
DiLoCo: Distributed Low-Communication Training of Language Models

Arthur Douillard * 1 Qixuan Feng * 1 Andrei A. Rusu * 1 Rachita Chhaparia 1 Yani Donchev 1

Adhiguna Kuncoro 1 Marc’Aurelio Ranzato 1 Arthur Szlam 1 Jiajun Shen 1

Abstract

Large language models (LLM) have become a
critical component in many applications of ma-
chine learning. However, standard approaches to
training LLM require a large number of tightly in-
terconnected accelerators, with devices exchang-
ing gradients and other intermediate states at each
optimization step. While it is difficult to build
and maintain a single computing cluster hosting
many accelerators, it might be easier to find sev-
eral computing clusters each hosting a smaller
number of devices. In this work, we propose a dis-
tributed optimization algorithm, Distributed Low-
Communication (DiLoCo), that enables training
of language models on islands of devices that
are poorly connected. The approach is a variant
of federated averaging, where the number of in-
ner steps is large, the inner optimizer is AdamW,
and the outer optimizer is Nesterov momentum.
On the widely used C4 dataset, we show that
DiLoCo on 8 workers performs as well as fully
synchronous optimization while communicating
500 times less. DiLoCo exhibits great robustness
to the data distribution of each worker. It is also
robust to resources becoming unavailable over
time, and vice versa, it can seamlessly leverage
resources that become available during training.

1. Introduction
Language models have shown remarkable ability to gen-
eralize to new tasks, and are at the heart of a multitude of
new applications of machine learning. Because performance
has scaled with model size, practitioners train increasingly
larger models on increasingly large data. Nevertheless, at
a high level, the basic training approach remains standard
mini-batch back-propagation of the error.

*Equal contribution 1Google DeepMind. Correspondence to:
Arthur Douillard <douillard@google.com>, Marc’Aurelio Ran-
zato <ranzato@google.com>.

Accepted to the Workshop on Advancing Neural Network Training
at International Conference on Machine Learning (WANT2024).

At modern scale, training via standard back-propagation
poses unprecedented engineering and infrastructure chal-
lenges. To start, several thousands of devices need to be
powered and be placed at the same physical location; and
interconnected with high-bandwidth cables to minimize la-
tency. Careful software engineering is required to orches-
trate the passage of gradients, parameters and intermediate
states between these devices at each optimization step, keep-
ing all devices fully utilized. Furthermore, the more devices
that are used for each synchronous training step, the more
chances there are that one of them fails, risking halting train-
ing, or introducing subtle numerical issues. Moreover, the
current paradigm poorly leverages heterogeneous devices,
that might have different speed and topology. In the simplest
terms, it is difficult to co-locate and tightly synchronize a
large number of accelerators.

In this work, we take inspiration from literature on Federated
Learning, to address the above mentioned difficulties. In
Federated Learning, there are k workers, each operating
on their own island of devices, each consuming a certain
partition of the data, and each updating a model replica.
Such workers perform some amount of work locally, and
then exchange gradients every H steps to get their model
replica back in sync.

We propose a variant of the popular Federated Averaging
(FedAvg) algorithm (McMahan et al., 2017), or a particular
instantiation with a momentum-based optimizer as in the
FedOpt algorithm (Reddi et al., 2021), whereby the num-
ber of inner steps is large, the inner optimizer is replaced
with AdamW, and the outer optimizer with Nesterov Mo-
mentum for best performance. This combination enables
us to address the shortcomings mentioned above, because
a) while each worker requires co-located devices their num-
ber is roughly k times smaller than the total, b) workers
need not to communicate at each and every single step but
only every H steps which can be in the order of hundreds
or even thousands, and c) while devices within an island
need to be homogeneous, different islands can operate with
different device types. We dub this approach Distributed
Low-Communication (DiLoCo) training.

In a large-batch training setting with overtraining, our em-
pirical validation on the C4 dataset (Raffel et al., 2020)

1

DiLoCo: Distributed Low-Communication Training of Language Models

demonstrates that DiLoCo can achieve even better perfor-
mance (as measured in perplexity) than a fully synchronous
model, while communicating 500 times less. DiLoCo is
capable of effectively utilizing several islands of devices at
training time, despite a low bandwidth connectivity among
these islands. Finally, at inference time the resulting model
has the same size and speed as a model trained in fully
synchronous mode.

Our experiments show that DiLoCo is robust against differ-
ent data distributions used by local workers and frequency of
global parameter updates. Finally, DiLoCo exhibits robust-
ness to island failure, and nicely leverage islands whenever
these become available.

2. DiLoCo
We assume that we have a base model architecture (e.g.,
a transformer) with parameters θ. We denote a training
dataset as D = {(x,y), ...} with x and y being respectively
the input data and target. In language modeling (Vaswani
et al., 2017), the input is a sequence of tokens and the target
is the input sequence shifted by one. When the dataset is
split across multiple shards, we denote the i-th shard with
Di.

DiLoCo training proceeds as outlined in Algorithm 1 (Reddi
et al., 2021), and illustrated in Figure 1. First, we start from
an initial model with parameters θ(0), which can be initial-
ized at random or using a pretrained model (see subsec-
tion 3.1). We also have k workers each capable of training a
model replica and k shards of data, one for each worker.

There are two optimization processes. There is an outer
optimization (line 1, 12, and 14 in Algorithm 1), which
consists of T outer steps. At each outer step t, gradients
from each worker are gathered, averaged and sent to an outer
optimizer (OuterOpt) to update the shared copy of the
parameters. Afterwards, this shared copy of the parameters
is re-dispatched to each local worker (line 3).

Within each phase, each worker (line 3) performs inde-
pendently and in parallel its own inner optimization (lines
4 to 9) for H steps using an inner optimizer, denoted by
InnerOpt. Each worker samples data from its own shard
(line 5), and updates its own local copy of the parameters
(line 8). Note that the inner optimization consists of H ≫ 1
steps; for instance, several hundred steps. Therefore, com-
munication across workers is minimal.

