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NFTs as a Data-Rich Test Bed:
Conspicuous Consumption and its Determinants

Anonymous Author(s)

Abstract
We show that the market for non-fungible tokens (NFTs), much
like the luxury fashion market, exhibits conspicuous consumption
dynamics: an NFT’s value depends substantially on its social mean-
ing as a signal of wealth, taste, and community affiliation. More
specifically, we introduce a novel dataset of NFT transaction data
combined with embeddings of the corresponding NFT images com-
puted using an off-the-shelf vision transformer architecture. We
use our dataset to identify evidence for two phenomena that prior
work has identified as the primary determinants of conspicuous
consumption: the bandwagon effect and the snob effect. For each
determinant, we identify characteristics of the NFTs themselves
and of the communities surrounding them that drive the effect.
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1 Introduction
One of the main ways people signal wealth, status, or community
affiliation is through ownership and display of “conspicuous goods:”
products, like luxury handbags, which are not valued primarily
for their function, but for the social meaning they convey. In 1899,
Thorstein Veblen first argued that consumer demand for certain
goods and services arises from a desire to establish social affiliations
and emulate higher social classes and economic groups [27]. Since
then, distinct status-seeking consumption patterns have been found
in a variety of contexts [3, 7, 8, 12, 18, 26]. Notably, Leibenstein
[18] identified two effects that influence the utility derived from
luxury goods: the “bandwagon effect,” whereby demand for a luxury
good increases as more consumers consume it, and the “snob effect,”
whereby demand decreases as a good becomes widely adopted.

Subsequent work has identified social dynamics that create and
reinforce these effects. Vigneron and Johnson [28] found that con-
forming with aspirational groups and a desire to be fashionable are
primary drivers for the bandwagon effect. Han et al. [14] showed
that social structures can significantly influence consumer pref-
erences, with higher-income consumers preferring subtler status
signals recognizable only within their social circles. Carbajal et al.
[5] shows furthermore that this effect might be most prominent
in highly socially connected “old money” individuals. In recent
years, many aspects of social life have moved online, and so social
signaling is increasingly performed via online communities and dig-
ital goods. As a result, researchers are beginning to consider these
social signals when assessing and pricing digital goods [11, 13, 19].

In this paper, we argue that non-fungible tokens (NFTs)—a partic-
ular type of digital good—are often conspicuous. NFTs are crypto-
graphically-secured records of ownership, allowing digital goods
like images and other media files to be certifiably owned, and thus
exchanged. Profile picture (PFP) NFTs, a popular category of NFTs,
are associated with images that are intended to serve as online per-
sonae on social networks like X (fka. Twitter), Facebook, and Far-
caster;1 other NFT categories include those conveying ownership
of “skins” or items for gaming characters, other digital wearables,
or fine art. All of these types of digital goods are commonly used to
signal status (flaunting ownership of something rare or expensive)
and community affiliation (using aesthetic choices and token-based
network connections to adjudicate membership in a group).

NFTs give us access to a much richer dataset than has previ-
ously existed for conspicuous goods: the NFTs we examine are
recorded on a publicly readable blockchain ledger, making both
the associated digital goods themselves (often images) and their
transaction data (who bought; who sold; and the transaction price)
globally accessible. This contrasts significantly with the traditional
literature on conspicuous consumption, in which researchers have
been forced to rely mainly on theoretical models and qualitative

1“PFP” technically stands for “picture f or proof,” but in colloquial parlance has also
been taken to mean “prof ile picture.”
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measures such as surveys about purchase motivations. Researchers
have already begun to leverage the data NFTs provide to learn not
only about the NFT market itself [22] but also the forces underlying
it. For example, Oh et al. [24] have shown that during their primary
sales, NFTs act as Veblen goods, a type of conspicuous good driven
by the bandwagon effect. Notably, in the primary market where
new NFTs are initially “minted,” it is relatively straightforward to
identify which collections are popular based on their sell-out rate:
collections (endogenously) determined to be trendy sell out entirely,
while most others see minimal sales.2

Our core claim is that NFTs can be used as a data-rich test bed
for research into conspicuous consumption, focusing (unlike Oh
et al. [24]) on the secondary market in which NFTs are resold. The
long-run secondary market is a natural place to study conspicuous
consumption, as the primary market often contains many purely
speculative buyers. In Section 2, we describe a novel dataset of
image-based NFTs that we constructed, including 48,595,074 NFTs
organized into 10,963 collections, and the 3,755,256 unique “wallets”
that hold them. Our dataset also goes beyond transaction data, in-
cluding a subset of images for each NFT collection; this allows us to
quantify the visual similarity between individual NFTs and between
NFT collections using a pre-trained vision transformer network. We
argue that NFTs are conspicuous goods by presenting evidence of
both of the primary determinants of conspicuous consumption, and
furthermore show that the rich data available in the NFT domain
can be leveraged to obtain new insights into the dynamics of these
determinants. More specifically, in Section 3, we show evidence of
the bandwagon effect and identify two key features that drive it
within the NFT market: community affiliation and wealth. Then
in Section 4, we show evidence of the snob effect and compare the
relative power visual distinctiveness and rarity have in driving sale
prices. Finally in Section 5, we discuss the broader value of our NFT
dataset and some potential future work.3

2 Dataset
Our dataset contains information on both individual NFTs and NFT
collections. Both the collection and NFT data were collected using
a combination of the OpenSea4 and Alchemy NFT5 APIs.

