
Foundation Models for Decision Making Workshop at NeurIPS 2023

SYNAPSE: TRAJECTORY-AS-EXEMPLAR PROMPTING
WITH MEMORY FOR COMPUTER CONTROL

Longtao Zheng Rundong Wang Xinrun Wang Bo An
Nanyang Technological University, Singapore
longtao001@e.ntu.edu.sg

ABSTRACT

Building agents with large language models (LLMs) for computer control is a
burgeoning research area, where the agent receives computer states and performs
actions to complete complex tasks. Previous computer agents have demonstrated
the benefits of in-context learning (ICL); however, their performance is hindered
by several issues. First, the limited context length of LLMs and complex com-
puter states restrict the number of exemplars, as a single webpage can consume
the entire context. Second, the exemplars in current methods, such as high-level
plans and multi-choice questions, cannot represent complete trajectories, lead-
ing to suboptimal performance in long-horizon tasks. Third, existing computer
agents rely on task-specific exemplars and overlook the similarity among tasks,
resulting in poor generalization to novel tasks. To address these challenges, we
introduce SYNAPSE, a computer agent featuring three key components: i) state
abstraction, which filters out task-irrelevant information from raw states, allowing
more exemplars within the limited context, ii) trajectory-as-exemplar prompting,
which prompts the LLM with complete trajectories of the abstracted states and
actions to improve multi-step decision-making, and iii) exemplar memory, which
stores the embeddings of exemplars and retrieves them via similarity search for
generalization to novel tasks. We evaluate SYNAPSE on MiniWoB++, a standard
task suite, and Mind2Web, a real-world website benchmark. In MiniWoB++,
SYNAPSE achieves a 99.2% average success rate (a 10% relative improvement)
across 64 tasks using demonstrations from only 48 tasks. Notably, SYNAPSE is
the first ICL method to solve the book-flight task in MiniWoB++. SYNAPSE also
exhibits a 56% relative improvement in average step success rate over the previous
state-of-the-art prompting scheme in Mind2Web.1

1 INTRODUCTION

Creating agents capable of performing complex tasks to reduce human effort in routine operations is
a long-standing goal in artificial intelligence (DeepMind Interactive Agents Team, 2021). A critical
and pragmatic step towards this ambitious vision is to develop agents that are proficient in computer
control (Shi et al., 2017; Liu et al., 2018). Such an agent perceives states of the computer, e.g.,
screenshots or webpage HTML, and performs actions via keyboard and mouse to complete tasks
specified in natural language, such as flight booking and email management. Different from training-
based methods (Humphreys et al., 2022) that rely on large-scale behavioral cloning (BC) (Pomer-
leau, 1989) and deep reinforcement learning (RL) (Sutton and Barto, 2018), recent studies highlight
the advantages of in-context learning (ICL) (Brown et al., 2020; Wei et al., 2022a;b) in achiev-
ing general and data-efficient computer control (Yao et al., 2022a; Kim et al., 2023; Deng et al.,
2023). Specifically, these computer agents utilize few-shot demonstrations, also termed exemplars,
to prompt large language models (LLMs) (Brown et al., 2020; Chowdhery et al., 2022; OpenAI,
2023, inter alia) to generate actions. For example, RCI (Kim et al., 2023) prompts LLMs to gener-
ate a high-level plan and grounds each action based on the plan. Concurrent with our work, Deng
et al. (2023) introduce Mind2Web as a benchmark for real-world web navigation and a computer
agent, MindAct. It prompts LLMs to predict the next action using multi-choice questions (MCQ),
with candidate choices generated by an element-ranking model.

1Code available at https://ltzheng.github.io/Synapse.

1

https://ltzheng.github.io/Synapse

Foundation Models for Decision Making Workshop at NeurIPS 2023

Environment

Exemplary Trajectories

Similarity

III. Exemplar Memory

History
Task: Book a flight from ...
Observation: <html> … </html>
Action: agent.click(...)
Observation: <html> … </html>

Next Action Action: agent.type(...)

Raw State
Task: Book a flight from ...
<html>

<head>
<title>Airbnb</title>

</head>
<body><h1>...</h1></body>
</html>

Clean State
Task: Book a flight from ...
<html>

<head>
<title>Airbnb</title>

</head>
<input id="where" type="text">

</html>

State Abstraction Prompts

I. State Abstraction II. Trajectory-as-Exemplar

Task
Metadata

Embedding
Models

book-flight
[1.1, 2.8, …]

email-inbox
[2.4, 0.6, …]

Large Language Models

Search

Figure 1: SYNAPSE consists of three main components. The process begins with state abstraction,
where raw computer states (e.g., the HTML of webpages) are processed into concise task-relevant
observations via few-shot learning of the LLM. This step reduces the number of tokens needed for
each state, a prerequisite for the second component: trajectory-as-exemplar (TaE) prompting. In
TaE prompting, the LLM is prompted with exemplary trajectories (a sequence of abstracted states
and actions) and the current history to determine the next action. These prompts are retrieved from
the exemplar memory using similarity search. The retrieval process utilizes the embeddings of
task metadata, with each metadata mapped to the corresponding exemplars. Fig. 2 further shows an
illustrative comparison of TaE prompting with the prompting schemes of other computer agents.

Despite the promising results of previous LLM-based computer agents, they still fail to solve some
tasks within MiniWoB++ (Shi et al., 2017; Liu et al., 2018), a relatively simplified computer control
task suite, mainly due to the following issues. First, the limited context length of LLMs, combined
with complex computer states, poses challenges for few-shot learning. For example, the book-flight
task in MiniWoB++ is particularly challenging due to the extensive length of the webpage dis-
playing flight details. Also, the task-irrelevant information in raw states can distract LLMs from
generating correct actions. Second, the exemplar structures used by existing computer agents can
lead to error accumulation in multi-round LLM queries and struggle to capture the complete tra-
jectory information. Specifically, existing computer agents query LLMs at each step, and neither
high-level plans nor MCQs can represent full trajectories. For example, even when prompted with a
correct step-by-step plan and previous actions, RCI may still incorrectly predict the next action. As
a result, existing ICL methods struggle to solve long-horizon tasks. Even for simplified tasks, they
still rely on self-correction. Third, current computer agents require task-specific exemplars within
a predefined scope. For example, in MiniWoB++, both email-inbox and email-inbox-nl handle
email-related tasks. Similarly, multi-orderings and multi-layouts share similar interfaces. However,
existing methods overlook this task similarity and hard-code the mapping from tasks to exemplars.

To address these challenges, we present SYNAPSE, an LLM-powered computer agent featuring a
novel prompting scheme and a memory mechanism. As illustrated in Fig. 1, SYNAPSE has three
core components: i) state abstraction, which extracts task-relevant observations from raw states to
reduce the token length per trajectory, ii) trajectory-as-exemplar (TaE) prompting, which utilizes full
successful trajectories as few-shot exemplars to prompt the LLM for enhanced multi-step decision-
making, and iii) exemplar memory, which stores successful trajectories and retrieves relevant ones
via similarity search for generalization to novel tasks.

We thoroughly evaluate SYNAPSE on two benchmarks: MiniWoB++ (Shi et al., 2017; Liu et al.,
2018), a standard research task suite, and Mind2Web (Deng et al., 2023), a dataset across diverse
domains of real-world web navigation. In MiniWoB++, SYNAPSE is the first ICL method that
achieves human-level performance (Fig. 3). Specifically, SYNAPSE solves 64 tasks with a success
rate of 99.2% using demonstrations from only 48 tasks without relying on self-correction. In com-
parison, the current ICL state-of-the-art (SOTA) approach (Kim et al., 2023) is limited to handling
54 tasks, requiring task-specific demonstrations for each. Compared to BC+RL and fine-tuning
SOTA baselines, SYNAPSE achieves superior performance while being simpler, more flexible, and

2

Foundation Models for Decision Making Workshop at NeurIPS 2023

more sample-efficient. A notable achievement is its success on the book-flight task, which requires
long-horizon decision-making under intricate states. We further demonstrate the effectiveness of our
approach in Mind2Web by incrementally augmenting the LLM with three components of SYNAPSE,
i.e., state abstraction, TaE prompting, and exemplar memory. When the underlying LLM is GPT-3.5,
we achieve improvements of 32%, 50%, and 56% in the step success rate over MindAct, the SOTA
ICL method in this domain. When we use CodeLlama-7B (Roziere et al., 2023), SYNAPSE also
achieves an average 2.5× step success rate compared to MindAct. These experiments showcase the
superiority of SYNAPSE over existing computer agents in both standard and real-world benchmarks.

2 RELATED WORK

Building Agents with LLMs. There has been increasing attention on building autonomous agents
with LLMs (Yang et al., 2023; Mialon et al., 2023; Xi et al., 2023; Park et al., 2023). Huang et al.
(2022) and Brohan et al. (2023) combined the LLM-generated plan with an embedding and a value
function to determine robot policies, respectively. Inner Monologue (Huang et al., 2023) incorpo-
rated environment feedback into a closed-loop system. These methods focused on prompting for
better high-level semantic plans and relied on BC or RL for low-level motor control policies. Unlike
robotics, low-level actions for computer control are highly semantic, and the effective prompting
scheme for directly grounding actions remains unexplored. To address this, SYNAPSE proposes
trajectory-as-exemplar prompting for directly grounding these actions. Recent efforts to improve
the capabilities of reasoning, planning, and coding of LLMs, such as chain-of-thought (Wei et al.,
2022a; Kojima et al., 2022), least-to-most (Zhou et al., 2022), ReAct (Yao et al., 2022a), tree-of-
thoughts (Yao et al., 2023), Reflexion (Shinn et al., 2023), and self-debugging (Chen et al., 2023),
can be combined with SYNAPSE to improve decision-making. The methods that leveraged external
tools (Wu et al., 2023a; Shen et al., 2023; Schick et al., 2023; Lu et al., 2023; Xu et al., 2023) are
also orthogonal to SYNAPSE. Code as Policies (Liang et al., 2023) and ProgPrompt (Singh et al.,
2023) formulated agent policies as code generation. Similarly, SYNAPSE can be strengthened using
code for both state abstraction and action generation. Voyager (Wang et al., 2023a) used a skill
library for life-long skill acquisition, which also complements our framework. Wu et al. (2023b)
also identified the issue of limited context, using a pretrained question-answering language model
to filter states, similar to MindAct. In comparison, our state-abstraction principle can leverage both
LLMs (few-shot learning) and pretrained state abstraction models.

Agents for Computer Control. In the pursuit of creating agents capable of human-like com-
puter interactions, MiniWoB++ task suite (Shi et al., 2017; Liu et al., 2018) has become a standard
benchmark. Early attempts to solve MiniWoB++ primarily used BC and RL (Shi et al., 2017; Liu
et al., 2018; Gur et al., 2018; Jia et al., 2018; Gur et al., 2021), which were not sufficient to achieve
human-level performance. A notable breakthrough came with CC-Net (Humphreys et al., 2022),
which achieved human-level performance but required an extensive dataset of 2.4 million demon-
strations, equivalent to 6,300 hours of human effort. However, it is challenging to generalize this
approach for new tasks and user customization. WebN-T5 (Gur et al., 2023a), a fine-tuned variant
of the pretrained T5 model (Raffel et al., 2020), was trained on 12,000 demonstrations across 56
tasks. Similarly, WebGUM used 346,827 demonstrations to solve them. However, these fine-tuned
LLMs still demanded a large amount of data and fell short of human performance in MiniWoB++.
WebGPT (Nakano et al., 2021) and WebShop (Yao et al., 2022b), which operated in web-browsing
environments, focused more on refining search queries rather than on general computer control.
Recently, RCI (Kim et al., 2023) employed recursive self-correction to solve MiniWoB++ with a
success rate of 90.6% in 54 tasks. However, it relied on task-specific exemplars, which limited its
generalization to novel scenarios. In contrast, SYNAPSE achieves better performance in MiniWoB++
without relying on self-correction, using demonstrations from fewer tasks. There is also a lot of con-
current work in building computer agents and benchmarks. AdaPlanner (Sun et al., 2023) utilized
environment feedback for self-correction and achieved a success rate of 92.9% in 53 tasks, but it
had similar issues to RCI. Pix2Act (Shaw et al., 2023) solved 59 MiniWoB++ tasks with tree search
and BC on 1.3 million demonstrations. WebAgent (Gur et al., 2023b) employed a small element-
ranking model for HTML state filtering and an LLM for few-shot action generation, but it did not
investigate the exemplar structure and memory. Among many sophisticated benchmarks, such as
Mind2Web (Deng et al., 2023), AgentBench (Liu et al., 2023a), WebArena (Zhou et al., 2023), and
Android in the Wild (Rawles et al., 2023), we choose Mind2Web for the real-world evaluation.

3

Foundation Models for Decision Making Workshop at NeurIPS 2023

3 SYNAPSE

As illustrated in Fig. 1, SYNAPSE consists of three main components: state abstraction, trajectory-
as-exemplar prompting, and exemplar memory. Here is the general pipeline of SYNAPSE: when a
task occurs, SYNAPSE first retrieves relevant few-shot exemplars from memory by similarity search
over the embedding space of task metadata, e.g., task descriptions and initial states. At each step,
SYNAPSE first prompts the LLM to convert raw states into clean, task-relevant observations. Exem-
plary trajectories and the current trajectory (a task description and a sequence of observation-action
pairs) are subsequently fed into the LLM to generate the next action.

3.1 PROBLEM SETTING

In this work, we focus on computer control tasks, where an agent interacts with the environment to
accomplish a task specified by natural language. The state and action space for a computer agent
are consistent with how humans interact with computers. At each step, it receives a computer state,
such as HTML of webpages or screenshots, and performs actions via keyboard and mouse. The
actions can be either code or natural language, depending on the benchmarks. As the decision-
making engine, LLMs are fed with few-shot exemplars to process raw states into clean observations
and generate actions. When the task is completed, the trajectory is considered successful.

3.2 STATE ABSTRACTION

The number of exemplars in few-shot learning can drastically influence the performance of LLM-
powered computer agents (Wang et al., 2023b; Kim et al., 2023). However, the context limits of
LLMs, combined with the intricacy of computer states, often restrict the number of exemplars. To
illustrate, directly processing long HTML documents of real-world websites can be prohibitively
costly because of many task-irrelevant elements. As a result, the performance of existing computer
agents is hindered by the limited number of exemplars, and they often incorporate self-correction
as a remedy. Moreover, many task-irrelevant elements in raw HTML states can potentially distract
LLMs from accurate action generation. Even though some LLMs can handle longer inputs, their
performance becomes worse as the input context grows longer (Liu et al., 2023b).

