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ABSTRACT

Large language models (LLMs) consistently benefit from further fine-tuning on
various tasks. However, we observe that directly tuning the INSTRUCT (i.e., instruc-
tion tuned) models often leads to marginal improvements and even performance
degeneration. Notably, paired BASE models, the foundation for these INSTRUCT
variants, contain highly similar weight values (i.e., less than 2% on average for
Llama 3.1 8B). The BASE model tends to be a good learner yet a weak backbone
without post-training. Therefore, we propose a novel Shadow-FT framework to
tune the INSTRUCT models by leveraging corresponding BASE models. The key
insight is to fine-tune the BASE model, and then directly graft the learned weight
updates to the INSTRUCT model. Our proposed Shadow-FT introduces no addi-
tional parameters, is easy to implement, and significantly improves performance.
We conduct extensive experiments on tuning mainstream LLMs, such as Qwen
3 and Llama 3 series, and evaluate them across 19 benchmarks covering coding,
reasoning, and mathematical tasks. Experimental results demonstrate that Shadow-
FT consistently outperforms conventional full-parameter and parameter-efficient
tuning approaches. Further analyses indicate that Shadow-FT can be applied to
multimodal large language models (MLLMs) and combined with direct preference
optimization (DPO).

1 INTRODUCTION

Large Language Models (LLMs), such as Qwen (Bai et al., 2023), Llama (AI@Meta, 2024), and
Gemma (Team et al., 2025a), have demonstrated remarkable performance across diverse disci-
plines (Zhang et al., 2023; Wang et al., 2024a). Such a strong capability is always attributed to
the pre-training on massive data with billions of parameters (Bi et al., 2024; Tao et al., 2024).
When applied in real-world scenarios, there are several challenges. The users want the LLMs to
follow their instructions helpfully and honestly (Li et al., 2024), which is not covered during the
pre-training (Zhang et al., 2023; Liu et al., 2024). Meanwhile, the downstream tasks always involve
specific domain knowledge requiring adaptation (Wang et al., 2023; Luo et al., 2024).

To tackle these issues, one predominant approach is further tuning LLMs on desired tasks, including
full parameter fine-tuning and parameter-efficient fine-tuning (Liu et al., 2021; Hu et al., 2022).
Typically, for each model size, two paired variants are provided: the pretrained base model (denoted as
BASE) and its instruction-tuned version (denoted as INSTRUCT). The BASE model exhibits relatively
poor instruction-following ability (i.e., a weak backbone), while the INSTRUCT model performs better.
However, we observe that tuning the INSTRUCT models brings marginal improvements and even a
performance degeneration. Therefore, how to tune the INSTRUCT model effectively gains increasing
importance.

In this paper, we first analyze the weights of paired BASE and INSTRUCT models considering the
relative absolute difference σ. Fortunately, we find that the weights of BASE and INSTRUCT are
highly similar. As shown in Figure 1, the gap σ is quite low, with an average σ of 0.016 for the
Llama-3.1-8B model. Intuitively, the contained instruction-following ability of INSTRUCT model
disturbs the learning of new knowledge, while BASE can avoid it. We further provide a deep analysis
to prove this conclusion. Motivated by these, we thus propose a novel Shadow-FT framework to
employ the BASE model as ’shadow’ of INSTRUCT. The key is to tune the BASE for better weight
updates and directly graft these updates to INSTRUCT, as they share the same structures.
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Figure 1: Performance of vanilla SFT (part a), similarity on weights(part b), and the Shadow-FT
framework (part c). The progress bars in brown and pink denote the different abilities, the fuller, the
better. Based on the SFT dynamics and weight similarity (gap σ less than 0.03), we propose to tune
the paired BASE model and then graft the weight updates onto INSTRUCT model.

To evaluate the performance, we conduct extensive experiments tuning mainstream LLMs such as
Qwen 3 (Bai et al., 2023) and Llama 3 (AI@Meta, 2024). For the tuning data, we employ the BAAI-
Infinity-Instruct Dataset1 and extract 2000 samples named as BAAI-2k following (Zhou et al., 2023;
Muennighoff et al., 2025). Without the loss of generality, we apply Shadow-FT on full parameter
and low-rank settings, and then report the performance on 19 datasets. Experimental results indicate
that Shadow-FT consistently outperforms the baselines under various settings, demonstrating its
effectiveness and robustness. Further analyses show that Shadow-FT can be applied to MLLMs and
combined with DPO for alignment. Our contributions can be concluded as follows:

• We find that paired BASE and INSTRUCT are highly similar considering weight values, and
thus propose a novel Shadow-FT framework. The key is to tune the BASE for better weight
updates and directly graft these updates to INSTRUCT.

• We conduct extensive experiments tuning various mainstream LLMs and report the perfor-
mance on 19 benchmarks across math, code, and reasoning. Experimental results demon-
strate the effectiveness and robustness of Shadow-FT.

• This work highlights the potential of leveraging BASE models to enhance their INSTRUCT
counterparts, and we hope it inspires further research and broader applications in the future.

2 PRELIMINARIES AND MOTIVATION

2.1 BACKGROUND

Basic tuning methods. Supervised Fine-tuning (SFT) is a fundamental approach to updating the
knowledge of LLMs. Vanilla SFT methods update all the parameters by gradient descent following
W+ ← W +∆W , where W ∈ Rd1×d2 is an arbitrary weight and W+ is the updated variant. To
reduce the update costs, LoRA (Hu et al., 2022) introduces a low-rank branch to learn the weight
updates following W+ ← W + AB, where A ∈ Rd1×r, B ∈ Rr×d2 and r ≪ min{d1, d2}. The
original weight W is frozen during training, and only the low-rank branch is updated.

BASE and INSTRUCT. Current LLMs typically follow a two-stage training pipeline, including
pre-training and post-training. During pre-training, LLMs are trained on massive training data on
next token prediction tasks (Brown et al., 2020), and the weights would be released as BASE version.
The INSTRUCT variant, post-trained upon the BASE model, is further aligned with human preference
and tuned for reasoning tasks (Ouyang et al., 2022). Therefore, INSTRUCT model performs better
than BASE model regarding instruction-following ability.

1https://huggingface.co/datasets/BAAI/Infinity-Instruct
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Figure 2: Weight distributions for Llama-3.1-8B. We visualize the same linear layer (layer.0.k_proj)
for BASE model (left), INSTRUCT model (middle), and their gap (right). Though zoomed in 10x in
the z-axis, the gap is negligible and the average σ value is 0.016.

2.2 DIRECTLY TUNING INSTRUCT

However, tuning the INSTRUCT models often leads to marginal improvements and even performance
degeneration. Table 1 shows the tuned performance of the INSTRUCT models using the BAAI-2k.
We report the average scores of popular benchmarks. Compared to the vanilla INSTRUCT, the tuned
version shows marginal improvement, and even degeneration in more cases. Specifically, as shown in
Table 1, tuning Qwen-3-4B on the BAAI-2k dataset via conventional LoRA would lead to a drop of
2.6 in Math-7 (from 73.8 to 71.2), 6.8 in Code-3 (from 66.4 to 59.6), and 2.6 in Knowledge-9 (from
63.7 to 61.1). Therefore, how to effectively tune INSTRUCT remains a challenge.

2.3 SIMILAR WEIGHTS: BASE & INSTRUCT

Fortunately, we observe that the weights of BASE and INSTRUCT are highly similar. To calculate the
similarity, we first define the relative gap ratio σ as follows:

σ =

∑
|WB −WI |∑
|WB |+

∑
|WI |

, (1)

where
∑

is the element-wise sum and | · | means the absolute operations. The σ would be 1 if one
is much larger than the other, and be 0 if the two matrices are exactly the same. The smaller the σ,
the more similar the two matrices are. Figure 2 shows the weights of the same layer from BASE and
INSTRUCT, and also their differences with σ = 0.016. We can find that the gaps are quite small and
negligible after zooming in 10x in the z-axis. Please refer to Appendix C for more σ regarding various
LLMs. In summary, these paired BASE and INSTRUCT models are highly similar with σ < 0.03.