Metadata. Our NFT data spans 10,963 image-based NFT collec-
tions, i.e., series of NFTs associated with images that are organized
into collections via unifying smart contracts. (These collections
are reflected in “collection pages” on OpenSea.) These collections
were mapped using the Opensea API, which automatically filters
out “spam” collections (such as re-uploads of an existing NFT col-
lection’s image assets). In addition, we filter out collections with
very large token supplies, such as the collection created by Rarible,
which acts as an art exchange and contains over a billion tokens.
Our data contains, for each collection, a list of OpenSea summary
2Dworczak et al. [10] introduced a framework of “optimal membership design” that
covers the design of networks with cross-member externalities, including NFT com-
munities; the externalities studied there can incorporate conspicuous consumption
dynamics such as the bandwagon and snob effects we examine.
3One such direction is pursued by a second, companion paper that we have also
submitted to TheWebConf 2025. This paper investigates an open question in the
conspicuous consumption literature: the market impact of introducing new, visually
similar goods on previously existing “reference” goods.
4https://opensea.io/
5https://www.alchemy.com/nft-api

transactional data—e.g., current “floor price” (the minimum price
at which any NFT in the collection is currently listed for direct
sale) as of January 2024, total sales volume, and average historical
sale price—as well as some additional non-sale related metadata
data for each collection—category (e.g., profile picture, art, gaming,
and so forth) and creation date (as recorded by OpenSea). “Profile
picture” (“PFP”) NFTs comprise the largest category in our dataset,
representing 4,221 of the collections, the next largest being “un-
categorized,” with 3,192, and “art,” with 2,365. The remaining 1,185
collections are split amongst smaller categories such as “gaming,”
“collectibles,” and “photography.”

At the NFT level, we store the current owner address of each
NFT token in each collection as a owner wallet and token ID pair,
collected as of January 26, 2024 (e.g., the owner of Bored Ape #9976
would be recorded in our dataset as Ethereum network address 0
x9c7007B750B509dA0c72338de2C2531eD559F4aF). This gives us
48,595,074 wallet–token ID pairs, associated with a total of 3,755,256
unique wallets.

Image Embeddings. Much of the analysis in this paper relies on com-
puting image similarity and training models; both of which require
meaningful image embeddings. We computed embeddings using a
pre-trained vision transformer network, DINOv2 [25], which takes
in an image and produces a 384-dimensional real-number embed-
ding. These embeddings have been shown to give state-of-the-art
performance at both image retrieval and image clustering tasks
with no fine-tuning necessary [25]; a similar architecture has also
been used in NFT price prediction [9].

To retrieve the images, we first pulled and saved the image URLs
for all NFTs we wished to retrieve using the OpenSea API. Then,
we downloaded the images directly from the source URLs and
converted them into 300 × 300–pixel PNG files.

We also needed an aggregate notion of an embedding for our
collection-level data. In each collection, we randomly sampled 50
NFTs and computed the arithmetic mean (or centriod) of their
embeddings.6 We computed centroids for all 10,963 NFT collections
in the dataset.

We would like to have been able to conduct image analysis at
a more fine-grained level. However, it was infeasible to generate
image embeddings for every NFT in our dataset, as this would have
required retrieving and storing over 50 million images. Thus, we in-
stead created a more fine-grained dataset over a smaller number of
collections by randomly sampling 1,265 collections from the main
sample.7 For each collection in the subsample, we sampled a total of
600 images per collection, and constructed embeddings as described
above, along with centroids based on those 600-image groups. Ad-
ditionally, we added the average sale price of each individual NFT
to this dataset, to aid in analysis we conduct in Section 4.

Rarity Ranks. Many NFT images are programmatically generated
by combining randomly selected visual “traits.” Each trait is often
associated with a rarity, usually expressed as the proportion of
other NFTs in the same collection sharing the trait. (For a visual
example of an NFT image’s traits and their rarities, see Fig. 1.)

6For a discussion of the stability of these centroids with varying sample sizes, see
Appendix A.
7We rejected collections from sampling if they did not have sufficient sales data for
the downstream analysis we conduct.
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Figure 1: An example of PFP NFT traits. Cool Cats #84, image
pictured, has the following traits and corresponding rarities:
Face – Sunglasses Pixel (2%), Hats – Unicorn Horn (1%), Shirt
– Costume Dragon (0.56%). OpenSea (via OpenRarity) ranks
Cool Cats #84 at 8,072 out of 9,968 total Cool Cats (one of the
least rare NFTs in the collection).

While assessing the relative rarity of a given NFT seems like
a straightforward task, it is made more complicated by the fact
that individual tokens—even within a single collection—may have
different numbers of traits, and moreover, it is not always clear
how to interpret tokens displaying mixtures of both rare and more
common traits. Thus, the NFT community has come up with several
different ways to measure the aggregate rarity of an NFT. One
commonly used rarity metric is a dense ranking computed using
OpenRarity8; this is the ranking used by OpenSea, and it ranks NFTs
first by the number of traits that only appear once in the collection
(i.e., “one-of-ones”) and then by the information content of the
traits. For each of the NFTs in our smaller dataset, we obtained the
associated OpenRarity ranks from OpenSea if they were available;
of the 1, 265 collections, 959 had valid OpenRarity ranks.

Snob Effect Case Study. In addition to the 1,265 collections for which
we subsampled images, we also gathered more fine-grained data
for 9 top sale volume–collections. These collections where chosen
by subselecting top volume collections that had a significant corre-
lation with rarity, for more details see Section 4.3. For each of these
9 collections, we computed an image embedding for every image
in the collection. We also gathered the entire transaction history
for each token in the collection (i.e., a record of every sale, along
with the price, buyer, seller, and timestamp).

