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Abstract

Federated learning (FL) often struggles with gen-
eralization due to heterogeneous client data. Lo-
cal models are prone to overfitting their local
data distributions, and even transferable features
can be distorted during aggregation. To address
these challenges, we propose FedCONST, an ap-
proach that adaptively modulates update mag-
nitudes based on the global model’s parameter
strength. This prevents over-emphasizing well-
learned parameters while reinforcing underdevel-
oped ones. Specifically, FedCONST employs lin-
ear convex constraints to ensure training stabil-
ity and preserve locally learned generalization
capabilities during aggregation. A Gradient Sig-
nal to Noise Ratio (GSNR) analysis further val-
idates FedCONST’s effectiveness in enhancing
feature transferability and robustness. As a result,
FedCONST effectively aligns local and global
objectives, mitigating overfitting and promoting
stronger generalization across diverse FL environ-
ments, achieving state-of-the-art performance.

1. Introduction
Federated Learning (FL)(McMahan et al., 2017) has
emerged as a promising paradigm that enables multiple
clients to collaboratively learn a shared model while keep-
ing their data localized. A pivotal challenge in FL arises
from the sparse and heterogeneous data distribution across
clients, which leads to significant problems on the perfor-
mance of a global model. (1) Local models often overfit
their own distributions, limiting their capacity to generalize
across the entire data distribution(Qu et al., 2022; Mendieta
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Figure 1. Illustration of the parameter space in FL. (1) Vanilla
FL drives the optimization process away from the generalization
area. (2) Optimization with non-convex constraints stabilizes the
training process within the generalization area but may cause a loss
of generalization during aggregation. (3) Our convex constraints
stabilize the training process and align the aggregation with the
generalization area, ensuring improved global generalization.

et al., 2022). (2) Even when some clients learn features
that could generalize, these can become distorted during
aggregation, misaligning them with global objectives and
undermining performance(Lee & Yoon, 2024).

Previous approaches, including regularization(An et al.,
2024; Li et al., 2021a; 2020), normalization (Li et al., 2021b;
Andreux et al., 2020; Wang et al., 2023) and correction (Acar
et al., 2021; Karimireddy et al., 2020; Varno et al., 2022)
aim to mitigate these issues by aligning local model updates
with the global model. However, by focusing solely on
preserving global model information, these methods have
neglected to ensure generalization, inevitably resulting in
overfitting under limited data conditions.

Recently, some studies have turned their attention to gener-
alization of local learning. FedAlign(Mendieta et al., 2022)
and FedSAM(Qu et al., 2022) focused on the generaliza-
tion of local learning employing generalization term on loss.
However, by failing to preserve coherent optimization objec-
tives across clients during aggregation, these methods allow
the model’s generalization capabilities to become distorted,
ultimately degrading its overall performance.

In light of these issues, we ask: What kind of constraint
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enhances feature generalization during local training while
remaining unaffected by the aggregation process?

To answer this question, We propose FedCONST (Federated
Learning with Convex Constraints for Global Model Gen-
eralization). FedCONST applies client-consistent convex
constraints derived from the global model’s weight magni-
tudes, which serve as proxies for feature importance across
the entire data distribution. Concretely, well-learned (sta-
ble) features in the global model are constrained to remain
close during local updates, while under-learned (unstable)
features are emphasized for further training. Because the
constraints are convex and shared among all clients, they
preserve the intended generalization effect after aggregation
as desribed in Figure 1.

Our method is inspired by insights from a Domain Gener-
alization (DG) method(Michalkiewicz et al., 2023), where
strong features (often measured by gradient statistics such
as Gradient Signal-to-Noise Ratio, GSNR) are crucial to
robust performance across diverse domains. Directly track-
ing GSNR is typically infeasible in FL due to communi-
cation and computational bottlenecks. Instead, we show
that global weight magnitudes are reliable proxy for feature
strength, aligning well with the GSNR perspective. This
design choice makes FedCONST simple, communication-
efficient, and broadly applicable.

In this paper, we provide the motivation behind our work and
a theoretical foundation for our method. We demonstrate
higher stability in local training through reduced gradient
variance and improved convexity of the global model loss
landscape. Consequently, our experiments show that Fed-
CONST significantly outperforms existing FL methods in
various models, datasets, and levels of heterogeneity in both
cross-device and cross-silo settings, while maintaining high
computational and communication efficiency.

In summary, our contributions are as follows.

• We propose a simple, yet effective approach that retains
well-learned features while focusing on under-learned
ones. This framework introduces new insights into how
generalization can be enhanced in FL.

• Our theoretical and empirical analyses guarantee that
our method boosts generalization by imposing more
updates with larger probabilities to under-learned fea-
tures.

• We validate the effectiveness of FedCONST with a
wide range of dataset and model architectures and show
that it significantly outperforms existing FL methods
with SOTA performance.

2. Related work
2.1. Federated Learning on Non-IID Data

The challenge of non-IID data across clients leads to unsta-
ble local learning diverge the global model from consistent
optima. To mitigate these issues, regularization methods
have been prominently adopted. Techniques like FedProx
(Li et al., 2020), FedMRUR(An et al., 2024), and MOON(Li
et al., 2021a) incorporate explicit regularization mechanisms
to align local updates with global objectives more effectively.
These approaches ensure that the local models have common
features for global objectives. However, common features
are often spurious as well, making global model suffer from
the overfitting problem.