3 METHODOLOGY

3.1 SHADOW-FT

To tackle the issue that directly tuning INSTRUCT fails, we propose a novel framework, Shadow-FT,
to tune the INSTRUCT on BASE. Motivated by the observation that BASE and INSTRUCT models are
highly similar, we argue that the weight updates of BASE can be directly added to INSTRUCT. Since
they share the same structures, no extra operations are required. Specifically, in Shadow-FT, we first
tune the BASE model:

W+
B ← Tune(WB), (2)

where Tune is the fine-tuning method, such as full-parameter fine-tuning and LoRA. After that, we
would like to get the weights updates as the learned knowledge, and directly graft these updates to
the INSTRUCT model as:

W+
I = WI + (W+

B −WB) = WI + (Tune(WB)−WB). (3)

Traditional tuning on INSTRUCT can be formulated as:

W+
I = WI + (W+

I −WI) = WI + (Tune(WI)−WI). (4)

3
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We can find that Shadow-FT introduces no extra training costs. The only difference is the basic
weights to learn the weight updates for INSTRUCT model. Vanilla FT methods rely on the INSTRUCT
model while Shadow-FT on the BASE model. Since the BASE version is pre-trained only, we believe
that the weight updates would be more suitable for modeling the knowledge with less priority,
compared to updates of the INSTRUCT version.

3.2 RELATION WITH TASK VECTORS

Task Vectors aim to represent the ability on tasks as vectors, and are widely used for arithmetic
operations on these tasks regarding the same base model (Ilharco et al., 2022). Chat Vector (Huang
et al., 2023) extends such an idea to LLMs, which models weight differences between INSTRUCT
and BASE models as vectors and then adds the vectors to continually pretrained BASE models.
Specifically, Chat Vector continually pre-trains Llama2 (Touvron et al., 2023) on the Traditional
Chinese corpus, and then adds on the chat vectors. Compared to Chat Vector (Huang et al., 2023),
the differences are as follows: 1) task: Chat Vector focuses on continual pertaining while Shadow-FT
can be applied to board tuning methods, including full-parameter fine-tuning, LoRA, and DPO.
2) motivation: Chat Vector aims to extend the language ability. Shadow-FT aims to tackle the
degeneration issue based on the weight similarity.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Training. For the tuning data, we build BAAI-2k by extracting 2000 samples from BAAI-Infinity-
Instruct Dataset 2 following (Zhou et al., 2023; Muennighoff et al., 2025). We select the samples
with high rewards to ensure the data quality and uniform sampling among all categories for data
diversity. Without loss of generality, we tune various LLMs, including Qwen 3 series (Team, 2025)
and Llama 3 series (AI@Meta, 2024). Also, we report the results on Gemma-3 series (Team et al.,
2025a), Yi series (Young et al., 2024), and Falcon series (Almazrouei et al., 2023) in Section 5.7.
We employ LLaMA-Factory (Zheng et al., 2024) for the code base and apply two tuning strategies:
full-parameter and LoRA. All experiments are conducted on 8 A100 GPUs. Please refer to Appendix
D.1 for detailed hyperparameters.

Evaluation. To evaluate the tuned LLMs on downstream benchmarks, we employ the OpenCompass
framework (Contributors, 2023b) and lmdeploy as the acceleration framework (Contributors, 2023a).
During inference, we set the cutoff length as 4096 and the batch size as 512. Considering the
benchmarks, we select three representative abilities, i.e., mathematical, coding, and commonsense
reasoning ability, and report the average scores marked as Math-7, Code-3, and Knowledge-9.
Specifically, Math-7 denotes the results of AIME24 MAA (2024), GSM8K (0-shot and 8-shot) Cobbe
et al. (2021), MATH Hendrycks et al. (2021b), MATH-500, Minerva_Math Lewkowycz et al. (2022),
SVAMP Patel et al. (2021). Code-3 for HumanEval Chen et al. (2021a), HumanEval+ Liu et al. (2023),
LiveCodeBench Jain et al. (2024). Knowledge-9 for ARC-challenge Clark et al. (2018), BBH (0-shot
and few-shot), DROP Dua et al. (2019), GPQA Diamond Rein et al. (2024), MMLU Hendrycks et al.
(2021a), MMLU Pro Wang et al. (2024b), Winogrande ai2 (2019), TheoremQA Chen et al. (2023).
To avoid the impact of different prompts, we mainly evaluate under a zero-shot setting. Please refer
to Appendix A for more details. For Qwen-3 series, we adapt enable_thinking as false for universal
evaluations, and we report pass@k results of both thinking and non-thinking in Appendix D.4.

4.2 MAIN RESULTS

Table 1 shows the results of tuning various mainstream LLMs on BAAI-2k using full-parameter
fine-tuning and LoRA. We set the rank as 128 in LoRA. Some findings can be summarized as follows:

• Conventional tuning methods lead to marginal improvements and even performance
degeneration. Considering the average score, we can find that conventional tuning methods
bring marginal improvements, such as 74.8 vs. 74.5 on Qwen-2.5-32B and 47.4 vs. 47.5

2https://huggingface.co/datasets/BAAI/Infinity-Instruct/tree/main/Gen
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Table 1: Performance comparison of different methods tuning popular LLMs. Math-7 denotes the average score
of 7 mathematical benchmarks including AIME24, Code-3 for 3 code benchmarks including LiveCodeBench,
and Knowledge-9 for 9 commonsense reasoning benchmarks including MMLU Pro. For Math-7 and Code-3,
we report the mean value of three runs. We employ the Instruct version and report the final average scores.
Please refer to Appendix D.2 for detailed scores.

Model Method Math-7 Code-3 Knowledge-9 Avg.
Full LoRA Full LoRA Full LoRA

Qwen-3-4B
Instruct 73.8 66.4 63.7 68.0

FT 72.9 71.2 66.4 59.6 62.9 61.1 65.7
Shadow-FT 73.7 75.9 67.4 69.7 64.9 65.0 69.4

Qwen-3-8B
Instruct 74.5 72.7 64.7 70.6

FT 74.0 71.3 71.2 69.6 64.6 64.3 69.2
Shadow-FT 75.9 74.8 73.1 71.9 65.6 67.8 71.5

Qwen-3-14B
Instruct 75.8 76.8 71.2 74.6

FT 75.2 73.3 76.2 74.4 70.6 70.4 73.4
Shadow-FT 78.9 78.6 77.0 77.8 71.4 71.5 75.9

Qwen-2.5-32B
Instruct 74.1 75.9 73.4 74.5

FT 75.7 74.3 75.8 75.9 73.6 73.8 74.8
Shadow-FT 74.9 75.7 76.1 76.2 73.5 73.8 75.0

Llama-3.2-1B
Instruct 23.8 26.5 34.2 28.2

FT 24.5 25.3 26.1 26.6 32.8 33.3 28.1
Shadow-FT 25.2 27.2 28.2 27.9 32.7 32.3 29.0

Llama-3.2-3B
Instruct 53.6 39.3 49.3 47.4

FT 52.7 51.9 40.2 41.4 49.4 49.1 47.5
Shadow-FT 54.9 56.2 40.3 42.8 49.5 48.9 48.8

Llama-3.1-8B
Instruct 56.8 50.9 56.6 54.8

FT 56.8 57.8 53.4 51.8 58.5 57.5 56.0
Shadow-FT 58.7 59.4 51.8 50.9 57.6 58.7 56.2

on Llama-3.2-3B. Moreover, they would lead to performance degeneration, such as 68.0
vs. 65.7 on Qwen-3-4B and 70.6 vs. 69.2 on Qwen-3-8B. The observations are consistent
across full-parameter tuning and LoRA.