3 The Bandwagon Effect
The bandwagon effect occurs when consumers value goods more
as they grow in popularity or trendiness, for example because
these consumers have a desire for social approval or affiliation with
status groups such as the rich and famous [1, 4]. The aspiration to
align with the preferences and behaviors of one’s community is an
important component of the bandwagon effect, and emphasizes the
critical role of consumers who are influential within a community

8https://www.openrarity.dev/

[3]; this aspect of the bandwagon effect is sometimes called the
aspirational effect, which highlights how community norms and
the drive for conformity fuel the desire for conspicuous goods.

In this section, we explore whether NFT values are in part driven
by the bandwagon effect. Recent work by Oh et al. [24] showed evi-
dence of a bandwagon effect in the primary-sale NFTmarket, where
popularity is easier to assess because primary sales often follow a
bimodal distribution—collections either sell out or have a relatively
small number of sales. The secondary market for NFTs presents
a different landscape. Here, nearly every NFT being exchanged
has already found an owner, making the task of discerning which
collections remain socially desirable more nuanced. Furthermore,
what is considered popular or trendy can vary across individuals
as a function of which other groups they are affiliated with. We
model these social dynamics by building a graph with two node sets:
wallets and collections, with an edge from a wallet to a collection
if the wallet holds an NFT within that collection. This ownership
graph encodes all of the ownership information in our dataset.

If the bandwagon effect influences a collection’s value, then the
ownership graph should possess predictive power regarding the
value of a collection. Attempting to predict this value using a classi-
cal regression model would depend heavily on the features chosen.
Thus, we instead use a Graph Neural Network (GNN), training on
the ownership graph and asking it to predict the floor price of each
of the collections in our dataset. We choose floor price rather than
a historical price average because the floor price represents a snap-
shot of collection value and our graph is a snapshot of ownership
data.We also explore how the visual characteristics of an NFTmight
impact its value. Many collections emulate others in order to take
advantage of a trendy aesthetic. To quantify the impact of visual
characteristics, we give the GNN access to a collection’s centroid
as a node feature and measure how this improves performance.
Finally, we probe our trained model to get a better understanding
of which features it uses to predict value and how they relate to
the bandwagon effect.

3.1 Measuring Predictive Power
In order to obtain a sensible prediction target, we first transform
floor prices into percentiles, sorting each floor price into one of
100 buckets based on which percentile of the distribution (over
all floor prices) it lands in. This also gives us a sensible baseline:
always predicting the median value of all collections.9 (We defer
the remainder of the experimental setup to Appendix B.)

We compare two versions of our graph neural network (GNN)
models against the median baseline. We find that the GNN model
without centroids outperforms the baseline root mean squared error
(RMSE) of 2779 by 15%, achieving a RMSE of 2356, and the GNN
model with centroids outperforms the baseline by 23%, with a RMSE
of 2133. Additionally, the predictions of our most effective model,
as illustrated in Fig. 2, demonstrate a moderate Pearson correlation
with the true values: 0.532 (with 𝑝 < 0.05).

3.2 Validating Our Trained Model
The results so far demonstrate that the ownership graph has predic-
tive power, but it is unclear what aspects of the graph drive these
9We use median rather than the “50” label because there are point masses in the data.
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Figure 2: Performance of the GNN model with centroids. This
graph illustrates the comparison between the true percentile
values of NFT floor prices and those predicted by the model.
Each point represents an NFT collection, plotted according to
its true percentile in floor price (𝑥-axis) against the predicted
percentile floor price (𝑦-axis).

predictions. To address this, we modify the graph—specifically, by
adding or removing edges—and observe the impact on the model’s
predictions. If the model is learning to predict a bandwagon effect,
then we should see that adding edges representing ownership of
an NFT collection by wallets that are in some sense important or
influential should increase the predicted value of that collection;
and conversely, removing links to such wallets should lead to a
decrease in predicted value.

We define the importance of a wallet within the graph as the
product of two graph properties: wealth and affinity. We define the
wealth of a wallet node as equal to the sum of the floor prices of
all of its connected collections.10 We also define a notion of the
affinity of a wallet node to represent how well its holdings align
with the broader NFT-owner community. We compute affinity by
first identifying the overlap for each collection, i.e., the number
of shared wallets for every collection pair. The affinity of a wallet
node is the cumulative overlaps of all its connected collections.

We then modified the ownership graph by first sampling random
collections and then, for each collection, sampling non-neighbor
wallet nodes to which we added edges, or neighbor wallet nodes
from which we deleted edges.11 We repeated this entire proce-
dure, each time varying the number of edges (25, 50, 100, or 200)
to add or delete. In the end, we obtained 50,000 samples for each
of the number of edges. We also varied the weights in the sam-
pling procedure—sampling by importance, affinity, or wealth, or
uniformly over wallet nodes.

We observed that adding important edges increased predicted
percentile floor price on average when compared to the unmodified
graph, and this effect became more pronounced as more edges were
added. When we added 100 edges, for example, the GNN predicted
a higher percentile floor price 99.86% of the time. Figure 3b shows
the distribution of changes in predicted percentile floor price when
adding edges. Note that when sampling by importance (plotted in

10This calculation of wealth does not take into account how many NFTs of each
collection a wallet owns. This is because our graphs were constructed unweighted and
therefore could not have used a more nuanced notion of wealth to form its predictions.
11Due to limitations on the number of nodes we can represent in a GPU, each sample
iteration is restricted to specific collection node sets.

