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Figure 1. We propose a novel way to learn coupled embeddings of non-rigidly deformable shapes that are geometry-aware, robust and
can be directly applied to retrieve accurate dense correspondences for near-isometric (left), non-isometric (middle left) and partial cases
(middle right). Furthermore, it can also be employed for other shape analysis tasks such as shape segmentation (right).

Abstract

The interest in matching non-rigidly deformed shapes
represented as raw point clouds is rising due to the prolif-
eration of low-cost 3D sensors. Yet, the task is challenging
since point clouds are irregular and there is a lack of in-
trinsic shape information. We propose to tackle these chal-
lenges by learning a new shape representation – a per-point
high dimensional embedding, in an embedding space where
semantically similar points share similar embeddings. The
learned embedding has multiple beneficial properties: it
is aware of the underlying shape geometry and is robust
to shape deformations and various shape artefacts, such
as noise and partiality. Consequently, this embedding can
be directly employed to retrieve high-quality dense corre-
spondences through a simple nearest neighbor search in the
embedding space. Extensive experiments demonstrate new
state-of-the-art results and robustness in numerous chal-
lenging non-rigid shape matching benchmarks and show its
great potential in other shape analysis tasks, such as seg-
mentation.

1. Introduction

Matching non-rigidly deformed 3D shapes is a long-
standing and fundamental task in computer vision and
graphics due to its ubiquitous role in many downstream
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tasks, such as shape editing, animation, medicine, statisti-
cal shape analysis, and robotics [17, 31, 42, 47]. Often,
3D shapes are represented as (triangular) meshes, which
consist of both points and their (intrinsic) neighborhood
connectivities. However, with the proliferation of low-cost
sensors, the interest in methods that can directly deal with
raw point clouds is expanding rapidly. Many (pointwise)
shape descriptors have been proposed in the past decades,
both hand-crafted [4, 41, 48] and learned [2, 8, 26]. Most
of them are designed for shapes represented as triangular
meshes and cannot be extended to point clouds without per-
formance degradation [7, 21, 28]. A particularly interest-
ing type of descriptor is a (high-dimensional) embedding of
shapes, which is a shape representation that is ideally in-
variant under natural deformations and, at the same time,
contains enough information to perform geometry process-
ing tasks. Of particular interest is the global point signature
(GPS) designed for triangular meshes [39], which trans-
forms the extrinsic coordinates of each surface point into a
higher (potentially infinite) dimensional space by exploiting
the scale and isometric invariance of eigenfunctions of the
Laplace-Beltrami Operator (LBO). While being effective, it
turns out to be unstable due to sign ambiguity and complex
spectrum in the LBO eigen-decomposition. On the other
hand, the seminal work by Ovsjanikov et al. [30] proposes
to align these LBO spectral embeddings before searching
for the correspondence in this embedding space. The align-
ment of the high-dimensional spectral embeddings is called
functional maps (fmaps), which can be represented com-
pactly as a low-dimensional matrix. However, spectral em-
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beddings are computed inefficiently by a non-differentiable
eigen-decomposition of the LBO, which is sensitive to vari-
ous practical artifacts, such as noise, partiality, and topolog-
ical “short circuits”.

Inspired by [16, 22], in which an (orthogonal) trans-
formation of LBO eigenfunctions is estimated to obtain a
consistent basis using manifold optimisation, we propose
to leverage the power of deep learning to learn a coupled
canonical embedding directly from raw point clouds, which
can recover the LBO eigenbasis as a special case.

Due to insights gained from the classical geometry pro-
cessing, we can obtain high-quality dense correspondences
directly via a simple proximity search in the embedding
space by training a single network, while all previous state-
of-the-art methods have to train two networks [21, 28], un-
derscoring the high practicability of our proposed method.
Furthermore, our learned embedding is aware of the under-
lying geometry of the surface, efficient to compute, robust
to various shape artefacts and applicable for various shape
analysis tasks such as correspondences and segmentation
(c.f. Fig. 1 & Sec. 5). Extensive experiments show that our
proposed method can robustly map extrinsic coordinates of
shapes, which undergo various non-rigid deformations, to
a canonical embedding space where corresponding points
share similar embeddings.
In summary, our contributions are:
• We propose a novel unsupervised way to learn per-point

embeddings directly from raw point clouds under various
non-rigid deformations. Inspired by classical geometry
processing technique, our method is effective and simple
that only requires to train a single network.