To directly address the challenges posed by heteroge-
neous gradients, correction methods like FedDyn(Acar
et al., 2021), AdaBest(Varno et al., 2022), and SCAF-
FOLD(Karimireddy et al., 2020) introduce correction terms
that aim to align client updates with the global model. These
strategies utilize stateful operations to align client updates
on FL environment with limited local data. Aside from
the risk on alignment of overfitting problem, this stateful
operations require extra communications.

On the other hand, methods such as FedSAM(Qu et al.,
2022) and FedAlign(Mendieta et al., 2022) focus on enhanc-
ing generalization across clients without imposing restric-
tions for alignment with global objectives. These techniques
prioritize a generalization of local training on limited data
but unaligned approach to handle the heterogeneity inherent
in FL.

2.2. Generalization of Neural Networks

To analyze generalization performance during the training
process, a study proposed the concept of One Step Gen-
eralization Ratio (OSGR)(Liu et al.). OSGR is defined as
the ratio between the decrease in loss on test data and on
training data:

RZ,n =
ED,D′∼Zn [∆LD′ ]

ED∼Zn [∆LD]
, (1)

where ∆LD′ and ∆LD denote the decrease in loss on train-
ing data D and test data D′ within a single optimization
step.

To facilitate the prediction of OSGR during training, the
authors further propose the following theorem.
Proposition 2.1 (From Paper (Liu et al.)). The generaliza-
tion of gradient updates can be expressed using the follow-
ing OSGR value:

RZ,n = 1− 1

n

∑
j

Wj
1

g2
j

ρ2
j
+ 1

n

, (2)
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where n is the number of samples, g2j is the squared gradient
magnitude for feature j and ρ2j is the corresponding noise
variance, and The weight Wj (satisfying

∑
j Wj = 1) is a

weighting term.

Proposition 2.1 indicates that features with higher Gradient
Signal-to-Noise Ratios(GSNR), defined by:

rj =
g2j
ρ2j

(3)

yield larger values of OSGR, thereby contributing more
significantly to generalization performance.

Based on these insights, a Paper (Michalkiewicz et al., 2023)
proposed a GSNR-based dropout method for DG tasks, aim-
ing to enhance robustness by preserving parameters with
higher GSNR values while promoting updates in those with
lower GSNR. However, the distributed nature of FL compli-
cates gradient collection and aggregation across clients.

3. Our Approach
To begin with, we define standard learning process is to train
a deep neural network f (x;W ), where f : X → Y is a
neural network with L neural layers :

W = {w1, w2, . . . , wL} (4)

Especially, We are interested in training each weight wl =
{wl

c,1, . . . , w
l
c,s} with respect to the corresponding fea-

ture/channel i on input layer l.

3.1. Federated Learning

We consider the standard FL that trains a model collabora-
tively from decentralized client devices. For every client,
denoted as m in the set M , there are Nm training samples
given by pairs (xi, yi) for i = 1 to Nm. Here, xi represents
the image from a set X and yi is the corresponding label
from set Y. These pairs are independently and identically
distributed, drawn from a distribution specific to the device,
symbolized as Dm (x, y) when D =

⋃
m Dm. With this

setting, we follow the framework of FedAvg follows:

L(W ) =
∑
m∈M

|Dm|
|D|
Lm(W )

where Lm(W ) = E(xi,yi)∼Dm
[L(xi, yi;W )]

(5)

The global objective, denoted as L, can be broken down
into individual empirical loss Lm specific to each client
data. Because of the separation of clients’ data, L can not
be optimized directly. FedAvg addresses this challenge by
alternating between local training on each client’s dataset
and a global aggregation step.

Client Training Pivoting to the FedAvg blueprint, the local
training trajectory is captured as:

wk
m = wk − η

∑
t∈T

gkm, t = wk + ∆wk
m (6)

Here, wk typifies the global model during global round
k, gkm, t is the gradient corresponding to client m at timestep
t of the kth global round, and η denotes the learning rate.

Aggregation Transitioning to the global aggregation phase,
the mechanics unfold as:

W k+1 =
1

M

∑
m∈M

wk
m = W k +

1

M

∑
m∈M

∆wk
m

= W k +∆wk

(7)

In this matrix, ∆wk epitomizes the average model updates
accumulated from all clients during the kth global round.

3.2. FedCONST:Federated Learning for Feature
Generalization with Convex Constraints

For promoting generalization in FL, we begin by proposing
a conjecture and two principles to design our constraints.
Next, we demonstrate that our method adheres to these prin-
ciples. Finally, we present evidence to support the validity
of the conjecture.

3.2.1. CONSTRAINED OPTIMIZATION FOR CLIENT
TRAINING

We propose a Constrained Weight Optimization framework
that transfers the key insight of Feature Strength—initially
introduced in DG methods—to a FL scenario. Our approach
is motivated by Conjecture 1, which states that the magni-
tude of a weight can serve as a proxy for how well a feature
is learned.

Conjecture 1 Large weights indicate well-learned (strong)
features. Small weights signify weaker features requiring
additional training.

By leveraging this conjecture, we can selectively preserve
strong features while reinforcing weaker ones, preserving
the core principle of DG methods without direct access to
each client’s detailed gradients. To operationalize Conjec-
ture 1 within federated learning, we introduce a constrained
optimization framework:

min
W
Lm(W )

s.t. Gl
c

⊤
(wl

c −Gl
c) = 0, 1⊤wl

c = 0, ∀c, l
(8)

Here, wl
i represents the weight vector for the i-th output

feature in the l-th layer of a client model, and Gl
c means
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Figure 2. Schematic representation of FedCONST: Local learning on clients with weight constrained optimization to preserve robust
paramter of the global model. Aggregation phase where convex constraints guide diverse client models toward a common, optimal
representation, facilitating better alignment and performance of the global model.

the corresponding weight vector of global model. 1 is an
all-one vector.