To reduce the length of each state, SYNAPSE takes advantage of the few-shot learning ability of
LLMs to extract task-relevant information from raw states and form clean observations for subse-
quent action generation, as shown in Fig. 1. Specifically, we propose few-shot state abstraction
prompts in both explicit and implicit forms. For scenarios where the context can handle multiple
states, such as email-inbox in MiniWoB++, we apply explicit abstraction through state-observation
pairs, denoted as ⟨state, observation⟩. In this case, the LLM is prompted with these pairs as few-
shot exemplars, followed by the current raw state, to generate the clean observation. Alternatively,
in scenarios with complex states where explicit abstraction is not applicable, such as book-flight
in MiniWoB++, we adopt implicit abstraction by pairing task descriptions and state-parsing code,
denoted as ⟨task, code⟩. We feed these pairs as few-shot exemplars to the LLM, along with the cur-
rent task, to produce the code. This code takes the task and the raw state as parameters and returns
the clean observation. If the code execution raises an error, we ask the LLM to perform zero-shot
state abstraction. Within Mind2Web, we further demonstrate that the state abstraction principle can
aid in effectively utilizing existing state abstraction tools. Specifically, Mind2Web has a pretrained
element-ranking model that ranks and filters HTML elements to obtain a clean observation com-
prising the top-k elements. As a simplified implementation of state abstraction, we set k to 3 and
5 for the previous and current observations, respectively. In comparison, the SOTA method set k
to 50. Although this reduces the recall from 86% to 53%, i.e., only 53% of the clean observations
contain the target element, it achieves a higher step success rate (Sec. 4.4). State abstraction shrinks
long-winded raw states into concise and shorter ones, enabling trajectory-as-exemplar prompting
(Sec. 3.3), which is impossible for previous methods due to context limits.

3.3 TRAJECTORY-AS-EXEMPLAR PROMPTING

The prompts for action generation in previous computer agents often overlook the sequential nature
of decision-making. For example, each RCI exemplar consists of a high-level plan, while Min-
dAct formulates exemplars as step-by-step MCQs, as illustrated in Fig. 2. Without considering the

4

Foundation Models for Decision Making Workshop at NeurIPS 2023

complete trajectories, these methods struggle to capture previous environment interactions. Fur-
thermore, these methods query LLMs for one action at each step, leading to error accumulation over
time. Therefore, these methods require self-correction even for simplified scenarios in MiniWoB++,
especially for tasks with many steps and repeated actions, such as use-autocomplete and use-spinner.

Task: Use the terminal below to delete a
file ending with the extension .gif
Plan:
1. Type "ls" command to list all files in the
terminal.
2. Type "rm [filename]" command to delete
the file ending with ".gif".
3. Press "enter" key after typing each
command to execute the command.

Task: Use the terminal below to delete a
file ending with the extension .gif
HTML state: <html> … user$ ls …
script.zip shark.gif … </html>
Previous actions:
agent.type('ls'), agent.press('enter')
What should be the next action?
A. None of the above
B. agent.press('enter')
C. agent.type('rm shark.gif’)
Answer: C

Task: Use the terminal below to delete a
file ending with the extension .gif
Observation: <html> … user$ … </html>
Action:
agent.type('ls')
agent.press('enter')
Observation: <html> … user$ ls …
script.zip shark.gif … </html>
Action:
agent.type('rm shark.gif')
agent.press('enter')

RCI MindAct Trajectory-as-Exemplar

Figure 2: Comparison of trajectory-as-exemplar prompting with other prompting schemes. The
illustration is based on the terminal task in MiniWoB++, where the agent is asked to delete a file
ending with a specific extension. To solve this task, RCI (Kim et al., 2023) prompts the LLM with a
step-by-step plan combined with the current state and the previous actions to generate each action,
while MindAct (Deng et al., 2023) prompts the LLM with MCQ-formatted exemplars at each step.
In contrast, SYNAPSE uses a straightforward prompting scheme based on trajectory-level exemplars.
This exemplar structure offers a consistent and interactive format, is more informative, and enables
the LLM to produce temporally abstracted actions until a new state is required. As shown above, the
LLM generates two consecutive actions: type(ls) and press(enter) without querying the new state.
After executing these actions, it pauses to receive the new state for subsequent actions. We provide
several complete trajectories in Appendix C for illustration.

To address this challenge, we introduce trajectory-as-exemplar (TaE) prompting, utilizing complete
trajectories to prompt the LLM for action generation, formatted as ⟨task, observation, action, . . . ,
observation, action⟩. The first step of TaE prompting is to feed the LLM with successful trajectories.
Subsequently, the LLM is prompted with the current trajectory (the task description and previous
clean observations and actions) to produce the next action. Take Fig. 2 as an example, where the
agent is asked to delete an item using the terminal. We pass a few successful trajectories to the LLM
to illustrate how the problem is solved, followed by the current task description “Delete a file ending
with the extension .gif” and the clean observation representing “the terminal is empty”. We then
execute the action returned by the LLM (agent.type(ls), agent.press(enter)) and construct the next
prompt by appending the action and the next clean observation to the prompt. This process iterates
until the agent completes the task or reaches the maximum number of steps. Similarly, in Mind2Web,
we iteratively append states filtered by the element-ranking model and target actions to the prompt
since it is a static dataset. This straightforward prompting scheme enhances the decision-making
ability of the LLM for several reasons. First, the consistent format of interleaved observations and
actions is well-suited for grounding actions, which allows conveniently parsing actions and setting
stop tokens for LLM responses. Also, it provides more information for decision-making. More
importantly, it implicitly prompts the LLM to generate temporally abstracted actions and query new
states only when necessary. Temporal abstraction also results in lower cost and latency. Com-
pared to human-crafted plans and MCQs, TaE exemplars can also be directly converted from human
demonstrations. Therefore, TaE prompting improves the action accuracy in long-horizon tasks.

3.4 EXEMPLAR MEMORY

Previous computer agents rely on task-specific exemplars. For example, the mapping from tasks to
few-shot exemplars is hard-coded in the RCI agent. Therefore, it requires exemplars for each of the
54 tasks tested, despite analogous tasks and interfaces, such as email-inbox and email-inbox-nl-turk,
click-checkboxes-large and click-checkboxes-transfer, etc. In other words, existing computer agents
lack a mechanism that matches relevant exemplars and tasks automatically. As a result, these agents
cannot leverage task similarity and struggle to generalize to new tasks.

To exploit task similarity and enable generalization, SYNAPSE introduces exemplar memory D =
(K,V), where K is a fixed-sized array of embedding vectors of task metadata and V is the cor-

5

Foundation Models for Decision Making Workshop at NeurIPS 2023

responding state abstraction prompts and exemplary trajectories. This memory is constructed by
encoding all the metadata using an embedding model and storing their corresponding exemplars in
a vector database. As illustrated in Fig. 1, for a given task, SYNAPSE first encodes the task metadata
and performs similarity search in the vector database, which retrieves relevant trajectories as few-
shot exemplars. Formally, the retrieval process can be denoted as arg top-nd∈D sim(q, d) where q
is the query metadata and sim is the Euclidean distance in the embedding space. In MiniWoB++,
the metadata consists of the task description concatenated with the initial state from five random
seeds of the selected 48 tasks. We retrieve the top three exemplars from memory and use the most
common one to retrieve its exemplars, for there is a clear task division. For example, if the retrieved
exemplars belong to enter-date, enter-date, and click-button, we retrieve all exemplars of enter-date.
In Mind2Web, we encode the website name, domain, and task description as metadata for trajecto-
ries in the training set, and retrieve the corresponding exemplars of matched metadata for few-shot
learning. Using the exemplar memory, SYNAPSE can automatically determine which exemplars to
prompt, which lays the foundation for a general-purpose and adaptive computer agent.

4 EVALUATION

We evaluate our approach on two benchmarks, MiniWoB++ and Mind2Web. The MiniWoB++
task suite integrates diverse tasks that mirror the intricacies of real-world human-computer interac-
tions (Shi et al., 2017; Liu et al., 2018). Although it is a relatively simplified environment, current
computer agents struggle to solve several challenging tasks, such as book-flight, click-checkboxes-
soft, and use-autocomplete. Mind2Web (Deng et al., 2023) is a realistic dataset containing human
demonstrations of open-domain tasks from various real-world websites, such as Airbnb and Twitter.
It measures in-the-wild generalization across different tasks, websites, and domains.

4.1 EXPERIMENTAL SETUP

To ensure fair comparisons, we query the same APIs of LLMs as in the prior work. In the
MiniWoB++ experiments, we query gpt-3.5-turbo-0301 and run 50 episodes to produce
the results for each task. For Mind2Web, the default LLM is gpt-3.5-turbo-16k-0613. We
configure the temperature to 0, i.e., greedy decoding. We use text-embedding-ada-002 as
the embedding model. For efficient retrieval in large-scale memory, we use Faiss (Johnson et al.,
2019) to store embeddings and perform similarity search.

For the environment setup in MiniWoB++, we follow the configurations of RCI (Kim et al., 2023).
The state space is the raw HTML code, while the action space includes click-xpath, move-mouse,
type, press, and click-options. The main metric here is the success rate of the agent in accomplishing
tasks. In Mind2Web, the observation space is the HTML provided in the dataset, and the action
space includes click, type, and select. The metrics we measure include element selection accuracy
(Ele. Acc), the success rate for each step in a task (Step SR), and the success rate for the whole
task (SR) against the human-annotated ground truth. The Mind2Web dataset is split into a training
set and three test sets: Cross-Task, Cross-Website, and Cross-Domain, to evaluate generalizability
over tasks from the same websites, unseen websites from similar domains, and completely unseen
domains in the training set, respectively. We only store the training set in the exemplar memory.

4.2 BASELINES

We conduct extensive experiments to evaluate the performance of SYNAPSE in comparison to the
SOTA approaches on MiniWoB++. For BC+RL baselines, we use CC-Net (Humphreys et al., 2022)
and Pix2Act (Shaw et al., 2023), both of which combine large-scale BC and RL. In terms of fine-
tuning baselines, we compare with WebGUM (Furuta et al., 2023) and WebN-T5 (Gur et al., 2023a),
two language models fine-tuned on a large number of demonstrations. As for ICL methods, the
baselines are RCI (Kim et al., 2023) and AdaPlanner (Sun et al., 2023), both of which incorporate
self-correction to solve 54 and 53 MiniWoB++ tasks, respectively. We also include human scores
sourced from Humphreys et al. (2022) for additional benchmarking. In Mind2Web, we compare
with MindAct (Deng et al., 2023), the current SOTA ICL method in this benchmark.

6

Foundation Models for Decision Making Workshop at NeurIPS 2023

Synapse
Pix2Act*

CC-Net HumanAdaPlanner*
RCI WebGUM

Pix2Act (BC)*
WebN-T5

CC-Net (BC)

0.0

0.2

0.4

0.6

0.8

1.0
Av

er
ag

e
su

cc
es

s r
at

e 0.992 0.962 0.935 0.935 0.929 0.906 0.803 0.665 0.484 0.305

MiniWoB++ success rate across tasks
Synapse ICL BC+RL Human Fine-tuning

100 101 102 103 104 105

Amount of exemplars per task
0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

su
cc

es
s r

at
e

 Synapse
 RCI

CC-Net

CC-Net (BC)

 WebN-T5

WebGUM

MiniWoB++ performance vs data efficiency

Figure 3: SYNAPSE is the first ICL method that achieves human-level performance in MiniWoB++.
It outperforms previous self-correction methods, including RCI and AdaPlanner. A comprehensive
task-wise evaluation is shown in Appendix A. *Pix2Act and AdaPlanner are concurrent with our
work. We excluded them from the right-side figure due to their overlap with CC-Net and RCI. The
outlier tasks are determined with an interquartile range of 1.5.

4.3 ANALYSIS ON MINIWOB++

Fig. 3 showcases the average performance of the various methods across tasks. With a mean suc-
cess rate of 99.2%, SYNAPSE achieves human-level performance and outperforms all baselines
on MiniWoB++. As shown in Fig. 4a, SYNAPSE outperforms BC+RL SOTA, especially on text-
processing tasks, e.g., terminal and text-transform, while being more flexible. Compared to ICL
(Fig. 4b) and fine-tuning SOTA (Fig. 4c), SYNAPSE achieves better performance on all tasks. It is
particularly noteworthy that its superiority does not rely on self-correction. In comparison, RCI and
AdaPlanner, although equipped with self-correction, fail to achieve comparable performance.

tic-tac-toe
click-checkboxes-soft

count-shape

click-menu

use-slider
social-media

find-word
book-flight

simple-arithmetic

social-media-some

copy-paste

simple-algebra

social-media-all

click-checkboxes-large

copy-paste-2

text-transform

click-scroll-list

terminal

0

1

Su
cc

es
s r

at
e

CC-Net Synapse

(a) SYNAPSE vs CC-Net.

click-checkboxes-large

email-inbox-forward-nl-turk

social-media-some

navigate-tree

use-spinner

tic-tac-toe
text-transform

click-tab-2-hard

identify-shape

click-tab-2
multi-layouts

click-checkboxes-soft

login-user-popup

click-collapsible-2

use-autocomplete

count-shape

guess-number

0

1

Su
cc

es
s r

at
e

RCI Synapse

(b) SYNAPSE vs RCI.

click-collapsible-2

click-tab-2
tic-tac-toe

count-shape

click-shape

social-media-some

click-dialog-2

click-menu

click-color

social-media-all

choose-list

choose-date

guess-number

use-spinner

click-scroll-list

click-shades

enter-time

0

1

Su
cc

es
s r

at
e

WebGUM Synapse

(c) SYNAPSE vs WebGUM.

Figure 4: Task-wise comparisons between SYNAPSE and various SOTA methods. For clarity, the
bars in each figure are arranged in ascending order based on the success rate differences. Tasks not
reported by other methods and those with differences less than 0.05 are not included.

Compared to previous ICL methods, SYNAPSE overcomes limitations related to context length,
complicated states, and multi-step error accumulation (Fig. 4b). First, SYNAPSE outperforms them
on tasks requiring detailed state understanding, such as click-collapsible-2, click-tab-2-hard, and
count-shape. These results highlight the effectiveness of SYNAPSE in accurately capturing complex
HTML states, while RCI consistently performs worse. Second, SYNAPSE significantly improves
performance on tasks involving many steps or repeated actions by reducing the error accumulation
in multi-round LLM queries, such as use-autocomplete, use-spinner, etc. Third, SYNAPSE can solve
tasks that these approaches cannot handle due to the limited context length, such as book-flight and
click-pie (Fig. 5). Moreover, it can generalize from existing exemplars to unseen tasks because it
does not rely on task-specific exemplars. Therefore, SYNAPSE can solve 64 tasks, more than all
previous ICL methods, using exemplars from only 48 tasks.