• In our learned embedding space, non-rigidly deformed
shapes share similar and geometry-aware embeddings for
corresponding points, which can be used for efficient
matching by a simple nearest neighbor search.

• We show superior performance in a number of challeng-
ing non-rigid shape matching benchmarks, and unprece-
dented generalisation ability and robustness against dif-
ferent noise types, setting the new state-of-the-art.

• As a proof-of-concept, we show that our learned embed-
dings can be applied in other shape analysis tasks, such
as partial shape matching and shape segmentation.

2. Related Work
The field of shape matching is vast and has rapidly devel-
oped over the past decades. Below we review the works
which are most related to ours and can serve as baselines to
our best knowledge. For a more comprehensive overview
of the field, please refer to recent surveys [11, 40].

2.1. Pose Invariant Shape Representation

The study of pose invariant shape representation dates back
to the beautiful work by Torgerson in 1952 [49], where

Figure 2. Examples of LBO eigenbases and our learned coupled
embeddings on a pair of non-rigidly deformed shapes. Ours are
consistent while LBO eigenbases suffer from sign flip (cf. Fig. 12
for more examples).

he introduced a lower-dimensional embedding, which pre-
serves the pairwise (geodesic) distances between all graph
nodes as much as possible and finds applications in many
tasks, such as visualisation and clustering. This idea of di-
mensionality reduction has been further studied by [9, 37]
based on the LBO. The work [9] utilises the LBO eigen-
functions and shows that these spectral properties can be
employed to embed the data into a Euclidean space based
on a diffusion process. Later approaches continue the ex-
ploration in the opposite direction, by embedding a surface
into a higher dimensional space [36, 39, 54]. The GPS
embedding [39] combines the LBO eigenvalues and eigen-
bases and in fact constructs a new surface in the infinite-
dimensional space, which is invariant to (isometric) defor-
mation. Impressive results on shape segmentation and clus-
tering have demonstrated the effectiveness of the GPS em-
bedding. From the standpoint of geodesic distance preser-
vation, the authors of [54] design an embedding for the
fast approximation of geodesics using a cascade strategy to
gradually improve the accuracy of the approximation.

Most recently, deep-learning-based pose invariant em-
beddings are becoming prevalent. Most similar to our ap-
proach are the ones proposed in [21, 28]. DiffFmaps [28]
proposes to learn a linearly invariant embedding from point
clouds, which serves as a replacement for the pre-computed
LBO eigenbasis in the fmaps framework. Improved robust-
ness and better accuracy have been reported. Due to the
employment of fmaps, it can efficiently regularise the maps
in the functional space and incorporate structural regulari-
sation. However, at the same time, it leads to the necessity
of a second separate network dedicated to feature learning,
hence a more complex pipeline in practice. Moreover, it re-
quires ground truth correspondences to train, which is elim-
inated in NIE [21] by rigid pre-alignment (i.e. weak super-



vision), while retaining the dependency on a second feature
network. In contrast, we propose to look at the correspon-
dences problem through the classical geometry processing
lens and learn a canonical embedding of the shape, which
can be used directly for finding correspondences. As we
show later, our embedding is motivated by the LBO spectral
embedding while remaining coupled across different non-
rigidly deformed shapes.

2.2. Basis Pursuit for Shape Analysis

In another line of work [16, 20, 22], researchers start to ask
the question: is it possible to obtain a better set of basis
suitable for shape correspondences? Huang et al. [20] pro-
poses to learn a set of non-orthogonal bases and demon-
strates its expressiveness and flexibility. However it inter-
nally converts the shape representation from point clouds
to 3D voxel grid and requires careful engineering to obtain
good results, such as post refinement and synchronisation.
Moreover, it has to train a second network dedicated to fea-
ture learning due to the employment of fmaps. Kovnatsky
et al. [22] tries to approximately diagonalise the LBOs of
two shapes simultaneously. To reduce the dimensionality
of the solution space, it makes use of subspace parametri-
sation to compute an (orthonormally) transformed version
of the LBO eigenbases. However, ground truth dense cor-
respondences are required, which we ultimately would like
to estimate, rendering this method less practical for shape
matching tasks. This requirement has been relaxed in [16]
by requiring only sparse ground truth correspondences and
dense descriptors. However its best performance still de-
mands some ground truth labelling and both approaches in-
volve complex manifold optimisation (cf. [16] & Tab. 2).
Inspired by [16, 22] together with our insights on pose in-
variant representations, we propose to learn coupled embed-
dings directly from data. As we show in Sec. 4 & 5, our pro-
posed method can learn high-quality coupled embeddings
from low-quality shape descriptors. This attributes to the
careful design of our geometry-aware unsupervised loss and
network architecture, which enables cross-communication
between shapes that is key for their coupling and consis-
tency.