• While conventional tuning fails, Shadow-FT performs well in adaptation at the same
cost. Across all model sizes and tasks, Shadow-FT consistently outperforms tuning baselines
and vanilla INSTRUCT model. For example, on Qwen-3-4B, Shadow-FT archives an average
score of 69.4, which is 3.7 higher than the 65.7 of conventional tuning methods and 1.4
higher than the vanilla INSTRUCT model. The conclusion is consistent on larger models such
as Qwen-3-14B. Moreover, Shadow-FT does not introduce any extra training overheads.
These consistent gains demonstrate that our proposed Shadow-FT can effectively learn the
knowledge contained in training data.

• Shadow-FT works well under both full-parameter setting and LoRA. For instance, when
tuning Qwen-3-4B under full-parameter setting, Shadow-FT achieves 73.7/67.4/64.9 on
Math-7/Code-3/Knowledge-9 compared to 72.9/66.4/62.9 of conventional tuning methods.
When applying a low-rank setting, Shadow-FT achieves 75.9/69.7/65.0, which is 4.7/10.1/3.9
higher than conventional LoRA. These indicate that Shadow-FT is effective with different
tuning strategies, showing its robustness.

5
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Figure 3: The average of Math-7, Code-3, and
Knowledge-9 for different ranks when tuning Llama-
3.2-1B using LoRA. We report the best performance
searching learning rates in {5e-5, 1e-4, 2e-4, 5e-4}.
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Figure 4: Performance of various meth-
ods when tuning Llama-3.2-1B on the
Medical-o1-reasoning-SFT dataset. De-
tailed scores at Table 7.

• LoRA can outperform full-parameter. When tuning using our BAAI-2k dataset, we find
that Shadow-FT (LoRA) can outperform Shadow-FT (full), such as 69.7 vs. 67.4 on Code-3
when tuning Qwen-3-4B. Interestingly, we find that Shadow-FT (LoRA) typically performs
better than Shadow-FT (full) on Math-7. However, considering the conventional tuning
methods, FT (full) would perform better (Biderman et al., 2024), such as 75.9 vs. 74.8 on
Qwen-3-8B. We leave it to future work for further investigation.

Moreover, we further conduct case study on Llama-3.1-8B-Instruct. Please refer to Appendix E for
more details.

5 EXTENSIVE ANALYSIS

5.1 RANKS IN LORA

We fine-tune the Llama-3.2-1B using LoRA with different ranks (from 4 to 512), and report the
average scores after searching learning rates in {5e-5, 1e-4, 2e-4, 5e-4}. As shown in Figure 3,
our proposed Shadow-FT (LoRA) can always outperform conventional LoRA with different ranks,
demonstrating the robustness. With a larger rank, the conventional LoRA would perform worse,
indicating more severe degeneration when tuning the INSTRUCT model (Yang et al., 2024a). In
contrast to that, Shadow-FT (LoRA) can consistently benefit from more parameters (with larger
ranks) and achieves better performance. For the results on Llama-3.1-8B, please refer to Appendix
D.5.

5.2 TUNING ON DOMAIN DATA

Tuning methods are typically employed to adapt LLMs for a specific domain, such as medical.
Therefore, we perform tuning experiments on specific domain data, including Medical-o1-reasoning-
SFT (Chen et al., 2024) in the medical domain, Code-Z1 (Yu et al., 2025) in the code domain, and
LIMO Ye et al. (2025) & OpenR1-Math (Face, 2025) in the math domain. Following LIMO Ye et al.
(2025), we uniformly down sample the Medical-o1-reasoning-SFT to 1,000, and Code-Z1/OpenR1-
Math to 2,000. On these domain tasks, we employ the LoRA with rank 128 and optimize with a
learning rate of 2e-4.

Figure 4 reports the results of tuning Llama-3.2-1B on Medical-o1-reasoning-SFT. We report the
results on MMLU Pro-Medical (Wang et al., 2024b), MedMCQA (Pal et al., 2022), PubMedQA (Jin
et al., 2019), MMLU-Biology (Yue et al., 2024), and GPQA-Medical following (Chen et al., 2024),
while normalizing the maximum score to 1 for better visualization. We can find that conventional
LoRA would lead to performance degeneration, while Shadow-FT (LoRA) improves the performance,

6
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Table 2: The detailed mathematical and code performance tuning Qwen-3-8B and Llama-3.1-8B on Code-Z1,
LIMO, and OpenR1-Math. Ins. denotes the vanilla INSTRUCT baseline, LoRA for conventional LoRA, and
Shadow for proposed Shadow-FT (LoRA). Green↓/Red↑ indicates a performance drop/gain relative to the vanilla
INSTRUCT baseline.

Benchmark
Qwen-3-8B Llama-3.1-8B

Code-Z1 LIMO OpenR1-Math Code-Z1 LIMO OpenR1-Math

Ins. LoRA Shadow LoRA Shadow LoRA Shadow Ins. LoRA Shadow LoRA Shadow LoRA Shadow

AIME24 20.0 13.3 36.7 23.3 26.7 16.7 26.7 6.7 3.3 20.0 6.7 3.3 3.3 6.7
GSM8K(8shot) 87.4 84.1 88.3 85.2 88.7 83.1 86.8 84.2 84.1 85.8 80.5 83.8 82.3 84.8
GSM8K(0shot) 93.0 91.9 93.6 91.7 92.4 92.7 92.9 84.2 85.4 85.7 82.5 86.1 86.1 85.9
MATH 70.9 69.4 69.1 70.0 67.6 70.6 66.5 48.0 48.8 51.3 44.3 45.8 39.8 47.7
MATH-500 83.2 79.8 88.0 77.0 80.4 80.2 85.0 48.4 50.8 55.4 44.4 43.8 41.8 48.8
Minerva_Math 73.0 69.7 72.9 69.9 73.1 70.8 73.2 40.6 39.6 45.5 37.1 41.2 44.0 44.2
SVAMP 91.4 90.3 93.3 90.9 92.9 90.3 93.0 83.1 86.5 86.9 83.7 85.9 85.1 87.1

Math-7 74.5 ⋄ 71.2 ↓ 77.4 ↑ 72.6 ↓ 75.1 ↑ 72.1 ↓ 75.7 ↑ 56.8 ⋄ 57.1 ↑ 61.5 ↑ 54.2 ↓ 55.7 ↓ 54.6 ↓ 58.0 ↑

HumanEval 84.2 82.3 87.8 84.2 86.0 78.1 83.5 71.3 64.6 70.1 68.9 70.7 72.6 72.0
HumanEval+ 79.9 76.8 78.1 79.3 81.1 75.6 81.1 63.4 48.2 64.6 62.2 64.0 61.6 62.8
LiveCodeBench 51.5 43.2 54.7 48.7 53.1 47.6 54.6 19.8 11.8 20.5 18.6 20.7 15.6 19.9

Code-3 72.7 ⋄ 67.4 ↓ 73.5 ↑ 70.7 ↓ 73.4 ↑ 67.1 ↓ 73.1 ↑ 50.9 ⋄ 41.5 ↓ 51.7 ↑ 49.9 ↓ 51.8 ↑ 49.9 ↓ 51.6 ↑
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Figure 5: Optimization dynamics on loss and gradient when tuning Qwen3-8B via INSTRUCT (i.e.,
FT) and BASE (i.e., Shadow-FT).

which is consistent with the conclusion on BAAI-2k. Besides, we further report the results directly
tuning the BASE. Please refer to Appendix D.3 for detailed scores.