−2.00 −1.75 −1.50 −1.25 −1.00 −0.75 −0.50 −0.25 0.00

Difference in Predicted Value

0.4

0.6

0.8

1.0

1.2

D
en

si
ty

−0.501

−0.922

−0.399

−0.988

Affinity

Wealth

Uniform

Importance

(a) Deleting 100 edges.

0.0 0.5 1.0 1.5 2.0

Difference in Predicted Value

0.2

0.3

0.4

0.5

0.6

0.7

0.8

D
en

si
ty

1.028

0.655

0.596

1.253

Affinity

Wealth

Uniform

Importance

(b) Adding 100 edges.

Figure 3: Distribution of predicted percentile collection floor
price differences on modified graphs, smoothed by kernel den-
sity estimation (KDE).This figure presents KDEplots showing
the distribution of differences in predicted values between
modified and unmodified graphs. Each line within the plots
corresponds to a distinct edge sampling strategy: sampling
by affinity (blue), sampling by wealth (red), sampling by im-
portance (green), and uniform sampling (yellow). Means are
plotted in black.

green), the floor price the model predicted increased by an average
of 1.253 percentiles. We observed similar trends when deleting
edges; Fig. 3a shows the associated distribution of changes. These
results were robust across the different numbers of edges added and
deleted. Results for all sample weightings and numbers of edges
added or deleted are presented in Appendix C.

We next looked at the ablation of both affinity and wealth. We
observed that when adding edges to wallets sampled by their affin-
ity, the GNN predicted a 56.9% higher floor price on average on the
modified graph, relative to when sampling by wealth; moreover,
sampling by affinity was associated with higher value predictions
overall. However, wealth still provided a meaningful signal, as sam-
pling by importance outperformed affinity. In Fig. 3b, we plot the
distribution of predicted differences in floor price when adding
edges to wallets sampled by affinity (blue), by wealth (red), and uni-
formly (yellow) and their means. We also note that as more edges

3
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were added to the graph, the gap between the impact of affinity and
wealth grew (see Appendix C); this suggests that adding wallets
from tightly connected communities may have a compounding
effect on a collection’s value.

Conversely, when edges were deleted from the graph, the GNN
predicted lower values on average when sampling by wealth than
by affinity. Furthermore, unlike when we added edges, the com-
bined sampling approach offered fewer gains; importance changed
the model’s prediction by only 7.15% more than the next best al-
ternative, as compared to a 22.54% difference when adding edges.
This was likely because wallet affinity had less variance when re-
stricted to owners of a specific collection, and was therefore a less
informative signal of value. For the full results of predicted floor
price movement when deleting edges, see Fig. 3a.

4 The Snob Effect
Leibenstein [18] first described the snob effect as consumers’ values
for a good decreasing with its popularity. The concept of the snob
effect has come to describe any consumer desire to stand out from
a crowd and express individuality through consumption, such as
being willing to spend more on goods that are rare, visually distinc-
tive, and easy to show off [7]. The snob effect might seem to be the
opposite of the bandwagon effect, but in fact the literature describes
the two as operating on different scales: a set of related goods gains
average value with popularity (the bandwagon effect) but this same
growth in popularity also causes consumers to increasingly value
differentiating towards rarer or more distinctive members of this
set (the snob effect). Research has also shown that the snob effect
can be more pronounced between direct acquaintances [17].

In this section, we explore whether NFT values are in part driven
by the snob effect. While we do not have direct access at scale to
evidence of explicit social connections between NFT owners, often
NFT collections have their own communities with Discord channels,
X accounts, and forums, where holders of the NFTs interact with
each other (see, e.g., [16]). Therefore, we expect the snob effect to
be particularly powerful among owners of the same collection. We
thus explore whether there is a negative correlation between the
rarity rank of an NFT and its value within a collection (represented
by its average sale price).12 (We expect the correlation to be negative
because the rarest NFT in a collection has the lowest rarity rank.)

As mentioned in Section 2, rarity ranks are not available for
all NFTs. Frequently, these are NFTs without randomly generated
traits, making it difficult to calculate an explicit quantitative rarity
ranking. We thus rely instead on a quantification of each NFT’s
visual distinctiveness, which we define as the Euclidean distance
between its embedding and the centroid embedding of its collection.
This distance represents how distinct each NFT is from the “average”
NFT in a collection; for example, the images with the smallest
and greatest visual distinctiveness within the sample of the Beanz
Originals collection in our dataset are pictured in Fig. 4. We aim
to determine whether, within an NFT collection, an NFT’s visual
distinctiveness positively correlates with its average sale price. We
also compare the relative power of visual distinctiveness and rarity

12Negative correlation between sale price and a different notion of rarity has been
demonstrated previously by Mekacher et al. [21] on a dataset of 410 collections;
however, this is was before rarity rank was easily viewable on marketplaces such as
Opensea.

rank as predictors of value because understanding when one is
more important than the other may provide insight for conspicuous
goods markets beyond NFTs.

Finally, we end the section with a case study of 9 top-sales-
volume collections in which we take a deeper look into how these
measures impact the sales price and number of transaction for each
token in each collection.

4.1 Testing the Snob Effect
We begin by examining the relationship between rarity rank and av-
erage sale price. We draw these values from our smaller dataset. We
calculate the Pearson correlation between rarity rank and average
sale price for each collection.