Most of the observed failure cases are due to incorrect reasoning by LLMs. For example, in some
cases of the count-shape task, the LLM miscounts the number of target items, leading to the selection
of an incorrect answer. Similarly, in the text-transform task, the LLM occasionally produces actions
with characters similar to, but different from, those in the HTML (e.g., recognizing jrpf as jrfp).

7

Foundation Models for Decision Making Workshop at NeurIPS 2023

4.4 EVALUATION ON REALISTIC WEBSITES

We also validate the effectiveness of the state abstraction principle, TaE prompting, and exemplar
memory in the Mind2Web experiments. The current SOTA agent in this benchmark, MindAct,
leverages an element-ranking model to filter the top-50 relevant elements as the clean observation.
It uses MCQ to recursively query the LLM to select an action from five candidates until one action
is chosen or all options are incorrect. Although MCQ-formatted exemplars outperform direct gener-
ation, MindAct often struggles to choose the correct element (Deng et al., 2023). In contrast, in our
experiments, both SYNAPSE and its variants use direct generation, a more straightforward prompt-
ing scheme. As shown in Tab. 1, we incrementally equip direct generation with state abstraction,
trajectory prompting, and exemplar memory, which achieves improvements of 32%, 50%, and 56%
in average Step SR across three levels of generalization based on GPT-3.5, respectively. SYNAPSE
also achieves 2.5× Step SR compared to MindAct on average based on CodeLlama-7B.

Table 1: Mind2Web results and ablations with CodeLlama-7B (top) and GPT-3.5 (bottom). We
gradually add state abstraction, TaE prompting, and memory to demonstrate the effectiveness of
each component. In SYNAPSE w/ state abstraction, we simply use direct generation with fewer
top-ranked elements in clean observations, outperforming the MCQ-formatted prompting used in
MindAct. SYNAPSE w/ state abstraction + TaE further shows the benefits of using trajectories as
exemplars. In both these variants, we use static few-shot exemplars. Finally, we encode the training
set as memory and retrieve exemplars via similarity search, which further improves performance.

Method Cross-Task Cross-Website Cross-Domain
Ele. Acc Step SR SR Ele. Acc Step SR SR Ele. Acc Step SR SR

MindAct (CodeLlama-7B) 11.2 7.7 0.4 12.4 9.0 0.6 13.8 9.9 0.2
SYNAPSE w/ state abstraction 21.4 15.5 0.8 19.5 13.5 0.6 20.0 15.6 1.2
SYNAPSE w/ state abstraction + TaE 27.0 24.5 1.2 21.4 17.9 0.0 22.1 19.9 0.7
SYNAPSE w/ state abstraction + TaE + memory 29.4 26.4 3.2 22.9 18.9 0.6 22.6 19.7 0.3

MindAct (GPT-3.5) 20.3 17.4 0.8 19.3 16.2 0.6 21.6 18.6 1.0
SYNAPSE w/ state abstraction 29.8 25.2 2.0 26.1 19.6 0.6 28.0 24.3 1.8
SYNAPSE w/ state abstraction + TaE 32.8 29.2 2.0 28.0 22.7 0.6 29.0 26.2 1.8
SYNAPSE w/ state abstraction + TaE + memory 34.0 30.6 2.4 29.1 24.2 0.6 29.6 26.4 1.5

4.5 ABLATION STUDIES

In this section, we perform ablation studies to evaluate the effectiveness of three design choices of
SYNAPSE and provide insights into the contributions of each. These findings validate the effec-
tiveness of i) state abstraction in handling complex states and providing more exemplars within the
limited context, ii) TaE prompting in enhancing the capability of multi-step decision-making, and
iii) exemplar memory in facilitating generalization across tasks.

click-menu

social-media-some

click-tab-2
grid-coordinate

use-autocomplete

click-tab-2-hard

login-user-popup

social-media

email-inbox-forward-nl

click-shape

email-inbox-forward-nl-turk

tic-tac-toe
count-shape

click-collapsible-2

email-inbox-nl-turk

find-word
terminal

email-inbox

book-flight

click-pie

0

1

Su
cc

es
s r

at
e

w/o state abstraction w/ state abstraction

Figure 5: State abstraction enables solving
MiniWoB++ tasks with complex states (e.g.,
book-flight). It also improves performance by
providing more exemplars (e.g., email-inbox).

Ablating State Abstraction. In Fig. 5,
we illustrate the consistent performance im-
provement achieved by state abstraction in
MiniWoB++. Due to the limited context, LLMs
without state abstraction struggle to solve tasks
with complex states, e.g., book-flight, while
SYNAPSE effectively overcomes this. This
technique also improves performance on tasks
with ambiguous descriptions, such as email-
inbox-nl-turk, increasing the success rate from
52% to 100%. In Mind2Web, direct generation
with the top five elements improves the success
rate by 32% compared to MCQ with the top-50
elements (Tab. 1), although reducing k leads to
a drop in recall from 86% to 53%. These results
emphasize the effectiveness of state abstraction
in helping LLMs generate actions under com-
plex states and vague task descriptions.

8

Foundation Models for Decision Making Workshop at NeurIPS 2023

Ablating Trajectory-as-Exemplar Prompting. TaE prompting significantly benefits LLMs in
tasks with long horizons and repeated actions such as guess-number, use-spinner, and use-
autocomplete, which are particularly challenging for SOTA ICL methods. For example, RCI has
success rates of 20%, 88%, and 58% for these tasks. In contrast, SYNAPSE solves them with success
rates of 100%, 100%, and 98%. This improvement is attributed to the comprehensive history and
temporal action abstraction introduced by TaE prompting. In Mind2Web, TaE prompting further
improves the average step success rate by 19% compared to SYNAPSE with state abstraction only. It
also outperforms MindAct by 50% across three levels of generalization, as shown in Tab. 1.

Table 2: The average distance of re-
trieval and Step SR improvements of
memory (∆) in Mind2Web.

Test set Distance ∆GPT ∆CodeLlama

Cross-Task 17.0 1.4 1.9
Cross-Website 24.3 1.5 1.0
Cross-Domain 32.9 0.2 -0.2

Exemplar Memory Enables Generalization. Exem-
plar memory is crucial for generalization, especially for
similar computer control tasks. Rather than previous
methods that rely on task-specific exemplars, SYNAPSE’s
memory can automatically find relevant exemplars for
the task at hand. It enables the agent to identify and
utilize exemplars to generalize from email-inbox-nl-turk
to related tasks such as email-inbox-forward-nl-turk and
email-inbox. It also adapts to different layouts, e.g., from
multi-layouts to multi-orderings. Consequently, SYNAPSE solves 64 tasks in MiniWoB++ with
demonstrations of only 48 tasks. It achieves better performance not only for the predefined tasks
but also for new tasks outside the scope. For the 16 unseen tasks, the average success rate is almost
100%. For tasks within the scope, the memory mechanism also accurately matches relevant exem-
plars. SYNAPSE only encounters a 2% failure rate in click-tab-2-hard due to exemplar mismatches.
In Mind2Web, the memory further improves SYNAPSE with state abstraction and TaE prompting,
leading to a 6% improvement in Step SR for cross-task and cross-website generalization. However,
the improvement is relatively marginal in cross-domain generalization, which might be attributed to
the LLM being influenced by exemplars from unrelated domains. The average distance (similarity
scores) between retrieved exemplars and the target task in three Mind2Web test sets are shown in
Tab. 2. A greater distance implies less similarity. This accounts for why memory does not aid in
cross-domain generalization, as these domains are entirely unseen.

5 DISCUSSION, LIMITATIONS & FUTURE WORK

In this paper, we introduce SYNAPSE, a computer agent with a prompting technique that is broadly
applicable to any decision-making task. SYNAPSE addresses three main challenges faced by current
computer agents: the limited context length, the unexplored exemplar structure, and task-specific
exemplars. It has three key components: i) state abstraction, which converts raw states to clean ob-
servations, reducing the tokens of each state to allow for more few-shot exemplars, ii) trajectory-as-
exemplar prompting, which prompts the LLM with trajectory-level exemplars to improve multi-step
decision-making, and iii) exemplar memory, which stores and retrieves exemplars to enable general-
ization. Our method outperforms existing methods on 64 tasks in the MiniWoB++ benchmark with
a 99.2% average success rate without self-correction. It is particularly noteworthy that our method
successfully solves the challenging book-flight task in MiniWoB++. SYNAPSE also achieves a 56%
relative improvement over SOTA ICL methods in Mind2Web, a real-world website benchmark, at
three levels of generalization (cross-task, cross-website, and cross-domain).

We acknowledge that there exist limitations in our framework. High inference latency is a major
concern due to the use of LLMs. Using our prompting scheme to distill a more responsive, task-
specific agent from existing LLMs could be a remedy. Another concern is our dependence on the
quality of exemplars. Therefore, training a zero-shot computer agent with instruction tuning (Wei
et al., 2021; Chung et al., 2022) based on our prompting techniques is a promising research di-
rection. Also, the memory module can be seamlessly combined with human intervention for user
customization and task adaptation, which opens up an avenue for future research. In addition, the
memory structure and retrieval process can be further investigated for better generalization. It is also
worthwhile to combine our methods with compositional generalization methods (Zhou et al., 2022;
Wang et al., 2023a) to solve more complicated tasks. Finally, while SYNAPSE currently operates on
text, it would be interesting to explore multi-modal and video understanding capabilities to tackle
more challenging tasks, e.g., pixel-based Android control (Li et al., 2020; Toyama et al., 2021).

9

Foundation Models for Decision Making Workshop at NeurIPS 2023

ACKNOWLEDGEMENTS

We would like to thank the OpenAI Researcher Access Program for granting us API access for this
project. We also thank the anonymous reviewers for their valuable feedback.

REFERENCES

DeepMind Interactive Agents Team. Creating multimodal interactive agents with imitation and self-
supervised learning. arXiv preprint arXiv:2112.03763, 2021.

Tianlin Shi, Andrej Karpathy, Linxi Fan, Jonathan Hernandez, and Percy Liang. World of bits: An
open-domain platform for web-based agents. In International Conference on Machine Learning,
pages 3135–3144. PMLR, 2017.

Evan Zheran Liu, Kelvin Guu, Panupong Pasupat, Tianlin Shi, and Percy Liang. Reinforcement
learning on web interfaces using workflow-guided exploration. In The Eleventh International
Conference on Learning Representations, 2018.

Peter C Humphreys, David Raposo, Tobias Pohlen, Gregory Thornton, Rachita Chhaparia, Alistair
Muldal, Josh Abramson, Petko Georgiev, Adam Santoro, and Timothy Lillicrap. A data-driven
approach for learning to control computers. In International Conference on Machine Learning,
pages 9466–9482. PMLR, 2022.

Dean A Pomerleau. Alvinn: An autonomous land vehicle in a neural network. In Advances in
Neural Information Processing Systems, pages 305–313, 1989.

Richard S Sutton and Andrew G Barto. Reinforcement Learning: An Introduction. MIT press, 2018.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. In Advances in Neural Information Processing Systems, volume 33, pages
1877–1901, 2020.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. In Advances
in Neural Information Processing Systems, volume 35, pages 24824–24837, 2022a.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani Yo-
gatama, Maarten Bosma, Denny Zhou, Donald Metzler, Ed H. Chi, Tatsunori Hashimoto, Oriol
Vinyals, Percy Liang, Jeff Dean, and William Fedus. Emergent abilities of large language models.
Transactions on Machine Learning Research, 2022b. ISSN 2835-8856.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik R Narasimhan, and Yuan
Cao. React: Synergizing reasoning and acting in language models. In The Eleventh International
Conference on Learning Representations, 2022a.

Geunwoo Kim, Pierre Baldi, and Stephen McAleer. Language models can solve computer tasks. In
Advances in Neural Information Processing Systems, 2023.

Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen, Samuel Stevens, Boshi Wang, Huan Sun, and
Yu Su. Mind2web: Towards a generalist agent for the web. In Advances in Neural Information
Processing Systems, 2023.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
Scaling language modeling with pathways. arXiv preprint arXiv:2204.02311, 2022.

OpenAI. Gpt-4 technical report, 2023.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi
Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, et al. Code llama: Open foundation models for code.
arXiv preprint arXiv:2308.12950, 2023.

10

Foundation Models for Decision Making Workshop at NeurIPS 2023

Sherry Yang, Ofir Nachum, Yilun Du, Jason Wei, Pieter Abbeel, and Dale Schuurmans. Foun-
dation models for decision making: Problems, methods, and opportunities. arXiv preprint
arXiv:2303.04129, 2023.

Grégoire Mialon, Roberto Dessı̀, Maria Lomeli, Christoforos Nalmpantis, Ram Pasunuru, Roberta
Raileanu, Baptiste Rozière, Timo Schick, Jane Dwivedi-Yu, Asli Celikyilmaz, et al. Augmented
language models: A survey. arXiv preprint arXiv:2302.07842, 2023.

Zhiheng Xi, Wenxiang Chen, Xin Guo, Wei He, Yiwen Ding, Boyang Hong, Ming Zhang, Junzhe
Wang, Senjie Jin, Enyu Zhou, et al. The rise and potential of large language model based agents:
A survey. arXiv preprint arXiv:2309.07864, 2023.

Joon Sung Park, Joseph C O’Brien, Carrie J Cai, Meredith Ringel Morris, Percy Liang, and
Michael S Bernstein. Generative agents: Interactive simulacra of human behavior. arXiv preprint
arXiv:2304.03442, 2023.

Wenlong Huang, Pieter Abbeel, Deepak Pathak, and Igor Mordatch. Language models as zero-shot
planners: Extracting actionable knowledge for embodied agents. In International Conference on
Machine Learning, pages 9118–9147. PMLR, 2022.

Anthony Brohan, Yevgen Chebotar, Chelsea Finn, Karol Hausman, Alexander Herzog, Daniel Ho,
Julian Ibarz, Alex Irpan, Eric Jang, Ryan Julian, et al. Do as I can, not as I say: Grounding
language in robotic affordances. In Conference on Robot Learning, pages 287–318. PMLR, 2023.

Wenlong Huang, Fei Xia, Ted Xiao, Harris Chan, Jacky Liang, Pete Florence, Andy Zeng, Jonathan
Tompson, Igor Mordatch, Yevgen Chebotar, et al. Inner monologue: Embodied reasoning through
planning with language models. In Conference on Robot Learning, pages 1769–1782. PMLR,
2023.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
language models are zero-shot reasoners. In Advances in Neural Information Processing Systems,
volume 35, pages 22199–22213, 2022.

Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei, Nathan Scales, Xuezhi Wang, Dale Schuur-
mans, Claire Cui, Olivier Bousquet, Quoc V Le, et al. Least-to-most prompting enables complex
reasoning in large language models. In The Eleventh International Conference on Learning Rep-
resentations, 2022.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. In Ad-
vances in Neural Information Processing Systems, 2023.

Noah Shinn, Beck Labash, and Ashwin Gopinath. Reflexion: An autonomous agent with dynamic
memory and self-reflection. In Advances in Neural Information Processing Systems, 2023.

Xinyun Chen, Maxwell Lin, Nathanael Schärli, and Denny Zhou. Teaching large language models
to self-debug. arXiv preprint arXiv:2304.05128, 2023.

Chenfei Wu, Shengming Yin, Weizhen Qi, Xiaodong Wang, Zecheng Tang, and Nan Duan. Vi-
sual chatgpt: Talking, drawing and editing with visual foundation models. arXiv preprint
arXiv:2303.04671, 2023a.

Yongliang Shen, Kaitao Song, Xu Tan, Dongsheng Li, Weiming Lu, and Yueting Zhuang. Hug-
ginggpt: Solving AI tasks with chatbot and its friends in huggingface. In Advances in Neural
Information Processing Systems, 2023.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessı̀, Roberta Raileanu, Maria Lomeli, Luke Zettlemoyer,
Nicola Cancedda, and Thomas Scialom. Toolformer: Language models can teach themselves to
use tools. In Advances in Neural Information Processing Systems, 2023.

Pan Lu, Baolin Peng, Hao Cheng, Michel Galley, Kai-Wei Chang, Ying Nian Wu, Song-Chun Zhu,
and Jianfeng Gao. Chameleon: Plug-and-play compositional reasoning with large language mod-
els. In Advances in Neural Information Processing Systems, 2023.

11

Foundation Models for Decision Making Workshop at NeurIPS 2023

Binfeng Xu, Zhiyuan Peng, Bowen Lei, Subhabrata Mukherjee, Yuchen Liu, and Dongkuan Xu.
Rewoo: Decoupling reasoning from observations for efficient augmented language models. arXiv
preprint arXiv:2305.18323, 2023.

Jacky Liang, Wenlong Huang, Fei Xia, Peng Xu, Karol Hausman, Brian Ichter, Pete Florence, and
Andy Zeng. Code as policies: Language model programs for embodied control. In 2023 IEEE
International Conference on Robotics and Automation (ICRA), pages 9493–9500. IEEE, 2023.

Ishika Singh, Valts Blukis, Arsalan Mousavian, Ankit Goyal, Danfei Xu, Jonathan Tremblay, Dieter
Fox, Jesse Thomason, and Animesh Garg. Progprompt: Generating situated robot task plans using
large language models. In 2023 IEEE International Conference on Robotics and Automation
(ICRA), pages 11523–11530. IEEE, 2023.

Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan,
and Anima Anandkumar. Voyager: An open-ended embodied agent with large language models.
arXiv preprint arXiv:2305.16291, 2023a.

Yue Wu, So Yeon Min, Yonatan Bisk, Ruslan Salakhutdinov, Amos Azaria, Yuanzhi Li, Tom
Mitchell, and Shrimai Prabhumoye. Plan, eliminate, and track–language models are good teachers
for embodied agents. arXiv preprint arXiv:2305.02412, 2023b.

Izzeddin Gur, Ulrich Rueckert, Aleksandra Faust, and Dilek Hakkani-Tur. Learning to navigate the
web. In International Conference on Learning Representations, 2018.

Sheng Jia, Jamie Ryan Kiros, and Jimmy Ba. Dom-q-net: Grounded RL on structured language. In
International Conference on Learning Representations, 2018.

Izzeddin Gur, Natasha Jaques, Yingjie Miao, Jongwook Choi, Manoj Tiwari, Honglak Lee, and
Aleksandra Faust. Environment generation for zero-shot compositional reinforcement learning.
In Advances in Neural Information Processing Systems, volume 34, 2021.

Izzeddin Gur, Ofir Nachum, Yingjie Miao, Mustafa Safdari, Austin V Huang, Aakanksha Chowdh-
ery, Sharan Narang, Noah Fiedel, and Aleksandra Faust. Understanding html with large language
models. In ICLR 2023 Workshop on Mathematical and Empirical Understanding of Foundation
Models, 2023a.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. The Journal of Machine Learning Research, 21(1):5485–5551, 2020.

Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu, Long Ouyang, Christina Kim, Christo-
pher Hesse, Shantanu Jain, Vineet Kosaraju, William Saunders, et al. Webgpt: Browser-assisted
question-answering with human feedback. arXiv preprint arXiv:2112.09332, 2021.

Shunyu Yao, Howard Chen, John Yang, and Karthik R Narasimhan. Webshop: Towards scalable
real-world web interaction with grounded language agents. In Advances in Neural Information
Processing Systems, 2022b.

Haotian Sun, Yuchen Zhuang, Lingkai Kong, Bo Dai, and Chao Zhang. Adaplanner: Adaptive
planning from feedback with language models. In Advances in Neural Information Processing
Systems, 2023.

Peter Shaw, Mandar Joshi, James Cohan, Jonathan Berant, Panupong Pasupat, Hexiang Hu, Urvashi
Khandelwal, Kenton Lee, and Kristina Toutanova. From pixels to UI actions: Learning to follow
instructions via graphical user interfaces. In Advances in Neural Information Processing Systems,
2023.

Izzeddin Gur, Hiroki Furuta, Austin Huang, Mustafa Safdari, Yutaka Matsuo, Douglas Eck, and
Aleksandra Faust. A real-world webagent with planning, long context understanding, and pro-
gram synthesis. arXiv preprint arXiv:2307.12856, 2023b.

Xiao Liu, Hao Yu, Hanchen Zhang, Yifan Xu, Xuanyu Lei, Hanyu Lai, Yu Gu, Hangliang Ding,
Kaiwen Men, Kejuan Yang, et al. Agentbench: Evaluating llms as agents. arXiv preprint
arXiv:2308.03688, 2023a.

12

Foundation Models for Decision Making Workshop at NeurIPS 2023

Shuyan Zhou, Frank F Xu, Hao Zhu, Xuhui Zhou, Robert Lo, Abishek Sridhar, Xianyi Cheng,
Yonatan Bisk, Daniel Fried, Uri Alon, et al. Webarena: A realistic web environment for building
autonomous agents. arXiv preprint arXiv:2307.13854, 2023.

Christopher Rawles, Alice Li, Daniel Rodriguez, Oriana Riva, and Timothy Lillicrap. Android in
the wild: A large-scale dataset for android device control. In Advances in Neural Information
Processing Systems, 2023.

Bryan Wang, Gang Li, and Yang Li. Enabling conversational interaction with mobile ui using large
language models. In Proceedings of the 2023 CHI Conference on Human Factors in Computing
Systems, pages 1–17, 2023b.

Nelson F Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua, Fabio Petroni, and
Percy Liang. Lost in the middle: How language models use long contexts. arXiv preprint
arXiv:2307.03172, 2023b.

Jeff Johnson, Matthijs Douze, and Hervé Jégou. Billion-scale similarity search with GPUs. IEEE
Transactions on Big Data, 7(3):535–547, 2019.

Hiroki Furuta, Ofir Nachum, Kuang-Huei Lee, Yutaka Matsuo, Shixiang Shane Gu, and Izzeddin
Gur. Multimodal web navigation with instruction-finetuned foundation models. arXiv preprint
arXiv:2305.11854, 2023.

Jason Wei, Maarten Bosma, Vincent Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du, An-
drew M Dai, and Quoc V Le. Finetuned language models are zero-shot learners. In International
Conference on Learning Representations, 2021.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi
Wang, Mostafa Dehghani, Siddhartha Brahma, et al. Scaling instruction-finetuned language mod-
els. arXiv preprint arXiv:2210.11416, 2022.

Yang Li, Jiacong He, Xin Zhou, Yuan Zhang, and Jason Baldridge. Mapping natural language
instructions to mobile UI action sequences. In Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, pages 8198–8210, 2020.

Daniel Toyama, Philippe Hamel, Anita Gergely, Gheorghe Comanici, Amelia Glaese, Zafarali
Ahmed, Tyler Jackson, Shibl Mourad, and Doina Precup. Androidenv: A reinforcement learning
platform for android. arXiv preprint arXiv:2105.13231, 2021.

13

Foundation Models for Decision Making Workshop at NeurIPS 2023

A ADDITIONAL RESULTS

Table 3: Per-task mean success rate comparison between SYNAPSE, humans, and baselines. The
data for human participants are obtained from CC-Net (Humphreys et al., 2022). The aggregated
performance of the baselines prior to CC-Net is represented as others (Gur et al., 2018; Jia et al.,
2018; Liu et al., 2018; Shi et al., 2017). We attach the average success rate and the number of solved
tasks for each method at the bottom of the table.

Task Ours Human RCI AdaPlannerPix2Act Pix2Act
(BC)

CC-Net CC-Net
(BC)

WebGUM WebN-
T5

Others

bisect-angle n/a 0.92 n/a n/a 0.96 0.32 0.97 0.29 n/a n/a 0.80
book-flight 1.00 0.87 n/a n/a n/a n/a 0.87 0.00 0.98 0.00 1.00
chase-circle n/a 0.82 n/a n/a n/a n/a 0.93 0.80 n/a n/a 1.00
choose-date 1.00 0.97 n/a n/a 0.79 0.06 0.97 0.12 0.13 0.00 1.00
choose-date-easy n/a 0.99 n/a n/a n/a n/a 0.99 0.42 1.00 0.03 n/a
choose-date-medium n/a 0.98 n/a n/a n/a n/a 0.99 0.26 0.60 0.00 n/a
choose-list 1.00 0.98 1.00 1.00 n/a n/a 0.99 0.19 0.24 0.26 0.26
circle-center n/a 0.96 n/a n/a 0.96 0.52 0.97 0.36 n/a n/a 0.98
click-button 1.00 0.98 1.00 1.00 0.99 0.32 1.00 0.78 1.00 1.00 1.00
click-button-sequence 1.00 0.94 1.00 1.00 0.99 1.00 1.00 0.47 1.00 1.00 1.00
click-checkboxes 1.00 0.97 1.00 1.00 1.00 0.99 0.98 0.32 1.00 0.96 1.00
click-checkboxes-large 1.00 0.87 0.94 1.00 0.99 1.00 0.71 0.00 0.99 0.22 0.84
click-checkboxes-soft 1.00 0.73 0.72 0.80 0.61 0.91 0.95 0.04 0.98 0.54 0.94
click-checkboxes-transfer 1.00 0.98 1.00 0.98 1.00 0.76 0.99 0.36 0.99 0.63 0.64
click-collapsible 1.00 0.99 1.00 1.00 0.94 0.80 1.00 0.81 0.98 0.00 1.00
click-collapsible-2 1.00 0.97 0.62 0.84 0.97 0.31 0.98 0.17 0.95 0.00 0.99
click-color 1.00 0.97 1.00 1.00 0.99 0.88 1.00 0.82 0.34 0.27 1.00
click-dialog 1.00 1.00 1.00 1.00 1.00 0.12 1.00 0.95 1.00 1.00 1.00
click-dialog-2 1.00 0.99 1.00 1.00 1.00 0.73 1.00 0.88 0.43 0.24 1.00
click-link 1.00 0.99 1.00 0.98 0.98 0.86 0.99 0.59 1.00 1.00 1.00
click-menu 1.00 0.97 1.00 0.78 n/a n/a 0.94 0.22 0.37 0.37 0.13
click-menu-2 n/a 0.98 n/a n/a n/a n/a 0.83 0.52 n/a n/a 0.16
click-option 1.00 0.99 1.00 1.00 1.00 0.00 0.99 0.21 1.00 0.87 1.00
click-pie 1.00 0.98 n/a n/a 0.99 0.81 0.97 0.15 0.99 0.51 1.00
click-scroll-list 1.00 0.91 1.00 1.00 n/a n/a 0.60 0.01 0.00 0.00 0.07
click-shades 1.00 0.91 1.00 1.00 0.99 0.76 1.00 0.04 0.00 0.00 0.99
click-shape 0.98 0.88 0.98 0.75 0.94 0.19 0.95 0.11 0.72 0.53 0.64
click-tab 1.00 0.99 1.00 1.00 1.00 0.54 1.00 0.95 1.00 0.74 1.00
click-tab-2 1.00 0.97 0.74 0.85 0.98 0.42 0.98 0.27 0.95 0.18 1.00
click-tab-2-easy n/a 0.99 n/a n/a 0.99 0.77 0.99 0.61 n/a n/a n/a
click-tab-2-hard 0.98 0.96 0.76 0.78 0.97 0.00 0.98 0.19 0.95 0.12 n/a
click-tab-2-medium n/a 0.97 n/a n/a 1.00 0.07 0.99 0.54 n/a n/a n/a
click-test 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
click-test-2 1.00 0.99 1.00 1.00 1.00 1.00 1.00 0.95 1.00 1.00 1.00
click-test-transfer n/a 0.99 n/a n/a 1.00 1.00 1.00 0.94 n/a n/a n/a
click-widget 1.00 0.83 0.98 1.00 1.00 0.87 1.00 0.56 1.00 1.00 1.00
copy-paste 1.00 0.94 n/a n/a n/a n/a 0.79 0.04 n/a n/a 0.00
copy-paste-2 1.00 0.94 n/a n/a n/a n/a 0.63 0.01 n/a n/a 0.00
count-shape 0.90 0.82 0.40 0.50 0.70 0.00 0.85 0.21 0.68 0.41 0.76
count-sides n/a 0.98 n/a n/a 1.00 0.38 1.00 0.74 n/a n/a 0.30
drag-box n/a 0.99 n/a n/a 0.99 1.00 1.00 0.61 n/a n/a 0.31
drag-cube n/a 0.99 n/a n/a n/a n/a 0.79 0.23 n/a n/a 0.18
drag-item n/a 0.98 n/a n/a 1.00 0.85 1.00 0.61 n/a n/a n/a
drag-items n/a 0.93 n/a n/a 1.00 0.64 0.99 0.13 n/a n/a 0.41
drag-items-grid n/a 0.87 n/a n/a 0.89 0.60 0.98 0.05 n/a n/a 0.01
drag-shapes n/a 0.96 n/a n/a 0.98 0.96 0.99 0.26 n/a n/a 0.92
drag-sort-numbers n/a 0.92 n/a n/a 0.95 0.08 0.97 0.11 n/a n/a 0.66
email-inbox 1.00 0.96 0.98 0.98 n/a n/a 1.00 0.09 0.99 0.38 0.99
email-inbox-delete n/a 0.99 n/a n/a 1.00 0.99 1.00 0.22 n/a n/a 1.00
email-inbox-forward n/a 0.96 n/a n/a n/a n/a 1.00 0.01 n/a n/a n/a
email-inbox-forward-nl 1.00 0.91 1.00 1.00 n/a n/a 1.00 0.00 1.00 0.60 n/a
email-inbox-forward-nl-turk 1.00 0.88 0.94 1.00 n/a n/a 1.00 0.00 1.00 0.33 n/a
email-inbox-important n/a 0.99 n/a n/a 1.00 0.99 1.00 0.30 n/a n/a n/a
email-inbox-nl-turk 1.00 0.93 0.98 0.90 n/a n/a 1.00 0.05 0.98 0.23 0.93
email-inbox-noscroll n/a 0.96 n/a n/a n/a n/a 1.00 0.13 n/a n/a n/a
email-inbox-reply n/a 0.91 n/a n/a n/a n/a 1.00 0.00 n/a n/a n/a
email-inbox-star-reply n/a 0.95 n/a n/a n/a n/a 1.00 0.11 n/a n/a n/a
enter-date 1.00 0.97 0.96 1.00 1.00 0.59 1.00 0.02 1.00 0.00 1.00
enter-password 1.00 0.96 1.00 0.98 n/a n/a 1.00 0.02 1.00 0.97 1.00
enter-text 1.00 0.98 1.00 0.98 n/a n/a 1.00 0.35 1.00 0.89 1.00
enter-text-2 n/a 0.91 n/a n/a 0.97 1.00 0.98 0.04 n/a n/a 0.00
enter-text-dynamic 1.00 0.97 1.00 0.96 n/a n/a 1.00 0.39 1.00 0.98 1.00
enter-time 1.00 0.98 1.00 0.96 1.00 0.78 0.97 0.04 0.00 0.00 0.90
find-midpoint n/a 0.94 n/a n/a 0.96 0.74 0.97 0.35 n/a n/a 0.31
find-word 1.00 0.96 n/a n/a n/a n/a 0.88 0.05 n/a n/a 0.00
focus-text 1.00 1.00 1.00 1.00 n/a n/a 1.00 0.99 1.00 1.00 1.00
focus-text-2 1.00 0.99 1.00 0.94 n/a n/a 1.00 0.96 1.00 1.00 1.00
grid-coordinate 1.00 0.87 1.00 1.00 0.92 0.97 1.00 0.66 1.00 0.49 1.00
guess-number 1.00 0.99 0.20 0.88 n/a n/a 1.00 0.21 0.11 0.00 0.20
highlight-text n/a 0.97 n/a n/a n/a n/a 1.00 0.51 n/a n/a 0.90
highlight-text-2 n/a 0.97 n/a n/a n/a n/a 1.00 0.40 n/a n/a 0.13
identify-shape 1.00 0.98 0.76 0.96 1.00 0.94 1.00 0.68 1.00 0.88 1.00
login-user 1.00 0.96 1.00 1.00 n/a n/a 1.00 0.00 1.00 0.82 1.00
login-user-popup 1.00 0.94 0.68 0.98 n/a n/a 1.00 0.02 0.99 0.72 n/a
moving-items n/a 0.18 n/a n/a n/a n/a 0.88 0.13 n/a n/a 0.78
multi-layouts 0.98 0.95 0.72 0.84 n/a n/a 1.00 0.00 1.00 0.83 1.00