This design is originated form the insight that constraints
should adjust feature learning while maintaining general-
ization ability after the aggregation phase. This can be
summarized as the following condition:

Condition 1. (Feature Adjustment) The constraints boost
weak features and preserve already strong features for gen-
eralization.
Condition 2. (Convex Constraints) The constraints should
be conserved after aggregation to preserve generalization
ability.

Our design consists of two constraints, the centralization
constraint and the orthogonal constraint. The centralization
constraint(1⊤wl

c = 0 on Equation (8)) ensures that the
total update impact on a feature is equalized, while the or-
thogonal constraint(Gl

c
⊤(wl

c −Gl
c) = 0 on Equation (8))

mitigates redundant updates to already strong signals. To-
gether, these constraints satisfy Condition 1 by promoting
generalization during local training and Condition 2 by be-
ing linear and convex.

3.2.2. FEATURE ADJUSTMENT

In this section, we justify our constraints prevent redun-
dant training on strong features. We assume that weight
changes due to gradient updates on parameters W l

c =
{W l

c,1, . . . ,W
l
c,s} with respect to the corresponding fea-

ture/channel i follow a spherical Gaussian distribution:

∆Wc,q ∼ N
(
0, σ2I

)
,where q = 1, 2, . . . s (9)

σ2 =

∑
q

(
∆W l

c,q

)2
n− 1

. (10)

We project the weight changes onto the hyperplane orthogo-
nal to the initial client weight vector W l

c , which is initialized
to match the global parameter of Gl

c, and define the projec-
tion as follows:

P = I − uu⊤, u =
W l

c

∥W l
c∥2

, (11)

the projected weight update is:

∆w⊥ = P∆w,

Cov(∆w⊥) = P · Cov(∆w) · P⊤ = σ2P
(12)

The resulting variance aligns with:

Var(∆W l
c,q⊥) = σ2

(
1−

W l
c,q

2

∥Wc
l∥22

)
. (13)

So these discussion can be summarized as the following
proposition:
Theorem 3.1 (Feature-Preserving Updates under Centering
and Orthogonality). If we impose centering and orthogo-
nality constraints, and if W l

c,i ≤W l
c,j , then

Var(∆W l
c,i) ≥ Var(∆W l

c,j),
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which means that updates are inversely correlated with the
weight size, i.e.,

Pr(|∆W l
c,i| ≥ |∆W l

c,j |) ≥ Pr(|∆W l
c,i| ≤ |∆W l

c,j |).

Therefore, our constraints ensure that updates have an in-
verse correlation with weight size, promoting stability and
avoiding overfitting to features with larger weights.

3.2.3. CONVEX CONSTRAINTS

Each client optimizes its local model independently on pri-
vate data, and these models are then aggregated to form a
global model without alignment. To address this misalign-
ment, we refine our constraints to be convex, ensuring they
satisfy the conditions for generalization both during local
training and after aggregation. Although these constraints
are applied per weight vector for channel/feature c of layer
l, we omit c and l in the notation for brevity and to focus on
the convex characteristic.
Centralization Constraint(1⊤wl

c = 0 on Equation (8))
The Centralization Constraint is specifically applied to the
gradient of each client’s local model to stabilize the local
training process by maintaining the mean to be zero. If each
gradient of every client is centralized as:

1⊤gkm,t = 0 (14)

then it results in

−η
∑
t∈T

1⊤gkm,t = 1⊤(−η
∑
t∈T

gkm,t) = 1⊤∆wk
m = 0 (15)

Consequently, the total change of a client model during local
training becomes zero, ensuring unbiased weight on client
models.

By Equation (15), the global update adhering to the Cen-
tralization Constraint is represented as:

1

M

∑
m∈M

1⊤∆wk
m = 1⊤∆wk = 0 (16)

In Algorithm 1, to apply the centralization constraint
1⊤wl

i = 0 in practice, we define the following centering
function:

C(w) = w − 1

n
1⊤w (17)

where n denotes the number of parameters in w. This func-
tion is directly used in our algorithm to enforce the central-
ization constraint during local updates.

Orthogonal Constraint(Gl
c
⊤(wl

c − Gl
c) = 0 on Equa-

tion (8))
The orthogonal constraint align the parameters of local and
global models onto the same hyperplane orthogonal to the
initial global model at each round, mitigating the grow in

the strong features. This adjustment translates the constraint
such that the local gradient is orthogonal to the initial global
model:

(wk)⊤gkm, t = 0 (18)

then it results in

−η
∑
t∈T

(wk)⊤gkm,t = (wk)⊤(−η
∑
t∈T

gkm,t)

= (wk)⊤∆wk
m = 0

(19)

During aggregation, Equation (19) aligns the global update
as:

1

M

∑
m∈M

(wk)⊤∆wk
m = (wk)⊤∆wk = 0 (20)

In Algorithm 1, we apply the projection operator Pwk to
each update direction to ensure that local updates remain
orthogonal to the initial global parameter p = wk/∥wk∥.