It is worth noting that the NFT market tends to be relatively
illiquid at the level of individual NFTs and quite volatile over long
time scales. Consequently, two NFTs that most consumers value
similarly might nevertheless exhibit significant differences in av-
erage historical sale prices, introducing noise into the sales data.
Even so, of the NFT collections with rarity ranks available, 67.6%
had statistically significant (𝑝 < 0.05) negative correlation between
rarity rank and average sale price. Conversely, only 1.0% collec-
tions had significant positive correlation. We repeated this analysis
restricted to only PFP collections; since users identify themselves
with their profile pictures, we expected a more pronounced snob ef-
fect. However, we only observed a small change, with 70.9% of PFP
collections showing significant negative correlation between rarity
rank and price and 1.0% showing significant positive correlation.
The full results can be found in Table 1.

We now examine the correlation between visual distinctiveness
and average NFT sale price. We do this analysis both focused on
collections that have no obtainable rarity rank as well as on the
entire dataset. We compute the Pearson correlation between the
visual distinctiveness and average sale price for each collection.

We observed that 24.8% of NFT collections without rarity ranks
had significant (𝑝 < 0.05) positive correlation between visual dis-
tinctiveness and average sale price, with only 0.9% collections show-
ing significant negative correlation. When examining all collections
in our small dataset including those with rarity ranks, we observed
39.4% showing significant positive correlation and only 0.1% show-
ing significant negative correlation.

Our findings indicate that although visual distinctiveness is as-
sociated with average sale price within a collection, its association
appears not to be as strong as that of explicit rarity ranks when
they are available. One possible explanation is that NFT market-
places often provide features to easily sort and filter NFTs by rarity,
making it straightforward for collectors to assess and trade on rar-
ity, whereas visual distinctiveness is a more subjective and ad hoc
measure. We investigated whether rarity ranks always account for
more variance in sale prices compared to visual distinctiveness, or
if there are collections where the trend is reversed. To determine
which factor explains more variance in price, we fit two univariate
linear regression models for each of the 959 collections for which
we had rarity ranks: predicting price based on rarity rank and based
on visual distinctiveness. We then compared the 𝑅-squared values
of the two models for each collection, excluding those where nei-
ther model showed a positive 𝑅-squared. Among the 912 remaining

4



581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

NFTs as a Data-Rich Test Bed: Conspicuous Consumption and its Determinants TheWebConf’25, 2025, For Review

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

(a) Randomly selected Beanz NFT imagery.

(b) Bean #9848 – most visually average in our sample.

(c) Bean #13956 – most visually distinctive in our sample.

Figure 4: The images with the least and greatest Euclidean distance to the centroid of the images in our small datasets subsample
of the Beanz Originals collection. Bean #9848 [most average] had an average sale price of 1.6 ETH (3, 700 USD) across the sample
period, while Bean #13956 [most distinctive] had an average sale price of 40.7 ETH (93, 700 USD).

Category Corr. (+) Corr. (−) # Collections Percent (−/+)
Predictor

Rarity Ranks w/ rarity ranks 10 648 959 67.5% (−)
PFPs 7 462 651 70.9% (−)

non-PFPs 3 186 308 60.4% (−)

Visual
Distinctiveness

All 475 18 1265 37.5% (+)
w/ rarity ranks 392 12 959 40.8% (+)
w/o rarity ranks 81 3 326 24.8% (+)

PFPs 313 7 760 41.2% (+)
non-PFPs 162 11 505 32.1% (+)

Table 1: Comparison of rarity rank and visual distinctiveness as predictors of average sale price across different NFT categories.
This table presents, for each category of NFTs, the number of NFT collections that have significant negative correlation with
rarity rank and significant positive correlation with visual distinctiveness (𝑝 < 0.05).

collections, rarity ranks explained more variance 71.5% of the time,
while visual distinctiveness was more predictive 28.5% of the time.
Despite the fact that rarity tends to be a better predictor in most
cases, there are settings in which visual distinctiveness appears to
better explain sale price.

4.2 Beyond Linear Correlation
We briefly explored why visual distinctiveness might appear to be a
better predictor in some settings. One potential explanation is that
rarity ranks may be challenging for linear models. For example,
there can be a massive (in particular, nonlinear) price gap between
two adjacently ranked NFTs if one of them is a unique one-of-one.
We therefore compare the two predictors under Spearman’s rank

correlation coefficient, which measures monotonic relationships
(linear or not).

We computed the Spearman coefficients of the 260 collections
where visual distinctiveness explained more variance than rarity
ranks in sales data. We then excluded collections without a sig-
nificant Spearman correlation (𝑝 > 0.05) for either predictor, nar-
rowing down to 166 collections. Within this subset, 90 collections
showed a higher Spearman coefficient for rarity ranks, while 66
demonstrated a greater Spearman coefficient for visual distinctive-
ness. This suggests that a sizeable portion of the cases where visual
distinctiveness explained more variance was likely due to a non-
linear relationship between sale price and rarity.
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One rationale for collections whose price is better explained by
visual appearance, even in a non-linear model, is that rarity ranks
may lose precision in distinguishing the most unique NFTs. It is
not uncommon to have a group of NFTs that have a one-of-one (or
otherwise especially distinctive) trait, and yet will be sorted by their
more common traits when ranked by OpenRarity. In this event, the
OpenRarity score may not reliably reflect their “rarity” as perceived
by a prospective owner, whereas ranking by visual distinctiveness
may provide a more accurate representation. Another explanation
is simply that there are collections in which the visual appeal of an
NFT image is especially important—for example, if that image is
primarily being used as a digital avatar on a social media platform
or in an online game. In such cases standing out (or being visually
distinct) could have a lot of value.