Once all workers have completed their inner optimization
step, the cumulative gradients of each worker are averaged
(line 12), and the resulting outer gradient is used to update
the shared copy of the parameters (line 14), which is then
used as starting point for the next round of inner optimiza-
tions. This is the only time when communication among

workers is required, and it happens once every H inner op-
timization steps. In total, a worker trains for N = T ×H
inner steps.

In our work, we use as inner optimizer (InnerOpt)
AdamW (Kingma & Ba, 2014; Loshchilov & Hutter, 2019),
which is the most widely used optimizer for transformer
language models. Note that the vast majority of the lit-
erature usually use SGD instead, we found it to be ineffi-
cient for training transformers. As for the outer optimizer
(OuterOpt) we use Nesterov momentum (Sutskever et al.,
2013) because it gave the best convergence empirically (see
Figure 6). When OuterOpt is SGD, then the outer opti-
mizer is equivalent to classical Federated Averaging (McMa-
han et al., 2017). If the total number of outer optimization
steps T is further set to 1, then DiLoCo reduces to “soup-
ing” (Wortsman et al., 2021). Finally, if the number of
inner optimization steps H is set to 1 and InnerOpt is
SGD, DiLoCo is equivalent to large-batch training with
data-parallelism.

Overall, DiLoCo can be interpreted as a data parallelism
method that requires very little communication, and there-
fore, it can scale to workers that are poorly connected, e.g.,
workers placed in very distant geographic regions. Workers
could of course use standard data and model parallelism for
their inner optimization.

Algorithm 1 DiLoCo / FedOpt Algorithm

Require: Initial model θ(0)

Require: k workers
Require: Data shards {D1, . . . ,Dk}
Require: Optimizers InnerOpt and OuterOpt

1: for outer step t = 1 . . . T do
2: for worker i = 1 . . . k do
3: θ

(t)
i ← θ(t−1)

4: for inner step h = 1 . . . H do
5: x ∼ Di

6: L ← f(x, θ
(t)
i)

7: ▷ Inner optimization:
8: θ

(t)
i ← InnerOpt(θ(t)i ,∇L)

9: end for
10: end for
11: ▷ Averaging outer gradients:
12: ∆(t) ← 1

k

∑k
i=1(θ

(t−1) − θ
(t)
i)

13: ▷ Outer optimization:
14: θ(t) ← OuterOpt(θ(t−1),∆(t))
15: end for

3. Experiments
In this section we report the main experiments validating
DiLoCo. We consider a language modeling task on the
C4 dataset, a dataset derived from Common Crawl (Raffel

2

DiLoCo: Distributed Low-Communication Training of Language Models

Confidential — Google DeepMind

5

t = 1
Replicas Training
for H inner steps

Outer OptimizationPretrained Model

t = 2 t = 3
Replicas Training
for H inner steps

Outer Optimization …
 TPUv4
 V100

 TPUv5
 A100

 TPUv4
 V100

 TPUv5
 V100

Figure 1. DiLoCo: First, a pretrained model θ(0) is replicated k times (in this illustration k = 4) and each worker θ(1)i trains a model
replica on its own shard of data for H steps independently and in parallel. Afterwards, workers average their outer gradients and an outer
optimizer updates the global copy of the parameters θ(1). This will then be re-dispatched to the workers. The process repeats T times (in
this illustration only the first two iterations are displayed). Each replica can be trained in different locations of the world, with different
accelerators.

Table 1. Model Configuration for the three evaluated sizes. All
are based on the transformer architecture, chinchilla-style (Hoff-
mann et al., 2022).

Hyperparameter 60M 150M 400M

Number of layers 3 12 12
Hidden dim 896 896 1536
Number of heads 16 16 12
K/V size 64 64 128
Vocab size 32,000

et al., 2020). We report perplexity on the validation set
against number of steps used at training time, which is a
good proxy for wall clock time since communication across
workers is rather infrequent. The total number of steps is
set to 88,000. We consider three model sizes, all decoder-
only transformers adapted from the Chinchilla architecture
(Hoffmann et al., 2022). Their respective configuration is
described in Table 1. We perform experiments both in the
i.i.d. and non-i.i.d. settings, meaning when the data distri-
bution of the shards Di is the same for all i and when these
are different like in heterogeneous federated learning. Since
the latter is a more challenging use case, we use this set-
ting by default except when indicated otherwise. Similarly,
by default all training experiments start from a transformer
language model pretrained for 24,000 steps on the same
training set, refer to subsection 3.1 for further details.

In our experiments we have searched over the hyper-
parameters of the outer optimizer (e.g. learning rate, mo-
mentum, etc.). We use a sequence length of 1,024 tokens
and a batch of size 512 but otherwise we left unchanged the
inner optimization and model architecture. We list all the

hyper-parameters in the appendix (Table 5).

In Figure 2, we show the performance through time of
DiLoCo (in blue with k = 8 replicas in the non-i.i.d.
data setting) when each worker performs T = 128 times
H = 500 inner steps (64,000 steps in total). In this ex-
periment, DiLoCo starts from a model θ(0) pretrained for
24,000 steps.

There are four baselines. The first baseline (1) is a model
trained from scratch for 88,000 steps (in red), the second (2)
starts from a model pretrained for 24,000 steps and performs
an additional 64,000 steps (in teal). The third baseline (3)
starts from the same pre-trained model, but during finetuning
uses an 8× bigger batch size (in purple) with microbatching
(also called gradient accumulation). The fourth baseline
(4) is running the standard batch size for 8× the number
of updates. Finally the last row is our model DiLoCo (5).
We compare in Table 2 all baselines with respect to the
communication cost, time spent training, and the amount
of compute & data used. Increasing the batch size can be
done in two manners: with data parallelism (second row) at
the cost of increased communication, or with microbatching
(third row) at the cost of longer training time. DiLoCo (last
row) doesn’t increase training time, communicates H =
500× less than the second baseline (and is thus amenable
to distributed training across compute islands), while also
reaching better generalization. Increasing by 8× the number
of updates improves perplexity over our method, but at the
cost of being 8× slower.