2.3. Learning on Point Clouds

Point cloud is arguably the most common representation
for 3D shapes. However, due to its irregularity (compared
to e.g. volumetric grids and triangular meshes), learn-
ing directly on point clouds has only become possible in
recent years, enabled by specially designed architectures
such as [33, 34, 45, 53]. While there are many works to
learn deep features on meshes, tackling raw point clouds as
the input 3D representation has been relatively less studied
[14, 18, 20, 43]. This is partially due to the missing intrinsic
proximity information in point clouds, which can be very

helpful in many geometry processing tasks, such as comput-
ing geodesic distances. However, incorrect or even incon-
sistent topology often complicates algorithms and makes it
very challenging to recover from it [8, 15]. In this work,
we choose raw point clouds as our 3D shape representation.
In this sense, our method is most similar to [14, 43], which
employ fmaps in designing their losses. While GeomFmap
[14] is a supervised approach which requires ground truth
pointwise correspondences, a more recent work [43] shows
that only an approximate pre-alignment of shapes can re-
place the costly demand in ground truth matches, which is
often dubbed as weak supervision in the literature. We make
use of the weak supervision same as in [43], since most
datasets come already approximately rigidly aligned or can
be easily aligned with very little manual intervention.

3. Background and Notation
In this section, we briefly review coupled diagonalisation
for a pair of input shapes and introduce our notations
(Tab. 1). See [16, 22] for a comprehensive discussion and
the supplementary for an introduction of the LBO.

Given shapes S and T and their LBOs represented in
stiffness matrices LS , LT and mass matrices MS , MT , the
coupled diagonalisation problem can be modelled as:

min
{Ψi}

∑
i∈{S,T }

off(Ψ⊤
i LiΨi) + µc∥D⊤

SMSΨS −D⊤
T MT ΨT ∥

(1)

s.t. Ψ⊤
i MiΨi = I, for i ∈ {S, T }

where DS and DT are given descriptors (f.e. ground
truth correspondences as indicator functions) and I is the
identity matrix.

The off(·) term ensures that the coupled bases be-
have as approximate LBO eigenbases by penalising
the off-diagonal entries and we chose off(Ψ⊤LΨ) =
off(Ψ⊤LΨ;Λ) = ∥Ψ⊤LΨ − Λ∥ throughout our exper-
iments consistently, where Λ is a diagonal matrix of eigen-
values of the respective LBO. This choice helps to select
leading bases (bases corresponding to small eigenvalues)
with increasing frequency, which are the most informative
ones in shape matching [30]. The second term is a cou-
pling term that encourages the corresponding descriptors to
behave similarly in the respective bases, which amounts to
coupling the bases and making them to “speak the same lan-
guage”. Note that the basis of a 2-manifold is a generalisa-
tion of the (1D/2D) Fourier basis in the Euclidean space,
which is fixed and always consistent.

The corresponding descriptors can be indicator (delta)
functions representing (dense/sparse) ground truth point-
wise correspondences, blobs or stable regions, distance
functions and dense descriptors as discussed in [16, 22],
and in practice some amount of ground truth information



Symbol Description

S Source shape (point cloud)
VS ∈ RnS×3 All nS points of shape S
LS ∈ RnS×nS Stiffness matrix of shape S
MS ∈ RnS×nS Mass matrix of shape S
DS ∈ RnS×d Pointwise descriptors of shape S
ΦS ∈ RnS×k LBO Eigenfunctions of shape S
ΛS ∈ Rk×k LBO Eigenvalues of shape S
Ψ̂S ∈ RnS×k Intermediate embedding of shape S
ΨS ∈ RnS×k Predicted embedding of shape S
T Target shape (point cloud)
... (analogous as above for T )
fθ Embedding extractor with learnable θ
hφ Cross attention block with learnable φ
ΠST ∈ RnS×nT Binary matching matrix from S to T

Table 1. Summary of our notation used in the paper.

is required for good performance [16, 22] (also see Sec. 5,
Tab. 2), since the quality of the estimated coupled bases is
strongly tied to the quality of the corresponding descriptors.
Note that when µc → 0, problem (1) becomes separable and
amounts to solving the LBO eigen-decomposition of S and
T separately.

