operations are required. Specifically, in Shadow-FT, we first
tune the BASE model:

Wi < Tune(Wp), )

where T'une is the fine-tuning method, such as full-parameter fine-tuning and LoRA. After that, we
would like to get the weights updates as the learned knowledge, and directly graft these updates to
the INSTRUCT model as:

WiH =W+ (W4 —Wpg) =W + (Tune(Wg) — Wpg). 3)
Traditional tuning on INSTRUCT can be formulated as:

Wit =W+ (W} —Wr) = Wi + (Tune(Wy) — Wr). )
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We can find that Shadow-FT introduces no extra training costs. The only difference is the basic
weights to learn the weight updates for INSTRUCT model. Vanilla FT methods rely on the INSTRUCT
model while Shadow-FT on the BASE model. Since the BASE version is pre-trained only, we believe
that the weight updates would be more suitable for modeling the knowledge with less priority,
compared to updates of the INSTRUCT version.

3.2 RELATION WITH TASK VECTORS

Task Vectors aim to represent the ability on tasks as vectors, and are widely used for arithmetic
operations on these tasks regarding the same base model (Ilharco et al., 2022). Chat Vector (Huang
et al.,|2023)) extends such an idea to LLMs, which models weight differences between INSTRUCT
and BASE models as vectors and then adds the vectors to continually pretrained BASE models.
Specifically, Chat Vector continually pre-trains Llama2 (Touvron et al., |2023) on the Traditional
Chinese corpus, and then adds on the chat vectors. Compared to Chat Vector (Huang et al., [2023]),
the differences are as follows: 1) task: Chat Vector focuses on continual pertaining while Shadow-FT
can be applied to board tuning methods, including full-parameter fine-tuning, LoRA, and DPO.
2) motivation: Chat Vector aims to extend the language ability. Shadow-FT aims to tackle the
degeneration issue based on the weight similarity.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Training. For the tuning data, we build BAAI-2k by extracting 2000 samples from BA Al-Infinity-
Instruct Dataset || following (Zhou et al., [2023; Muennighoff et al.l 2025). We select the samples
with high rewards to ensure the data quality and uniform sampling among all categories for data
diversity. Without loss of generality, we tune various LLMs, including Qwen 3 series (Team), 2025)
and Llama 3 series (Al@Metal 2024). Also, we report the results on Gemma-3 series (Team et al.,
2025a)), Yi series (Young et al.l [2024), and Falcon series (Almazrouei et al., [2023) in Section@
We employ LLaMA-Factory (Zheng et al., 2024)) for the code base and apply two tuning strategies:
full-parameter and LoRA. All experiments are conducted on 8 A100 GPUs. Please refer to Appendix
[D.T]for detailed hyperparameters.

Evaluation. To evaluate the tuned LLMs on downstream benchmarks, we employ the OpenCompass
framework (Contributors, 2023b) and Imdeploy as the acceleration framework (Contributors}, |2023a).
During inference, we set the cutoff length as 4096 and the batch size as 512. Considering the
benchmarks, we select three representative abilities, i.e., mathematical, coding, and commonsense
reasoning ability, and report the average scores marked as Math-7, Code-3, and Knowledge-9.
Specifically, Math-7 denotes the results of AIME24|MAA|(2024), GSMS8K (0-shot and 8-shot)|Cobbe
et al.|(2021), MATH [Hendrycks et al.|(2021b), MATH-500, Minerva_Math |Lewkowycz et al.| (2022),
SVAMP Patel et al.|(2021). Code-3 for HumanEval|Chen et al.|(2021a), HumanEval+|Liu et al.|(2023)),
LiveCodeBench [Jain et al.|(2024). Knowledge-9 for ARC-challenge (Clark et al.|(2018), BBH (0-shot
and few-shot), DROP Dua et al.| (2019), GPQA Diamond Rein et al.|(2024), MMLU Hendrycks et al.
(2021a), MMLU Pro |Wang et al.| (2024b), Winogrande |ai2|(2019), TheoremQA |Chen et al.| (2023]).
To avoid the impact of different prompts, we mainly evaluate under a zero-shot setting. Please refer
to Appendix [A]for more details. For Qwen-3 series, we adapt enable_thinking as false for universal
evaluations, and we report pass @k results of both thinking and non-thinking in Appendix

4.2 MAIN RESULTS

Table [T] shows the results of tuning various mainstream LLMs on BAAI-2k using full-parameter
fine-tuning and LoRA. We set the rank as 128 in LoRA. Some findings can be summarized as follows:

* Conventional tuning methods lead to marginal improvements and even performance
degeneration. Considering the average score, we can find that conventional tuning methods
bring marginal improvements, such as 74.8 vs. 74.5 on Qwen-2.5-32B and 47.4 vs. 47.5

“https://huggingface.co/datasets/BA Al/Infinity-Instruct/tree/main/Gen
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Table 1: Performance comparison of different methods tuning popular LLMs. Math-7 denotes the average score
of 7 mathematical benchmarks including AIME24, Code-3 for 3 code benchmarks including LiveCodeBench,
and Knowledge-9 for 9 commonsense reasoning benchmarks including MMLU Pro. For Math-7 and Code-3,
we report the mean value of three runs. We employ the Instruct version and report the final average scores.
Please refer to Appendix for detailed scores.

Model Method Math-7 Code-3 Knowledge-9 Avg
Full LoRA Full LoRA Full LoRA

Instruct 73.8 66.4 63.7 68.0

Qwen-3-4B FT 729 712 664 596 629 611 657

Shadow-FT 737 759 674 697 649 650 69.4

Instruct 74.5 72.7 64.7 70.6

Qwen-3-8B FT 740 713 712 696 646 643 692

Shadow-FT 759 748 731 719 656 678 715

Instruct 75.8 76.8 71.2 74.6

Qwen-3-14B FT 752 733 762 744 706 704 134

Shadow-FT 789 786 770 778 714 715 759

Instruct 74.1 75.9 73.4 745

Qwen-2.5-32B FT 75.7 743 758 759 7136 738 748

Shadow-FT 749 757 761 762 735 738 750

Instruct 238 26.5 342 28.2

Llama-3.2-1B FT 245 253 261 266 328 333 28.1

Shadow-FT 252 272 282 279 327 323 290

Instruct 53.6 39.3 493 47.4

Llama-3.2-3B FT 527 519 402 414 494 491 475

Shadow-FT 549 562 403 428 495 489  48.8

Instruct 56.8 50.9 56.6 548

Llama-3.1-8B FT 568 578 534 518 585 575 560

Shadow-FT 587 594 518 509 57.6 587 562

on Llama-3.2-3B. Moreover, they would lead to performance degeneration, such as 68.0
vs. 65.7 on Qwen-3-4B and 70.6 vs. 69.2 on Qwen-3-8B. The observations are consistent
across full-parameter tuning and LoRA.