14

Foundation Models for Decision Making Workshop at NeurIPS 2023

multi-orderings 1.00 0.96 1.00 1.00 n/a n/a 1.00 0.00 1.00 0.88 1.00
navigate-tree 0.98 0.98 0.86 0.82 0.99 0.07 0.99 0.32 1.00 0.91 1.00
number-checkboxes n/a 0.96 n/a n/a 0.84 0.26 0.99 0.00 n/a n/a 0.16
read-table 1.00 0.97 n/a n/a n/a n/a 0.97 0.01 n/a n/a 0.00
read-table-2 n/a 0.95 n/a n/a n/a n/a 0.94 0.00 n/a n/a 0.00
resize-textarea n/a 0.94 n/a n/a 0.99 1.00 1.00 0.27 n/a n/a 0.11
right-angle n/a 0.87 n/a n/a 0.97 1.00 0.98 0.26 n/a n/a 0.38
scroll-text n/a 0.97 n/a n/a n/a n/a 0.96 0.04 n/a n/a 0.00
scroll-text-2 n/a 0.97 n/a n/a n/a n/a 1.00 0.88 n/a n/a 0.96
search-engine 1.00 0.97 1.00 1.00 n/a n/a 1.00 0.15 0.96 0.34 1.00
simon-says n/a 0.62 n/a n/a n/a n/a -0.00 0.02 n/a n/a 0.28
simple-algebra 1.00 0.86 1.00 0.82 1.00 0.99 0.75 0.03 n/a n/a 0.04
simple-arithmetic 1.00 0.96 n/a n/a 1.00 0.67 0.86 0.38 n/a n/a 0.07
social-media 1.00 0.96 0.98 0.82 n/a n/a 0.90 0.03 1.00 0.21 1.00
social-media-all 1.00 0.89 1.00 1.00 n/a n/a 0.75 0.00 0.31 0.00 1.00
social-media-some 1.00 0.91 0.90 0.90 n/a n/a 0.85 0.01 0.68 0.02 0.42
terminal 1.00 0.88 1.00 0.98 n/a n/a -0.01 0.00 n/a n/a 0.00
text-editor n/a 0.88 n/a n/a n/a n/a 0.98 0.11 n/a n/a 0.01
text-transform 0.98 0.86 0.80 n/a 0.92 0.91 0.60 0.19 n/a n/a 0.00
tic-tac-toe 0.70 0.71 0.56 0.48 0.83 0.76 0.83 0.32 0.56 0.48 0.47
unicode-test 1.00 0.99 n/a n/a 1.00 0.64 1.00 0.86 n/a n/a n/a
use-autocomplete 0.98 0.98 0.58 0.88 0.99 0.95 1.00 0.07 0.98 0.22 0.98
use-colorwheel n/a 0.90 n/a n/a 0.97 0.98 0.98 0.68 n/a n/a 1.00
use-colorwheel-2 n/a 0.94 n/a n/a 0.95 1.00 0.95 0.38 n/a n/a 1.00
use-slider 0.98 0.98 n/a n/a 0.92 0.69 0.91 0.18 n/a n/a 0.51
use-slider-2 n/a 0.97 n/a n/a 1.00 0.09 0.95 0.03 n/a n/a 0.15
use-spinner 1.00 0.98 0.88 0.90 n/a n/a 1.00 0.47 0.11 0.07 0.17
visual-addition n/a 0.97 n/a n/a 1.00 0.68 0.99 0.36 n/a n/a 0.01

Average 0.992 0.935 0.906 0.929 0.962 0.665 0.935 0.305 0.802 0.484 0.646
of solved tasks 64 104 54 53 59 59 104 104 56 56 88

click-button-sequence

copy-paste

copy-paste-2

login-user-popup

email-inbox-nl-turk

count-shape

click-scroll-list

click-shades

email-inbox-forward-nl

social-media-some

click-shape

social-media-all

email-inbox-forward-nl-turk

terminal
text-transform

book-flight

click-checkboxes-large

grid-coordinate

simple-algebra

click-widget

click-checkboxes-soft

0

1

Su
cc

es
s r

at
e

Human Synapse

focus-text-2

email-inbox-nl-turk

social-media-some

use-autocomplete

use-spinner

guess-number

multi-layouts

click-tab-2
click-collapsible-2

navigate-tree

simple-algebra

social-media

click-checkboxes-soft

click-tab-2-hard

click-menu

tic-tac-toe
click-shape

count-shape

0

1

Su
cc

es
s r

at
e

AdaPlanner Synapse

tic-tac-toe
text-transform

use-slider
click-collapsible

grid-coordinate

count-shape

choose-date

click-checkboxes-soft

0

1

Su
cc

es
s r

at
e

Pix2Act Synapse

navigate-tree

enter-text
identify-shape

multi-orderings

click-option

multi-layouts

login-user

tic-tac-toe
click-tab

login-user-popup

click-checkboxes-transfer

email-inbox-forward-nl

click-shape

click-checkboxes-soft

click-pie
count-shape

grid-coordinate

email-inbox

click-menu

search-engine

email-inbox-forward-nl-turk

click-color

choose-list

click-dialog-2

use-autocomplete

email-inbox-nl-turk

click-checkboxes-large

social-media

click-tab-2
click-tab-2-hard

use-spinner

social-media-some

book-flight

choose-date

click-collapsible

click-collapsible-2

click-scroll-list

click-shades

enter-date
enter-time

guess-number

social-media-all

0

1

Su
cc

es
s r

at
e

WebN-T5 Synapse

Figure 6: Task-wise comparisons between SYNAPSE, human, two concurrent methods (AdaPlanner
and Pix2Act), and WebN-T5, a fine-tuned LLM. Similar to the result in Sec. 4, the bars in each
figure are sorted in ascending order based on the success rate differences. Tasks not reported by
other methods and those with differences less than 0.05 are not included.

B ENVIRONMENT DETAILS

B.1 MINIWOB++

To ensure a fair evaluation, we use the legacy branch of MiniWoB++ as in previous work. Of the 64
tasks that we test (see Tab. 3), 48 are provided with exemplars, and 16 are unseen tasks. The unseen
tasks are choose-list, click-checkboxes-transfer, click-checkboxes, click-option, click-tab-2-hard,
click-test-2, click-test, copy-paste, login-user, email-inbox-forward-nl-turk, email-inbox-forward-
nl, email-inbox, enter-text, multi-orderings, simple-arithmetic, and unicode-test. The average num-
ber of exemplars per task for RCI and SYNAPSE is 1.32 and 3.45, respectively. However, the number

15

https://github.com/Farama-Foundation/miniwob-plusplus/tree/legacy

Foundation Models for Decision Making Workshop at NeurIPS 2023

1 5 10 20 30 50
The number of elements after state abstraction (k)

0

20

40

60

80

100

Re
ca

ll (
%

)

Mind2Web recall with different k

Cross-Task
Cross-Website
Cross-Domain

(a) Recall@k

1 5 10 20 30 50
The number of elements after state abstraction (k)

0

5

10

15

20

25

St
ep

 su
cc

es
s r

at
e

(%
)

Mind2Web performance with different k
Cross-Task
Cross-Website
Cross-Domain

(b) Step success rate

Figure 7: Ablations of the number of elements after state abstraction in Mind2Web. The backbone
language model here is CodeLlama-Instruct-7B.

(a) MiniWoB++ (b) Mind2Web

Figure 8: An illustration of MiniWoB++ and Mind2Web.

of exemplars for each task varies. For simple tasks, we use a similar number of exemplars as in RCI.
To solve complex tasks (e.g., book-flight), we use more exemplars, which lowers the average data
efficiency. For example, in book-flight, we include 5 exemplars for better robustness. Moreover,
RCI relies on self-correction (task, state, and agent grounding) while SYNAPSE does not. The suc-
cess rate of RCI will decrease by around 50% when one of them is missing. Also, one of the benefits
of our method is that we can leverage more exemplars in context because of state abstraction.

We use the raw HTML code to represent the agent’s state space. We provide the action space
of the computer agent in the system prompt. The action space consists of five keyboard and mouse
operations, following the prior work (Kim et al., 2023). We use code generation to ground the actions
generated by the LLM, the same as the concurrent work (Sun et al., 2023). We use exemplars that
specify to click on the first element of all matching ones to avoid clicking on multiple items specified
by the xpath. The action space is described in the system prompt:

> Role: System
You are a large language model trained to navigate the web. To accomplish the task, use

methods in the following Agent class to generate actions until you need the new state to
proceed.

‘‘‘
class Agent:

def __init__(self, args):
...

Action: type a string via the keyboard
def type(self, characters: str) -> None:

...

Action: click an HTML element with a valid xpath
def click_xpath(self, xpath: str):

...

Actions: press a key on the keyboard, including:
enter, space, arrowleft, arrowright, backspace, arrowup, arrowdown, command+a, command+c
, command+v

16

Foundation Models for Decision Making Workshop at NeurIPS 2023

def press(self, key_type: str) -> None:
...

Action: click an option HTML element in a list with a valid xpath
def click_option(self, xpath: str):

...

Action: move mouse cursor on an HTML element with a valid xpath
def movemouse(self, xpath: str):

...
‘‘‘

In MiniWoB++, there are two types of state abstraction prompts. For scenarios where the context
can handle multiple states, we utilize state-observation pairs. These pairs are collected alongside
the trajectories. The states are obtained from the environment, while the cleaned observations are
provided by humans. To further reduce human efforts, we can also automatically infer cleaned obser-
vations given trajectories using LLMs. In scenarios with complex states where explicit abstraction
is not applicable, we implicitly abstract states by pairing task descriptions and state-parsing code.
Similarly, the task descriptions are already given by the environment. The code here is collected
via zero-shot sampling from LLMs (GPT-4). The code is tested by executing it with states derived
from the environment and having its results reviewed by humans. The state abstraction prompts are
retrieved from the memory, together with trajectories.

B.2 MIND2WEB

Mind2Web offers a comprehensive collection of over 2,000 tasks from 137 websites in 31 different
domains. The task descriptions in Mind2Web only provide high-level goals. It intentionally avoids
detailed, step-by-step instructions, encouraging the agents to autonomously understand and perform
tasks, rather than simply following instructions. With Mind2Web, agents can interact with webpages
in a way that goes beyond the basic operations of searching or reading. They can click, select, and
type into website elements. Such interactions mimic typical human activities on websites, thus
expanding the range of tasks the agent can perform.

Mind2Web provides test sets for three levels of generalization: cross-task, cross-websites, and cross-
domain. To evaluate cross-task generalization, Mind2Web provides 252 tasks from 69 websites,
where the agent has possibly interacted with these websites to perform similar tasks. The cross-
website test set consists of 177 tasks from 10 unique websites not seen in the training set but belong-
ing to domains familiar to the agent. This setup tests the agent’s ability to navigate new websites
within known domains and tasks. The cross-domain test set, containing 912 tasks from 73 websites,
requires the agent to adapt to completely unseen domains in the training set. The remaining data,
consisting of 1,009 tasks from 73 websites, are used for the training set.