3.1. Ablations

In the following section, we perform extensive ablations of
DiLoCo to better understand its capabilities and stress-test
its limits. More results are also available in the appendix.

3

DiLoCo: Distributed Low-Communication Training of Language Models

Figure 2. Main result: After pretraining a 150M baseline for 24,000 training steps on C4, we compare networks finetuned for an
additional 64,000 steps (teal using the same batch size, and purple using 8 times bigger batch size), and a transformer model trained from
scratch (red). DiLoCo(blue) using 8 workers yields lower perplexity, even compared to the baseline using 8 times bigger batch size, while
being 8 times faster in wall-clock time and communicating 500 times less.

Table 2. Trade-offs of various training algorithms: We compare four baselines vs DiLoCo across their communication cost, time
spent, and compute & data used. For the same time and amount of compute, we can compare the second baseline and DiLoCo. The
former communicates gradients at each time step (N total steps), while DiLoCo communicates H = 500 times less (and is amenable
to distributed training) while also reaching better generalization performance. Note that T = N/H (see Algorithm 1). Also note that
microbatching is sometimes called gradient accumulation.

Model Parallel (P) vs Serial (S) Communication Time Compute & Data Perplexity

1) Baseline S 0 1× 1× 16.23
2) Baseline, 8× batch size with data parallelism P 8×N 1× 8× 15.30
3) Baseline, 8× batch size with microbatching S 0 8× 8× 15.30
4) Baseline, 8× updates S 0 8× 8× 14.72
5) DiLoCo P 8× N/H 1× 8× 15.02

Number of Pretraining Steps For all experiments here
we perform 88,000 training steps. A subset of those steps
are done during the pretraining stage, and the remainder with
DiLoCo. In Figure 3, we study the impact of the number
of pretraining steps on the final generalization performance
in a non-i.i.d. data regime. Specifically, we compare no
pretraining (in teal), pretraining of 12k (in purple), 24k (in
red), and 48k (in orange) steps. We highlight the pretrain’s
ending and DiLoCo’s beginning with vertical dashed lines.
Note that as we keep the total amount of steps (wall-clock
time) fixed, few or no pretraining steps will result in more
compute spent overall.

In general, we observe that starting DiLoCo before 24k steps
achieves a similar final PPL, demonstrating the robustness
of the approach. Interestingly, performance is not degraded
even when starting from a randomly initialized network.
This result contradicts the findings of prior work on post
local-SGD (Lin et al., 2020) and its large-scale study on a

vision classification task (Ortiz et al., 2021).

The attentive reader may also note spikes in perplexity after
the vertical dashed lines: a warm-up of the inner learning
rate is the culprit. Despite the transient spike, such warm
up is ultimately beneficial, as previously noted also in the
continual pretraining setting by Gupta et al. (2023).

Communication frequency In order to scale up dis-
tributed training across a set of poorly connected machines,
the frequency of communication needs to be reduced. Do-
ing a single communication at the training’s end (Wortsman
et al., 2022a) is sub-optimal. Most works instead consider
communicating every H ≤ 20 steps (Ortiz et al., 2021),
which is too frequent for many distirbuted learning applica-
tions.

In Figure 4, we vary the communication frequency for
a 150M transformer, in the non-i.i.d. data regime, from

4

DiLoCo: Distributed Low-Communication Training of Language Models

Figure 3. Impact of number of pretraining steps in a non-i.i.d.
setting. DiLoCo can be initialized from a pretrained model θ(0), or
even from scratch with minimal (-0.1 PPL) degradation of model
quality. The vertical dashed lines indicate the transition between
pretraining and DiLoCo training.

Figure 4. Varying the communication frequency every H =
{50, 100, 250, 500, 1000, 2000} steps in a non-i.i.d setting.

H = 50 steps (in teal) to H = 2000 steps (in green). In
general, we observe that communicating more frequently
improves generalization performance. However, commu-
nicating more frequently than H = 500 steps leads to di-
minishing returns. Moreover, the performance degradation
is very mild up to H = 1000 steps. For instance, when
H = 1000 the perplexity increases by only 2.9% relative to
H = 50, despite communicating 20× less. Based on these
considerations, for all remaining experiments we choose
H = 500 as this strikes a good trade-off between general-
ization performance and communication cost.

i.i.d. vs non-i.i.d. data regimes According to Gao et al.
(2022), the distribution of the data across replicas can have
a significant impact on generalization. In this ablation study
we assess the effect that different data distributions have on
the convergence of DiLoCo.

Similarly (Gururangan et al., 2023), we create the non-i.i.d.

Figure 5. i.i.d. vs non-i.i.d. data regimes: DiLoCo converges
faster in the i.i.d. setting but towards the end both data regimes at-
tain similar generalization, highlighting the robustness of DiLoCo.

setting by clustering with k-Means the entire training set
using a pretrained model’s last layer features. The i.i.d.
setting is a random partitioning of the data. We showcase
in Figure 5 the performance of DiLoCo with k = 8 work-
ers/shards in a non-i.i.d. setting (in blue) and i.i.d setting (in
red). Despite the latter converging faster early on in train-
ing, the final generalization performance of the two settings
is comparable. Intuitively, we would expect the non-i.i.d.
setting to yield worse performance because each worker
might produce very different outer gradients, but DiLoCo
exhibits very strong robustness. The reason why this might
be happening is further investigated in the appendix (sub-
section A.2).

Number of replicas We now investigate the impact of the
number of replicas/clusters in Table 3, assuming there are as
many workers as there are shards of data. The results in Ta-
ble 3 show that increasing the number of replicas improves
generalization performance, but with diminishing returns
when there are more than 8 workers. This finding applies to
both i.i.d. and non-i.i.d. settings. Unlike what is reported in
prior work in the vision domain on ImageNet (Ortiz et al.,
2021), we do not observe significant performance degrada-
tion by increasing the number of replicas.