Table 2 shows the detailed results of Math-7 and Code-3 tuning Qwen-3-8B and Llama-3.1-8B
on Code-Z1, LIMO, and OpenR1-Math. The observations are consistent, i.e., conventional LoRA
would lead to degeneration, while the proposed shadow-FT (LoRA) can effectively adapt LLMs
on specific domain knowledge. For instance, Shadow-FT (LoRA) achieves a Math-7 score of 77.4
on Qwen-3-8B, which is 6.2 higher than 71.2 of LoRA, and 2.9 higher than the vanilla INSTRUCT
model. Moreover, we also find that tuning LLM via Shadow-FT on code data can improve the math
capability (Yu et al., 2025), and vice versa. In particular, when tuned via shadow-FT on Code-z1,
the Qwen-3-8B can achieve a score of 36.7 on the tough AIME-24 benchmark, showing superior
adaptation and generalization ability.

5.3 MECHANISTIC ANALYSIS OF OPTIMIZATION DYNAMICS

To provide insight into why Shadow-FT outperforms vanilla FT, we further analyze the optimization
dynamics of both methods from a loss and gradient perspective. We denote the loss and gradient for
the INSTRUCT model (tuned with vanilla FT) as Loss(I) and Grad(I), and for the BASE model
(tuned with Shadow-FT) as Loss(S) and Grad(S).
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Table 3: Performance of tuning Llama-3.1-
8B using DPO and Shadow-DPO with ranks
be 8 and 128, respectively.

Method Rank 19-Avg.

Vanilla – 54.77

DPO 8 54.80
Shadow-DPO 8 54.96

DPO 128 54.62
Shadow-DPO 128 55.39

Table 4: Performance of Gemma-3 and Llama-3.2-Vision on
the multi-modal ChartQA task. We set the rank of LoRA to
128.

Model Size Vanilla LoRA Shadow-FT

Gemma-3
12B 37.36 53.48 54.92
27B 41.92 60.28 63.80

Llama-3.2 11B 22.12 74.44 74.12
-Vision 90B 30.92 79.92 80.60

Figure 5 illustrates these metrics while tuning Qwen3-8B with LoRA (r=128). The two approaches
show markedly different training dynamics. At initialization, Loss(I) is 22.6% higher than Loss(S),
and Grad(I) is 3.25× larger, reflecting a poor task fit and strong resistance from the instruction-
following prior (Ji et al., 2024). During training, Grad(I) decays precipitously (11/61 step), while
Grad(S) decreases more moderately (58%), indicating that INSTRUCT quickly enters a rigid opti-
mization regime with suppressed updates while Shadow-FT sustains enjoying a smoothed learning.
By convergence (step 61/61), both gradients stabilize at similar magnitudes, but Loss(I) remains 2.4%
higher, evidencing inferior adaptation.

Overall, the figure reveals a fundamental contrast in optimization. Vanilla FT on the INSTRUCT
model is hindered by a large initial gradient that rapidly diminishes, while the BASE model can avoid
this and shows a stable trajectory. However, BASE model is a good learner but a poor backbone due to
the lack of post-training. The conclusion is consistent with Pass@k results detailed in Appendix D.4.
Therefore, we propose Shadow-FT to learn on BASE and execute on INSTRUCT.

5.4 COMBINED WITH DPO

Direct Preference Optimization (DPO), which directly optimizes a language model to adhere to
human preferences without explicit reward modeling or reinforcement learning, shows promising
performance when applying RL to LLMs (Rafailov et al., 2023). Therefore, we try to combine
Shadow-FT with DPO, i.e., applying DPO on BASE and then grafting the weight to INSTRUCT,
termed as Shadow-DPO. Specifically, we achieve Shadow-DPO using LoRA on 1,000 paired samples
from the Math-Step (Lai et al., 2024) dataset and set the rank to 8 and 128. As shown in Table 3,
shadow-DPO outperforms DPO under two settings, such as 55.39 vs. 54.62 of vanilla DPO. It shows
that the strategy employing the BASE as proxy of INSTRUCT also works for DPO. Meanwhile, a larger
rank leads to better results for shadow-DPO, which is consistent with results tuning on BAAI-2k
shown in Figure 3.

5.5 PERFORMANCE ON MLLM

For generality, we further conduct experiments tuning Multimodal Large Language Models (MLLMs).
For the dataset, we select 10,000 samples from ChartMoE (Xu et al., 2024), which takes a chart
and a natural language question as input to predict the answer. For MLLM, we select Gemma-3
(Team et al., 2025a) 12B/27B and Llama-3.2-Vision (Grattafiori et al., 2024) 11B/90B. During
training, we employ LoRA and set the rank to 128. The learning rate is 2e-4. We evaluate the
tuned model via lmms-eval framework (Zhang et al., 2024). As shown in Table 4, both conventional
LoRA and Shadow-FT (LoRA) effectively adapt MLLMs on ChartQA (Masry et al., 2022) tasks.
Meanwhile, our proposed Shadow-FT outperforms LoRA, especially on larger models, such as 63.80
on Gemma-3-27B compared to 60.28 of vanilla LoRA and 80.6 on Llama-3.2-Vision-90B compared
to 79.92.

5.6 WEIGHT DELTA SCALING

In Shadow-FT, we directly graft the learned weights from BASE to INSTRUCT. We further explore
the scaling of learned weights. Please refer to Appendix D.6 for more details. In summary, our
proposed Shadow-FT outperforms vanilla INSTRUCT with different scaling factors, showing strong

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

robustness. Moreover, a factor slightly larger than 1 would yield better results, while we leave it for
future work to explore the best factor.

5.7 MODEL ZOO: MORE LLMS

We further apply Shadow-FT to more LLMs, including Gemma-3 series (Team et al., 2025a), Yi
series (Young et al., 2024), and Falcon series (Almazrouei et al., 2023). Please refer to Appendix B
for more details. We can find that proposed Shadow-FT consistently outperforms conventional tuning
methods. All the tuned models will be made public in the future.

6 RELATED WORK

6.1 TUNING FOR LLMS

Large language models (LLMs) gain superior ability from pre-training on tremendous data (Gururan-
gan et al., 2020), followed by tuning on various downstream tasks (Ouyang et al., 2022; Muennighoff
et al., 2025). These methods can be categorized into: 1) full-parameters method, which updates all
the parameters, and 2) parameter-efficient fine-tuning (PEFT) method, lowering the tuning costs via
parameter selection (Zaken et al., 2021) or low-rank branches (Hu et al., 2022; Wu et al., 2024b).
More recently, Reinforcement Learning from Human Feedback (RLHF) methods show promising
performance in aligning models to human preferences and improving the reasoning ability Rafailov
et al. (2023); Bai et al. (2023); Guo et al. (2025); Team et al. (2025b). These methods focus on im-
proving the training strategy and involve the target model only. In this paper, we propose Shadow-FT
to tune INSTRUCT model on BASE model. Also, our proposed Shadow-FT can be combined with
these baselines to enhance the performance.

6.2 MODEL GUIDANCE IN TUNING

Introducing extra knowledge from other models has been proven as a promising way to enhance
tuning performance, such as knowledge distillation (Hinton et al., 2015; Wu et al., 2024a) and
proxy-tuning (Liu et al., 2024). Knowledge distillation methods aim to transfer the knowledge from a
larger teacher model to a compact student model, via aligning the outputs (Wu et al., 2024a; Yang
et al., 2024b) or employing the teacher’s outputs as training data (Qin et al., 2024; Min et al., 2024).
Proxy-tuning first tunes a smaller LLM and then applies the logit differences to a larger model (Liu
et al., 2024). These methods transfer knowledge at the feature level or data level, while our proposed
Shadow-FT directly grafts the weight updates. RE-Adapt (Fleshman & Durme, 2024) also utilizes the
Base/Instruct model pair for adaptation. However, RE-Adapt models the static weight difference with
a low-rank approximation, whereas Shadow-FT is a model-free approach that directly transfers the
full dynamic updates without any assumption. Additionally, we notice a very recent concurrent work
(Lin et al., 2025) to transfer the fine-tuning ability. Differently, our proposed Shadow-FT focuses
on tuning INSTRUCT via BASE model based on the observation that the weights are highly similar.
Moreover, we conduct experiments on more LLMs across more benchmarks, and further extend the
idea to MLLMs and DPO.