Pwk(w) = (I − pp⊤)w, (21)

where I is the identity matrix, and pp⊤ is the outer product
of p with itself. This projection operator is used in our algo-
rithm to enforce the orthogonality constraint by projecting
updates onto the tangent space of the global model direction.

3.3. Weight Size as a Feature Strength

In this section, we discuss about validity of conjecture 1.
Fortunately, the paper (Liu et al.) also provided a detailed
analysis of the relationship between GSNR and weight size,
indicating a positive correlation. They considered a fully
connected network with parameters

θ = {W 1, . . . ,W lmax} (22)

where W l, bl are the weight matrix and bias of the first layer,
respectively, and so on. The activations of the l-th layer are
denoted by

al = {als(θl−1)} (23)

where s is the index for nodes/channels, and

θl−1 = {W 1, . . . ,W l−1} (24)

is the collection of parameters in the layers before l. The for-
ward pass on data sample i, where {als(θl−1)} is multiplied
by the weight matrix W l, is defined as:

oli,c =
∑
s

W l
c,sa

l
i,s(θ

l−1) (25)

where ol = {oli,c} is the output for the i-th data sample on
the l-th layer, and c is the index for nodes/channels. We use
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gl to denote the average gradient of weights of the l-th layer
W l, i.e.,

gl =
1

n

n∑
i=1

∂Li

∂W (l)
(26)

where Li is the loss of the i-th sample.

In this setting, the authors showed the following correlation
between gradient change and gradient norm size:

∆gls,c =−
λ

n2

∑
θj∈θl−1

W l
s,c

(
1

n

n∑
i=1

∂Li

∂oli,c

∂oli,c
∂θj

)2

+ other terms

(27)

where λ is the learning rate, assumed to be small enough.

This expression implies that if the gradient change ∆gls,c
and the corresponding weight W l

s,c have different signs, they
contribute to a more stable state by constructing positive
feedback during training, which increases the size of both
values. Conversely, if they have the same signs, a negative
feedback loop during training decreases the size of both
values until one of them changes its sign, resulting in a
stable state.

Therefore, considering only stable states, the size of the
weight W l

s,c is directly correlated with the gradient change

∆gls,c, positively affecting the GSNR value of rj =
g2
j

ρ2
j

on

Equation (3). Here, we decided to use the size of W l
s,c of the

global model instead of collecting gls,c statistics to calculate
GSNR values for the entire dataset. As a result, rather than
utilizing GSNR as an indicator of feature strength, which
requires collecting gradients from each client, we adopt the
weight magnitude of the global model as a proxy for feature
strength.

3.4. Training Process

As shown in Algorithm 1, FedCONST merely changes
the local learning process to constrained optimization on
convex linear constraints for Global Model Generalization.
This approach has two main advantages: (1) Using convex
constraints based on common global model, we align local
training across client models without additional communica-
tion cost in stateless manner. (2) By employing the weight
size to estimate the generalizability of the features, we en-
sure the generalizability of the FL process. Moreover, this
insight is well motivated by GSNR based analysis.

4. Experiments
4.1. Experimental Setup

We conducted experiments using the CIFAR-10 and CIFAR-
100 datasets (Krizhevsky et al., 2009). Our experiments

Algorithm 1 Training procedure of FedCONST
Input: Batch size B, communication rounds K, number of

clients M , local steps T , dataset D =
⋃

m∈[M ] Dm

Output: Global model parameters wK

Server executes:
Initialize w0 with He Initialization
for k = 0, . . . ,K − 1 do

for m = 1, . . . ,M in parallel do
Send wk to client m
wk+1

m ← FedCONST: Client executes(m,wk)

end
wk+1 ←

∑
m∈[M ]

|Dm|
|D| w

k+1
m

end
return wK

FedCONST: Client executes(m,wk):
Assign global model to the local model wk

m ← wk

for each local epoch t = 1, . . . , T do
for batch (xm,1:B , ym,1:B) ∈ Dm do

Per layer l and channel/feature c,
Center gradient: gkm,t ← C(gkm,t)

Project gradient: gkm,t ← Pwk(gkm,t)

Apply update: wk
m ← wk

m − ηgkm,t

end
end
return wk+1

m to server

spanned both cross-silo and cross-device settings. For the
cross-silo setup, we involved a total of 10 clients, while
in the cross-device setting, 10% of clients were randomly
selected from a pool of 50 or 100 participants. The data dis-
tribution among clients was governed by a Dirichlet distribu-
tion, with the α value determining the degree of heterogene-
ity; a lower α value corresponds to a more heterogeneous
distribution. For an extremely heterogeneous environment,
we used a Dirichlet α of 0.2 with 10 local training epochs,
while a more typical environment utilized an alpha of 0.5
with 5 local training epochs. Our tests were conducted on
both the LeNet-5 and ResNet-18 architectures.More detailed
settings of experiments are in the supplementary materials.

4.2. Performance Comparison

As detailed in Table 1, the LeNet-5 model consistently
outperformed the existing algorithms across all settings.
As shown in Table 1, our approach surpassed the perfor-
mance of existing algorithms in all settings on CIFAR-10
and demonstrated commendable performance on CIFAR-
100. Table 1 further reveals that in a cross-device setting,
our algorithm consistently exceeded the performance of the
other algorithms. Moreover, performance enhancement was
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Table 1. Top-1 test accuracy (%) comparison of LeNet-5 and ResNet-18 models under Cross-Device and Cross-Silo settings. The numbers
inside the parentheses represent the accuracy differences when Constraint was applied to the training of client models.