C PROMPTS

In this section, we provide several examples of our prompting and LLM responses for illustration.
We also open source all trajectories in our project website.

C.1 TERMINAL

To finish the terminal task in MiniWoB++, the agent needs to first list the files and then delete one
with a certain extension. By using TaE prompting, SYNAPSE completed this task in four steps: two
for state abstraction and two for TaE prompting.

C.1.1 STEP 1: STATE ABSTRACTION (EXPLICIT)

Input:
> Role: User
State:
<div id="wrap" data-wob_ref="2" data-wob_eps="e0">

<div id="query">Use the terminal below to delete a file ending with the extension .png</div>

<div id="area" data-wob_ref="3" data-wob_eps="e0"><div data-wob_ref="4" data-wob_eps="e0">

17

https://ltzheng.github.io/Synapse/

Foundation Models for Decision Making Workshop at NeurIPS 2023

<div id="terminal" data-wob_ref="5" data-wob_eps="e0">
<div id="terminal-header" data-wob_ref="6" data-wob_eps="e0">terminal</div>
<div id="terminal-contents" data-wob_ref="7" data-wob_eps="e0">
<div class="terminal-output" data-wob_ref="8" data-wob_eps="e0">

Welcome! Type help for a list of
available commands.

</div><div class="terminal-output" data-wob_ref="10" data-wob_eps="e0">
Last login: Tue May 02 2023

</div><div class="terminal-line" data-wob_ref="12" data-wob_eps="e0">
user$

</div>
</div>

</div>
<input type="text" id="terminal-target" data-wob_ref="15" data-wob_eps="e0">
</div></div>
</div>
Observation:
Use the terminal below to delete a file ending with the extension .png
State:
<div id="wrap" data-wob_ref="2" data-wob_eps="e0">

<div id="query">Use the terminal below to delete a file ending with the extension .py</div>

<div id="area" data-wob_ref="3" data-wob_eps="e0"><div data-wob_ref="4" data-wob_eps="e0">
<div id="terminal" data-wob_ref="5" data-wob_eps="e0">

<div id="terminal-header" data-wob_ref="6" data-wob_eps="e0">terminal</div>
<div id="terminal-contents" data-wob_ref="7" data-wob_eps="e0">
<div class="terminal-output" data-wob_ref="8" data-wob_eps="e0">

Welcome! Type help for a list of
available commands.

</div><div class="terminal-output" data-wob_ref="10" data-wob_eps="e0">
Last login: Tue May 02 2023

</div><div class="terminal-line" data-wob_ref="12" data-wob_eps="e0">
user$

</div>
</div>

</div>
<input type="text" id="terminal-target" data-wob_ref="15" data-wob_eps="e0">
</div></div>
</div>
Observation:
Use the terminal below to delete a file ending with the extension .py
State:
<div id="wrap" data-wob_ref="2" data-wob_eps="e0">

<div id="query">Use the terminal below to delete a file that has no file
extension.</div>

<div id="area" data-wob_ref="3" data-wob_eps="e0"><div data-wob_ref="4" data-wob_eps="e0">
<div id="terminal" data-wob_ref="5" data-wob_eps="e0">

<div id="terminal-header" data-wob_ref="6" data-wob_eps="e0">terminal</div>
<div id="terminal-contents" data-wob_ref="7" data-wob_eps="e0">
<div class="terminal-output" data-wob_ref="8" data-wob_eps="e0">

Welcome! Type help for a list of
available commands.

</div><div class="terminal-output" data-wob_ref="10" data-wob_eps="e0">
Last login: Tue May 02 2023

</div><div class="terminal-line" data-wob_ref="12" data-wob_eps="e0">
user$

</div>
</div>

</div>
<input type="text" id="terminal-target" data-wob_ref="15" data-wob_eps="e0">
</div></div>
</div>
Observation:
Use the terminal below to delete a file that has no file extension.
State:
<div id="wrap" data-wob_ref="2" data-wob_eps="e0">

<div id="query">Use the terminal below to delete a file ending with the extension .gpg</div>

<div id="area" data-wob_ref="3" data-wob_eps="e0"><div data-wob_ref="4" data-wob_eps="e0">
<div id="terminal" data-wob_ref="5" data-wob_eps="e0">

<div id="terminal-header" data-wob_ref="6" data-wob_eps="e0">terminal</div>
<div id="terminal-contents" data-wob_ref="7" data-wob_eps="e0">
<div class="terminal-output" data-wob_ref="8" data-wob_eps="e0">

Welcome! Type help for a list of
available commands.

18

Foundation Models for Decision Making Workshop at NeurIPS 2023

</div><div class="terminal-output" data-wob_ref="10" data-wob_eps="e0">
Last login: Sun Sep 24 2023

</div><div class="terminal-line" data-wob_ref="12" data-wob_eps="e0">
user$

</div>
</div>

</div>
<input type="text" id="terminal-target" data-wob_ref="15" data-wob_eps="e0">
</div></div>
</div>
Observation:

Output:
> Role: Assistant
Use the terminal below to delete a file ending with the extension .gpg.

C.1.2 STEP 2: TAE PROMPTING

Input:
System Prompt (as mentioned in Sec. B.1)

Exemplary Trajectory 1

> Role: User
Task: Use the terminal below to delete a file ending with the extension .png
Trajectory:
> Role: User
Observation:
Use the terminal below to delete a file ending with the extension .png
Action:
> Role: Assistant
‘‘‘
agent.type(’ls’)
agent.press(’enter’)
‘‘‘
> Role: User
Observation:
Use the terminal below to delete a file ending with the extension .png
user\$ ls
alloy.png script.zip shark.html sudo.gpg
Action:
> Role: Assistant
‘‘‘
Note that it is not allowed to use *.xxx here. alloy.png is the file ending with the

extension .png. Type the complete filename.
agent.type(’rm alloy.png’)
agent.press(’enter’)
‘‘‘

Exemplary Trajectory 2

> Role: User
Task: Use the terminal below to delete a file ending with the extension .py
Trajectory:
> Role: User
Observation:
Use the terminal below to delete a file ending with the extension .py
Action:
> Role: Assistant
‘‘‘
agent.type(’ls’)
agent.press(’enter’)
‘‘‘
> Role: User
Observation:
Use the terminal below to delete a file ending with the extension .py
user\$ ls
bash.gpg image.gif nintendo.py
Action:
> Role: Assistant
‘‘‘

19

Foundation Models for Decision Making Workshop at NeurIPS 2023

Note that it is not allowed to use *.xxx here.
nintendo.py is the file ending with the extension .py. Type the complete filename.
agent.type(’rm nintendo.py’)
agent.press(’enter’)
‘‘‘

Exemplary Trajectory 3

> Role: User
Task: Use the terminal below to delete a file that has no file extension.
Trajectory:
> Role: User
Observation:
Use the terminal below to delete a file that has no file extension.
Action:
> Role: Assistant
‘‘‘
agent.type(’ls’)
agent.press(’enter’)
‘‘‘
> Role: User
Observation:
Use the terminal below to delete a file that has no file extension.
user\$ ls
encrypted.sh chrome.txt search
Action:
> Role: Assistant
‘‘‘
Note that it is not allowed to use *.xxx here.
search is the file that has no file extension while encrypted.sh and chrome.txt are not.

Type the complete filename.
agent.type(’rm search’)
agent.press("enter")
‘‘‘

Current Trajectory

> Role: User
Task: Use the terminal below to delete a file ending with the extension .gpg
Trajectory:
> Role: User
Observation:
Use the terminal below to delete a file ending with the extension .gpg
Action:

Output:
> Role: Assistant
‘‘‘
agent.type(’ls’)
agent.press(’enter’)
‘‘‘

C.1.3 STEP 3: STATE ABSTRACTION (EXPLICIT)

Input:
> Role: User
State:
<div id="wrap" data-wob_ref="2" data-wob_eps="e0">

<div id="query">Use the terminal below to delete a file ending with the extension .png</div>

<div id="area" data-wob_ref="3" data-wob_eps="e0"><div data-wob_ref="4" data-wob_eps="e0">
<div id="terminal" data-wob_ref="5" data-wob_eps="e0">

<div id="terminal-header" data-wob_ref="6" data-wob_eps="e0">terminal</div>
<div id="terminal-contents" data-wob_ref="7" data-wob_eps="e0">
<div class="terminal-output" data-wob_ref="8" data-wob_eps="e0">

Welcome! Type help for a list of
available commands.

</div><div class="terminal-output" data-wob_ref="10" data-wob_eps="e0">
Last login: Tue May 02 2023

</div><div class="terminal-line" data-wob_ref="17" data-wob_eps="e0">
user$
ls

</div><div class="terminal-output" data-wob_ref="20" data-wob_eps="e0">

20

Foundation Models for Decision Making Workshop at NeurIPS 2023

alloy.png script.zip shark.html
sudo.gpg

</div><div class="terminal-line" data-wob_ref="12" data-wob_eps="e0">
user$

</div>
</div>

</div>
<input type="text" id="terminal-target" data-wob_ref="15" data-wob_eps="e0">
</div></div>
</div>
Observation:
Use the terminal below to delete a file ending with the extension .png
user\$ ls
alloy.png script.zip shark.html sudo.gpg
State:
<div id="wrap" data-wob_ref="2" data-wob_eps="e0">

<div id="query">Use the terminal below to delete a file ending with the extension .py</div>

<div id="area" data-wob_ref="3" data-wob_eps="e0"><div data-wob_ref="4" data-wob_eps="e0">
<div id="terminal" data-wob_ref="5" data-wob_eps="e0">

<div id="terminal-header" data-wob_ref="6" data-wob_eps="e0">terminal</div>
<div id="terminal-contents" data-wob_ref="7" data-wob_eps="e0">
<div class="terminal-output" data-wob_ref="8" data-wob_eps="e0">

Welcome! Type help for a list of
available commands.

</div><div class="terminal-output" data-wob_ref="10" data-wob_eps="e0">
Last login: Tue May 02 2023

</div><div class="terminal-line" data-wob_ref="17" data-wob_eps="e0">
user$
ls

</div><div class="terminal-output" data-wob_ref="20" data-wob_eps="e0">
bash.gpg image.gif nintendo.py</

span>
</div><div class="terminal-line" data-wob_ref="12" data-wob_eps="e0">

user$

</div>
</div>

</div>
<input type="text" id="terminal-target" data-wob_ref="15" data-wob_eps="e0">
</div></div>
</div>
Observation:
Use the terminal below to delete a file ending with the extension .py
user\$ ls
bash.gpg image.gif nintendo.py
State:
<div id="wrap" data-wob_ref="2" data-wob_eps="e0">

<div id="query">Use the terminal below to delete a file that has no file
extension.</div>

<div id="area" data-wob_ref="3" data-wob_eps="e0"><div data-wob_ref="4" data-wob_eps="e0">
<div id="terminal" data-wob_ref="5" data-wob_eps="e0">

<div id="terminal-header" data-wob_ref="6" data-wob_eps="e0">terminal</div>
<div id="terminal-contents" data-wob_ref="7" data-wob_eps="e0">
<div class="terminal-output" data-wob_ref="8" data-wob_eps="e0">

Welcome! Type help for a list of
available commands.

</div><div class="terminal-output" data-wob_ref="10" data-wob_eps="e0">
Last login: Tue May 02 2023

</div><div class="terminal-line" data-wob_ref="17" data-wob_eps="e0">
user$
ls

</div><div class="terminal-output" data-wob_ref="20" data-wob_eps="e0">
encrypted.sh chrome.txt search</

span>
</div><div class="terminal-line" data-wob_ref="12" data-wob_eps="e0">

user$

</div>
</div>

</div>
<input type="text" id="terminal-target" data-wob_ref="15" data-wob_eps="e0">
</div></div>
</div>
Observation:
Use the terminal below to delete a file that has no file extension.
user\$ ls

21

Foundation Models for Decision Making Workshop at NeurIPS 2023

encrypted.sh chrome.txt search
State:
<div id="wrap" data-wob_ref="2" data-wob_eps="e0">

<div id="query">Use the terminal below to delete a file ending with the extension .gpg</div>

<div id="area" data-wob_ref="3" data-wob_eps="e0"><div data-wob_ref="4" data-wob_eps="e0">
<div id="terminal" data-wob_ref="5" data-wob_eps="e0">

<div id="terminal-header" data-wob_ref="6" data-wob_eps="e0">terminal</div>
<div id="terminal-contents" data-wob_ref="7" data-wob_eps="e0">
<div class="terminal-output" data-wob_ref="8" data-wob_eps="e0">

Welcome! Type help for a list of
available commands.

</div><div class="terminal-output" data-wob_ref="10" data-wob_eps="e0">
Last login: Sun Sep 24 2023

</div><div class="terminal-line" data-wob_ref="17" data-wob_eps="e0">
user$
ls

</div><div class="terminal-output" data-wob_ref="20" data-wob_eps="e0">
index.rb media.html window.gpg</

span>
</div><div class="terminal-line" data-wob_ref="12" data-wob_eps="e0">

user$

</div>
</div>

</div>
<input type="text" id="terminal-target" data-wob_ref="15" data-wob_eps="e0">
</div></div>
</div>
Observation:

Output:
> Role: Assistant
Use the terminal below to delete a file ending with the extension .gpg
user\$ ls
index.rb media.html window.gpg

C.1.4 STEP 4: TAE PROMPTING

Input:
System Prompt (same as step 2)
Exemplary Trajectory 1 (same as step 2)
Exemplary Trajectory 2 (same as step 2)
Exemplary Trajectory 3 (same as step 2)

Current Trajectory

> Role: User
Task: Use the terminal below to delete a file ending with the extension .gpg
Trajectory:
> Role: User
Observation:
Use the terminal below to delete a file ending with the extension .gpg
Action:
> Role: Assistant
‘‘‘
agent.type(’ls’)
agent.press(’enter’)
‘‘‘
> Role: User
Observation:
Use the terminal below to delete a file ending with the extension .gpg
user\$ ls
index.rb media.html window.gpg
Action:

Output:
> Role: Assistant
‘‘‘
Note that it is not allowed to use *.xxx here.
window.gpg is the file ending with the extension .gpg. Type the complete filename.

22

Foundation Models for Decision Making Workshop at NeurIPS 2023

agent.type(’rm window.gpg’)
agent.press(’enter’)
‘‘‘

C.2 BOOK-FLIGHT

To finish the book-flight task in MiniWoB++, the agent needs to first search the flight and then book
one with a certain condition. SYNAPSE completed this task in four steps: two for state abstraction
and two for TaE prompting. In step 3, due to the long HTML state, we use implicit state abstraction
with code. Temporal abstraction here reduces the number of LLM queries, leading to lower latency
and higher success rate in long-horizon tasks.