7 CONCLUSION

In this work, we propose Shadow-FT, a novel framework to fine-tune INSTRUCT models by lever-
aging their corresponding BASE models. Inspired by the observation that the weights of BASE and
INSTRUCT are highly similar, we propose Shadow-FT to tune INSTRUCT vis BASE, aiming to tune IN-
STRUCT better. Extensive experiments across multiple LLM series, including Qwen, Llama, Gemma,
and Falcon, demonstrate that Shadow-FT consistently outperforms conventional full-parameter and
parameter-efficient fine-tuning methods. Notably, Shadow-FT introduces no additional training cost
or parameters, yet it achieves superior performance across diverse benchmarks covering math, coding,
and reasoning tasks. We further show that Shadow-FT generalizes well to multimodal large language
models (MLLMs) and can be seamlessly combined with alignment techniques such as DPO, offering
a simple yet effective solution for improving instruction-following models.
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REPRODUCIBILITY STATEMENT

We are committed to the reproducibility of our work. The MATH-7 results, averaged across three
trials, are shown in Table 1 and Table 8. The full source code required to reproduce our experiments
is included in the supplementary material. Corresponding hyperparameters and detailed configuration
files for all experiments are documented in Section 4.1. All experiments were conducted on publicly
available benchmarks, and the details are provided in Appendix A.
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to ensure reproducibility.

REFERENCES

Winogrande: An adversarial winograd schema challenge at scale. 2019.

AI@Meta. Llama 3 model card. 2024. URL https://github.com/meta-llama/llama3/
blob/main/MODEL_CARD.md.

Ebtesam Almazrouei, Hamza Alobeidli, Abdulaziz Alshamsi, Alessandro Cappelli, Ruxandra Cojo-
caru, Mérouane Debbah, Étienne Goffinet, Daniel Hesslow, Julien Launay, Quentin Malartic, et al.
The falcon series of open language models. arXiv preprint arXiv:2311.16867, 2023.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge,
Yu Han, Fei Huang, et al. Qwen technical report. arXiv preprint arXiv:2309.16609, 2023.

Xiao Bi, Deli Chen, Guanting Chen, Shanhuang Chen, Damai Dai, Chengqi Deng, Honghui Ding,
Kai Dong, Qiushi Du, Zhe Fu, et al. Deepseek llm: Scaling open-source language models with
longtermism. arXiv preprint arXiv:2401.02954, 2024.

Dan Biderman, Jacob Portes, Jose Javier Gonzalez Ortiz, Mansheej Paul, Philip Greengard, Connor
Jennings, Daniel King, Sam Havens, Vitaliy Chiley, Jonathan Frankle, et al. Lora learns less and
forgets less. arXiv preprint arXiv:2405.09673, 2024.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Junying Chen, Zhenyang Cai, Ke Ji, Xidong Wang, Wanlong Liu, Rongsheng Wang, Jianye Hou,
and Benyou Wang. Huatuogpt-o1, towards medical complex reasoning with llms. arXiv preprint
arXiv:2412.18925, 2024.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios
Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex Paino,
Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders,
Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa,
Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob
McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating
large language models trained on code. 2021a.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021b.

10

https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Wenhu Chen, Ming Yin, Max Ku, Pan Lu, Yixin Wan, Xueguang Ma, Jianyu Xu, Xinyi Wang,
and Tony Xia. Theoremqa: A theorem-driven question answering dataset. arXiv preprint
arXiv:2305.12524, 2023.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv:1803.05457v1, 2018.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve
math word problems. arXiv preprint arXiv:2110.14168, 2021.

LMDeploy Contributors. Lmdeploy: A toolkit for compressing, deploying, and serving llm. https:
//github.com/InternLM/lmdeploy, 2023a.

OpenCompass Contributors. Opencompass: A universal evaluation platform for foundation models.
https://github.com/open-compass/opencompass, 2023b.

Dheeru Dua, Yizhong Wang, Pradeep Dasigi, Gabriel Stanovsky, Sameer Singh, and Matt Gardner.
DROP: A reading comprehension benchmark requiring discrete reasoning over paragraphs. In
Proc. of NAACL, 2019.

Hugging Face. Open r1: A fully open reproduction of deepseek-r1, January 2025. URL https:
//github.com/huggingface/open-r1.

William Fleshman and Benjamin Van Durme. Re-adapt: Reverse engineered adaptation of large
language models. CoRR, abs/2405.15007, 2024. doi: 10.48550/ARXIV.2405.15007. URL
https://doi.org/10.48550/arXiv.2405.15007.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd of
models. arXiv preprint arXiv:2407.21783, 2024.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.
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LLM USAGE DISCLOSURE

The human authors are primarily responsible for this work. We utilized several large language models
(e.g., GPT-4, Gemini Pro, Claude 3) as general-purpose assistive tools to improve the quality of
our research and writing. Their use was limited to the following specific tasks: assisting with code
implementation and debugging, generating boilerplate code, refining the language and formatting of
the manuscript, and proofreading. The authors conceived all research ideas, designed the experiments,
and performed the final analysis of the results. We take full responsibility for all content in this paper
and confirm that it complies with relevant licenses and ethical guidelines.

A BENCHMARKS DETAILS

Table 5: Details on instruction-model evaluations. CoT denotes the chain-of-thought setting.

Evaluation Metric Type n-shot CoT
Math-7

AIME24 pass@1 sampling 0-shot
GSM8K(0-shot) Accuracy sampling 0-shot ✓
GSM8K(8-shot) Accuracy sampling 8-shot ✓
MATH Accuracy sampling 0-shot ✓
MATH-500 Accuracy sampling 0-shot
Minerva Math Accuracy sampling 4-shot
SVAMP Accuracy sampling 0-shot

Code-3

HumanEval pass@1 sampling 0-shot
HumanEval+ pass@1 sampling 0-shot
LiveCodeBench average
- generation pass@1 sampling 0-shot ✓
- test pass@1 sampling 0-shot ✓
- prediction pass@1 sampling 0-shot ✓

Knowledge-9

ARC-Challenge Accuracy sampling 0-shot ✓
BBH(0-shot) Accuracy sampling 0-shot
BBH(3-shot) Accuracy sampling 3-shot
Drop Accuracy sampling 0-shot
GPQA Diamond Accuracy sampling 0-shot ✓
MMLU Accuracy sampling 0-shot
MMLU Pro Accuracy sampling 0-shot
Winogrande Accuracy sampling 0-shot
TheoremQA Accuracy sampling 0-shot

The details about the benchmarks are detailed in Table 5. Since the n-shot setting are unstable, we
prefer to report the 0-shot results. For the popular GSM8K and BBH, we also report 8-shot and 3-shot
results.

B MODEL ZOO: MORE LLMS

We further apply Shadow-FT to more LLMs, including Gemma-3 series (Team et al., 2025a), Yi
series (Young et al., 2024), and Falcon series (Almazrouei et al., 2023). The hyperparameters are the
same as tuning Qwen 3 and Llama 3. Table 6 shows the results of Math-7, Code-3, and Knowledge-9.
We can find that proposed Shadow-FT consistently outperforms conventional tuning methods. For
instance, Shadow-FT gets an average of 52.55 when tuning Gemma-3-4B, which is 1.1 higher than
the vanilla INSTRUCT model and 7.91 higher than conventional tuning methods.
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Table 6: Performance comparison of different methods tuning more LLMs. We employ the Instruct version and
report the final average scores.