CROSS-DEVICE CROSS-SILO

CIFAR-10 CIFAR-10 CIFAR-10 CIFAR-100
MODEL ALGORITHM α = 0.5 α = 0.2 α = 0.5 α = 0.5

LENET-5

FEDAVG 46.12 46.42 53.12 17.46
FEDAVG + CONST 54.28 (+8.16) 54.79 (+8.37) 59.66 (+6.54) 26.86 (+9.40)

FEDPROX 45.58 45.27 55.15 18.42
FEDPROX + CONST 53.09 (+7.51) 56.18 (+10.91) 60.70 (+5.55) 26.78 (+8.36)

MOON 43.89 46.66 55.79 18.72
MOON + CONST 48.66 (+4.77) 52.88 (+6.22) 59.86 (+4.07) 26.76 (+8.04)

SCAFFOLD 45.66 45.67 52.74 17.66
SCAFFOLD + CONST 53.82 (+8.16) 56.62 (+10.95) 63.03 (+10.29) 26.74 (+9.08)

FEDDYN 44.93 48.05 51.05 16.79
FEDDYN + CONST 54.07 (+9.14) 55.67 (+7.62) 59.76 (+8.71) 27.14 (+10.35)

RESNET-18

FEDAVG 54.07 57.04 64.25 33.51
FEDAVG + CONST 66.51 (+12.44) 68.41 (+11.37) 72.44 (+8.19) 36.82 (+3.31)

FEDPROX 56.79 53.92 64.51 34.11
FEDPROX + CONST 63.51 (+6.72) 68.07 (+14.15) 71.96 (+7.45) 36.56 (+2.45)

MOON 57.84 51.51 68.45 35.19
MOON + CONST 66.94 (+9.10) 62.52 (+11.01) 71.84 (+3.39) 36.80 (+1.61)

SCAFFOLD 56.47 59.30 64.50 37.18
SCAFFOLD + CONST 63.49 (+7.02) 68.63 (+9.33) 75.09 (+10.59) 38.93 (+1.75)

FEDDYN 52.64 55.09 65.50 35.07
FEDDYN + CONST 64.29 (+11.65) 66.00 (+10.91) 71.76 (+6.26) 37.22 (+2.15)

FEDSAM 62.52 61.35 69.45 38.43
FEDSAM + CONST 63.45 (+0.93) 68.87 (+7.52) 72.64 (+3.19) 39.61 (+1.18)

observed when constraints were applied to algorithms repre-
sentative of either alignment or local learning generalization
methods. This indicates that our method fills the gaps and
enhances areas where existing methods fall short, leading to
a more robust and efficient FL process.

4.3. Experiment Analysis

4.3.1. STABILITY ON LOCAL TRAINING

Figure 3(a) demonstrates that our method reduces gradi-
ent variance compared to FedAvg, thereby stabilizing local
updates in environments with sparse data. Moreover, Fig-
ure 3(b) illustrates that our method enhances drift diversity,

defined as
∑

m∈M
|Dm|
|D| ∥∆wk

m∥22
∥∆wk+1∥2

2

(Li et al., 2023) ensuring

that each client learns effectively and can fully reflect its
own unique data characteristics even with constraints. The
increase in drift diversity compared to FedAvg indicates that
our method results in larger client updates after local train-
ing, enabling effective model updates despite sparse data or
parameter constraints. Overall, these results demonstrate
that our approach effectively mitigates instability in local
training, ensuring sufficient updates within the imposed
constraints.

4.3.2. MODEL ALIGNMENT ACROSS CLIENT

In our analysis of loss landscape, we shifted our analyti-
cal focus from sharpness-based metrics to convexity-based
metrics. Previous research primarily utilized the maximum
eigenvalue λmax of the model’s Hessian matrix to measure
sharpness, which correlates with generalization performance
(Mendieta et al., 2022). However, our analysis suggests that
observing the ratio of the absolute maximum eigenvalue to
the minimum eigenvalue |λmax/λmin|— a measure of con-
vexity(Rangwani et al., 2022) — more effectively captures
the essence of model alignment.

Table 2. Loss Landscape Convexness. The metric Cconvex rep-
resents the |λmax/λmin| values of ResNet-18 model in Cross-
Device settings. The term Htrace denotes Hessian trace value.

W/O CONSTRAINTS CONSTRAINTS
ALGORITHM Cconvex Htrace Cconvex Htrace

FEDAVG 2.466 -4951 31.7 10102
FEDPROX 2.739 -3873 23.09 12294
MOON 3.015 -3416 16.09 9640
SCAFFOLD 2.914 -3245 21.81 9145
FEDDYN 2.16 -4590 12.82 9121
FEDCONST 31.7 10102 - -
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((a)) Gradient Variance ((b)) Drift Diversity

Figure 3. Gradient variance and Drift diversity. Our method reduces the gradient variance, thereby stabilizing the local training of
client models. Simultaneously, it enhances drift diversity, ensuring that each client learns effectively even with constraints.

Table 2 shows how the application of constraints secures
proper alignment, thereby sculpting a more convex and
advantageous loss landscape for the global model. Fur-
thermore, a negative trace value of the Hessian suggests
convergence to a saddle point—a non-ideal scenario. Hence,
Table 2 also demonstrates that the implementation of con-
straints contributes to a more convex loss landscape, steering
the model away from saddle points towards optimal conver-
gence.