Model size In Table 4 we vary the model size. We train
models of size 60, 150 and 400 million parameters. We
consider the usual setting where data distribution is non
i.i.d. and all workers start from a model (of the same size)
pretrained for 24,000 steps. Hyper-parameters were tuned
on the 150M model, which may be sub-optimal for the
other model sizes. We observe a monotonic improvement of
performance as the model size increases. We surmise that (1)
in an overtrained setting with large amount of steps, larger
models are more efficient at fitting the same amount of data
(Nakkiran et al., 2019), and (2) as the linear connectivity
literature (Ilharco et al., 2022) suggests, larger models are

5

DiLoCo: Distributed Low-Communication Training of Language Models

Table 3. Impact of the number of replicas/clusters on the evalua-
tion perplexity for a fixed amount of inner steps per replica (150M
parameters each). With more replicas, the model consumes more
data and uses more compute overall, although this requires very
infrequent communication (once every 500 inner steps).

Number of replicas i.i.d non-i.i.d

1 16.23
4 15.23 15.18
8 15.08 15.02
16 15.02 14.91
64 14.95 14.96

Table 4. Varying the model size: For each model size, we re-
port the relative and absolute perplexity (PPL) improvements of
DiLoCo over the baseline (using a single worker). DiLoCo uses 8
workers and non-i.i.d. shards.

Model Size Relative (%) Absolute (PPL)

60M 4.33% 1.01
150M 7.45% 1.21
400M 7.49% 1.01

less subject to interference when averaging their parameters.

Outer Optimizers We experimented with various outer
optimizers (see L14 of Algorithm 1). For each, we tuned
their momentum if any, and their outer learning rate. We
found that using as outer optimizer SGD (equivalent to Fe-
dAvg (McMahan et al., 2017)) or Adam (eq. to FedOpt
(Reddi et al., 2021)) performed poorly, as shown in Figure 6.
Adam was particularly unstable with a high second order
momemtum norm. We alleviated the issue by increasing
the ϵ factor to 0.1. We found Nesterov optimizer (Sutskever
et al., 2013) (see FedMom in (Huo et al., 2020)) to perform
the best. In particular, the setting with outer learning rate
equal to 0.7 and outer momentum equal to 0.9 is very robust,
and it is adopted for all our experiments throughout. We
hypothesize that the Nesterov’s gradient correction is partic-
ularly helpful with the outer gradient that span hundred of
training steps.

We also considered decaying the outer learning rate with
a cosine scheduling but it resulted in similar performance.
Since we decay the inner learning rate, the outer gradient
norm gets naturally smaller over the course of training, re-
moving the need to further decay the outer learning rate.

Adaptive compute pool The total amount of compute any
given user has, is rarely constant over time. For instance, a
preemptible machine, that is regularly killed, is a cheaper
alternative to a dedicated server. Similarly, university’s com-

Figure 6. Outer Optimizers: Comparison of outer optimizers.

puting clusters often use karma systems to balance compute
among all users, but this means that resources available to
each user vary over time. Finally, a collaborative system like
Petals (Borzunov et al., 2022) or (Diskin et al., 2021) where
individual users provide their own devices to the shared
compute pool is subject to extreme pool resizing depending
on how many people participate at any given time.

In this study, we then explore the performance of DiLoCo
when the amount of compute varies throughout training. In
our case, the amount of compute is varied by changing the
number of replicas used in an i.i.d. setting. In Figure 7,
we show the validation perplexity through time when us-
ing different schedules of compute allocation. Constant
local (in green) and Constant Distributed (in
blue) use a constant amount of replicas: respectively 1
(baseline) and 8 (standard DiLoCo setting). Doubling
Compute (in teal) and Halving Compute (in purple)
use respectively 4 and 8 replicas during the first half of
the training, and then 8 and 4. Ramping Up (in red) and
Ramping Down (in orange) ramps up (respectively ramps
down) the compute from 1 to 8 (resp. from 8 to 1).

We observe that the factor determining the ultimate general-
ization ability of the model is the total amount of compute
given to DiLoCo, but this is robust to how the budget is
spread over time. For instance, Doubling Compute and
Halving Compute use as much compute in total and
achieve similar performance. Similarly, Ramping Up and
Ramping Down obtain similar performance despite the
different budgeting schedule, and their generalization is
worse than other baselines using more total compute. In
conclusion, models quality is affected by the total amount
of compute, but not as much by how such computed is
allocated over time.

6

DiLoCo: Distributed Low-Communication Training of Language Models

(a) Number of replicas per training steps. (b) Perplexity across training steps.

Figure 7. Adaptive compute: We vary the number of replicas (i.e., the amount of compute) across time. Models generalize equally well
for the same total amount of compute, regardless of how this is made available over time.

4. Related Work
In this section we review relevant work from the literature,
limiting the discussion to only few representative works
given the large body of literature.

We cover the literature of distributed learning, specifically
local SDG and federated learning. We also relate to recent
works done on linear mode connectivity which inspired
much of our work.

4.1. Local SGD and Federated Learning

Several communities have proposed and studied local SGD.
To the best of our knowledge, the first instantation was in
(McMahan et al., 2017) who introduced the concept of feder-
ated learning and local SGD as a way to enable learning on
a network of mobile devices which retain private access to
their own data. In this work, the outer optimization consists
of a mere parameter averaging step. This was later extended
to more powerful outer optimizers by (Wang et al., 2020;
Reddi et al., 2021); this work inspired our use of Nesterov
momentum in the outer optimization. (Lin et al., 2020)
considered local SGD as a way to improve generalization
when learning with large batch sizes. (Stich, 2019) instead
focused on local SGD because of its ability to limit commu-
nication in distributed learning, a perspective we share also
in our work. To the best of our knowledge, only FedMom
(Huo et al., 2020) considers Nesterov as the outer optimizer
as we did. While they also tackle a language modeling task,
the setting is much smaller (1-layer LSTM), with only 2
replicas, and rather frequent communication (every 20 inner
steps). In our work instead, we consider a larger setting with
up to a 400M transformer language model, across up to 64
replicas, and up to 100× less communication. Furthermore,
we use AdamW as inner optimizer while they used SGD.