Since Eq. (1) does not scale well with the size of the
shape, it makes the optimisation problem very challeng-
ing or even intractable for high resolution shapes. There-
fore, the authors propose to solve a surrogate problem by
subspace parameterisation, namely representing the cou-
pled basis Ψ as a linear combination of the LBO eigenba-
sis Φ, i.e. Ψ = ΦR, where R is a Stiefel matrix. Com-
pared to the original problem in Eq. (1), this modification
greatly reduced the computational complexity, however it
still involves difficult manifold optimisation for only ap-
proximately solving the original one. Furthermore, it de-
mands at least a sparse set of ground truth correspondences
to obtain good coupled bases, which, unfortunately, makes
it dependent on either sparse shape matching methods or
manual labeling (to produce the sparse correspondences).

To overcome these issues, we propose to directly learn
coupled embeddings without any ground truth correspon-
dences and without any subspace parameterisation. As
demonstrated below, we only require noisy easy-to-obtain
pointwise feature descriptors, f.e. heat kernel signature
(HKS) [48], out of which our network can learn high-
quality embeddings which are coupled and can be used di-
rectly for shape correspondence tasks.

4. Deep Coupled Embeddings
Real world shapes such as human and animals are intrinsi-
cally 2-dimensional compact manifolds and often embeded
into the 3-dimensional Euclidean space and discretised as
point clouds. It is of great interest to study the structure
of the 2-manifold, rather than its Euclidean 3D embedding.

Figure 3. Pipeline overview. Given a pair of shapes S and T rep-
resented in point clouds, Our embedding extractor – ASAP Diffu-
sionNet with shared weights θ (not to be confused with generative
diffusion models [19, 46]), extracts the intermediate per-point em-
beddings Ψ̂S and Ψ̂T , which are further refined by the subsequent
cross attention block to output the final coupled embeddings ΨS
and ΨT . The cross attention block constructs a complete bipartite
graph that connects every point on the shape S with every points
on the shape T to enable their cross-communication. Our unsu-
pervised loss encourages the predicted embeddings of both shapes
to be coupled while closely resembling the LBO eigenbases.

One reason is that the intrinsic information of a shape (f.e.
proximity) is “hidden” in point clouds, despite its conve-
nience to store and render, limiting its usage in shape geom-
etry and analysis tasks. Our network is designed primarily
to recover the intrinsic proximity information, which can be
used for direct retrieval of dense shape correspondences.

Given shapes S and T represented as point clouds
VS and VT , our proposed method learns their high-
dimensional deep coupled embeddings ΨS and ΨT , based
on which accurate dense correspondences can be obtained
via a simple proximity search in the embedding space. In
this section, We first introduce our network architecture de-
sign in Sec. 4.1, which combines a recent variant of Diffu-
sionNet [2, 45] with cross attention to encourage informa-
tion exchange during the learning process. Subsequently,
we introduce our loss in Sec. 4.2. Note that our loss does
not require any ground truth, hence enabling 3D represen-
tation learning in a fully data driven fashion. In Sec. 4.3,
we explain our dense correspondence retrieval based on the
learned embeddings. Throughout this section, we discuss
the key design insight to achieve the coupling of learned
embeddings and shed light to their geometric properties that
are valuable for shape analysis tasks.

4.1. Network Architecture

Our network architecture is simple, efficient and comprises
two main building blocks: an embedding extractor fθ and
a cross attention module hφ with learnable parameters θ
and φ, which we will elaborate next. An illustration of our
pipeline can be found in Fig. 3.
Embedding Extractor Module computes per point inter-
mediate embedding Ψ̂(·), which is a non-linear mapping:



fθ : V(·) → Ψ̂(·) (2)

where · can either be shape S or T and Ψ̂(·) will be fur-
ther refined in the up-coming cross attention block.

Note that many point cloud learning methods [33, 34,
45, 53] discussed in Sec. 2.3 can be employed here. How-
ever, careful design choice is required due to our special
learning objective, namely the learned embedding must re-
tain close to the LBO eigenbasis (cf. Sec. 4.2), indicating
that the learned (intermediate) embedding must be smooth.
This relates to the fact that the smallest eigenfunctions (low
frequency) of LBO vary smoothly on the manifold.