4.3 Case Studies
To further explore the relationship between distance, rarity and NFT
sale data we investigated the entire transaction and image dataset
we gathered for 9 top collections as described in Section 2. We
selected the collections for these case studies by starting with the
30 collections with the highest total sales volume in our dataset and
removing those collections that did not have rarity ranks and that
our previous study ruled out for not having significant correlations
between either sale price and rarity or sale price and visual distance.
This left us with 9 collections.13 The case study dataset has two
main advantages: first it contains much more sale price data for
every allowing for more statistical power and second it contains
additional data on the number of times each tokenwas sold allowing
for another dimension of analysis.

We began by replicating the qualitative analysis conducted by
Mekacher et al. [21] on our dataset. Mekacher et al. analyzed 3 “ex-
emplary” collections by first binning the rarity of each collection’s
NFTs into 20 quantiles; they observed that sale price was relatively
flat in the lower quantiles but sharply increased in the last (most
rare) 2-3 buckets. We saw the same trend as Mekacher et al. [21]
in each of the 9 collections that we analyzed; additionally, in cases
where visual distance and sale price were meaningfully correlated,
we saw a similar relationship, albeit much less pronounced. (For an
example, see Fig. 5a.) Mekacher et al. [21] also analyzed the rela-
tionship between rarity and number of sales and found a positive
relationship. We also observed that the relationship between rarity
rank and number of sales appears to have been less driven by out-
lier values than the relationship between rarity rank and sale price.
However, for visual distance, we observed that the relationship
with number of sales was usually small or non-existent. (For an
example see Fig. 5b; full plots for each of the 9 collections appear
in Appendix E.)

We also performed a quantitative analysis of correlations, paral-
leling our analysis in Section 4.1. In most cases, distance and rarity
rank had similar effects on each collection in terms of sale price:
typically either both having a negligible effect (Pearson coefficient
around 0.05) or both having a more substantial effect (Pearson

13The initial filtering step actually left us with 10 collections. However, transaction
data from the Meebits collection appeared to exhibit substantial amounts of wash
trading (self-trading intended to manipulate the price record), so we removed this
collection from our analysis.
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(a) Relationships with Sale Price

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Bin Number

0

1

2

3

4

5

6

Av
er

ag
e 

Nu
m

be
r o

f S
al

es

Cool Cats
Rarity
Distance

(b) Relationship with Number of Sales

Figure 5: Relationship between quantile bins of rarity (visual
distance) and sale price or number of sales respectively in the
Cool Cats collection. This figure presents rarity and visual
distance placed into 20 bins by quantiles such that each bin
contains 5% of the data. These bins are plotted against sale
price and number of sales. In the case of rarity ranks bins are
sorted from highest rarity rank (least rare) to lowest rarity
rank (most rare).

coefficient greater than 0.1).14 There are two collections where
visual distance and rarity differed in their ability to explain sale
price—Azuki and Mutant Ape Yacht Club—yet both of these ex-
ceptions in some sense prove the rule. In the case of Azuki, the
most visually distinctive NFT images depict the character holding
a boombox, which is neither particularly rare nor valuable relative
to the rest of the collection. However, they are quite different from
the samurai-esque aesthetic of most other images in the collection
have. Similarly, in the case of Mutant Ape Yacht Club, the most
visually distinctive NFTs depict the apes covered in worms rather
than clothes, which is not a particularly valued trait in the commu-
nity. These results suggest that a more nuanced notion of visual

14We discuss magnitude rather than 𝑝-value in this section because we have enough
to data for almost every relationship to be statistically significant.
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distance, one that allows for multiple clusters within a collection
to deal with the existence of multiple common aesthetics, could be
important for further analysis.

Next, we quantitatively measured the extent to which how much
of the relationship between rarity (visual distinctiveness) and sale
price was driven by the most rare or visually distinctive NFTs. To
do this, we recomputed correlation with the last 2 buckets (10 per-
centiles) censored and examined how the correlation coefficient
changed. In both cases, rarity and visual distance, we saw a rela-
tively large drop in correlation coefficients with only 1 collection
having a Pearson coefficient greater than 0.1 for distance and only
2 collections for rarity. This adds support for the idea that the rela-
tionship between sale price and rarity (visual distance) was driven
by the most rare (visually distinctive) while the less rare (visually
distinctive) almost shared an equivalence class.

Finally, we measured the correlation between rarity (visual dis-
tance) and number of sales, and found that rarity tended to be even
more correlated with number of sales than with sale price. In the
case of Cool Cats, for example, the Pearson coefficient jumped from
0.14 to 0.28. This is potentially unsurprising because the number
of sales is a cumulative measure and therefore exhibits much less
noise than average sale price, which is confounded by changes in
the overall market. However, potentially more surprising is that
visual distance tended to be less correlated with number of sales
than with sale price. One potential reason for this is that visually
distinctive NFTs include both the interesting and more desirable
NFTs in a collection but also the “uglier” andmore frequently turned
over NFTs (e.g., the worm-coated Mutant Apes), creating a lot of
variation. For a full table of all of the Pearson coefficients described
in this subsection, see Appendix D.