(Ortiz et al., 2021) is one of the few works in federated
learning / local sgd body of literature that has validated on
a large-scale setting. They consider ImageNet (Deng et al.,
2009) with Resnet50 and Resnet101 (He et al., 2015), and
found that local sgd struggles at scale. In particular, they
reported that fewer inner steps (e.g., H = 8), no pretraining,
and a relatively large number of replicas (≥ k = 16) de-
grade generalization. Thus the authors conclude that ”local
SGD encounters challenges at scale.”. Instead, we show in
section 3 that DiLoCo can robustly operate while communi-
cating 125× less (H = 1000), even without pretraining, and
using up to 4× more replicas (k = 64) both in the i.i.d. and
non-i.i.d. settings. Recently, multiple works (Presser, 2020;
Diskin et al., 2021; Ryabinin et al., 2021) also applied Local
SGD for language models but without outer optimization.

4.2. Linear Mode Connectivity

The field of linear mode connectivity studies how to linearly
interpolate between several models in parameters space, to
yield a single model with the best capabilities of all models
combined (Frankle et al., 2020; Wortsman et al., 2021). A
surprising result from this field is the relative easiness to
find a linear interpolation between several models where
all intermediary points have a low loss, avoiding any loss
barrier. Specifically, (Wortsman et al., 2022c) started from
a pretrained model, finetuned different replicas on various
tasks or choice of hyperparameters (Wortsman et al., 2022b),
and then averaged the resulting parameters. Originally pro-
posed in the vision domain, this method has then been used
also in NLP (Li et al., 2022), RLHF (Ramé et al., 2023a),
noisy data (Rebuffi et al., 2022), and OOD (Ramé et al.,
2023b). Recently, several works studied other ways to alle-
viate loss barriers (Jordan et al., 2023; Stoica et al., 2023; Jin
et al., 2023). While we didn’t apply any of these methods
to DiLoCo, they are complementary and could be used in

7

DiLoCo: Distributed Low-Communication Training of Language Models

future works.

The majority of works on linear connectivity considers only
averaging once all replicas have been fully finetuned, while
we exploit the linear mode connectivity during training.
There are however notable exceptions: BTM (Li et al., 2022)
and PAPA (Jolicoeur-Martineau et al., 2023) are roughly
equivalent to our framework but use as outer optimizer
OuterOpt = SGD(lr=1.0). The former communi-
cates very little because each replica is fully finetuned on a
task before synchronization. The latter communicates every
few steps and with at most 10 replicas. Finally, (Kaddour,
2022) only considers a few previous checkpoints of the
same model trained on a single task, and don’t re-use it for
training. Git-theta (Kandpal et al., 2023) argues that linear
mode connectivity can facilitate collaboration by merging
models trained by different teams (Diskin et al., 2021) on
various tasks; we show that DiLoCo is actually capable to
do so during training, even when the data of each worker is
different.

5. Limitations
Our work has several limitations, which constitute avenue
for future work. First, we only considered a single task,
namely language modeling, and a single architecture, a
transformer. Other datasets, domains (e.g. vision), and
other architectures (e.g., CNNs which are known to be more
sensitive to linear mode connectivity (Jordan et al., 2023))
should also be considered.

Second, we have presented results at the scale of 60 to 400
million parameters. However, at the time of writing state-
of-the-art language models use 3 orders of magnitude more
parameters. Therefore, it would be interesting to see how
DiLoCo works at larger scale. Our initial extrapolation
indicate that DiLoCo might perform even better at larger
scales, because there is less interference during the outer-
gradient averaging step. However, this hypothesis should be
validated empirically.

Third, the version of DiLoCo presented here assumes that
all workers are homogeneous. However, in practice workers
might operate at wildly different speed. In these cases,
waiting for all workers to perform the same number of steps
is rather inefficient. Another avenue of future work is then
to extend DiLoCo to the asynchronous setting, whereby
workers update the global parameter without ever waiting
for any other worker

Fourth, DiLoCo exhibits diminishing returns beyond 8 work-
ers. Another avenue of future research is to improve the
algorithm to better leverage any additional compute that
might be available.

Finally, DiLoCo attains fast convergence in terms of wall-

clock time. However, the distributed nature of the compu-
tation reduces the FLOP and data efficiency of the model,
as shown by the 8× updates row in Table 2. At a high level,
this is because the outer updates have effectively too large
a batch size; but naively reducing the outer-update batch
size would result in the workers being destabilized because
their batch-size is too small. Therefore, another avenue of
future research is on balancing wall-clock time efficiency
with compute efficiency and data efficiency, among other
quantities of interest. In particular, we believe asynchronous
variants of local-sgd may allow distributed training with
relatively more data-efficient updates.

6. Conclusion
In this work we study the problem of how to distribute train-
ing of large-scale transformer language models when not
all devices are co-located, and the network between the var-
ious machines may have low bandwidth. To address this
problem, we propose DiLoCo, a variant of Federated Aver-
aging whereby the outer optimizer is replaced with Nesterov
momentum, the inner optimizer is AdamW (the de facto
standard optimizer for transformer language models), and
the number of inner optimization steps is large (our default
value is 500). The latter is crucial to reduce communication,
and it means that workers only need to send data once every
500 steps. Practically speaking, while standard mini-batch
methods relying on data and model parallelism require send-
ing data every few hundred milliseconds, DiLoCo does so
only every few minutes. Therefore, if each communication
step takes a lot of time, DiLoCo converges much faster in
terms of wall-clock time.

Our empirical validation demonstrate the robustness of
DiLoCo on several fronts, from the type of data distribution
each worker consumes, to the number of inner optimization
steps, and number of workers which can even change over
time.

In conclusion, DiLoCo is a robust and effective way to
distribute training of transformer language models when
there are several available machines but poorly con-
nected. Of course, it remains to be seen whether these
findings generalize to models of larger scale, or to other
domains and architecture types.

References
Borzunov, A., Baranchuk, D., Dettmers, T., Ryabinin, M.,

Belkada, Y., Chumachenko, A., Samygin, P., and Raffel,
C. Petals: Collaborative inference and fine-tuning of
large models. arXiv preprint library, 2022.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei,
L. Imagenet: A large-scale hierarchical image database.