This naturally leads to the choice of As-Smooth-As-
Possible (ASAP) DiffusionNet, a variant of DiffusionNet
architecture proposed by Attaiki et al. [2] as the default
backbone of our embedding extractor. It captures the lo-
cal geometric information of different scales on the man-
ifold by modelling a heat diffusion process with different
timesteps and constrains the learned embedding to live in
the space spanned by the LBO eigenbasis. Both aspects en-
courage smoothness while retaining expressiveness of the
learned embedding, which we found particularly suitable
for our task. Note that the realm of point cloud learning
is still very active and yet our pipeline is flexible, that ad-
vances in the field can be directly incorporated by a drop-in
replacement of the ASAP DiffusionNet.
Cross Attention Block refines the independently predicted
intermediate embeddings Ψ̂S , Ψ̂T by encouraging the com-
munication between them. It follows the Transformer archi-
tecture [51] and learns a non-linear mapping:

hφ : {Ψ̂S , Ψ̂T } → {ΨS ,ΨT } (3)

The output ΨS and ΨT are directly used to form our
unsupervised loss (cf. Sec. 4.2), which will be minimised
and update the learnable network parameters through back-
propagation. Specifically, we construct a fully connected,
bipartite graph that connects every point on the shape S
with every points on the shape T . Each node in the graph
is assigned with the corresponding intermediate embedding
learned by the embedding extractor. The core concept of
cross attention is that it computes a similarity matrix be-
tween the key and query (transformed version of Ψ̂S , Ψ̂T ),
and makes use of it to weight the value (again a transformed
version of Ψ̂S or Ψ̂T ) to produce the final output (please
refer to [3, 51] for details).

The key in this process is that it enables the cross-talk
of the intermediate embeddings Ψ̂S and Ψ̂T , which is es-
sential for a coupled and consistent shape embedding. This
is akin to the idea of joint diagonalisation [22] and image
co-segmentation [52], where the information of the other
object (shape/image) has to be made available in some way
to achieve consistency. As a result, our final embedding is

aware of the other shape and hence coupled and consistent
as shown in Fig. 2 and Fig. 12.

4.2. Unsupervised Loss

Our unsupervised loss is inspired by the work of classical
geometry processing [16, 22] and consists of three terms.
Among them the off-diagonal loss and the orthogonal loss
together encourage the learned embeddings to behave sim-
ilarly as the classical LBO eigenbases, and the contrastive
loss penalises their inconsistency. We will introduce them
one by one in the following.
Off-diagonal Loss: Similar as in Eq. (1), the learned em-
bedding Ψ(·) should approximately diagonalise the respec-
tive Laplacian L(·).

Loff =
∑

i∈{S,T }

∥∥ΨT
i LiΨi −Λi

∥∥
F

(4)

Note that Λ(·) is a diagonal matrix of increasing eigen-
values of the respective LBO sitting on the diagonal.
This term also encourages the learned embedding to be
frequency-aligned, namely the smoother (lower frequency)
an embedding is, the earlier it is positioned in the full set of
embeddings.
Orthogonal Loss: The orthogonal constraint in Eq. (1) is
relaxed to a soft penalty in our training objective. It en-
courages the learned embedding to possess a basis structure
and prevent undesired rank deficiency, hence maximising
the embedding space spanned by the learned embeddings.

Lo =
∑

i∈{S,T }

∥∥Ψ⊤
i MiΨi − I

∥∥
F

(5)

In fact, the optimal embedding to minimise both the or-
thogonal loss and the off-diagonal loss is the individual
LBO eigenbasis of shape S and T , which is a special case of
our formulation. Moreover, we circumvent the intractable
complexity of high-dimensional manifold optimisation in
Eq. (1) by leveraging a data-drive learning technique, which
enables a direct prediction of per-point embedding without
any subspace parameterisation required in [16, 22].
Contrastive Loss: This term couples the learned embed-
dings ΨS and ΨT and encourages their mutual consistency.