C.2.1 STEP 1: STATE ABSTRACTION (EXPLICIT)

Input:

> Role: User
State:
<div id="wrap" data-wob_ref="2" data-wob_eps="e0">

<div id="query">Book the cheapest one-way flight from: <span class
="bold">Hartford, CT to: TVC on <span class="bold"
>10/05/2016.</div>

<div id="area" data-wob_ref="3" data-wob_eps="e0">
<div id="menu" data-wob_ref="4" data-wob_eps="e0">

<h2 id="header-book" data-wob_ref="5" data-wob_eps="e0">Book Your One-Way Flight</h2>
<div class="input-container" data-wob_ref="6" data-wob_eps="e0"><input id="flight-from"

class="flight-input ui-autocomplete-input" type="text" placeholder="From:" autocomplete="
off" data-wob_ref="7" data-wob_eps="e0"></div>
<div class="input-container" data-wob_ref="8" data-wob_eps="e0"><input id="flight-to"

class="flight-input ui-autocomplete-input" type="text" placeholder="To:" autocomplete="
off" data-wob_ref="9" data-wob_eps="e0"></div>
<div class="departure-container" data-wob_ref="10" data-wob_eps="e0">

<div class="departure-header" data-wob_ref="11" data-wob_eps="e0">Departure Date</div>
<div class="input-container" data-wob_ref="12" data-wob_eps="e0"><input id="datepicker

" class="flight-input hasDatepicker" type="text" readonly="" data-wob_ref="13" data-
wob_eps="e0"></div>
</div>
<div class="search-container" data-wob_ref="14" data-wob_eps="e0">

<button id="search" data-wob_ref="15" data-wob_eps="e0">Search</button>
</div>

</div>
<div id="results" class="hide"></div>
</div>

</div>
Observation:
Type the flight from: ’Hartford, CT’ to: ’(TVC)’ (Hartford, CT is not an airport code. (TVC)

is an airport code.), and select the date 10/05/2016.
State:
<div id="wrap" data-wob_ref="2" data-wob_eps="e0">

<div id="query">Book the shortest one-way flight from: <span class
="bold">MNT to: Islip, NY on <span class="bold"
>11/05/2016.</div>

<div id="area" data-wob_ref="3" data-wob_eps="e0">
<div id="menu" data-wob_ref="4" data-wob_eps="e0">

<h2 id="header-book" data-wob_ref="5" data-wob_eps="e0">Book Your One-Way Flight</h2>
<div class="input-container" data-wob_ref="6" data-wob_eps="e0"><input id="flight-from"

class="flight-input ui-autocomplete-input" type="text" placeholder="From:" autocomplete="
off" data-wob_ref="7" data-wob_eps="e0"></div>
<div class="input-container" data-wob_ref="8" data-wob_eps="e0"><input id="flight-to"

class="flight-input ui-autocomplete-input" type="text" placeholder="To:" autocomplete="
off" data-wob_ref="9" data-wob_eps="e0"></div>
<div class="departure-container" data-wob_ref="10" data-wob_eps="e0">

<div class="departure-header" data-wob_ref="11" data-wob_eps="e0">Departure Date</div>
<div class="input-container" data-wob_ref="12" data-wob_eps="e0"><input id="datepicker

" class="flight-input hasDatepicker" type="text" readonly="" data-wob_ref="13" data-
wob_eps="e0"></div>
</div>
<div class="search-container" data-wob_ref="14" data-wob_eps="e0">

<button id="search" data-wob_ref="15" data-wob_eps="e0">Search</button>
</div>

</div>
<div id="results" class="hide"></div>
</div>

</div>
Observation:

23

Foundation Models for Decision Making Workshop at NeurIPS 2023

Type the flight from: ’(MNT)’ to: ’Islip, NY’ ((MNT) is an airport code. Islip, NY is not an
airport code.), and select the date 11/05/2016.

State:
<div id="wrap" data-wob_ref="2" data-wob_eps="e0">

<div id="query">Book the cheapest one-way flight from: <span class
="bold">Anvik, AK to: MOT on <span class="bold"
>12/23/2016.</div>

<div id="area" data-wob_ref="3" data-wob_eps="e0">
<div id="menu" data-wob_ref="4" data-wob_eps="e0">

<h2 id="header-book" data-wob_ref="5" data-wob_eps="e0">Book Your One-Way Flight</h2>
<div class="input-container" data-wob_ref="6" data-wob_eps="e0"><input id="flight-from"

class="flight-input ui-autocomplete-input" type="text" placeholder="From:" autocomplete="
off" data-wob_ref="7" data-wob_eps="e0"></div>
<div class="input-container" data-wob_ref="8" data-wob_eps="e0"><input id="flight-to"

class="flight-input ui-autocomplete-input" type="text" placeholder="To:" autocomplete="
off" data-wob_ref="9" data-wob_eps="e0"></div>
<div class="departure-container" data-wob_ref="10" data-wob_eps="e0">

<div class="departure-header" data-wob_ref="11" data-wob_eps="e0">Departure Date</div>
<div class="input-container" data-wob_ref="12" data-wob_eps="e0"><input id="datepicker

" class="flight-input hasDatepicker" type="text" readonly="" data-wob_ref="13" data-
wob_eps="e0"></div>
</div>
<div class="search-container" data-wob_ref="14" data-wob_eps="e0">

<button id="search" data-wob_ref="15" data-wob_eps="e0">Search</button>
</div>

</div>
<div id="results" class="hide"></div>
</div>

</div>
Observation:

Output:

> Role: Assistant
Type the flight from: ’Anvik, AK’ to: ’(MOT)’ (MOT is an airport code. Anvik, AK is not an

airport code.), and select the date 12/23/2016.

C.2.2 STEP 2: TAE PROMPTING

Input:

System Prompt (same as the terminal task)

Exemplary Trajectory 1

> Role: User
Task: Book the cheapest one-way flight from: Hartford, CT to: TVC on 10/05/2016.
Trajectory:
> Role: User
Observation:
Type the flight from: ’Hartford, CT’ to: ’(TVC)’ (Hartford, CT is not an airport code. (TVC)

is an airport code.), and select the date 10/05/2016.
Action:
> Role: Assistant
‘‘‘
Type the flight from: ’Hartford, CT’ to: ’(TVC)’
agent.click_xpath("//*[@id=’flight-from’]")
agent.type("Hartford, CT")
agent.press("arrowdown")
agent.press("enter")
agent.click_xpath("//*[@id=’flight-to’]")
agent.type("(TVC)") # For the airport code, you must use parentheses
agent.press("arrowdown")
agent.press("enter")
Select the date 10/05/2016
agent.click_xpath("//*[@id=’datepicker’]")
Current date: 12/31/2016 (December-October=2). Click on ’Prev’ twice
for _ in range(2):

agent.click_xpath("//*[@title=’Prev’]")
Click on the date ’5’
agent.click_xpath("//a[text()=’5’]")
agent.click_xpath("//*[@id=’search’]")
‘‘‘
> Role: User
Observation:
The price of the cheapest one-way flight is $92

24

Foundation Models for Decision Making Workshop at NeurIPS 2023

Action:
> Role: Assistant
‘‘‘
agent.click_xpath("//button[text()=’Book flight for $92’]")
‘‘‘

Exemplary Trajectory 2

> Role: User
Task: Book the shortest one-way flight from: Abilene, TX to: St Petersburg/Clearwater, FL on

10/15/2016.
Trajectory:
> Role: User
Observation:
Type the flight from: ’Abilene, TX’ to: ’St Petersburg/Clearwater, FL’ (Abilene, TX is not an

airport code. St Petersburg/Clearwater, FL is not an airport code.), and select the date
10/15/2016.

Action:
> Role: Assistant
‘‘‘
Type the flight from: ’Abilene, TX’ to: ’St Petersburg/Clearwater, FL’
agent.click_xpath("//*[@id=’flight-from’]")
agent.type("Abilene, TX")
agent.press("arrowdown")
agent.press("enter")
agent.click_xpath("//*[@id=’flight-to’]")
agent.type("St Petersburg/Clearwater, FL")
agent.press("arrowdown")
agent.press("enter")
Select the date 10/15/2016
agent.click_xpath("//*[@id=’datepicker’]")
Current date: 12/31/2016 (December-October=2). Click on ’Prev’ twice
for _ in range(2):

agent.click_xpath("//*[@title=’Prev’]")
Click on the date ’15’
agent.click_xpath("//a[text()=’15’]")
agent.click_xpath("//*[@id=’search’]")
‘‘‘
> Role: User
Observation:
The price of the shortest one-way flight is $680
Action:
> Role: Assistant
‘‘‘
agent.click_xpath("//button[text()=’Book flight for $680’]")
‘‘‘

Exemplary Trajectory 3

> Role: User
Task: Book the shortest one-way flight from: MNT to: Islip, NY on 11/05/2016.
Trajectory:
> Role: User
Observation:
Type the flight from: ’(MNT)’ to: ’Islip, NY’ ((MNT) is an airport code. Islip, NY is not an

airport code.), and select the date 11/05/2016.
Action:
> Role: Assistant
‘‘‘
Type the flight from: ’(MNT)’ to: ’Islip, NY’
agent.click_xpath("//*[@id=’flight-from’]")
agent.type("(MNT)") # For the airport code, you must use parentheses
agent.press("arrowdown")
agent.press("enter")
agent.click_xpath("//*[@id=’flight-to’]")
agent.type("Islip, NY")
agent.press("arrowdown")
agent.press("enter")
Select the date 11/05/2016
agent.click_xpath("//*[@id=’datepicker’]")
Current date: 12/31/2016 (December-November=1). Click on ’Prev’ once
agent.click_xpath("//*[@title=’Prev’]")
Click on the date ’5’
agent.click_xpath("//a[text()=’5’]")
agent.click_xpath("//*[@id=’search’]")
‘‘‘
> Role: User
Observation:
The price of the shortest one-way flight is $341

25

Foundation Models for Decision Making Workshop at NeurIPS 2023

Action:
> Role: Assistant
‘‘‘
agent.click_xpath("//button[text()=’Book flight for $341’]")
‘‘‘

Exemplary Trajectory 4

> Role: User
Task: Book the cheapest one-way flight from: LKE to: Manhattan, KS on 12/12/2016.
Trajectory:
> Role: User
Observation:
Type the flight from: ’(LKE)’ to: ’Manhattan, KS’ ((LKE) is an airport code. Manhattan, KS is

not an airport code.), and select the date 12/12/2016.
Action:
> Role: Assistant
‘‘‘
Type the flight from: ’(LKE)’ to: ’Manhattan, KS’
agent.click_xpath("//*[@id=’flight-from’]")
agent.type("(LKE)") # For the airport code, you must use parentheses
agent.press("arrowdown")
agent.press("enter")
agent.click_xpath("//*[@id=’flight-to’]")
agent.type("Manhattan, KS")
agent.press("arrowdown")
agent.press("enter")
Select the date 12/12/2016
agent.click_xpath("//*[@id=’datepicker’]")
Current date: 12/31/2016 (December-December=0). No need to click on ’Prev’
Click on the date ’12’
agent.click_xpath("//a[text()=’12’]")
agent.click_xpath("//*[@id=’search’]")
‘‘‘
> Role: User
Observation:
The price of the cheapest one-way flight is $152
Action:
> Role: Assistant
‘‘‘
agent.click_xpath("//button[text()=’Book flight for $152’]")
‘‘‘

Exemplary Trajectory 5

> Role: User
Task: Book the cheapest one-way flight from: WMH to: BTR on 11/16/2016.
Trajectory:
> Role: User
Observation:
Type the flight from: ’(WMH)’ to: ’(BTR)’ ((WMH) and (BTR) are airport codes.), and select the

date 11/16/2016.
Action:
> Role: Assistant
‘‘‘
Type the flight from: ’(WMH)’ to: ’(BTR)’
agent.click_xpath("//*[@id=’flight-from’]")
agent.type("(WMH)") # For the airport code, you must use parentheses
agent.press("arrowdown")
agent.press("enter")
agent.click_xpath("//*[@id=’flight-to’]")
agent.type("(BTR)") # For the airport code, you must use parentheses
agent.press("arrowdown")
agent.press("enter")
Select the date 11/16/2016
agent.click_xpath("//*[@id=’datepicker’]")
Current date: 12/31/2016 (December-November=1). Click on ’Prev’ once
agent.click_xpath("//*[@title=’Prev’]")
Click on the date ’16’
agent.click_xpath("//a[text()=’16’]")
agent.click_xpath("//*[@id=’search’]")
‘‘‘
> Role: User
Observation:
The price of the cheapest one-way flight is $36
Action:
> Role: Assistant
‘‘‘
agent.click_xpath("//button[text()=’Book flight for $36’]")

26

Foundation Models for Decision Making Workshop at NeurIPS 2023

‘‘‘

Current Trajectory

> Role: User
Task: Book the cheapest one-way flight from: Anvik, AK to: MOT on 12/23/2016.
Trajectory:
> Role: User
Observation:
Type the flight from: ’Anvik, AK’ to: ’(MOT)’ (MOT is an airport code. Anvik, AK is not an

airport code.), and select the date 12/23/2016.
Action:

Output:

> Role: Assistant
‘‘‘
Type the flight from: ’Anvik, AK’ to: ’(MOT)’
agent.click_xpath("//*[@id=’flight-from’]")
agent.type("Anvik, AK")
agent.press("arrowdown")
agent.press("enter")
agent.click_xpath("//*[@id=’flight-to’]")
agent.type("(MOT)") # For the airport code, you must use parentheses
agent.press("arrowdown")
agent.press("enter")
Select the date 12/23/2016
agent.click_xpath("//*[@id=’datepicker’]")
Current date: 12/31/2016 (December-December=0). No need to click on ’Prev’
Click on the date ’23’
agent.click_xpath("//a[text()=’23’]")
agent.click_xpath("//*[@id=’search’]")
‘‘‘

C.2.3 STEP 3: STATE ABSTRACTION (IMPLICIT)

Input:

> Role: User
Filter the following raw HTML state into a clean observation via code based on the task.
State:
<div id="wrap" data-wob_ref="2" data-wob_eps="e0">

<div id="query">Book the cheapest one-way flight from: <span class
="bold">Anvik, AK to: MOT on <span class="bold"
>12/23/2016.</div>

<div id="area" data-wob_ref="3" data-wob_eps="e0">
... (a very long webpage containing flight information)

</div>
</div>

Write code (between three backticks) to extract the price of the wanted ticket. First check if
we want shortest or cheapest flight. Parse the HTML using BeautifulSoup. Loop through

all the available flights. Check time duration (split ’h’ and ’m’) or flight price based
on whether we want the shortest or the cheapest. We have searched with airports and the
date, so there is no need to check them. Keep the integer price of the ticket in a string
variable ‘obs‘ in this format: ’The price of the {preference} one-way flight is ${price

}.’. The string of the raw state is already in the variable ‘state‘ so do not repeat the
state in the code.