8

DiLoCo: Distributed Low-Communication Training of Language Models

Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), 2009.

Diskin, M., Bukhtiyarov, A., Ryabinin, M., Saulnier, L.,
Lhoest, Q., Sinitsin, A., Popov, D., Pyrkin, D., Kashirin,
M., Borzunov, A., Villanova del Moral, A., Mazur, D.,
Kobelev, I., Jernite, Y., Wolf, T., and Pekhimenko, G. Dis-
tributed deep learning in open collaborations. Advances in
Neural Information Processing Systems (NeurIPS), 2021.

Frankle, J., Dziugaite, G. K., Roy, D. M., and Carbin, M.
Linear mode connectivity and the lottery ticket hypothesis.
International Conference on Machine Learning (ICML),
2020.

Gao, D., Yao, X., and Yang, Q. A survey on heterogeneous
federated learning. arXiv preprint library, 2022.

Gu, X., Lyu, K., Huang, L., and Arora, S. Why (and when)
does local sgd generalize better than sgd? Proceedings
of the International Conference on Learning Representa-
tions (ICLR), 2023.

Gupta, K., Thérien, B., Ibrahim, A., Richter, M. L., Anthony,
Q., Belilovsky, E., Rish, I., and Lesort, T. Continual pre-
training of large language models: How to (re)warm your
model? arXiv preprint library, 2023.

Gururangan, S., Li, M., Lewis, M., Shi, W., Althoff, T.,
Smith, N. A., and Zettlemoyer, L. Scaling expert lan-
guage models with unsupervised domain discovery. arXiv
preprint library, 2023.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual
learning for image recognition. Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), 2015.

Hoffmann, J., Borgeaud, S., Mensch, A., Buchatskaya, E.,
Cai, T., Rutherford, E., de Las Casas, D., Hendricks,
L. A., Welbl, J., Clark, A., Hennigan, T., Noland, E.,
Millican, K., van den Driessche, G., Damoc, B., Guy,
A., Osindero, S., Simonyan, K., Elsen, E., Rae, J. W.,
Vinyals, O., and Sifre, L. Training compute-optimal
large language models. Advances in Neural Information
Processing Systems (NeurIPS), 2022.

Huo, Z., Yang, Q., Gu, B., and Huang, L. C. H. Faster on-
device training using new federated momentum algorithm.
arXiv preprint library, 2020.

Ilharco, G., Wortsman, M., Gadre, S. Y., Song, S., Ha-
jishirzi, H., Kornblith, S., Farhadi, A., and Schmidt,
L. Patching open-vocabulary models by interpolating
weights. Advances in Neural Information Processing
Systems (NeurIPS), 2022.

Jin, X., Ren, X., Preotiuc-Pietro, D., and Cheng, P. Data-
less knowledge fusion by merging weights of language
models. Proceedings of the International Conference on
Learning Representations (ICLR), 2023.

Jolicoeur-Martineau, A., Gervais, E., Fatras, K., Zhang, Y.,
and Lacoste-Julien, S. Population parameter averaging
(papa). arXiv preprint library, 2023.

Jordan, K., Sedghi, H., Saukh, O., Entezari, R., and
Neyshabur, B. Repair: Renormalizing permuted acti-
vations for interpolation repair. arXiv preprint library,
2023.

Kaddour, J. Stop wasting my time! saving days of imagenet
and bert training with latest weight averaging. Advances
in Neural Information Processing Systems (NeurIPS)
Workshop, 2022.

Kandpal, N., Lester, B., Muqeeth, M., Mascarenhas, A.,
Evans, M., Baskaran, V., Huang, T., Liu, H., and Raffel, C.
Git-theta: A git extension for collaborative development
of machine learning models. arXiv preprint library, 2023.

Kingma, D. P. and Ba, J. Adam: A method for stochastic op-
timization. Proceedings of the International Conference
on Learning Representations (ICLR), 2014.

Li, M., Gururangan, S., Dettmers, T., Lewis, M., Althoff, T.,
Smith, N. A., and Zettlemoyer, L. Branch-train-merge:
Embarrassingly parallel training of expert language mod-
els. arXiv preprint library, 2022.

Lin, T., Stich, S. U., Patel, K. K., and Jaggi, M. Don’t use
large mini-batches, use local sgd. Proceedings of the
International Conference on Learning Representations
(ICLR), 2020.

Loshchilov, I. and Hutter, F. Decoupled weight decay regu-
larization. Proceedings of the International Conference
on Learning Representations (ICLR), 2019.

McMahan, H. B., Moore, E., Ramage, D., Hampson, S., and
y Arcas, B. A. Communication-efficient learning of deep
networks from decentralized data. International Confer-
ence on Artificial Intelligence and Statistics (AISTATS),
2017.

Nakkiran, P., Kaplun, G., Bansal, Y., Yang, T., Barak, B.,
and Sutskever, I. Deep double descent: Where bigger
models and more data hurt. Proceedings of the Interna-
tional Conference on Learning Representations (ICLR),
2019.

Ortiz, J. J. G., Frankle, J., Rabbat, M., Morcos, A., and
Ballas, N. Trade-offs of local sgd at scale: An empirical
study. arXiv preprint library, 2021.

9

DiLoCo: Distributed Low-Communication Training of Language Models

Presser, S. Swarm training, 2020. URL https:
//battle.shawwn.com/swarm-training-
v01a.pdf.

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S.,
Matena, M., Zhou, Y., Li, W., and Liu, P. J. Exploring
the limits of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research,
2020.

Ramé, A., Couairon, G., Shukor, M., Dancette, C., Gaya,
J.-B., Soulier, L., and Cord, M. Rewarded soups: to-
wards pareto-optimal alignment by interpolating weights
fine-tuned on diverse rewards. Advances in Neural Infor-
mation Processing Systems (NeurIPS), 2023a.

Ramé, A., Kirchmeyer, M., Rahier, T., Rakotomamonjy, A.,
Gallinari, P., and Cord, M. Diverse weight averaging for
out-of-distribution generalization. Advances in Neural
Information Processing Systems (NeurIPS), 2023b.