* While conventional tuning fails, Shadow-FT performs well in adaptation at the same
cost. Across all model sizes and tasks, Shadow-FT consistently outperforms tuning baselines
and vanilla INSTRUCT model. For example, on Qwen-3-4B, Shadow-FT archives an average
score of 69.4, which is 3.7 higher than the 65.7 of conventional tuning methods and 1.4
higher than the vanilla INSTRUCT model. The conclusion is consistent on larger models such
as Qwen-3-14B. Moreover, Shadow-FT does not introduce any extra training overheads.
These consistent gains demonstrate that our proposed Shadow-FT can effectively learn the
knowledge contained in training data.

* Shadow-FT works well under both full-parameter setting and LoRA. For instance, when
tuning Qwen-3-4B under full-parameter setting, Shadow-FT achieves 73.7/67.4/64.9 on
Math-7/Code-3/Knowledge-9 compared to 72.9/66.4/62.9 of conventional tuning methods.
When applying a low-rank setting, Shadow-FT achieves 75.9/69.7/65.0, which is 4.7/10.1/3.9
higher than conventional LoRA. These indicate that Shadow-FT is effective with different
tuning strategies, showing its robustness.
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* LoRA can outperform full-parameter. When tuning using our BAAI-2k dataset, we find
that Shadow-FT (LoRA) can outperform Shadow-FT (full), such as 69.7 vs. 67.4 on Code-3
when tuning Qwen-3-4B. Interestingly, we find that Shadow-FT (LoRA) typically performs
better than Shadow-FT (full) on Math-7. However, considering the conventional tuning
methods, FT (full) would perform better (Biderman et al.| [2024)), such as 75.9 vs. 74.8 on
Qwen-3-8B. We leave it to future work for further investigation.

Moreover, we further conduct case study on Llama-3.1-8B-Instruct. Please refer to Appendix [E| for
more details.

5 EXTENSIVE ANALYSIS

5.1 RANKS IN LORA

We fine-tune the Llama-3.2-1B using LoRA with different ranks (from 4 to 512), and report the
average scores after searching learning rates in {5e-5, le-4, 2e-4, Se-4}. As shown in Figure [3|
our proposed Shadow-FT (LoRA) can always outperform conventional LoRA with different ranks,
demonstrating the robustness. With a larger rank, the conventional LoRA would perform worse,
indicating more severe degeneration when tuning the INSTRUCT model (Yang et al.| [2024a)). In
contrast to that, Shadow-FT (LoRA) can consistently benefit from more parameters (with larger
ranks) and achieves better performance. For the results on Llama-3.1-8B, please refer to Appendix

5.2 TUNING ON DOMAIN DATA

Tuning methods are typically employed to adapt LL.Ms for a specific domain, such as medical.
Therefore, we perform tuning experiments on specific domain data, including Medical-o1-reasoning-
SFT (Chen et al.,[2024) in the medical domain, Code-Z1 (Yu et al., [2025)) in the code domain, and
LIMO Ye et al.[(2025) & OpenR1-Math (Face,2025) in the math domain. Following LIMO |Ye et al.
(2025), we uniformly down sample the Medical-ol-reasoning-SFT to 1,000, and Code-Z1/OpenR1-
Math to 2,000. On these domain tasks, we employ the LoRA with rank 128 and optimize with a
learning rate of 2e-4.

Figure [ reports the results of tuning Llama-3.2-1B on Medical-o1-reasoning-SFT. We report the
results on MMLU Pro-Medical (Wang et al., [2024b), MedMCQA (Pal et al.,[2022), PubMedQA (Jin
et al.| 2019), MMLU-Biology (Yue et al.| 2024), and GPQA-Medical following (Chen et al., 2024)),
while normalizing the maximum score to 1 for better visualization. We can find that conventional
LoRA would lead to performance degeneration, while Shadow-FT (LoRA) improves the performance,
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Table 2: The detailed mathematical and code performance tuning Qwen-3-8B and Llama-3.1-8B on Code-Z1,
LIMO, and OpenR1-Math. Ins. denotes the vanilla INSTRUCT baseline, LoRA for conventional LoRA, and
Shadow for proposed Shadow-FT (LoRA). Green|/Red? indicates a performance drop/gain relative to the vanilla
INSTRUCT baseline.

Qwen-3-8B Llama-3.1-8B
Benchmark
Code-Z1 LIMO OpenR1-Math Code-Z1 LIMO OpenR1-Math
Ins. LoRA Shadow LoRA Shadow LoRA Shadow  Ins. LoRA Shadow LoRA Shadow LoRA Shadow
AIME24 20.0 13.3 36.7 233 26.7 16.7 26.7 6.7 33 20.0 6.7 33 33 6.7

GSMS8K(8shot) 87.4 84.1 88.3 85.2 88.7 83.1 86.8 84.2 84.1 85.8 80.5 83.8 823 84.8
GSMB8K(0shot) 93.0 919 93.6 91.7 92.4 92.7 92.9 84.2 85.4 85.7 82.5 86.1 86.1 85.9
MATH 70.9 69.4 69.1 70.0 67.6 70.6 66.5 480 488 51.3 44.3 45.8 39.8 47.7
MATH-500 83.2 79.8 88.0 71.0 80.4 80.2 850 484 508 554 444 43.8 41.8 48.8
Minerva_Math  73.0  69.7 72.9 69.9 73.1 70.8 73.2 40.6 39.6 455 37.1 412 440 442
SVAMP 91.4 90.3 93.3 90.9 92.9 90.3 93.0 83.1 86.5 86.9 83.7 85.9 85.1 87.1