Lc =
∥∥DT

SMSΨS −DT
T MT ΨT

∥∥
F

(6)

Similar as in Eq. (1), the coupling is achieved by driving
the Fourier coefficients of corresponding descriptor func-
tions DS and DT to be as close as possible. Differ-
ent to Eq. (1), we can learn highly accurate coupled em-
beddings from low-quality descriptor functions (f.e. HKS),
fully eliminating the need of ground truth correspondences
required in [16, 22] (see Sec. 5, Tab. 2). To our best knowl-
edge, this enables, for the first time, the practical application



Geo. error (×100) Train FAUST SCAPE
Test FAUST SCAPE SHREC19 TOPKIDS DT4D-M SCAPE FAUST SHREC19 TOPKIDS DT4D-M

NN Spectral Embedding 67.1 - - - - 62.3 - - - -
HKS [48] 43.0 - - - - 40.5 - - - -
CQHB-HKS [22] 37.2 - - - - 31.6 - - - -
CQHB-GT [22] 10.5 - - - - 10.8 - - - -
SyNoRiM(S) [20] 7.9 21.9 25.5 - - 9.5 24.6 26.8 - -
GeomFMaps(S) [14] 6.1 11.2 10.8 26.2 38.5 7.7 9.0 12.4 21.7 28.6
WSupFMNet(W) [43] 6.0 12.5 13.8 28.9 40.2 11.3 7.5 12.6 24.5 30.1
DiffFMaps(S) [28] 4.3 18.7 14.6 20.5 18.5 14.4 10.8 14.2 18.0 15.9
NIE(W) [21] 5.9 16.7 15.1 18.9 13.3 11.6 8.6 13.2 16.2 12.1
NIE(W) [21](with ASAP) 5.6 15.0 20.7 19.7 13.5 12.6 5.9 23.5 15.3 12.0
SSMSM(W) [7] 2.4 6.8 9.0 14.2 11.8 4.1 4.1 5.2 12.3 8.0
Ours w/o ASAP(W) 3.9 8.8 16.2 15.3 14.0 4.3 3.9 13.1 14.6 10.9
Ours(W) 3.7 8.7 9.5 13.7 13.1 3.2 3.7 8.1 11.0 7.8

Table 2. Quantitative results on FAUST, SCAPE, SHREC19, TOPKIDS and DT4D-M. The best results are highlighted, and the second
best results are indicated in blue. All methods only take point clouds as input except the multimodal method SSMSM [7], which requires
meshes. Ours outperforms all baselines, both classical and learning-based methods, and is comparable (if not superior) to SSMSM. Letters
S,W in parentheses stand for supervised and weakly supervised respectively.

of dense shape correspondence estimation based on coupled
embeddings.
Finally, our full unsupervised loss is written as:

Ltotal = µoffLoff + µoLo + µcLc (7)

where µoff = 1, µo = 5e1 and µc = 1e3 are the corre-
sponding weights. Please see supplementary for implemen-
tation details.

4.3. Dense Correspondences

After the network is trained, we can directly obtain coupled
embeddings ΨS , ΨT from two input point clouds VS , VT
at inference time. Since both the coupled embeddings are
predicted by the same network and live in the same embed-
ding space, they are directly comparable. To retrieve dense
pointwise correspondences, we employ the simple nearest
neighbor search.

NN : {ΨS ,ΨT } → ΠST (8)

Namely for the i-th source point in shape S, we search
for a target j-th point in T , whose l2 distance to the
source point is smallest in the embedding space and assign
ΠST (i, j) = 1, indicating a match. Note that ΠST is a bi-
nary matrix, but not (always) a permutation matrix, since
the correspondences are not guaranteed to be bijective.

5. Experiments
We start this section by introducing the most relevant base-
lines in Sec. 5.1 before reporting experiment results on near-
isometric and non-isometric matching in Sec. 5.2 & 5.3.
Then we study the generalisation ability (Sec. 5.4) and ro-
bustness (Sec. 5.5) of our method due to their high prac-
tical relevance. Lastly as proof-of-concepts, we show that
our learned embedding can be used for challenging partial
shape matching (Sec. 5.6) and segmentation (Sec. 5.7).

5.1. Baselines

We compare our method with relevant baselines, including
both axiomatic and learning-based methods.

CQHB is an inspiring work by Kovnatsky et al. [22] us-
ing classical optimisation. We evaluate it in two different
settings: namely with HKS or ground truth correspondences
as indicator functions and report their results as CQHB-HKS
and CQHB-GT respectively.

DiffFMaps [28], NIE [21] and SyNoRiM [20] are the
SOTA methods to learn shape embeddings (or bases as in
SyNoRim) from point clouds. They are the most related to
ours since all methods aim to learn a good shape embedding
under challenging non-rigid deformations. Additionally, we
report the results of the most competitive method NIE using
ASAP DiffusionNet as feature extractor.