Model Method Math-7 Code-3 Knowledge-9 Avg.
Full LoRA Full LoRA Full LoRA

Falcon Family

Falcon3-3B
Vanilla 53.33 38.09 47.28 46.23

FT 55.83 58.70 39.57 41.23 48.43 49.50 48.88
Shadow-FT 56.74 60.31 41.02 43.69 48.16 48.25 49.70

Falcon3-10B
Vanilla 57.23 60.03 53.85 57.04

FT 59.33 68.74 60.95 61.54 54.17 55.72 60.08
Shadow-FT 58.27 70.40 61.35 62.20 53.19 52.83 59.71

Gemma Family

Gemma-3-4B
Vanilla 54.02 48.33 52.01 51.45

FT 35.34 49.12 48.15 43.03 43.83 48.37 44.64
Shadow-FT 56.68 56.30 48.87 48.93 52.88 51.62 52.55

Gemma-3-12B
Vanilla 60.82 58.06 61.54 60.14

FT 56.56 62.84 58.17 59.21 61.63 61.99 60.07
Shadow-FT 61.05 64.59 58.17 60.86 61.59 62.66 61.49

Yi Family

Yi-6B
Vanilla 17.34 8.40 38.63 21.46

FT 18.93 18.39 10.64 11.89 40.84 40.46 23.53
Shadow-FT 17.73 17.21 13.35 14.30 38.70 38.25 23.26

Yi-Coder-9B
Vanilla 28.01 61.85 40.73 43.53

FT 26.05 26.11 52.70 53.95 39.55 37.22 39.26
Shadow-FT 28.41 29.09 62.07 64.72 40.27 39.88 44.07

C SIMILARITY ON MORE LLMS

Qwen3-0.6B Qwen-3-4B Qwen-3-8B Qwen-3-14B Qwen-2.5-32B Llama-3.1-8B Yi-Coder-1.5B Yi-6B Yi-Coder-9B
Models

0.00

0.02

0.04

0.06

0.08

0.10

Av
er

ag
e 

si
gm

a

0.042

0.033
0.027 0.027

0.004

0.018
0.012

0.003
0.009

Figure 6: Average σ values of more LLMs.
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As shown in Figure 6, we can find that all σ < 0.05, indicating high similarity between BASE and
INSTRUCT. Also, the larger the LLMs, the smaller the gaps.

D EXPERIMENTAL DETAILS

D.1 HYPER-PARAMETERS

For the experiments, we set the hyperparameters after grid search. The batch size is 2, with the
gradient_accumulation_steps as 16. During experiments, the cutoff the inputs to 4096 and train for 1
epoch.

D.2 DETAILED DATA OF TABLE 1

The detailed scores are listed in Table 9, Table 10, and Table 11.

D.3 DETAILED TABLE FOR MEDICAL BENCHMARKS

Table 7 reports the detailed results of tuning Llama-3.2-1B on the Medical-o1-reasoning-SFT dataset.
Shadow-FTR donates the method integrating fine-tuned weights from INSTRUCT to BASE.

Table 7: Performance of LLAMA-3.2-1B-INSTRUCT on medical QA benchmarks.

Benchmark Tune on Instruct Tune on Base

Instruct FT Shadow-FT Base Base-FT Shadow-FTR

GPQA-Medical 23.85 24.10 24.50 25.25 25.00 24.75
MMLU Pro-Medical 25.20 23.95 27.60 13.10 12.60 12.30
MedMCQA 30.15 28.55 32.40 30.20 30.60 29.50
MedQA 25.95 25.60 29.35 29.80 30.35 29.45
PubMedQA 55.85 54.55 60.65 49.35 51.90 50.20

Avg. 32.20 31.35 34.90 29.54 30.09 29.24

D.4 PERFORMANCE ON PASS@K

To evaluate the exploration capability, we use the popular Pass@k, which is defined as the fraction
of problems for which at least one correct response is produced in k independent trials. However,
directly computing Pass@k using only k rollouts for each problem often suffers from high variance.
Therefore, we adapt the unbiased estimator (Chen et al., 2021b). Specifically, we roll out for n
times (n ≥ k), and calculate Pass@k as follows:

Pass@k := Ex∼D

[
1−

(
n−c
k

)(
n
k

) ]
, (5)

where x is the input prompt from dataset D, and c is the count of correct solutions.

We employ the QWEN3-8B model, which supports seamless switching between Thinking mode and
Non-thinking mode. We can easily switch between two modes using one control hyperparameter. We
set other hyperparameters following the official report of Qwen3 (Team, 2025): do_sample=True,
temperature=0.6, top_k=20, top_p=0.95, max_new_tokens=38912 for bettr alignment.

Non-thinking mode. Under non-thinking decoding, absolute PASS@K values are small for all
methods, yet SHADOW-FT exhibits a clearer upward trend with larger k, progressively surpassing
the INSTRUCT baseline. In contrast, vanilla FT yields weak performance and rarely produces correct
solutions. Importantly, all methods used the same number of training examples and the same training
cutoff length; the only difference is the initialization (BASE vs. INSTRUCT). This comparison suggests
that BASE is a better learner for supervised adaptation—its newly acquired knowledge is less prone
to collapse.
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Figure 7: Pass@k performance on Qwen3-8B thinking and non-thinking modes.

Thinking mode. Under thinking mode, the effect is more pronounced: SHADOW-FT and INSTRUCT
follow similarly steep, rapidly saturating curves that nearly reach the model’s capacity limit, whereas
vanilla FT maintains a large (>30%) gap across k. This pattern implies that vanilla FT hurts
the thinking ability of INSTRUCT and makes it less receptive to new knowledge compared with
BASE-initialized training.

Across both modes, our proposed Shadow-FT avoids collapse and retains—often enhances the upper-
bound competence of the underlying INSTRUCT model. This property is valuable for subsequent RL
or other generalization-critical settings (Zhu et al., 2025). We attribute the robustness to the favorable
inductive characteristics of BASE-initialized learning, whereas vanilla FT on an INSTRUCT model
struggles to achieve the same balance of stability and adaptability.

D.5 RANKS IN LORA ON LLAMA-3.1-8B

As shown in Figure 8, the conclusions regarding Llama-3.1-8B are consistent with Section 5.1.
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Figure 8: Performance tuning Llama-3.1-8B with different ranks.

D.6 WEIGHT DELTA SCALING

To further explore the effect of scaling the transferred deltas in the Shadow-FT strategy, we introduce
an interpolation design controlled by a scaling factor α. Specifically, let ∆WB = W+

B −WB denote
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the weight updates learned on the BASE model. Instead of directly applying the full deltas to the
INSTRUCT model, we interpolate as follows:

W+
I = WI + α ·∆WB = WI + α · (W+

B −WB). (6)

Here, α = 1.0 recovers the standard Shadow-FT formulation, while α = 0.0 reduces to the
original INSTRUCT model without transfer. Intermediate values of α provide a smooth interpolation
between the two, allowing us to examine how the magnitude of transferred deltas affects downstream
performance. The summarized results of Llama-3.1-8B-Instruct on the MATH-7 benchmark are
presented in Table 8, showing that α = 1.0 yields the excellent overall trade-off, while other
ratios offer insights into the sensitivity of tasks to partial transfer. Adaptive scaling strategies (e.g.,
layer-wise or task-specific factors) are left for future work.

Table 8: Detailed results on the math benchmarks (averaged over three repeated runs for each ratio). The ratio
of 0.0 denotes vanilla Instruct, while 1.0 for the proposed Shadow-FT.