Additionally, we introduce client consistency as another
key metric, which quantifies the consistency of local
models across clients. This consistency is defined as∑

m∈M
|Dm|
|D| |∆wk

m |22, where lower values indicate that
client updates remain proportionally aligned, preventing
excessive deviations in heterogeneous data environments.

Figure 4. Consistency. Our method enhances the consistency
among clients, by ensuring a more aligned learning experience
across all clients.

The experimental results in Figure 4 confirm that our method
significantly enhances client consistency compared to Fe-
dAvg, ensuring a more aligned learning experience across

all clients. This increased consistency contributes to a struc-
tured and predictable optimization trajectory, reinforcing
the benefits of convexity-based alignment.

4.3.3. GENERALIZATION ON FEATURES OF GLOBAL
MODEL

Figure 5. Weight sizes and GSNR values. Weight magnitudes
and GSNR values sampled from the top 10% and bottom 10%
of gradient update magnitudes across clients. Both metrics show
correlation with gradient updates, suggesting their relevance to
GSNR in the federated learning setting.

Our conjecture is that if already generalizable global feature
is changed during local training of client, it harms general-
ization ability of FL process. To prove our hypothesis, we
sampled top-10% and bottom 10% of gradient update size
on changes. and we observe the GSNR value and weights
size on corresponding feature to validate our hypothesis.
And finally, we compared the GSNR value of vanilla Fe-
dAvg and our method indicating improved generalization
performance.

First, Weight sizes corresponding to top 10% of Gradient
update sizes have larger value than bottom 10%. Obser-
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Figure 6. The sum of GSNR values on a Client. The sum of
GSNR values on the initial local epoch of the proposed method is
higher, indicating that features aligned with the global model are
properly enhanced.

vation on Figure 5 indicates gradient update on client is
associated with global generalizable feature, which harms
generalization ability of global model. On GSNR values,
top 10% also has larger values showing more direct impact
of client training on generalization of global model.

After we impose our constraints that conserve common
generalizable features, Figure 6 shows increase of GSNR
values overall weight with constraints proving our method
work as our intention.

5. Conclusion
In this research, we have introduced FedCONST, a novel
FL algorithm that leverages convex constraints during opti-
mization of client model for increasing generalization. This
algorithm fosters stable local training on convex constraints,
leading to a more generalizable global model through learn-
ing common features based on corresponding weight size
of the global model. Our comprehensive experiments have
shown that FedCONST not only stabilizes the learning pro-
cess at the client level but also ensures consistent alignment
to generalizable features. In various experimental settings,
especially in the presence of highly heterogeneous data,
FedCONST consistently outperformed existing algorithms.
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A. Generalization Area and Implementation on Constraints
Figure 1 conceptually illustrates how aligning the aggregation step with the generalization area improves global generalization
in FL. This motivates our use of convex constraints that stabilize both local training and aggregation. For our method to be
effective, the constraint region must be contained within the generalization area. We argue that this condition is satisfied in
practice, as the generalization area is sufficiently large under typical training regimes.

We provide an intuitive argument to suggest that the generalization area can be sufficiently large, based on the behavior of a
l-th layer representation of a neural network:

e(l)c = ϕ
(
(e(l−1))⊤W(l)

c

)
, (28)

where ϕ is an activation function (e.g., tanh), and e
(l)
c denotes a representation within the generalization regime.

We consider whether the perturbed form

ϕ
(
e(l−1)⊤(W(l)

c +∆W(l)
c )
)
≈ e(l)c (29)

still holds under certain conditions.

Case 1: Large ∥W(l)
c ∥ (Saturation Regime). When ∥W(l)

c ∥ is large, the activation function saturates, and the output
becomes relatively insensitive to ∆W

(l)
c . Thus, a wide range of perturbations can yield generalizable representations.

Case 2: Small ∥W(l)
c ∥ (Linear Regime). When W

(l)
c is small, the activation function behaves almost linearly:

e(l)c ≈ e(l−1)⊤W(l)
c . (30)

We apply Chebyshev’s inequality:

P
(∣∣∣e(l)c − e

(l)
c,goal

∣∣∣ ≥ ε
)
≤ Var(e(l)c )

ε2
. (31)

Thus, when the variance is small, the representation stays close to the generalization target with high probability.

We note that gradient space alignment—especially orthogonal to W
(l)
c —is helpful under our convexity assumptions, and

that using OSGR-based preconditioning encourages high-GSNR updates that remain within the generalization zone.

Furthermore, generalization often means consistent loss across training and test—even if predictions are wrong—so the
region itself is inherently wide.

B. Implementation Details
B.1. Training settings

Hyperparameters. In our experiments, we configured various algorithms with specific hyperparameters:

• MOON: µ = 0.01, Temperature = 1

• FedProx: µ = 0.01

• FedDyn: α = 1

• FedSAM: ρ = 1.0

Model Configuration. We employed both the ResNet-18 and LenNet-5 architectures for our experiments. When applying
our constraints, we removed the batch normalization layer to leverage the weight normalization (WN) effect. Additionally,
biases were omitted from the models in our experiments, as they had only a minor effect on the overall model performance.

11
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Other Experimental Settings. For the training parameters, we set the local learning momentum to 0.9, applied a weight
decay of 1e-5, and used a batch size of 50. The learning rate was set to 0.01 for local training and 1.0 for global updates. All
experimental evaluations were executed utilizing two Nvidia 3090 GPUs.

B.2. Data Partitioning

Datasets. Our experiments were conducted using two well-known datasets: CIFAR-10 and CIFAR-100.