Math-7 7450 712] 7741 7260 7511 72.1) 7571 5680 5711 6151 542 557 546] 58071

HumanEval 84.2 82.3 87.8 84.2 86.0 78.1 83.5 71.3 64.6 70.1 68.9 70.7 72.6 72.0
HumanEval+ 79.9 76.8 78.1 79.3 81.1 75.6 81.1 63.4 482 64.6 62.2 64.0 61.6 62.8

LiveCodeBench 51.5 43.2 54.7 48.7 53.1 47.6 54.6 19.8 11.8 20.5 18.6 20.7 15.6 19.9
Code-3 7276 6740 7351 707) 7341 67.1, 7311 5090 415] 5171 499 5187 499| 51671
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Figure 5: Optimization dynamics on loss and gradient when tuning Qwen3-8B via INSTRUCT (i.e.,
FT) and BASE (i.e., Shadow-FT).

which is consistent with the conclusion on BAAI-2k. Besides, we further report the results directly
tuning the BASE. Please refer to Appendix [D.3|for detailed scores.

Table [2] shows the detailed results of Math-7 and Code-3 tuning Qwen-3-8B and Llama-3.1-8B
on Code-Z1, LIMO, and OpenR1-Math. The observations are consistent, i.e., conventional LoRA
would lead to degeneration, while the proposed shadow-FT (LoRA) can effectively adapt LLMs
on specific domain knowledge. For instance, Shadow-FT (LoRA) achieves a Math-7 score of 77.4
on Qwen-3-8B, which is 6.2 higher than 71.2 of LoRA, and 2.9 higher than the vanilla INSTRUCT
model. Moreover, we also find that tuning LLM via Shadow-FT on code data can improve the math
capability (Yu et al.| 2025)), and vice versa. In particular, when tuned via shadow-FT on Code-z1,
the Qwen-3-8B can achieve a score of 36.7 on the tough AIME-24 benchmark, showing superior
adaptation and generalization ability.

5.3 MECHANISTIC ANALYSIS OF OPTIMIZATION DYNAMICS

To provide insight into why Shadow-FT outperforms vanilla FT, we further analyze the optimization
dynamics of both methods from a loss and gradient perspective. We denote the loss and gradient for
the INSTRUCT model (tuned with vanilla FT) as Loss(I) and Grad(I), and for the BASE model
(tuned with Shadow-FT) as Loss(S) and Grad(S).
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Table 3: Performance of tuning Llama-3.1- Table 4: Performance of Gemma-3 and Llama-3.2-Vision on
8B using DPO and Shadow-DPO with ranks  the multi-modal ChartQA task. We set the rank of LoRA to
be 8 and 128, respectively. 128.

Method Rank 19-Avg. Model Size Vanilla LoRA Shadow-FT
Vanilla - 4T Gommas  12B 3736 5348 5492
DPO 8 54.80 27B 4192  60.28 63.80
Shadow-DPO 8 54.96

Shadow-DPO 128  55.39 -Vision 90B  30.92  79.92 80.60

Figure [|illustrates these metrics while tuning Qwen3-8B with LoRA (r=128). The two approaches
show markedly different training dynamics. At initialization, Loss(I) is 22.6% higher than Loss(S),
and Grad(I) is 3.25x larger, reflecting a poor task fit and strong resistance from the instruction-
following prior (Ji et al.,[2024). During training, Grad(I) decays precipitously (11/61 step), while
Grad(S) decreases more moderately (58%), indicating that INSTRUCT quickly enters a rigid opti-
mization regime with suppressed updates while Shadow-FT sustains enjoying a smoothed learning.
By convergence (step 61/61), both gradients stabilize at similar magnitudes, but Loss(I) remains 2.4%
higher, evidencing inferior adaptation.

Overall, the figure reveals a fundamental contrast in optimization. Vanilla FT on the INSTRUCT
model is hindered by a large initial gradient that rapidly diminishes, while the BASE model can avoid
this and shows a stable trajectory. However, BASE model is a good learner but a poor backbone due to
the lack of post-training. The conclusion is consistent with Pass@k results detailed in Appendix
Therefore, we propose Shadow-FT to learn on BASE and execute on INSTRUCT.

5.4 COMBINED WITH DPO

Direct Preference Optimization (DPO), which directly optimizes a language model to adhere to
human preferences without explicit reward modeling or reinforcement learning, shows promising
performance when applying RL to LLMs (Rafailov et al.l 2023)). Therefore, we try to combine
Shadow-FT with DPO, i.e., applying DPO on BASE and then grafting the weight to INSTRUCT,
termed as Shadow-DPO. Specifically, we achieve Shadow-DPO using LoRA on 1,000 paired samples
from the Math-Step (Lai et al.,|2024) dataset and set the rank to 8 and 128. As shown in Table@
shadow-DPO outperforms DPO under two settings, such as 55.39 vs. 54.62 of vanilla DPO. It shows
that the strategy employing the BASE as proxy of INSTRUCT also works for DPO. Meanwhile, a larger
rank leads to better results for shadow-DPO, which is consistent with results tuning on BAAI-2k
shown in Figure

5.5 PERFORMANCE ON MLLM

For generality, we further conduct experiments tuning Multimodal Large Language Models (MLLMs).
For the dataset, we select 10,000 samples from ChartMoE (Xu et al., |2024), which takes a chart
and a natural language question as input to predict the answer. For MLLM, we select Gemma-3
(Team et al.| 2025a) 12B/27B and Llama-3.2-Vision (Grattafiori et al., [2024)) 11B/90B. During
training, we employ LoRA and set the rank to 128. The learning rate is 2e-4. We evaluate the
tuned model via Imms-eval framework (Zhang et al.,[2024). As shown in Table El, both conventional
LoRA and Shadow-FT (LoRA) effectively adapt MLLMs on ChartQA (Masry et al.| [2022) tasks.
Meanwhile, our proposed Shadow-FT outperforms LoRA, especially on larger models, such as 63.80
on Gemma-3-27B compared to 60.28 of vanilla LoRA and 80.6 on Llama-3.2-Vision-90B compared
to 79.92.