Ratio Math-7 AIME24 GSM8K
(8-shot)

GSM8K
(0-shot) MATH MATH

500
Minerva

Math SVAMP

0.0 56.2 1.1 84.8 85.0 48.5 50.7 40.5 82.7
0.1 56.5 1.1 85.2 84.3 49.8 51.1 41.3 83.0
0.2 57.1 2.2 85.0 85.0 50.4 50.5 42.3 84.3
0.3 57.9 2.2 85.0 84.4 51.3 53.5 43.8 85.0
0.4 58.8 6.7 85.6 83.6 52.9 54.2 44.2 84.7
0.5 59.0 6.7 86.0 83.7 52.8 53.7 45.6 84.7
0.6 59.1 4.4 86.1 83.5 52.8 54.7 47.2 84.7
0.7 59.6 5.6 85.1 84.0 53.6 55.8 47.6 85.3
0.8 59.4 5.6 84.9 84.5 53.1 53.6 48.8 85.3
0.9 59.8 3.3 85.0 84.7 53.0 56.0 49.4 87.0
1.0 59.5 3.3 84.7 85.1 53.0 54.9 49.4 85.8
1.2 59.1 0.0 84.8 86.0 52.6 56.6 49.1 84.3
1.5 59.9 3.3 84.6 84.9 52.4 55.9 50.5 87.3
2.0 57.9 0.0 83.2 84.2 50.2 52.0 48.1 87.7
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Table 9: Detailed results on the math benchmarks for Table 1. Three times independent training and three times
evaluation average are reported.

Model Method AIME24 GSM8K
(8-shot)

GSM8K
(0-shot) MATH MATH

500
Minerva

Math SVAMP Math-7

Llama-3.2-1B

Vanilla 1.1 46.9 1.8 15.8 15.1 20.3 65.3 23.8

FT (full) 1.1 46.8 0.8 18.6 19.1 19.0 66.5 24.5
Shadow-FT (full) 0.0 47.2 1.0 18.9 18.3 23.1 67.9 25.2

FT (LoRA) 1.1 45.2 2.6 21.8 20.3 18.7 67.5 25.3
Shadow-FT (LoRA) 0.0 47.8 4.6 22.1 24.5 25.1 66.4 27.2

Llama-3.2-3B

Vanilla 4.4 76.6 79.5 45.8 47.9 36.1 84.7 53.6

FT (full) 8.9 77.0 77.0 45.2 44.2 32.4 84.1 52.7
Shadow-FT (full) 8.9 77.8 80.4 47.2 47.9 37.6 84.8 54.9

FT (LoRA) 4.4 76.5 73.5 46.4 47.7 31.7 83.1 51.9
Shadow-FT (LoRA) 11.1 78.1 77.6 49.8 52.0 39.3 85.4 56.2

Llama-3.1-8B

Vanilla 6.7 83.6 85.0 49.1 49.2 40.8 83.2 56.8

FT (full) 1.1 84.0 85.4 51.0 51.5 39.0 85.8 56.8
Shadow-FT (full) 6.7 85.0 84.0 52.2 53.2 43.8 86.3 58.7

FT (LoRA) 6.7 83.8 83.8 50.2 52.5 41.3 86.5 57.8
Shadow-FT (LoRA) 6.7 85.0 84.5 52.0 53.0 48.3 86.0 59.4

Qwen-3-4B

Vanilla 18.9 87.8 92.2 70.3 82.3 73.4 91.5 73.8

FT (full) 14.4 88.1 91.6 70.1 82.4 72.1 91.2 72.9
Shadow-FT (full) 16.7 87.4 92.3 70.0 84.3 73.3 91.7 73.7

FT (LoRA) 18.9 84.2 91.6 68.1 77.3 67.4 90.7 71.2
Shadow-FT (LoRA) 28.9 88.3 92.5 70.4 84.5 73.8 92.8 75.9

Qwen-3-8B

Vanilla 22.2 87.3 93.4 70.8 83.1 73.2 91.6 74.5

FT (full) 22.2 86.2 93.1 70.6 80.7 72.7 92.1 74.0
Shadow-FT (full) 32.2 87.5 93.3 70.6 82.9 73.2 91.4 75.9

FT (LoRA) 17.8 83.6 92.1 68.9 77.3 68.4 90.7 71.3
Shadow-FT (LoRA) 22.2 88.5 92.9 70.5 84.1 73.6 91.8 74.8

Qwen-3-14B

Vanilla 20.0 90.0 95.3 72.1 85.2 75.7 92.6 75.8

FT (full) 17.8 88.9 94.9 72.2 85.5 75.5 91.3 75.1
Shadow-FT (full) 40.0 90.7 95.2 71.7 86.3 76.0 92.7 78.9

FT (LoRA) 14.4 87.3 94.5 71.7 81.3 72.8 91.0 73.3
Shadow-FT (LoRA) 36.7 90.7 95.9 71.3 86.7 76.1 93.2 78.7

Qwen-2.5-32B

Vanilla 16.7 84.3 95.5 78.0 83.1 71.7 89.3 74.1

FT (full) 21.1 86.6 95.4 74.8 82.9 76.8 92.1 75.7
Shadow-FT (full) 13.3 85.0 95.5 76.8 84.1 78.0 91.3 74.9

FT (LoRA) 14.4 85.7 95.3 73.6 83.8 75.0 92.1 74.3
Shadow-FT (LoRA) 18.9 86.3 95.6 76.0 84.3 77.3 91.3 75.7

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Table 10: Detailed data on the code benchmarks for Table 1. Three times independent training and three times
evaluation averages are reported.

Model Method HumanEval HumanEval+ LiveCodeBench Code-3
Exec Gen Out Avg

Llama 3.2-1B

Vanilla 40.9 35.0 4.0 7.0 0.2 3.7 26.5

FT (full) 38.2 34.2 9.3 6.9 1.2 5.8 26.1
Shadow-FT (full) 42.9 36.8 5.9 7.3 1.1 4.8 28.2

FT (LoRA) 39.2 34.4 11.0 6.5 0.8 6.1 26.6
Shadow-FT (LoRA) 41.9 35.4 10.5 6.9 2.2 6.5 27.9

Llama 3.2-3B

Vanilla 60.0 52.2 0.0 16.8 0.7 5.8 39.3

FT (full) 57.9 53.7 4.5 16.3 6.2 9.0 40.2
Shadow-FT (full) 60.6 54.1 0.0 16.8 2.1 6.3 40.3

FT (LoRA) 59.1 50.8 9.7 17.1 15.5 14.1 41.4
Shadow-FT (LoRA) 61.2 55.3 14.4 16.0 5.8 12.1 42.9

Llama 3.1-8B

Vanilla 69.7 62.8 17.3 19.8 23.2 20.1 50.9

FT (full) 70.7 67.3 16.9 22.3 27.5 22.2 53.4
Shadow-FT (full) 70.1 63.6 16.6 20.8 27.8 21.7 51.8

FT (LoRA) 70.7 63.4 16.3 21.0 26.8 21.4 51.8
Shadow-FT (LoRA) 71.1 50.4 14.9 21.3 27.3 21.2 50.9

Qwen-3-4B

Vanilla 77.9 71.3 41.8 48.8 59.7 50.1 66.4

FT (full) 80.9 70.9 43.1 46.1 53.0 47.4 66.4
Shadow-FT (full) 80.3 71.1 42.5 49.7 60.1 50.8 67.4

FT (LoRA) 76.4 69.1 13.1 41.1 45.6 33.3 59.6
Shadow-FT (LoRA) 81.3 76.8 43.2 49.1 60.6 51.0 69.7

Qwen-3-8B

Vanilla 85.8 79.9 42.3 51.3 63.4 52.3 72.7

FT (full) 82.7 79.3 42.9 51.8 59.7 51.5 71.2
Shadow-FT (full) 86.8 79.3 41.9 52.3 65.2 53.1 73.1

FT (LoRA) 84.2 78.5 42.0 45.7 50.9 46.2 69.6
Shadow-FT (LoRA) 84.6 77.6 41.9 52.4 66.1 53.5 71.9

Qwen-3-14B

Vanilla 86.8 83.1 51.9 55.8 74.2 60.6 76.8

FT (full) 87.6 83.5 50.9 54.3 67.3 57.5 76.2
Shadow-FT (full) 87.4 82.9 52.1 55.6 74.4 60.7 77.0

FT (LoRA) 85.6 82.3 51.2 51.3 62.5 55.0 74.4
Shadow-FT (LoRA) 87.8 84.4 50.7 56.8 76.4 61.3 77.8

Qwen-2.5-32B

Vanilla 86.4 82.1 58.3 54.6 64.6 59.1 75.9

FT (full) 85.6 81.1 60.3 55.8 66.4 60.8 75.8
Shadow-FT (full) 86.6 81.5 60.5 55.7 64.0 60.1 76.1

FT (LoRA) 85.4 81.7 60.9 55.0 64.8 60.7 75.9
Shadow-FT (LoRA) 87.4 80.5 61.8 55.0 64.9 60.6 76.2
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Table 11: Detailed results on the general Reasoning benchmarks for Table 1.