Data Distribution Across Clients. To simulate varying degrees of data heterogeneity across clients, we used Dirichlet
distributions with different Alpha values: 0.5, 0.2, and 0.05. The distribution of data across clients, under these settings, is
illustrated in Figure 9.

Local Test Data. For the evaluation of test loss on client data, we partitioned the data such that 10% of each client’s data
was reserved as local test data. This approach ensures that the test loss reflects the performance of the model under the
specific data distribution of each client.

C. Additional Experiments
C.1. Ablation Study

Impact of Constraints on Learning. To understand the influence of each constraint on the learning process, we conducted
an ablation study, examining accuracy graph and Hessian values.

Accuracy Improvements. As indicated in Table 3 (Accuracy), applying centralization and sphere constraints indepen-
dently resulted in performance enhancements. The highest improvement was observed when both constraints were applied
together.

Orthogonal Center Performance (%) Cconvex

53.12 34.83
o 56.77 65.90

o 51.99 32.27
o o 59.66 84.58

Table 3. Ablation study on the FedAvg algorithm assessing the impact of Sphere and Center optimization and their combined application
on performance. The experiments were conducted using the LeNet-5 model on the CIFAR-10 dataset, with a Dirichlet distribution of 0.5.
Performance is measured in terms of Top-1 accuracy (%) and Cconvex is defined as |λmax/λmin|.

Learning Curves and Overfitting. Observations from Figure 7 (Learning Curves) reveal that the application of sphere
constraint helps prevent overfitting, contributing to more generalized local learning.

Hessian Value Analysis. Upon examining the Hessian values ( Table 3), we found that orthogonalization constraints tend
to make the model more convex, implying better alignment among client models. centralization constraint, on the other
hand, increases the speed of training of the model.

Our analysis indicates that both othogonalization and centralization significantly impact performance. Specifically,
orthogonalization constraint align client models effectively, while centralization constraint boosts local learning, enhancing
local learning capabilities.

C.2. Hessian Values and Loss Landscape

Analysis of Hessian Values. Our observations, as detailed in Table 4, indicate an increase in the maximum eigenvalue
despite the application of constraints. This challenges the conventional interpretation correlating the decrease in maximum
eigenvalue with improved generalization, particularly in FL contexts. However, we noted a consistent increase in convexity
with the application of constraints, suggesting that convexity might be a more reliable indicator in FL environments.
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Figure 7. This figure represents the Top-1 accuracy per global epoch for the FedAvg algorithm under different constraint applications
using the LeNet-5 model on CIFAR-10.

w/o constraints constraints
Algorithm λ1/λ5 λ1 λ1/λ5 λ1

FedAvg 1.217 10.53 1.751 252.8
FedProx 1.268 10.45 1.698 265.2
MOON 1.252 9.51 1.718 258.5
SCAFFOLD 1.278 10.05 1.594 177.6
FedDyn 1.326 10.71 2.167 280.8

Table 4. In this analysis, we utilized the ratios |λ1/λ5| and the maximum eigenvalue λ1 of the Hessian matrix to assess the sharpness of
the loss landscape. A lower value in these metrics typically indicates a flatter loss landscape, which is commonly associated with better
generalization performance. Here, λ1 represents the largest eigenvalue, while λ5 denotes the fifth largest eigenvalue of the Hessian matrix.
The table above demonstrates how the application of constraints leads to a sharper loss landscape, as indicated by these metrics.

Convexity and Model Alignment. The relationship between constraints and a more convex loss landscape is evident in
Figure 10 (Loss Landscape). This convexity, indicative of effective model alignment, is further supported by Figure 11
(Eigen Spectral Density), which implies that constraints align the model towards more convex points.

These findings demonstrate the importance of considering convexity in the analysis of Hessian matrices in a FL setting.
Unlike traditional settings where the focus is often on the maximum eigenvalue as a generalization indicator, our results
highlight the significance of convexity in understanding model alignment and performance in FL. Therefore, observing
convexity in the loss landscape and Hessian matrices could offer a more effective approach for analyzing and enhancing
model performance in federated environments.

C.3. More analysis on Learning Dynamics

Cosine Similarity and Local Learning. The Cosine Similarity ( Figure 15) analysis reveals that the application of
constraints does not hinder the variability of cosine similarity. In fact, we observe an increased change on cosine similarity,
suggesting that local learning is not restricted but appropriately regulated by the constraints. This indicates a balanced
approach, where constraints guide the learning process without stifling the model’s ability of local learning.

GSNR and Model Generalization The GSNR analysis highlights the impact of constraints on model alignment and
generalization. Figure 14(a) presents the sum of GSNR values on a client at the initial local training step of each round. A
higher GSNR at this stage suggests that FedCONST effectively leverages alignment with the global model to extract more
generalizable features than FedAvg. Conversely, Figure 14(b) shows the sum of GSNR values at the final local training
step of each round, where client models tend to drift from the global model. The observed decrease in GSNR values in
FedCONST indicates that the constraints mitigate overfitting to client-specific data. This suggests that FedCONST maintains
a more stable generalization process by preventing excessive reliance on localized information while preserving the overall
adaptability of the model.
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Conjecture on Weight Magnitude and Generalization In Conjecture 1, we proposed that the magnitude of model
parameters may reflect feature generality, and that preserving high magnitude weights could promote better generalization.
To support this, we present a simple empirical analysis using t-SNE visualizations of global feature representations.