Rebuffi, S.-A., Croce, F., and Gowal, S. Revisiting adapters
with adversarial training. Proceedings of the International
Conference on Learning Representations (ICLR), 2022.

Reddi, S., Charles, Z., Zaheer, M., Garrett, Z., Rush, K.,
Konečný, J., Kumar, S., and McMahan, H. B. Adaptive
federated optimization. Proceedings of the International
Conference on Learning Representations (ICLR), 2021.

Ryabinin, M., Gorbunov, E., Plokhotnyuk, V., and Pekhi-
menko, G. Moshpit sgd: Communication-efficient de-
centralized training on heterogeneous unreliable devices.
Advances in Neural Information Processing Systems
(NeurIPS), 2021.

Stich, S. U. Local SGD converges fast and communicates
little. Proceedings of the International Conference on
Learning Representations (ICLR), 2019.

Stoica, G., Bolya, D., Bjorner, J., Hearn, T., and Hoffman,
J. Zipit! merging models from different tasks without
training. arXiv preprint library, 2023.

Sutskever, I., Martens, J., Dahl, G., and Hinton, G. On
the importance of initialization and momentum in deep
learning. International Conference on Machine Learning
(ICML), 2013.

Tang, Z., Shi, S., Wang, W., Li, B., and Chu, X.
Communication-efficient distributed deep learning: A
comprehensive survey. arXiv preprint library, 2023.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L., and Polosukhin, I. Atten-
tion is all you need. Advances in Neural Information
Processing Systems (NeurIPS), 2017.

Wang, J., Tantia, V., Ballas, N., and Rabbat, M. Slowmo:
Improving communication-efficient distributed sgd with
slow momentum. Proceedings of the International Con-
ference on Learning Representations (ICLR), 2020.

Wortsman, M., Horton, M., Guestrin, C., Farhadi, A., and
Rastegari, M. Learning neural network subspaces. In-
ternational Conference on Machine Learning (ICML),
2021.

Wortsman, M., Gururangan, S., Li, S., Farhadi, A., Schmidt,
L., Rabbat, M., and Morcos, A. S. lo-fi: distributed fine-
tuning without communication. arXiv preprint library,
2022a.

Wortsman, M., Ilharco, G., Gadre, S. Y., Roelofs, R.,
Gontijo-Lopes, R., Morcos, A. S., Namkoong, H.,
Farhadi, A., Carmon, Y., Kornblith, S., and Schmidt, L.
Model soups: averaging weights of multiple fine-tuned
models improves accuracy without increasing inference
time. International Conference on Machine Learning
(ICML), 2022b.

Wortsman, M., Ilharco, G., Kim, J. W., Li, M., Kornblith, S.,
Roelofs, R., Gontijo-Lopes, R., Hajishirzi, H., Farhadi,
A., Namkoong, H., and Schmidt, L. Robust fine-tuning of
zero-shot models. Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR),
2022c.

Yadav, P., Tam, D., Choshen, L., Raffel, C., and Bansal, M.
Resolving interference when merging models. Advances
in Neural Information Processing Systems (NeurIPS),
2023.

Zhang, M. R., Lucas, J., Hinton, G., and Ba, J. Lookahead
optimizer: k steps forward, 1 step back. Advances in
Neural Information Processing Systems (NeurIPS), 2019.

10

https://battle.shawwn.com/swarm-training-v01a.pdf
https://battle.shawwn.com/swarm-training-v01a.pdf
https://battle.shawwn.com/swarm-training-v01a.pdf

DiLoCo: Distributed Low-Communication Training of Language Models

Table 5. Optimization Hyperparameters evaluated during in this work. Chosen values for main experiments are highlighted in bold.

Hyperparameter Value

Inner Learning rate 4e−4

Number of warmup steps 1,000
Weight decay 0.1
Batch Size 512
Sequence length 1,024

Outer Optimizer SGD, SGDM, Nesterov, Adam
Inner Optimizer AdamW
Outer SGD learning rate 1.0, 0.7, 0.5, 0.3, 0.1
Outer SGDM learning rate 1.0, 0.7, 0.5, 0.3, 0.1
Outer SGDM momentum 0.9
Outer Nesterov learning rate 1.0, 0.7, 0.5, 0.3, 0.1
Outer Nesterov momentum 0.95, 0.9, 0.8
Outer Adam learning rate 1.0, 0.7, 0.5, 0.3, 0.1
Outer Adam beta1 0.9
Outer Adam beta2 0.999, 0.95
Outer Adam epsilon 1.0, 10−1, 10−3, 10−5, 10−7

Communication frequency H 50, 100, 250, 500, 1,000, 2,000
Number of pretraining steps 0, 12,000, 24,000, 48,000
Number of replicas 4, 8, 16, 64
Data regimes i.i.d., non-i.i.d

A. Appendix
A.1. Implementation Details

Hyperparameters We displayed in Table 1 the architectural difference between the 60M, 150M, and 400M models we
evaluted. In Table 5, we outline the optimization hyperparameters considered for this study, and highlight in bold the values
chosen for the main experiments. We detailled extensively the impact of each hyparameters in subsection 3.1.

Inner Optimizer States In all experiments, the inner optimizer, InnerOpt, is AdamW (Loshchilov & Hutter, 2019) as
standard practice when training transformer language models. Each replica in our method has a separate Adam state (e.g.
first and second momentum). DiLoCo synchronizes the parameters of the model, but we also considered synchronizing the
inner optimizer states. It did not lead to significant improvements while significantly increasing the communication cost (×3
more data to transmit). Therefore, we let each model replica own their own version of optimizer states. Similar findings
were found in the literature where SGDM or Nesterov momentum were used as inner optimizers (Wang et al., 2020; Ortiz
et al., 2021).