5.6 WEIGHT DELTA SCALING

In Shadow-FT, we directly graft the learned weights from BASE to INSTRUCT. We further explore
the scaling of learned weights. Please refer to Appendix for more details. In summary, our
proposed Shadow-FT outperforms vanilla INSTRUCT with different scaling factors, showing strong
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robustness. Moreover, a factor slightly larger than 1 would yield better results, while we leave it for
future work to explore the best factor.

5.7 MODEL Z00: MORE LLMs

We further apply Shadow-FT to more LLMs, including Gemma-3 series (Team et al.} [2025a)), Yi
series (Young et al.||2024), and Falcon series (Almazrouei et al.|[2023). Please refer to Appendix
for more details. We can find that proposed Shadow-FT consistently outperforms conventional tuning
methods. All the tuned models will be made public in the future.

6 RELATED WORK

6.1 TUNING FOR LLMs

Large language models (LLMs) gain superior ability from pre-training on tremendous data (Gururan
gan et al., 2020), followed by tuning on various downstream tasks (Ouyang et al., 2022 Muennighoff]
et al.l2025). These methods can be categorized into: 1) full-parameters method, which updates all
the parameters, and 2) parameter-efficient fine-tuning (PEFT) method, lowering the tuning costs via
parameter selection (Zaken et al., 2021)) or low-rank branches (Hu et al.| [2022; Wu et al., [2024b)).
More recently, Reinforcement Learning from Human Feedback (RLHF) methods show promising
performance in aligning models to human preferences and improving the reasoning ability Rafailov
et al.|(2023); Bai1 et al. (2023));/Guo et al.|(2025); [Team et al.| (2025b). These methods focus on im-
proving the training strategy and involve the target model only. In this paper, we propose Shadow-FT
to tune INSTRUCT model on BASE model. Also, our proposed Shadow-FT can be combined with
these baselines to enhance the performance.

6.2 MODEL GUIDANCE IN TUNING

Introducing extra knowledge from other models has been proven as a promising way to enhance
tuning performance, such as knowledge distillation (Hinton et al., [2015; /Wu et al., 2024a)) and
proxy-tuning (Liu et al.,|2024)). Knowledge distillation methods aim to transfer the knowledge from a
larger teacher model to a compact student model, via aligning the outputs (Wu et al., [2024a; Yang
et al.| 2024b) or employing the teacher’s outputs as training data (Qin et al., 2024; [Min et al., 2024).
Proxy-tuning first tunes a smaller LLM and then applies the logit differences to a larger model (Liu
et al.} 2024). These methods transfer knowledge at the feature level or data level, while our proposed
Shadow-FT directly grafts the weight updates. RE-Adapt (Fleshman & Durmel [2024)) also utilizes the
Base/Instruct model pair for adaptation. However, RE-Adapt models the static weight difference with
a low-rank approximation, whereas Shadow-FT is a model-free approach that directly transfers the
full dynamic updates without any assumption. Additionally, we notice a very recent concurrent work
(Lin et al.l 2025) to transfer the fine-tuning ability. Differently, our proposed Shadow-FT focuses
on tuning INSTRUCT via BASE model based on the observation that the weights are highly similar.
Moreover, we conduct experiments on more LLMs across more benchmarks, and further extend the
idea to MLLMs and DPO.

7 CONCLUSION

In this work, we propose Shadow-FT, a novel framework to fine-tune INSTRUCT models by lever-
aging their corresponding BASE models. Inspired by the observation that the weights of BASE and
INSTRUCT are highly similar, we propose Shadow-FT to tune INSTRUCT vis BASE, aiming to tune IN-
STRUCT better. Extensive experiments across multiple LLM series, including Qwen, Llama, Gemma,
and Falcon, demonstrate that Shadow-FT consistently outperforms conventional full-parameter and
parameter-efficient fine-tuning methods. Notably, Shadow-FT introduces no additional training cost
or parameters, yet it achieves superior performance across diverse benchmarks covering math, coding,
and reasoning tasks. We further show that Shadow-FT generalizes well to multimodal large language
models (MLLMs) and can be seamlessly combined with alignment techniques such as DPO, offering
a simple yet effective solution for improving instruction-following models.
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We are committed to the reproducibility of our work. The MATH-7 results, averaged across three
trials, are shown in Table[T]and Table[§] The full source code required to reproduce our experiments
is included in the supplementary material. Corresponding hyperparameters and detailed configuration
files for all experiments are documented in Section All experiments were conducted on publicly
available benchmarks, and the details are provided in Appendix [A]
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available models and benchmarks, involves no human subjects, and we commit to releasing our code
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LLM USAGE DISCLOSURE

The human authors are primarily responsible for this work. We utilized several large language models
(e.g., GPT-4, Gemini Pro, Claude 3) as general-purpose assistive tools to improve the quality of
our research and writing. Their use was limited to the following specific tasks: assisting with code
implementation and debugging, generating boilerplate code, refining the language and formatting of
the manuscript, and proofreading. The authors conceived all research ideas, designed the experiments,
and performed the final analysis of the results. We take full responsibility for all content in this paper
and confirm that it complies with relevant licenses and ethical guidelines.

A BENCHMARKS DETAILS

Table 5: Details on instruction-model evaluations. CoT denotes the chain-of-thought setting.

Evaluation Metric Type n-shot CoT
Math-7
AIME24 pass@1  sampling 0-shot
GSMS8K(0-shot)  Accuracy sampling O-shot v
GSMB8K(8-shot)  Accuracy sampling 8-shot v
MATH Accuracy sampling  O-shot v
MATH-500 Accuracy sampling  0O-shot
Minerva Math Accuracy sampling 4-shot
SVAMP Accuracy sampling  0-shot
Code-3
HumanEval pass@l  sampling 0O-shot
HumanEval+ pass@1  sampling 0O-shot
LiveCodeBench average
- generation pass@l  sampling 0O-shot v
- test pass@1  sampling 0O-shot v
- prediction pass@l  sampling 0O-shot v

Knowledge-9

ARC-Challenge  Accuracy sampling 0-shot v

BBH(0-shot) Accuracy sampling  0O-shot
BBH(3-shot) Accuracy sampling  3-shot
Drop Accuracy sampling  O-shot
GPQA Diamond Accuracy sampling 0-shot v
MMLU Accuracy sampling  0-shot
MMLU Pro Accuracy sampling  O-shot
Winogrande Accuracy sampling  0O-shot
TheoremQA Accuracy sampling  0-shot

The details about the benchmarks are detailed in TableE} Since the n-shot setting are unstable, we
prefer to report the 0-shot results. For the popular GSM8K and BBH, we also report 8-shot and 3-shot
results.