5 Conclusion
Leveraging publicly available blockchain data, this paper has ar-
gued that the NFT market shows evidence of the determinants
of conspicuous consumption and that NFTs are thus conspicuous
goods. The richness of this data also allowed us to study the dy-
namics of a conspicuous market to an unprecedented extent. In
our analysis of bandwagon effects, we found that simulating an
increase in the number of owners with high affinity for an NFT
significantly increased that NFT’s predicted value. The predictive
strength of affinity in our models suggests that tight community
structures may be important drivers of NFT value, a finding that
is consistent with anecdotal and ethnographic accounts (see, e.g.,
[2, 6, 16]). Additionally when analyzing the snob effect, we saw that
the publicly visible notion of rarity ranks tended to explain more
variance in value than visual dissimilarity, suggesting that signals
of exclusivity that are more easily understood and internalized by
the market may be especially important for determining value. It
will be important for future research to investigate the extent to
which these patterns extend to other conspicuous goods markets.

It could be fruitful to consider refinements of the image embed-
ding techniques used in this paper. As mentioned in Section 4.3,
some NFT collections contain multiple distinct aesthetics; in these
cases, centroids lose information by averaging these aesthetics
together. One potential solution would be to allow for multiple
clusters within a collection, each with its own centroid; we could

then measure each NFT’s distance from their nearest centroid as a
more accurate measure of intra-collection distances. Another po-
tentially useful refinement is fine-tuning the vision transformer
on NFT images with the task of classifying the collection an NFT
belongs to; this might produce image embeddings that more tightly
cluster NFTs in the same collection.

Considering topics for future work more broadly, we note that
this paper only scratches the surface of potential uses of NFT data
for studying conspicuous goods. We take one further step in a com-
panion paper—also under review at TheWebConf 2025—assessing
how the values of existing NFT collections are impacted by the
introduction of new, visually similar collections. This work is in-
spired by disagreement in the conspicuous consumption literature
about whether knock-offs and look-alikes suppress or raise the
prices of luxury goods. There are many additional questions about
conspicuous consumption that have so far mainly been studied
without access to purchase data. For example, qualitative research
has looked at the effect of different types of scarcity on consumers’
assessment of the value of conspicuous goods, suggesting that con-
sumers’ value assessments may be sensitive to supply-side scarcity
(“limited edition”) but not sensitive to demand-side scarcity (“al-
most sold out”) [12]. By looking at the impact of collection size
(which impacts supply-side scarcity) and market liquidity (which
impacts demand-side scarcity) on NFT value, it might be possible
to shed light on the magnitude of this effect—although of course
there are challenges here because demand-side scarcity may also
be a direct proxy for value in steady state. Another question worth
investigating is about the existence of “inconspicuous buyers,” in-
dividuals who only care about signaling to their immediate peers
and prefer signals that are hard to decipher by the broader “masses”
[14, 20]. “Inconspicuous consumption” is effectively an inversion
of the bandwagon effect, that has been thought to occur at the high
end of the wealth distribution [14] or even just in well connected
“old-money” individuals [5]. Given that we have have access to the
full contents of NFT owners’ wallets, it may be possible to measure
how conspicuous consumption dynamics vary with wealth level,
or across different subcommunities of the market.15

Despite its overall usefulness as a test bed for studying conspicu-
ous consumption, there do exist important senses in which the NFT
market is different from other conspicuous goods markets. Notably,
the NFT market is currently patronized by a relatively narrow band
of consumers who skew tech-savvy and higher-income (see the
discussion in [16]). Conspicuous goods exist across the full range
of social strata, and the dynamics may vary across consumer demo-
graphics. Furthermore, while data on physical luxury markets is
currently hard to come by, a growing wave of NFTs with associated
physical-good counterparts (see, e.g., [15, 16, 23]) suggests that it
may one day be possible to conduct a version of our analysis for a
class of physical goods as well.
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A Embedding Stability
In order to evaluate how stable centroids are across various sub-
sampling sizes, we created a dataset containing the full 5000-10000
images for 10 randomly-selected PFP NFT collections.16 For each
of those collections, we computed the “true” centroid that results
from averaging all images and compared it to the centroid that is
obtained by subsampling a smaller number of images. For each
image in our dataset, we then compute distance to both the true
centroid and the subsampled centroid, and averaged the absolute
values of those differences. We found that even if only 50 images
were used to construct the centroid, on average the differences were
only 4% of the average distance to the true centroid. In Fig. 6, we
plot the average percent difference across various sample sizes.
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Figure 6: Average percent difference in distance to the “true”
centroid and the subsample-constructed centroid. For each
subsample size 𝑠, we plot the average difference between an
NFT’s distance to the “true” centroid, computed using every
NFT in the dataset, and its distance to the subsample centroid,
computed only using a size-𝑠 random subset of NFTs. The
centroids are relatively stable (under 5% change in average
distance) as long as at least 25NFTs are used to compute them.

B Bandwagon Effect Experimental Setup
To predict floor price for PFP NFT collections, we utilized a Graph
Neural Network (GNN) comprising four Graph Convolutional Net-
work (GCN) layers. The architecture starts with an input layer
accepting single-dimensional features (or 384-dimensional features
in the case of centroids), progressively transforming these through
hidden layers with dimensions of 64, 32, and 16, respectively—with
an output layer that predicts a single-dimensional node feature.

This experimental study was conducted on the Compute Canada
computing cluster, leveraging both the Narval and Cedar resources.
We used 40GBA100 GPUs on Narval and 32GB V100s on Cedar. Due
to limitations in GPUmemory, we split the ownership graph into 50
subgraphs. The splitting procedure was as follows: We first sampled
75 wallets from the dataset, then we sampled all the collections

16We rejection-sampled to ensure that the collections have at least 5000 images.

they held (capping at 1500), and then we pulled all the wallets that
held those collections.