Weighted Average of Outer Gradients In line 12 of Algorithm 1, we perform a uniform average of every model replica’s
outer gradient. There are also other strategies, such as greedy soup (Wortsman et al., 2022b) where model replicas are
selected sequentially to minimize validation loss, or disjoint merge (Yadav et al., 2023) which uses a sign-based heuristics.
The first strategy is too time-costly in our setting. We tried the latter, but got slightly worse results. Thus, for the random
i.i.d. data regime we use a uniform average. For the non-i.i.d. data regime, we rescale each outer gradient by the number of
examples in its shard. While at k = 4, all clusters are quite balanced, imbalance can be striking at k = 64 and giving more
importance to larger clusters is beneficial.

Infrastructure The empirical validation of this work was performed on machines hosting 16 A100 GPUs. These machines
were not necessarily co-located in the same geographic region. The outer optimization step is performed on a CPU server
connected to the local machines.

11

DiLoCo: Distributed Low-Communication Training of Language Models

Table 6. Pruning outer gradients using a per-neuron sign pruning (Yadav et al., 2023).

% of pruned values Perplexity Relative change

0% 15.02 0%
25% 15.01 -0.06%
50% 15.08 +0.39%
75% 15.27 +1.66%

(a) i.i.d. data regime. (b) non-i.i.d. data regime.

Figure 8. Cosine Similarity between Outer Gradients: The line is the average similarity among the k = 8 replicas’ outer gradients, the
shaded area is the standard deviation. This is almost null in the case of i.i.d. shards.

A.2. Experiments & Ablations

Pruning outer gradients Although DiLoCo communicates infrequently, when communication is required the network
might get saturated, particularly when there are lots of workers, or when the model replicas are large. We thus explored
pruning of outer gradients in order to reduce the need for high-bandwidth networks.

We consider the simplest pruning technique, sign-based pruning following Yadav et al. (2023). More efficient methods could
be explored in the future (Tang et al., 2023), particularly those leveraging structured sparsity. In Table 6, we prune between
25% to 75% of the individual outer gradients per replica before averaging them. Pruning up to 50% of the individual values
resulted in negligible loss of performance (+0.39% perplexity). Therefore, DiLoCo’s communication efficiency can be
further improved using standard compression techniques.

Cosine Similarity of outer gradients Our empirical validation shows remarkable robustness of DiLoCo to the number of
inner optimization steps and data distribution of the shards. Why does DiLoCo converge even when performing 500 inner
steps? And why using shards with different data distribution does not harm performance at all?

To shed light on these questions, we have gathered statistics of the outer gradients returned by workers. In particular, we
calculate the average cosine similarity between outer gradients returned by workers while varying the number of inner
optimization steps (H = {250, 500, 1000}) for both the i.i.d. (in Figure 8a) and non-i.i.d. (in Figure 8b) settings.

The former regime has close to no variance compared to the latter, since all shards have the same data distribution and
therefore outer-gradients are much more correlated. For both data regimes, perhaps unintuitively, similarity is inversely
proportional to the communication frequency however. We surmise that when the number of inner step is larger (up to some
extent) model replicas converge towards a similar general direction (Gu et al., 2023) averaging out the noise of stochastic
gradient descent.

Interestingly, as the learning rate anneals to 0 towards the end of training, the outer gradients similarity increases in the i.i.d.

12

DiLoCo: Distributed Low-Communication Training of Language Models

Figure 9. Outer Gradients similarity versus number of replicas: in a non-i.i.d. data regime increasing the number of replicas/clusters
(k = 4 → 8) produces more dissimilar outer gradients.

case but in the non-i.i.d. case only the variance increases. Since shards have a different distribution, each local optimization
seems to fall in a different nearby loss basin. However, the averaging of such more orthogonal gradients grants beneficial
generalization as the non-i.i.d. version of DiLoCo tends to generalize at a better rate towards the end of training as can be
seen in Figure 5.

Lastly, in the non-i.i.d. setting we expect that the larger the number of shards the more distinctive their distribution, and
therefore, the less correlated the corresponding outer gradients. Figure 9 shows precisely this trend when going from k = 4
to k = 8 shards. We also found that in this setting the averaged outer gradient’s norm is inversely proportional to the square
root of the number of replicas.

Asynchronous Communication In DiLoCo all workers communicate their outer-gradients after H inner optimization
steps. In practice, it might happen that a worker gets rebooted or that the network might lose packets. In these cases,
communication is not feasible.

In Figure 10, we simulate such inability to communicate by randomly dropping outer gradients with probability equal to 0%
(in teal), 10% (in purple), 30% (in red), to 50% (in orange). When an outer gradient is dropped, the local worker continues
training for the following H steps starting from its own parameters θ(t)i (as opposed to the shared parameters θ(t)).

In both i.i.d. and non-i.i.d. data settings, a higher probability of being dropped results in more unstable learning with
transient spikes in perplexity. However, even in the extreme non-i.i.d setting where each replica has 50% probability of
dropping communication, the degradation of perplexity relative to perfect communication is only 2.1%. Consequently, with
robustness to communication failure, the need of a synchronization barrier is less critical and thus training can be accelerated
without having to wait all replicas.

13

DiLoCo: Distributed Low-Communication Training of Language Models

(a) i.i.d. data regime. (b) non-i.i.d. data regime.

Figure 10. Asynchronous communication: we drop communication of outer gradients of each replica with a certain probability. If a
replica is dropped, it continues training without synchronizing its parameters.

Figure 11. Accelerating a single worker: DiLoCo applied to a single replica k = 1 provides both faster and better generalization.

Accelerating a single worker Recently works have shown that linear connectivity can also accelerate the convergence
of a non-distributed model. For instance, the Lookahead optimizer (Zhang et al., 2019) proposes to take an outer step of
outer SGD using a single replica, which is equivalent at interpolating between the starting and end points of a phase in the
parameters space.

Figure 11 shows that DiLoCo applied to a single replica/cluster (k = 1 but H ≫ 1) can improve both convergence speed
and final generalization performance at null communication cost. Specifically, every H = 500 inner steps, we compute the
only outer gradient as described in Algorithm 1, and then (locally) update the parameters using the outer optimizer. This
experiment further corroborates the robustness and wide applicability of DiLoCo.

14