B MODEL Z00: MORE LLMs

We further apply Shadow-FT to more LLMs, including Gemma-3 series (Team et al.| [2025a), Yi
series (Young et al.,[2024), and Falcon series (Almazrouei et al.| [2023)). The hyperparameters are the
same as tuning Qwen 3 and Llama 3. Table[6]shows the results of Math-7, Code-3, and Knowledge-9.
We can find that proposed Shadow-FT consistently outperforms conventional tuning methods. For
instance, Shadow-FT gets an average of 52.55 when tuning Gemma-3-4B, which is 1.1 higher than
the vanilla INSTRUCT model and 7.91 higher than conventional tuning methods.
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Table 6: Performance comparison of different methods tuning more LLMs. We employ the Instruct version and
report the final average scores.

Math-7 Code-3 Knowledge-9

Model Method Avg.
Full LoRA Full LoRA Full LoRA
Falcon Family
Vanilla 5333 38.00 47.28 46.23
Falcon3-3B FT 55.83 5870 3957 4123 4843 4950 4888
Shadow-FT 5674 6031 41.02 43.69 48.16 4825 49.70
Vanilla 57.23 60.03 53.85 57.04
Falcon3-10B FT 5033 68.74 6095 6154 5417 5572 60.08
Shadow-FT 5827 7040 6135 6220 53.19 5283 5971
Gemma Family
Vanilla 54.02 4833 52.01 51.45
Gemma-3-48 FT 3534 49.12 48.15 43.03 43.83 4837 44.64
Shadow-FT 56.68 5630 48.87 4893 5288 51.62 52.55
Vanilla 60.82 58.06 61.54 60.14
Gemma-3-12B FT 5656 62.84 58.17 5921 61.63 61.99 60.07
Shadow-FT 61.05 6459 58.17 60.86 6159 62.66 61.49
Yi Family
Vanilla 17.34 8.40 38.63 21.46
Yi-6B FT 1893 1839 1064 1189 4084 4046 23.53
Shadow-FT 17.73 1721 1335 1430 3870 3825 23.26
Vanilla 28.01 61.85 40.73 43.53
Yi-Coder-9B FT 2605 26.11 5270 5395 39.55 37.22 39.26
Shadow-FT 2841 29.09 6207 6472 4027 39.88 44.07
C SIMILARITY ON MORE LLMS
0.10
0.08 1
'§DOA06‘
gn 0.042
2 0.04
< 0.033
0.027 0.027
0.02 0.018
0.012 0.009
0.004 0.003
0.00

Qwen3-0.6B  Qwen-3-4B  Qwen-3-8B  Qwen-3-14B Qwen-2.5-32B Llama-3.1-8B Yi-Coder-1.5B  Yi-6B  Yi-Coder-9B

Models

Figure 6: Average o values of more LLMs.
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As shown in Figure [f] we can find that all ¢ < 0.05, indicating high similarity between BASE and
INSTRUCT. Also, the larger the LLMs, the smaller the gaps.

D EXPERIMENTAL DETAILS

D.1 HYPER-PARAMETERS
For the experiments, we set the hyperparameters after grid search. The batch size is 2, with the

gradient_accumulation_steps as 16. During experiments, the cutoff the inputs to 4096 and train for 1
epoch.

D.2 DETAILED DATA OF TABLE 1

The detailed scores are listed in Table [0} Table [0} and Table [T]

D.3 DETAILED TABLE FOR MEDICAL BENCHMARKS

Table[7]reports the detailed results of tuning Llama-3.2-1B on the Medical-o1-reasoning-SFT dataset.
Shadow-FTR donates the method integrating fine-tuned weights from INSTRUCT to BASE.

Table 7: Performance of LLAMA-3.2-1B-INSTRUCT on medical QA benchmarks.

Tune on Instruct Tune on Base
Benchmark
Instruct FT  Shadow-FT Base Base-FT Shadow-FTR

GPQA-Medical 23.85 24.10 24.50 25.25 25.00 24.75
MMLU Pro-Medical 25.20 23.95 27.60 13.10 12.60 12.30
MedMCQA 30.15 28.55 32.40 30.20 30.60 29.50
MedQA 25.95 25.60 29.35 29.80 30.35 29.45
PubMedQA 55.85 54.55 60.65 49.35 51.90 50.20
Avg. 32.20  31.35 34.90 29.54 30.09 29.24

D.4 PERFORMANCE ON PASS@K

To evaluate the exploration capability, we use the popular Pass @k, which is defined as the fraction
of problems for which at least one correct response is produced in & independent trials. However,
directly computing Pass @k using only k rollouts for each problem often suffers from high variance.
Therefore, we adapt the unbiased estimator (Chen et al., |2021b)). Specifically, we roll out for n
times (n > k), and calculate Pass @k as follows:
n—c
Pass@Qk := E, .p l1 — ( (5) )1 , 3)
k

where z is the input prompt from dataset D, and c is the count of correct solutions.

We employ the QWEN3-8B model, which supports seamless switching between Thinking mode and
Non-thinking mode. We can easily switch between two modes using one control hyperparameter. We
set other hyperparameters following the official report of Qwen3 (Team), [2025): do_sample=True,
temperature=0.6, top_k=20, top_p=0.95, max_new_tokens=38912 for bettr alignment.