Here are some examples:
Write code within three backticks ’‘‘‘’ to Book the cheapest one-way flight from: Hartford, CT

to: TVC on 10/05/2016.
Code:
‘‘‘python
from bs4 import BeautifulSoup
soup = BeautifulSoup(state, ’html.parser’)
preference = ’cheapest’
best_flight_price = float(’inf’)
Loop through all the available flights
for flight in soup.find_all("div", class_="flight"):

the preference is cheapest, compare flight prices
price = int(flight.find("button", class_="flight-price")["data-price"])
if price < best_flight_price:

best_flight_price = price
price = best_flight_price
obs = f’The price of the {preference} one-way flight is ${price}’

27

Foundation Models for Decision Making Workshop at NeurIPS 2023

‘‘‘

Write code within three backticks ’‘‘‘’ to Book the shortest one-way flight from: Abilene, TX
to: St Petersburg/Clearwater, FL on 10/15/2016.

Code:
‘‘‘python
from bs4 import BeautifulSoup
soup = BeautifulSoup(state, ’html.parser’)
preference = ’shortest’
best_flight_duration = float(’inf’)
best_flight = None
Loop through all the available flights
for flight in soup.find_all("div", class_="flight"):

the preference is shortest, compare flight durations
duration = flight.find("div", class_="time-duration").text.split()
hours = int(duration[0][:-1]) if ’h’ in duration[0] else 0
minutes = int(duration[1][:-1]) if ’m’ in duration[1] else 0
total_minutes = hours * 60 + minutes
if total_minutes < best_flight_duration:

best_flight_duration = total_minutes
best_flight = flight

price = int(best_flight.find("button", class_="flight-price")["data-price"])
obs = f’The price of the {preference} one-way flight is ${price}’
‘‘‘

Now, write code within three backticks ’‘‘‘’ to Book the cheapest one-way flight from: Anvik,
AK to: MOT on 12/23/2016.

Code:

Output:

> Role: Assistant
‘‘‘python
from bs4 import BeautifulSoup
soup = BeautifulSoup(state, ’html.parser’)
preference = ’cheapest’
best_flight_price = float(’inf’)
Loop through all the available flights
for flight in soup.find_all("div", class_="flight"):

the preference is cheapest, compare flight prices
price = int(flight.find("button", class_="flight-price")["data-price"])
if price < best_flight_price:

best_flight_price = price
price = best_flight_price
obs = f’The price of the {preference} one-way flight is ${price}.’
‘‘‘

C.2.4 STEP 4: TAE PROMPTING

Input:

System Prompt (same as step 2)
Exemplary Trajectory 1 (same as step 2)
Exemplary Trajectory 2 (same as step 2)
Exemplary Trajectory 3 (same as step 2)
Exemplary Trajectory 4 (same as step 2)
Exemplary Trajectory 5 (same as step 2)

Current Trajectory

> Role: User
Task: Book the cheapest one-way flight from: Anvik, AK to: MOT on 12/23/2016.
Trajectory:
> Role: User
Observation:
Type the flight from: ’Anvik, AK’ to: ’(MOT)’ (MOT is an airport code. Anvik, AK is not an

airport code.), and select the date 12/23/2016.
Action:
> Role: Assistant
‘‘‘
Type the flight from: ’Anvik, AK’ to: ’(MOT)’
agent.click_xpath("//*[@id=’flight-from’]")
agent.type("Anvik, AK")
agent.press("arrowdown")
agent.press("enter")
agent.click_xpath("//*[@id=’flight-to’]")

28

Foundation Models for Decision Making Workshop at NeurIPS 2023

agent.type("(MOT)") # For the airport code, you must use parentheses
agent.press("arrowdown")
agent.press("enter")
Select the date 12/23/2016
agent.click_xpath("//*[@id=’datepicker’]")
Current date: 12/31/2016 (December-December=0). No need to click on ’Prev’
Click on the date ’23’
agent.click_xpath("//a[text()=’23’]")
agent.click_xpath("//*[@id=’search’]")
‘‘‘
> Role: User
Observation:
The price of the cheapest one-way flight is $65.
Action:

Output:
> Role: Assistant
‘‘‘
agent.click_xpath("//button[text()=’Book flight for $65’]")
‘‘‘

C.3 TEXT-TRANSFORM (FAILURE CASE)

We also demonstrate a failure case in MiniWoB++, where the LLM incorrectly recognizes jrpf as
jrfp when typing the transformed text into the text field.

C.3.1 STEP 1: TAE PROMPTING

Input:
System Prompt (same as the terminal task)

Exemplary Trajectory 1

> Role: User
Observation:
<div id="wrap" data-wob_ref="2" data-wob_eps="e0">

<div id="sol" class="rezp" data-wob_ref="3" data-wob_eps="e0"></div>
<div id="query">Type the text below into the text field and press Submit.</div>
<div id="area" data-wob_ref="4" data-wob_eps="e0">
<div id="captcha" data-wob_ref="5" data-wob_eps="e0"><span style="transform: skewX(3deg)
skewY(-26deg);" data-wob_ref="6" data-wob_eps="e0">r<span style="transform: skewX
(-4deg) skewY(-21deg);" data-wob_ref="7" data-wob_eps="e0">e<span style="transform
: skewX(-8deg) skewY(30deg);" data-wob_ref="8" data-wob_eps="e0">z<span style="
transform: skewX(-8deg) skewY(-25deg);" data-wob_ref="9" data-wob_eps="e0">p</div>
<div id="form" style="margin-left:13px;margin-top:14px;" data-wob_ref="10" data-wob_eps="
e0">
<input type="text" id="tt" data-wob_ref="11" data-wob_eps="e0">
<button id="subbtn" class="secondary-action" style="margin-top:18px;" data-wob_ref="12"

data-wob_eps="e0">Submit</button>
</div>

</div>
</div>
Action:
> Role: Assistant
‘‘‘
agent.click_xpath("//*[@id=’tt’]") # Locate the input box by clicking on it
agent.type(’rezp’) # Type the string in the input box
agent.click_xpath("//*[@id=’subbtn’]")
‘‘‘

Exemplary Trajectory 2

> Role: User
Observation:
<div id="wrap" data-wob_ref="2" data-wob_eps="e0">

<div id="sol" class="aoy" data-wob_ref="3" data-wob_eps="e0"></div>
<div id="query">Type the text below into the text field and press Submit.</div>
<div id="area" data-wob_ref="4" data-wob_eps="e0">
<div id="captcha" data-wob_ref="5" data-wob_eps="e0"><span style="transform: skewX(8deg)
skewY(-24deg);" data-wob_ref="6" data-wob_eps="e0">a<span style="transform: skewX
(12deg) skewY(-11deg);" data-wob_ref="7" data-wob_eps="e0">o<span style="transform
: skewX(1deg) skewY(-23deg);" data-wob_ref="8" data-wob_eps="e0">y</div>

29

Foundation Models for Decision Making Workshop at NeurIPS 2023

<div id="form" style="margin-left:10px;margin-top:10px;" data-wob_ref="9" data-wob_eps="e0
">
<input type="text" id="tt" data-wob_ref="10" data-wob_eps="e0">
<button id="subbtn" class="secondary-action" style="margin-top:17px;" data-wob_ref="11"

data-wob_eps="e0">Submit</button>
</div>

</div>
</div>
Action:
> Role: Assistant
‘‘‘
agent.click_xpath("//*[@id=’tt’]") # Locate the input box by clicking on it
agent.type(’aoy’) # Type the string in the input box
agent.click_xpath("//*[@id=’subbtn’]")
‘‘‘

Current Trajectory

> Role: User
Observation:
<div id="wrap" data-wob_ref="2" data-wob_eps="e0">

<div id="sol" class="jrpf" data-wob_ref="3" data-wob_eps="e0"></div>
<div id="query">Type the text below into the text field and press Submit.</div>
<div id="area" data-wob_ref="4" data-wob_eps="e0">
<div id="captcha" data-wob_ref="5" data-wob_eps="e0"><span style="transform: skewX(-13deg)
skewY(21deg);" data-wob_ref="6" data-wob_eps="e0">j<span style="transform: skewX

(8deg) skewY(17deg);" data-wob_ref="7" data-wob_eps="e0">r<span style="transform:
skewX(-13deg) skewY(32deg);" data-wob_ref="8" data-wob_eps="e0">p<span style="
transform: skewX(2deg) skewY(18deg);" data-wob_ref="9" data-wob_eps="e0">f</div>
<div id="form" style="margin-left:13px;margin-top:19px;" data-wob_ref="10" data-wob_eps="
e0">
<input type="text" id="tt" data-wob_ref="11" data-wob_eps="e0">
<button id="subbtn" class="secondary-action" style="margin-top:16px;" data-wob_ref="12"

data-wob_eps="e0">Submit</button>
</div>

</div>
</div>
Action:

Output:
> Role: Assistant
‘‘‘
agent.click_xpath("//*[@id=’tt’]") # Locate the input box by clicking on it
agent.type(’jrfp’) # Type the string in the input box
agent.click_xpath("//*[@id=’subbtn’]")
‘‘‘

C.4 MIND2WEB

We only demonstrate one step in Mind2Web because real-world tasks and websites are complicated.
The observations are obtained using their element-ranking model. We set k to 3 for the trajectories
in memory and previous observations in current history and k = 5 for the current observation.

Input:
> Role: System
You are a large language model trained to navigate the web. Output the next action and wait

for the next observation. Here is the action space:
1. ‘CLICK [id]‘: Click on an HTML element with its id.
2. ‘TYPE [id] [value]‘: Type a string into the element with the id.
3. ‘SELECT [id] [value]‘: Select a value for an HTML element by its id.

Exemplary Trajectory 1

> Role: User
Task: Remove the SSD on my cart
Trajectory:
Observation: ‘<html> <div> <i icon of shopping cart /> <div> 3

 Items </div> <div> $52.97 </div> <
div> Computer Peripherals </div> <div> Electronics </div>
 </div> </html>‘

> Role: Assistant
Action: ‘CLICK [131]‘ ([link] Shopping Cart -> CLICK)

30

Foundation Models for Decision Making Workshop at NeurIPS 2023

> Role: User
Observation: ‘<html> <div> <div> <button

id=18445 button> <i trash /> Remove </button> </div> <div> <a view details> SAMSUNG 980
PRO M.2 2280 2TB PCIe Gen 4.0 x4, NVMe 1.3c Samsung V-NAND Internal Solid State Drive (
SSD) MZ-V8P2T0B/AM Internal SSDs </div> </div> </html>‘

> Role: Assistant
Action: ‘CLICK [18445]‘ ([button] trash REMOVE -> CLICK)

Exemplary Trajectory 2

> Role: User
Task: Add Western Digital internal SSD with 1TB storage and 8GB Ram DDR to the cart.
Trajectory:
Observation: ‘<html> <div> <input id=145 search search site /> <a id=10059 computer

peripherals> <div> Computer Peripherals </div> <div>
Electronics </div> </div> </html>‘

> Role: Assistant
Action: ‘CLICK [145]‘ ([searchbox] Search Site -> CLICK)
> Role: User
Observation: ‘<html> <div> <input id=36915 search search site /> <a id=46898 computer

peripherals> <div> Computer Peripherals </div> <div>
Electronics </div> </div> </html>‘

> Role: Assistant
Action: ‘TYPE [36915] [Western Digital internal SSD 1 TB]‘ ([searchbox] Search Site -> TYPE:

Western Digital internal SSD 1 TB)
> Role: User
Observation: ‘<html> <div> <div> <input id=81881 search search site western digital internal

ssd 1 /> <button id=73846> Search </button> </div> <a western digital> <
img id=90934 western digital /> </div> </html>‘

...

Exemplary Trajectory 3

> Role: User
Task: Upgrade the count of the current SSD in my cart to 10
Trajectory:
Observation: ‘<html> <div> <i icon of shopping cart /> <div> 3

 Items </div> <div> $85.97 </div> <
div> Computer Peripherals </div> <div> Electronics </div>
 </div> </html>‘

> Role: Assistant
Action: ‘CLICK [130]‘ ([link] Shopping Cart -> CLICK)
> Role: User
Observation: ‘<html> <div> <div> Add <a> Edit <a> Done </div> <div

> <div> <input id=18580 text qty 1 /> <div> Limit 20 </div> </div> <div> Add
 <a> Edit <a> Done </div> </div> </div> </html>‘

> Role: Assistant
Action: ‘TYPE [18580] [10]‘ ([textbox] qty -> TYPE: 10)
> Role: User
Observation: ‘<html> <div> <div> Add <a> Edit <a> Done </div> <div

> <div> <input id=38114 text qty 10 /> <div> Limit 20 </div> </div> <div>
Add <a> Edit <a> Done </div> </div> </div> </html>‘

> Role: Assistant
Action: ‘CLICK [38114]‘ ([textbox] qty -> ENTER)

Current Trajectory

> Role: User
Task: Add the cheapest SSD to my cart
Trajectory:
Observation: ‘<html> <div> <div> <i id=104 site menu /> <input id=99 search search site /> </

div> <div> Computer Systems </div> <a id=10010
computer peripherals> <div> Computer Peripherals </div> <
div> Electronics </div> </div> </html>‘

Output:
> Role: Assistant
Action: ‘CLICK [9139]‘ ([link] Computer Systems -> CLICK)

31

	Introduction
	Related Work
	Synapse
	Problem Setting
	State Abstraction
	Trajectory-as-Exemplar Prompting
	Exemplar Memory

	Evaluation
	Experimental Setup
	Baselines
	Analysis on MiniWoB++
	Evaluation on Realistic Websites
	Ablation Studies

	Discussion, Limitations & Future Work
	Additional Results
	Environment Details
	MiniWoB++
	Mind2Web

	Prompts
	terminal
	Step 1: State Abstraction (Explicit)
	Step 2: TaE Prompting
	Step 3: State Abstraction (Explicit)
	Step 4: TaE Prompting

	book-flight
	Step 1: State Abstraction (Explicit)
	Step 2: TaE Prompting
	Step 3: State Abstraction (Implicit)
	Step 4: TaE Prompting

	text-transform (Failure Case)
	Step 1: TaE Prompting

	Mind2Web