Specifically, we compare two variants of the global model: one where the bottom 20% of weights (by magnitude) are zeroed
out, and another where the top 20% are removed.

We observe that excluding the bottom 20% of weights results in more clearly clustered and semantically aligned feature
representations. In contrast, removing the top 20% of weights yields less structured outputs. This supports our conjecture
that small-magnitude weights contribute more noise than signal, and that weight magnitude encodes meaningful signals
about feature generality.

((a)) Excluding bottom 20% of weights ((b)) Excluding top 20% of weights

Figure 8. t-SNE visualization of feature representations from the global model. Removing small-magnitude weights (left) results in
more clearly clustered and semantically aligned features, while removing large-magnitude weights (right) does not significantly improve
semantic structure. This supports our conjecture that weight magnitude correlates with feature generality.
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((a)) 10 clients, CIFAR-100, α = 0.2 ((b)) 10 clients, CIFAR-100, α = 0.05 ((c)) 10 clients, CIFAR-10, α = 0.5

((d)) 10 clients, CIFAR-10, α = 0.2 ((e)) 50 clients, CIFAR-10, α = 0.5 ((f)) 100 clients, CIFAR-10, α = 0.5

Figure 9. Example of data distribution according to (Client Number, Dataset, Dirichlet alpha). Each subfigure represents the data
distribution under different client settings and Dirichlet α values.
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((a)) FedAvg ((b)) FedAvg with con-
straints

((c)) FedProx ((d)) FedProx with con-
straints

((e)) SCAFFOLD

((f)) SCAFFOLD with
constraints

((g)) FedDyn ((h)) FedDyn with con-
straints

((i)) MOON ((j)) MOON with con-
straints

Figure 10. This figure presents the experimental results of the loss landscape for the ResNet-18 model in a cross-device setting of ??.
Noise was introduced to the weight ∥W∥ in the form of a random vector ϵ, scaled such that the ratio ∥ϵ∥/∥W∥ ranged from 0 to 1. The
results demonstrate that applying constraints leads to a more convex loss landscape, indicating an enhanced generalization capability
under these conditions.

((a)) FedAvg ((b)) FedAvg with con-
straints

((c)) FedProx ((d)) FedProx with con-
straints

((e)) SCAFFOLD

((f)) SCAFFOLD with
constraints

((g)) FedDyn ((h)) FedDyn with con-
straints

((i)) MOON ((j)) MOON with con-
straints

Figure 11. This figure illustrates the experimental results of the Eigen Spectral Density of the Hessian Matrix for the ResNet-18 model
in a cross-device setting. Prior to the application of constraints, the density of negative eigenvalues is more significant, indicating the
presence of saddle points in the loss landscape.
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((a)) CIFAR-10, α = 0.2, local epochs = 10, LeNet-5 ((b)) CIFAR-10, α = 0.5, local epochs = 5, LeNet-5

((c)) CIFAR-10, α = 0.2, local epochs = 10, ResNet-18 ((d)) CIFAR-10, α = 0.5, local epochs = 5, ResNet-18

((e)) CIFAR-100, α = 0.5, local epochs = 5, LeNet-5 ((f)) CIFAR-100, α = 0.5, local epochs = 5, ResNet-18

((g)) CIFAR-100, α = 0.05, local epochs = 5, ResNet-18

Figure 12. Top-1 accuracy per global epoch for various algorithms conducted under cross-silo settings, with specific conditions (Dataset,
Dirichlet alpha, local epoch, Model). This comparison highlights the performance variations across algorithms and the impact of different
environments.
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((a)) LeNet-5 with 100 clients ((b)) ResNet-18 with 50 clients

Figure 13. Top-1 accuracy per global epoch for various algorithms on CIFAR-10 under a cross-device setting, with a Dirichlet alpha of
0.5 and 10% client participation per round. Figure 13(a) shows results for LeNet-5 with 100 clients, and Figure 13(b) for ResNet-18 with
50 clients.

((a)) GSNR value on Initial Local Epoch ((b)) GSNR value on Final Local Epoch

Figure 14. Figure 14(a) shows the sum of GSNR values on a client at initial local training step of each round. When client model is
aligned with global model, FedCONST harvests more generalizable features than FedAvg. Figure 14(b) shows the sum of GSNR values
on a client at final local training step of each round. When client model is drifted from global model, there are less generalizable common
features. Decrease in GSNR values on FedCONST indicates less overfitting to client data.
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((a)) CIFAR-10, α = 0.5, local epochs = 5, LeNet-5 ((b)) CIFAR-10, α = 0.5, local epochs = 5, LeNet-5

((c)) CIFAR-10, α = 0.2, local epochs = 10, LeNet-5 ((d)) CIFAR-10, α = 0.2, local epochs = 10, LeNet-5

((e)) CIFAR-100, α = 0.05, local epochs = 5, ResNet-18 ((f)) CIFAR-100, α = 0.05, local epochs = 5, ResNet-18

Figure 15. This figure displays the L2 norm of a client model and the cosine similarity between a client and the global model at each local
epoch, for various algorithms implemented under cross-silo settings. The experiments were conducted with specific conditions (Dataset,
Dirichlet alpha, local epoch, Model). The application of constraints consistently maintains the weight’s L2 norm throughout training. In
the case of ResNet-18, which includes batch normalization layers, the weight norm is naturally consistent. Notably, a large change in
cosine similarity during training with constraints suggests that local learning is dynamically evolving and not overly restricted.
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