Non-thinking mode. Under non-thinking decoding, absolute PASS @K values are small for all
methods, yet SHADOW-FT exhibits a clearer upward trend with larger &, progressively surpassing
the INSTRUCT baseline. In contrast, vanilla FT yields weak performance and rarely produces correct
solutions. Importantly, all methods used the same number of training examples and the same training
cutoff length; the only difference is the initialization (BASE vs. INSTRUCT). This comparison suggests
that BASE is a better learner for supervised adaptation—its newly acquired knowledge is less prone
to collapse.
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AIME24 (w/o thinking)

AIME24 (w/ thinking)

—— Instruct 90
30 Shadow-FT g
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Figure 7: Pass@k performance on Qwen3-8B thinking and non-thinking modes.
Thinking mode. Under thinking mode, the effect is more pronounced: SHADOW-FT and INSTRUCT

follow similarly steep, rapidly saturating curves that nearly reach the model’s capacity limit, whereas
vanilla FT maintains a large (>30%) gap across k. This pattern implies that vanilla FT hurts
the thinking ability of INSTRUCT and makes it less receptive to new knowledge compared with

BASE-initialized training.

Across both modes, our proposed Shadow-FT avoids collapse and retains—often enhances the upper-
bound competence of the underlying INSTRUCT model. This property is valuable for subsequent RL
or other generalization-critical settings (Zhu et al., [2025). We attribute the robustness to the favorable
inductive characteristics of BASE-initialized learning, whereas vanilla FT on an INSTRUCT model

struggles to achieve the same balance of stability and adaptability.

D.5 RANKS IN LORA ON LLAMA-3.1-8B

As shown in Figure[8] the conclusions regarding Llama-3.1-8B are consistent with Section[5.1]

74.2
== Shadow-FT
73.2 FT 72.66 72.63
72.06 72.01
72.2 71.83 N
71.34/\ 71.43
o 71.01
o 71.2 - \//
(@)
(p]
Vanilla 70.21
70.2 70.68 70 54 ..... 70.66 ..... 7053 .......................................................
70.19  70.10
69.2
69.03 391
68.2 1
4 8 16 32 64 128 256 512
Rank

Figure 8: Performance tuning Llama-3.1-8B with different ranks.

D.6 WEIGHT DELTA SCALING

To further explore the effect of scaling the transferred deltas in the Shadow-FT strategy, we introduce
an interpolation design controlled by a scaling factor «.. Specifically, let AWp = Wg — Wpg denote
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the weight updates learned on the BASE model. Instead of directly applying the full deltas to the
INSTRUCT model, we interpolate as follows:

Wi =Wr+a - AWg =Wr+a- (Wi — Wg). (6)

Here, & = 1.0 recovers the standard Shadow-FT formulation, while &« = 0.0 reduces to the
original INSTRUCT model without transfer. Intermediate values of o provide a smooth interpolation
between the two, allowing us to examine how the magnitude of transferred deltas affects downstream
performance. The summarized results of Llama-3.1-8B-Instruct on the MATH-7 benchmark are
presented in Table [8] showing that & = 1.0 yields the excellent overall trade-off, while other
ratios offer insights into the sensitivity of tasks to partial transfer. Adaptive scaling strategies (e.g.,
layer-wise or task-specific factors) are left for future work.

Table 8: Detailed results on the math benchmarks (averaged over three repeated runs for each ratio). The ratio
of 0.0 denotes vanilla Instruct, while 1.0 for the proposed Shadow-FT.

Ratio | Math-7 | AME24 (PN0E (ORSE var VT MR svamp
00 | 562 11 848 850 485 507 405 827
0.1 | 565 11 852 843 498  SLI 413 830
02 | 571 22 850 850 504 505 423 843
03 | 579 | 22 850 844 513 535 438 850
04 | 588 | 67 856 836 529 542 442 847
05 | 590 | 67 86.0 837 528 537 456 847
06 | 591 44 86.1 835 528 547 472 847
07 | 596 | 56 85.1 840 536 558 476 853
08 | 594 | 56 849 845 531 536 488 853
09 | 598 | 33 850 847 530 560 494 870
10 | 595 | 33 847 851 530 549 494 858
12 | 591 0.0 848 860 526 566 491 843
15 | 599 | 33 846 849 524 559 505 873
20 | 579 | 00 832 842 502 520 481 877

19



Under review as a conference paper at ICLR 2026

Table 9: Detailed results on the math benchmarks for Table Three times independent training and three times
evaluation average are reported.

GSM8K  GSMBK MATH  Minerva
Model Method AIME24 (8-shot) (0-shot) MATH 500 Math SVAMP  Math-7
Vanilla 1.1 46.9 1.8 15.8 15.1 20.3 65.3 23.8
Llama-3.2-1B FT (full) 1.1 46.8 0.8 18.6 19.1 19.0 66.5 24.5
Shadow-FT (full) 0.0 472 1.0 18.9 18.3 23.1 67.9 252
FT (LoRA) 1.1 452 2.6 21.8 20.3 18.7 67.5 253
Shadow-FT (LoRA) 0.0 47.8 4.6 22.1 24.5 25.1 66.4 272
Vanilla 44 76.6 79.5 45.8 479 36.1 84.7 53.6
Llama-3.2-3B FT (full) 8.9 71.0 71.0 452 44.2 32.4 84.1 52.7
Shadow-FT (full) 8.9 71.8 80.4 472 479 37.6 84.8 54.9
FT (LoRA) 4.4 76.5 735 46.4 47.7 31.7 83.1 51.9
Shadow-FT (LoRA) 11.1 78.1 71.6 49.8 52.0 39.3 85.4 56.2
Vanilla 6.7 83.6 85.0 49.1 49.2 40.8 83.2 56.8
Llama-3.1-8B FT (full) 1.1 84.0 85.4 51.0 51.5 39.0 85.8 56.8
Shadow-FT (full) 6.7 85.0 84.0 52.2 53.2 43.8 86.3 58.7
FT (LoRA) 6.7 83.8 83.8 50.2 52.5 413 86.5 57.8
Shadow-FT (LoRA) 6.7 85.0 84.5 52.0 53.0 483 86.0 59.4
Vanilla 18.9 87.8 922 70.3 823 73.4 91.5 73.8
Qwen-3-4B FT (full) 14.4 88.1 91.6 70.1 82.4 72.1 91.2 72.9
Shadow-FT (full) 16.7 87.4 92.3 70.0 84.3 733 91.7 73.7
FT (LoRA) 18.9 84.2 91.6 68.1 71.3 67.4 90.7 712
Shadow-FT (LoRA) 28.9 88.3 92.5 70.4 84.5 73.8 92.8 759
Vanilla 222 87.3 93.4 70.8 83.1 732 91.6 74.5
Qwen-3-8B FT (full) 222 86.2 93.1 70.6 80.7 72.7 92.1 74.0
Shadow-FT (full) 322 87.5 93.3 70.6 82.9 732 91.4 75.9
FT (LoRA) 17.8 83.6 92.1 68.9 71.3 68.4 90.7 713
Shadow-FT (LoRA) 222 88.5 92.9 70.5 84.1 73.6 91.8 74.8
Vanilla 20.0 90.0 95.3 72.1 85.2 75.7 92.6 75.8
Qwen-3-14B FT (full) 17.8 88.9 94.9 72.2 85.5 75.5 91.3 75.1
Shadow-FT (full) 40.0 90.7 95.2 71.7 86.3 76.0 92.7 78.9
FT (LoRA) 14.4 87.3 94.5 71.7 81.3 72.8 91.0 733
Shadow-FT (LoRA) 36.7 90.7 95.9 71.3 86.7 76.1 93.2 78.7
Vanilla 16.7 84.3 95.5 78.0 83.1 71.7 89.3 74.1
Qwen-2.5-32B FT (full) 21.1 86.6 95.4 74.8 82.9 76.8 92.1 75.7
Shadow-FT (full) 133 85.0 95.5 76.8 84.1 78.0 91.3 74.9
FT (LoRA) 14.4 85.7 95.3 73.6 83.8 75.0 92.1 74.3
Shadow-FT (LoRA) 18.9 86.3 95.6 76.0 84.3 71.3 91.3 75.7
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Table 10: Detailed data on the code benchmarks for Table Three times independent training and three times
evaluation averages are reported.