Method MMLU
MMLU

WinoG DROP
ARC BBH BBH GPQA

TheoremQA Knowledge-9
Pro Challenge (0-shot) (3-shot) Diamond

Llama-3.2-1B

Vanilla 46.8 21.4 51.9 42.7 56.6 24.4 26.1 27.8 9.9 34.2

FT (full) 46.9 21.8 50.4 39.0 56.6 20.4 24.8 24.8 10.8 32.8
Shadow-FT (full) 47.1 22.7 51.1 41.6 52.9 22.2 20.8 26.3 9.6 32.7

FT (LoRA) 46.7 22.1 51.2 40.8 56.6 20.9 26.3 23.2 11.8 33.3
Shadow-FT (LoRA) 46.6 23.2 51.4 43.9 52.2 17.2 20.4 25.3 10.6 32.3

Llama-3.2-3B

Vanilla 62.4 39.7 53.9 71.8 78.6 41.8 49.2 29.3 17.4 49.3

FT (full) 62.0 39.2 54.5 71.7 79.0 41.8 51.8 25.8 18.5 49.4
Shadow-FT (full) 62.4 40.4 54.3 72.1 79.0 41.7 50.0 28.3 17.6 49.5

FT (LoRA) 61.9 39.9 51.1 71.7 82.7 41.4 49.4 25.3 18.4 49.1
Shadow-FT (LoRA) 62.1 41.6 54.6 72.0 79.0 38.6 49.6 26.8 16.1 48.9

Llama-3.1-8B

Vanilla 69.5 48.5 59.4 81.4 85.4 44.6 67.6 25.8 27.3 56.6

FT (full) 69.7 49.2 60.9 80.0 87.1 46.8 71.1 30.8 30.6 58.5
Shadow-FT (full) 69.6 49.3 60.2 81.7 85.8 46.8 67.0 28.3 29.5 57.6

FT (LoRA) 69.3 48.9 60.0 79.5 86.4 48.8 68.0 30.3 26.8 57.5
Shadow-FT (LoRA) 69.4 50.8 60.2 80.1 85.4 51.6 68.8 32.8 29.1 58.7

Qwen-3-4B

Vanilla 70.7 57.1 57.7 77.3 91.5 57.7 78.7 37.4 44.6 63.6

FT (full) 70.7 54.2 56.8 75.9 91.2 57.3 77.2 38.9 44.4 63.0
Shadow-FT (full) 71.4 57.0 57.4 77.7 92.2 58.4 78.4 45.0 46.5 64.9

FT (LoRA) 71.9 51.2 59.0 69.1 91.5 54.7 73.5 39.4 39.9 61.1
Shadow-FT (LoRA) 71.8 58.2 58.8 79.1 91.9 59.6 77.0 46.0 42.4 65.0

Qwen-3-8B

Vanilla 76.5 55.8 55.7 85.2 91.9 59.8 80.0 46.5 31.0 64.7

FT (full) 76.3 53.0 54.8 84.8 91.2 60.1 80.1 44.4 36.5 64.6
Shadow-FT (full) 76.6 56.0 54.8 85.8 92.2 59.2 79.8 53.5 32.1 65.6

FT (LoRA) 76.1 57.2 55.9 80.6 92.5 59.0 75.5 41.4 40.9 64.3
Shadow-FT (LoRA) 78.6 61.5 55.0 85.8 92.5 59.3 79.6 56.6 41.1 67.8

Qwen-3-14B

Vanilla 79.4 64.2 68.5 86.3 94.6 61.4 84.2 47.0 54.6 71.1

FT (full) 79.7 61.3 67.8 85.5 94.9 61.2 84.1 47.5 53.0 70.6
Shadow-FT (full) 79.6 64.9 68.7 86.9 94.6 60.3 83.9 46.5 57.6 71.4

FT (LoRA) 79.6 60.7 68.5 84.0 95.3 63.3 83.0 47.0 51.9 70.4
Shadow-FT (LoRA) 79.8 66.1 69.1 88.1 93.6 58.2 83.6 48.0 56.8 71.5

Qwen-2.5-32B

Vanilla 83.4 68.8 82.2 88.1 95.3 63.6 84.6 39.9 54.3 73.4

FT (full) 83.4 68.3 81.9 88.7 94.6 63.0 83.8 42.4 56.5 73.6
Shadow-FT (full) 83.2 69.1 82.6 88.4 95.6 64.3 82.9 39.4 55.8 73.5

FT (LoRA) 83.6 68.9 82.2 88.8 94.9 62.8 83.7 44.4 54.8 73.8
Shadow-FT (LoRA) 83.0 68.8 82.7 88.6 94.6 64.3 83.4 43.9 54.8 73.8
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Table 12: Case study example from MATH-500. Shadow-FT can avoid errors with the knowledge learned from
the base model, while the vanilla tune method fails. We extract the key step for better visualization.

Input Question:
How many positive two-digit integers are
factors of both 100 and 150?

Ground Truth $\boxed {3}$ (The common two-digit factors
are 10, 25, and 50).

Vanilla FT ...
1. **Find the GCD of 100 and 150:**
...
2. **Identify the two-digit factors of
50:**
... stop counting at 25.
Thus, the positive two-digit integers that
are factors of both 100 and 150 are 10 and
25.
$\boxed {2}$

Shadow-FT (Ours) ...
###### Step 1: Find the Greatest Common
Divisor (GCD) of 100 and 150
...
###### Step 2: Find All Factors of the GCD
(50)
...
###### Step 3: Identify the Two-Digit
Factors
...
(Note: 50 is a two-digit number too, but
we’ll check it as well.)
So the two-digit factors of 50 are:
$$10, 25, 50$$
###### Step 4: Count the Two-Digit Factors
...
###### Final Answer:
$$\boxed {3}$$

E CASE STUDY ON LLAMA-3.1-8B

Table 12 presents a representative case from Math-500 benchmark generated by Llama-3.1-8B-
Instruct tuned via vanilla FT and Shadow-FT, respectively. While the vanilla fine-tuned model
partially solves the problem, it stops prematurely and misses one of the valid two-digit factors,
resulting in an incorrect prediction of $\boxed {2}$. In contrast, Shadow-FT correctly finds the GCD,
enumerates all factors, and recognizes that 50 is also a two-digit factor, producing the correct answer
$\boxed {3}$. This example highlights the capability of Shadow-FT to leverage knowledge from the
BASE model and reason more comprehensively.

F LIMITATIONS

In Shadow-FT, we first tune the BASE model and then graft the weight updates to the INSTRUCT
model. However, there are some LLMs for which the paired BASE models are not available, such as
Qwen3-32B and Qwen3-Next. For these LLMs, we can not apply Shadow-FT. Therefore, finding a
proper ’shadow’ for these models is an interesting topic for future work.
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