Because of our splitting procedure, we needed to be careful in
how we split up our training, validation, and test sets. We sampled
collection nodes for sets from the global list, and constructed a
mapping into the subgraphs. We then trained our GNN with mean-
squared error loss on a batch size of 4 subgraphs for 2, 500 total
epochs. We took the model with the best validation accuracy across
those 2.500 epochs which occurred at epoch 1, 000.
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C Supplementary Tables for Section 3

Adding Edges Deleting Edges
Number of Edges Sampling Procedure

25

Affinity 0.494 −0.265
Wealth 0.448 −0.531

Importance 0.575 −0.612
Uniform 0.295 −0.083

50

Affinity 0.714 −0.348
Wealth 0.523 −0.746

Importance 0.889 −0.797
Uniform 0.468 −0.336

100

Affinity 1.028 −0.501
Wealth 0.655 −0.922

Importance 1.253 −0.988
Uniform 0.596 −0.399

200

Affinity 1.481 −0.614
Wealth 0.981 −1.061

Importance 1.523 −1.257
Uniform 0.798 −0.474

Table 2: Average changes in value predictions. This table shows the average change in the prediction of the floor price of all
collections by the GNN across each of the graph modification settings.

D Supplementary Tables for Section 4.3

Collection Sale Price Corr. # of Sales Corr. Censored Sale Price Corr.

azuki 0.083537 −0.049221 0.082964
beanzofficial 0.126023 −0.092573 0.090254
boredapeyachtclub 0.066870 −0.051255 0.037238
clonex 0.130384 −0.104769 0.118309
cool-cats-nft 0.128013 −0.115599 0.066445
doodles-official 0.182818 −0.122661 0.075605
mutant-ape-yacht-club 0.013094 0.039136 0.003909
proof-moonbirds 0.183427 −0.113823 0.064193
pudgypenguins 0.058748 −0.055114 0.004435

Table 3: Pearson Correlations for Visual Distance This table shows the Pearson correlation coefficients between visual distance
and either average sale price or number of sales for each of the 9 case study collections. The final column shows the relationship
between visual distance with the last 10 percentiles censored and sale price. All values are statistically significant (𝑝 < 0.05)
unless italicized.
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Collection Sale Price Corr. # of Sales Corr. Censored Sale Price Corr.

azuki −0.170883 0.163149 −0.114551
beanzofficial −0.165244 0.168878 −0.082399
boredapeyachtclub −0.063194 0.111523 −0.031122
clonex −0.183957 0.176747 −0.136650
cool-cats-nft −0.148992 0.281166 −0.097932
doodles-official −0.173598 0.177977 −0.045757
mutant-ape-yacht-club −0.213170 0.209414 −0.141859
proof-moonbirds −0.204417 0.266713 −0.077283
pudgypenguins −0.073887 0.171108 −0.020776

Table 4: Pearson Correlations for Rarity ranks This table shows the Pearson correlation coefficients between rarity ranks and
either average sale price or number of sales for each of the 9 case study collections. The final column shows the relationship
between rarity ranks with the last 10 percentiles censored and sale price.

E Supplementary Figures for Section 4
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Figure 7: Relationships with number of sales. These plots shows the relationship between rarity rank (visual distance) binned
into 20 quantiles and number of sales of the NFT. In the case of rarity ranks bins are sorted from highest rarity rank (least rare)
to lowest rarity rank (most rare).

12



1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

NFTs as a Data-Rich Test Bed: Conspicuous Consumption and its Determinants TheWebConf’25, 2025, For Review

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

1 5 10 15 20
Bin Number

0

3

6

9

12

15

18

21

Av
er

ag
e 

Sa
le

 P
ric

e

Azuki
Rarity
Distance

1 5 10 15 20
Bin Number

0

1

2

3

4

5

Av
er

ag
e 

Sa
le

 P
ric

e

BEANZ Official
Rarity
Distance

1 5 10 15 20
Bin Number

0
4
8

12
16
20
24
28
32
36

Av
er

ag
e 

Sa
le

 P
ric

e

Bored Ape Yacht Club

Rarity
Distance

1 5 10 15 20
Bin Number

0

3

6

9

12

15

18

Av
er

ag
e 

Sa
le

 P
ric

e

Clone X
Rarity
Distance

1 5 10 15 20
Bin Number

0
1

2

3
4

5

6
7

Av
er

ag
e 

Sa
le

 P
ric

e

Cool Cats
Rarity
Distance

1 5 10 15 20
Bin Number

0
2
4
6
8

10
12
14
16
18

Av
er

ag
e 

Sa
le

 P
ric

e

Doodles
Rarity
Distance

1 5 10 15 20
Bin Number

0

3

6

9

12

15

18

21

Av
er

ag
e 

Sa
le

 P
ric

e

Mutant Ape Yacht Club
Rarity
Distance

1 5 10 15 20
Bin Number

0

4

8

12

16

20

24

28

Av
er

ag
e 

Sa
le

 P
ric

e

Moonbirds
Rarity
Distance

1 5 10 15 20
Bin Number

0

1

2

3

4

5

Av
er

ag
e 

Sa
le

 P
ric

e

Pudgy Penguins
Rarity
Distance

Figure 8: Relationships with number of sales. These plots shows the relationship between rarity rank (visual distance) binned
into 20 quantiles and average sale price of the NFT. In the case of rarity ranks bins are sorted from highest rarity rank (least
rare) to lowest rarity rank (most rare).
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