Model Method HumanEval HumanEval™ LiveCodeBench Code-3
Exec Gen Out Avg

Vanilla 40.9 35.0 40 70 02 37 265

FT (full) 38.2 342 93 69 12 58 261

Llama 3.2-1B ;- dow-FT (full) 429 36.8 59 73 1.1 48 282
FT (LoRA) 39.2 34.4 110 65 08 61 266

Shadow-FT (LoRA)  41.9 354 105 69 22 65 279

Vanilla 60.0 522 00 168 07 58 393

Llama 3035 FT 0D 579 53.7 45 163 62 90 402
ama 2. Shadow-FT (full) 60.6 54.1 00 168 2.1 63 403
FT (LoRA) 59.1 50.8 97 171 155 141 414

Shadow-FT (LoRA)  61.2 55.3 144 160 58 121 429

Vanilla 69.7 62.8 173 198 232 20.1 509

Llama 3. 1.gp T 04D 70.7 67.3 169 223 275 222 534
ama 2.2 Shadow-FT (full) 70.1 63.6 16.6 20.8 27.8 21.7 518
FT (LoRA) 70.7 63.4 163 21.0 268 214 518

Shadow-FT (LoRA)  71.1 50.4 149 213 273 212 509

Vanilla 77.9 71.3 418 488 597 50.1 664

sup  FT 0D 80.9 70.9 431 461 53.0 474 664
Qwen-3- Shadow-FT (full) 80.3 71.1 425 497 60.1 508 67.4
FT (LoRA) 76.4 69.1 13.1 41.1 456 333 596

Shadow-FT (LoRA) 813 76.8 432 491 60.6 51.0 69.7

Vanilla 85.8 79.9 423 513 634 523 727

sgp  FT 0D 82.7 79.3 429 518 597 515 712
Qwen-3- Shadow-FT (full) 86.8 79.3 419 523 652 53.1  73.1
FT (LoRA) 84.2 78.5 420 457 509 462  69.6

Shadow-FT (LoRA)  84.6 77.6 419 524 66.1 535 719

Vanilla 86.8 83.1 519 558 742 60.6 76.8

spup  FT 0D 87.6 83.5 509 543 673 575 762
Qwen-3- Shadow-FT (full) 87.4 82.9 521 556 744 60.7 77.0
FT (LoRA) 85.6 82.3 512 513 625 550 744

Shadow-FT (LoRA)  87.8 84.4 507 568 764 613 778

Vanilla 86.4 82.1 583 546 646 59.1  75.9

B 85.6 81.1 603 558 664 60.8 75.8
Qwen-2.5- Shadow-FT (full) 86.6 81.5 60.5 557 640 60.1 76.1
FT (LoRA) 85.4 81.7 609 550 648 607 759

Shadow-FT (LoRA)  87.4 80.5 61.8 550 649 60.6 762
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Table 11: Detailed results on the general Reasoning benchmarks for Table

MMLU . ARC BBH BBH GPQA
Method MMLU WinoG DROP Th A Knowledge-9
etho Pro 1no Challenge (0-shot) (3-shot) Diamond coremQ nowlecge
Llama-3.2-1B
Vanilla 46.8 214 51.9 42.7 56.6 244 26.1 27.8 9.9 34.2
FT (full) 46.9 21.8 50.4 39.0 56.6 20.4 24.8 24.8 10.8 32.8
Shadow-FT (full) 47.1 22.7 51.1 41.6 52.9 222 20.8 26.3 9.6 32.7
FT (LoRA) 46.7 22.1 51.2 40.8 56.6 20.9 26.3 23.2 11.8 333
Shadow-FT (LoRA) 46.6 232 51.4 439 52.2 17.2 20.4 25.3 10.6 32.3