GeomFMaps [14] and WSupFMNet [43] are SOTA
fmaps-based learning methods, they are relevant to ours
since they only take point clouds as input and produce dense
shape correspondences.

Lastly, the SOTA multimodal learning method
SSMSM [7] is also a fmaps-based shape matching method.
In addition to the input point cloud, it also requires the face
information contained in meshes, where as ours only needs
raw point clouds. We showcase in the experiments that
our proposed method, despite only having access to point
clouds, performs on par (if not superior) with SSMSM.

5.2. Near-isometric Shape Matching

Datasets We choose FAUST [6], SCAPE [1] and
SHREC19 [29] as testbeds for the task of near-isometric
shape matching, specifically the more recent remeshed ver-
sion [13, 35] of them. The FAUST dataset encompasses
100 human shapes, representing 10 individuals in 10 dis-
tinct poses. We split them as 80/20 for train and test. The
SCAPE dataset comprises 71 shapes of a single person in
different poses. We split them as 51/20 for train and test.



Figure 4. Qualitative result on DT4D-M. Ours produces the
most accurate and smooth correspondences, despite highly non-
isometric deformation (errors highlighted in red).

The SHREC19 dataset includes 44 human shapes and is ex-
clusively used as a test set. Note that due to remeshing, the
distribution of each point cloud is totally different, render-
ing the matching task more realistic and challenging.
Results We train on FAUST and SCAPE respectively and
evaluate on FAUST, SCAPE and SHREC19.

As shown in Tab. 2, our proposed method can produce
significantly more accurate correspondences than its clas-
sical counterpart CQHB, even under CQHB-GT in which
dense ground truth correspondences are used. Moreover, we
conduct a simple experiment to retrieve dense shape corre-
spondences by nearest neighbor search directly using HKS
(cf. Tab. 2). The quality of estimated correspondences is in-
ferior. However, our method can fully exploit the informa-
tion available in the low-quality HKS descriptor and predict
highly accurate correspondences.

Our method also outperforms SOTA learning methods,
even the ones with ground truth supervision such as SyN-
oRiM and GeomFMaps. Remarkably, ours is capable to
compete (it not superior) with the multimodal learning
method SSMSM, which requires meshes as input. This
highlights the importance of the careful design of our net-
work architecture and our unsupervised loss inspired by
the classical geometry processing technique. As an abla-
tive study we disable the ASAP component hence employ
the vanilla DiffusionNet as feature extractor and report its
quantitative results in Tab. 2 as Ours w/o ASAP. Note that
the mean geodesic error deteriorates in all cases, underlin-
ing the importance of smoothness of learned embeddings.
Please refer to the supplementary for qualitative results and
additional ablation experiments.

5.3. Non-isometric Shape Matching

Datasets We employ the recent non-isometric benchmark
DT4D-M [27] as the testbed for this task. This dataset

Geo. error (×100) Train SURREAL
Test FAUST SCAPE SHREC19

GeomFMaps(S) [13] 10.4 (-) 8.7 (-) 14.1 (-)

WSupFMNet(W) [43] 16.0 (-) 14.7 (-) 27.8 (-)
DiffFMaps(S) [28] 7.8 (22.8) 18.9 (26.9) 27.8 (34.2)
NIE(W) [21] 6.9 (11.3) 11.0 (17.2) 11.3 (18.2)
NIE(W) [21](with ASAP) 5.5 (8.8) 9.5 (13.6) 11.0 (16.3)
SSMSM(W) [7] 3.5 (6.8) 3.8 (6.4) 6.6 (9.8)
Ours(W)(w/o ASAP) 3.3 (5.1) 4.3 (5.8) 8.8 (13.2)
Ours(W) 3.4 (5.2) 3.3 (5.2) 4.6 (9.4)

Table 3. Generalisation ability. The best results in each column
are highlighted. Our method outperforms all learning based base-
lines. Letters S,W in parentheses stand for supervised and weakly
supervised respectively.

includes shapes from the large-scale animation dataset
DT4D [25] and consists of 293 humanoid shapes from 9
different classes. We split it as 198/95 for train and test.
Following the train/test split proposed in [24], we conduct
experiments with all 9 classes of humanoid shapes, which
undergo significant non-isometric deformation (cf. Fig. 4).
Results We test on DT4D-M using our model trained on
FAUST and SCAPE respectively. Note that this is a harder
case than training and testing on the same dataset, since all
methods are only trained with near-isometric shapes. How-
ever, our proposed method performs favorably than all base-
lines and achieves comparable result with mesh-dependent
SSMSM method. We report the quantitative and qualitative
results in Tab. 2 (column DT4D-M) and Fig. 4 respectively.