Llama-3.2-3B

Vanilla 62.4 39.7 53.9 71.8 78.6 41.8 49.2 29.3 17.4 49.3
FT (full) 62.0 39.2 54.5 71.7 79.0 41.8 51.8 25.8 18.5 49.4
Shadow-FT (full) 62.4 404 54.3 72.1 79.0 41.7 50.0 28.3 17.6 49.5
FT (LoRA) 61.9 39.9 51.1 71.7 82.7 414 494 253 18.4 49.1
Shadow-FT (LoRA) 62.1 41.6 54.6 72.0 79.0 38.6 49.6 26.8 16.1 48.9
Llama-3.1-8B
Vanilla 69.5 48.5 59.4 81.4 85.4 44.6 67.6 25.8 273 56.6
FT (full) 69.7 49.2 60.9 80.0 87.1 46.8 71.1 30.8 30.6 58.5
Shadow-FT (full) 69.6 493 60.2 81.7 85.8 46.8 67.0 28.3 29.5 57.6
FT (LoRA) 69.3 48.9 60.0 79.5 86.4 48.8 68.0 30.3 26.8 57.5
Shadow-FT (LoRA) 69.4 50.8 60.2 80.1 85.4 51.6 68.8 32.8 29.1 58.7
Qwen-3-4B
Vanilla 70.7 57.1 57.7 713 91.5 57.7 78.7 37.4 44.6 63.6
FT (full) 70.7 54.2 56.8 75.9 91.2 57.3 772 38.9 444 63.0
Shadow-FT (full) 714 57.0 574 71.7 922 58.4 78.4 45.0 46.5 64.9
FT (LoRA) 71.9 51.2 59.0 69.1 91.5 54.7 73.5 39.4 39.9 61.1
Shadow-FT (LoRA) 71.8 58.2 58.8 79.1 91.9 59.6 77.0 46.0 424 65.0
Qwen-3-8B
Vanilla 76.5 55.8 55.7 85.2 91.9 59.8 80.0 46.5 31.0 64.7
FT (full) 76.3 53.0 54.8 84.8 91.2 60.1 80.1 444 36.5 64.6
Shadow-FT (full) 76.6 56.0 54.8 85.8 922 59.2 79.8 53.5 32.1 65.6
FT (LoRA) 76.1 572 55.9 80.6 92.5 59.0 75.5 414 40.9 64.3
Shadow-FT (LoRA) 78.6 61.5 55.0 85.8 92.5 59.3 79.6 56.6 41.1 67.8
Qwen-3-14B
Vanilla 79.4 64.2 68.5 86.3 94.6 61.4 84.2 47.0 54.6 71.1
FT (full) 79.7 61.3 67.8 85.5 94.9 61.2 84.1 475 53.0 70.6
Shadow-FT (full) 79.6 64.9 68.7 86.9 94.6 60.3 839 46.5 57.6 71.4
FT (LoRA) 79.6 60.7 68.5 84.0 95.3 63.3 83.0 47.0 51.9 70.4
Shadow-FT (LoRA) 79.8 66.1 69.1 88.1 93.6 58.2 83.6 48.0 56.8 71.5
Qwen-2.5-32B
Vanilla 83.4 68.8 82.2 88.1 95.3 63.6 84.6 39.9 54.3 73.4
FT (full) 83.4 68.3 81.9 88.7 94.6 63.0 83.8 424 56.5 73.6
Shadow-FT (full) 83.2 69.1 82.6 88.4 95.6 64.3 829 39.4 55.8 73.5
FT (LoRA) 83.6 68.9 82.2 88.8 94.9 62.8 83.7 444 54.8 73.8
Shadow-FT (LoRA) 83.0 68.8 82.7 88.6 94.6 64.3 83.4 439 54.8 73.8
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Table 12: Case study example from MATH-500. Shadow-FT can avoid errors with the knowledge learned from
the base model, while the vanilla tune method fails. We extract the key step for better visualization.

Input Question:
How many positive two-digit integers are
factors of both 100 and 1507

Ground Truth $\boxed {3}$ (The common two-digit factors
are 10, 25, and 50).

Vanilla FT e
1. *xFind the GCD of 100 and 150:*x

2. *xxIdentify the two-digit factors of
50: %

stop counting at 25.
Thus, the positive two-digit integers that
are factors of both 100 and 150 are 10 and
25.
$\boxed {2}$

Shadow-FT (Ours) ..
###### Step 1: Find the Greatest Common
Divisor (GCD) of 100 and 150

###### Step 2: Find All Factors of the GCD
(50)

#4##4#4 Step 3: Identify the Two-Digit
Factors

(Note: 50 is a two-digit number too, but
we’ll check it as well.)

So the two-digit factors of 50 are:

$$10, 25, 508$s

#4##4##+# Step 4: Count the Two-Digit Factors

###### Final Answer:
$S$\boxed {3}$s

E CASE STUDY ON LLAMA-3.1-8B

Table [T2] presents a representative case from Math-500 benchmark generated by Llama-3.1-8B-
Instruct tuned via vanilla FT and Shadow-FT, respectively. While the vanilla fine-tuned model
partially solves the problem, it stops prematurely and misses one of the valid two-digit factors,
resulting in an incorrect prediction of $\boxed {2}$. In contrast, Shadow-FT correctly finds the GCD,
enumerates all factors, and recognizes that 50 is also a two-digit factor, producing the correct answer
$\boxed {3}$. This example highlights the capability of Shadow-FT to leverage knowledge from the
BASE model and reason more comprehensively.

F LIMITATIONS

In Shadow-FT, we first tune the BASE model and then graft the weight updates to the INSTRUCT
model. However, there are some LLMs for which the paired BASE models are not available, such as
Qwen3-32B and Qwen3-Next. For these LLMs, we can not apply Shadow-FT. Therefore, finding a
proper ’shadow’ for these models is an interesting topic for future work.

23



	Introduction
	Preliminaries and Motivation
	Background
	Directly Tuning Instruct
	Similar Weights: Base & Instruct

	Methodology
	Shadow-FT
	Relation with Task Vectors

	Experiments
	Experimental Setup
	Main Results

	Extensive Analysis
	Ranks in LoRA
	Tuning on Domain Data
	Mechanistic Analysis of Optimization Dynamics
	Combined with DPO
	Performance on MLLM
	Weight Delta Scaling
	Model Zoo: More LLMs

	Related Work
	Tuning For LLMs
	Model Guidance in Tuning

	Conclusion
	Benchmarks Details
	Model Zoo: More LLMs
	Similarity on More LLMs
	Experimental Details
	Hyper-parameters
	Detailed Data of Table 1
	Detailed table for Medical Benchmarks
	Performance on Pass@k
	Ranks in LoRA on Llama-3.1-8B
	Weight Delta Scaling

	Case Study on Llama-3.1-8B
	Limitations