5.4. Generalisation

Datasets To further study the generalisability of our pro-
posed method, we employ the SURREAL dataset [50],
which is a synthetic dataset of human shapes. We train our
model and baselines on a randomly sampled subset of the
230K synthetic shapes and test on FAUST, SCAPE, and
SHREC19.
Results Quantitative and qualitative results are reported
in Tab. 3 and Fig. 5 respectively. Remarkably, ours out-
performs all baselines including the multimodal mesh-
dependent method SSMSM under this setting. A possible
reason is that our learned embeddings are driven by the
geometry-aware supervision, and are further coupled via
both the network architecture (cross attention block) and the
(constrastive) loss. This geometry-aware supervision and
strong coupling foster the generalisation ability, leading to
the superior performance of our proposed method.

5.5. Robustness

We evaluate robustness from two perspectives: (1) random
additive Gaussian noise to point clouds, (2) changes and in-
consistency in shape topology. Both scenarios are common
in real-world raw point clouds, hence are highly relevant for
the practicability of investigated methods.



Figure 5. Generalisation from the training set SURREAL to the
test set SHREC19. Our method generalises better compared to
baselines (errors highlighted in red).

Additive Gaussian Noise We make use of the trained
model in SURREAL (Sec. 5.4) and test on noisy point
clouds from FAUST, SCAPE, SHREC19. Every point in
the test point clouds is perturbed by a Gaussian with µ = 0
and σ = 0.01 and within a range of [−0.05, 0.05]. Quanti-
tative results are shown in Tab. 3 (numbers in parentheses).
Under this noisy setting, the quality of our correspondences
retains the best among all competing methods. Compared
to the noise-free case, we also have the least overall perfor-
mance degradation. An illustration is shown in Fig. 17 in
the supplementary.

Topology changes We employ models pre-trained on
FAUST and SCAPE respectively and test on the TOPKIDS
dataset [23], which contains 26 shapes of kids with non-
rigid deformation and topological changes for this task.

Quantitative results are shown in Tab. 2 (column TOP-
KIDS). Note that all investigated methods suffer from the
challenging topological changes, however ours outperforms
by achieving the lowest mean geodesic error. Qualitative il-
lustration (Fig. 6 & 15) also shows that our predicted corre-
spondences are the closest to the ground truth.

5.6. Partial Shape Matching

As a proof-of-concept, we show that our proposed method
can be applied to the challenging partial shape matching.
For this we train our network on SHREC16 Partiality [10].
During training we take a full and partial pair and employ an
extended loss (see supplementary for details). Once the net-
work is trained, it can be used to directly match two partial
shapes by proximity search in the embedding space. Exam-
ples can be found in Fig. 1 and in the supplementary.

Figure 6. Robustness against topological changes (the left shoul-
der and face of the kid are glued together). Ours is least sensitive
to this noise among all competing methods (errors highlighted in
red).

5.7. Shape Segmentation

As a proof-of-concept, we show that our learned embedding
can also be employed for shape segmentation tasks. Specif-
ically we conduct a k-mean clustering on the learned em-
bedding of each shape. An example is shown in Fig. 1 and
the segmentation is meaningful and even consistent across
different shapes, despite independently segmented.

6. Limitations, Future Work and Conclusion
In this paper, we proposed an unsupervised method to learn
high-quality, well-generalised embeddings directly from
raw point clouds. The embedding is aware of the under-
lying shape geometry and robust to various shape artefacts
and non-rigid (both isometric and non-isometric) deforma-
tions and can be used to obtain dense correspondences via a
simple proximity search in the canonical embedding space.
Extensive experiments showcase that our proposed method
achieves superior results in a number of non-rigid matching
benchmarks and is promising in other shape analysis chal-
lenges, such as partial shape matching and segmentation,
hence setting the new state-of-the-art.

Our method also has limitations. First, it requires shapes
to be pre-aligned. An interesting direction is to incorporate
the advancement in SO(3)/SE(3) invariant architecture [12]
to eliminate the necessity of pre-alignment. Second, it is in-
teresting to explore the possibility for a fully descriptor-free
approach. Lastly, an extension of our method to shape col-
lections would be a promising avenue for future research.
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