Under review as a conference paper at ICLR 2026

LAYER-INFORMED FINE-TUNING VIA THREE-STAGE
FUNCTIONAL SEGMENTATION OF LLMS

Anonymous authors
Paper under double-blind review

ABSTRACT

In recent years, the performance of large language models (LLMs) on reasoning
tasks has been remarkable, even surpassing human capabilities on various bench-
marks. However, there remains a lack of clear understanding in the academic
community regarding how the structure and internal parameters of LLMs progres-
sively solve complex reasoning problems. In this study, we investigate the inference
process of LLMs on cross-linguistic materials and propose the hypothesis that LLM
layers exhibit a structured division of labor across conceptualization, reasoning,
and textualization. Conceptualization layers are crucial for transforming natural
language inputs into abstract representations within the LLM, while reasoning
layers play a key role in reasoning over these abstract concepts. Finally, the textu-
alization layers convert these abstract representations back into natural language.
Based on this hypothesis, we propose a novel approach, LIFT, to achieves efficient
and effective finetuning by selectively finetuning only those layers most relevant to
a given task’s functionality. We then conduct extensive experiments to show that
the LIFT method not only accelerates the training process but also significantly
improves model performance.

1 INTRODUCTION

In recent years, large language models (LLMs) (Meta, [2024; [Bai et al., [2023} |Achiam et al.| 2023},
Abdin et al.l 2024} |Guo et al., |2025)) have demonstrated outstanding performance in a wide range
of tasks and made significant progress in handling complex problems such as reasoning (Wei et al.,
2022)), mathematics (OpenAl, 2024; [LlamaWebsitel [2024])), and programming (Guo et al.||2024)). Most
LLMs utilize a deep, multi-layer transformer architecture (Vaswani et al.,|2017), where each layer
comprises self-attention mechanisms and feedforward networks that iteratively refine representations
and capture increasingly complex linguistic patterns. Research on how LLMs internally comprehend
problems, perform reasoning, and ultimately generate correct answers has become a crucial and
highly significant topic.

Many studies investigate the mechanistic interpretability of LLMs using methods such as the logit
lens (Nostalgebraist, |2020), structural probing (Hewitt & Manning, 2019), and cosine-similarity
analyses between hidden states (I1mkey & Van Schijndell |2021). For example, [Wendler et al.| (2024)
found that when generating non-English text, the logit-lens-decoded tokens in the final transformer
layers of the LLM initially resemble English before transitioning into the target language in the last
few layers. Another study (Li et al., |2024)) focuses on the safety of LLMs and finds that certain
consecutive intermediate layers may have the ability to detect harmful questions and decide whether
to refuse to answer them. In addition, [Jin et al.| (2024) finds that complex problems may require more
layers for comprehension and reasoning, whereas simple problems can be processed and resolved
within just a few layers. Parallel to interpretability studies, recent works (Fan et al., [2024; \Gromov
et al.,[2024; [Men et al., 2024) have explored the efficiency and redundancy of large language models,
particularly in layers closer to the output, enabling efficient pruning strategies.

Inspired by these studies, we investigate the functional division of different layers within an LLM.
We propose and provide empirical evidence for the hypothesis that LLM layers exhibit a structured
division of labor across conceptualization, reasoning, and textualization. We refer to this hypothesis
as the Three-Stage Functional Segmentation of LLMs. According to this hypothesis, an LLM can
be divided into three contiguous sections: (1) conceptualization layers, located near the input, (2)

Under review as a conference paper at ICLR 2026

/Text Prompt \ % R Large Language Models ﬁ /Output

Q1: What is the capital of
F ? . . . i
renee h hi=1 hi hk hi=1 hJ O1: Paris
2: ¥ 4 =L ° m) o =) © =) =) =) o
Q {*E‘EE’J‘E;%ISXE [02: EH
Q3: What color is the 03: Red
inside of a watermelon?

\) aneptualization active reason idle reason textualizaty /

Layer-wise Cosine Similarity

Cosine Similarity Value

054 — Q1 &Q3 similarity
— Q1 &Q2 similarity
--- Q1 adjacent-layer similarity

0123456 78 91011121314 151617 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Layer

Figure 1: The upper part of the figure illustrates how an LLM processes a simple question under
the Three-Stage Functional Segmentation hypothesis. The lower part presents a toy experiment
validating this hypothesis by comparing hidden state similarities across conceptualization, reasoning,
and textualization layers. We have also added a curve showing the cosine similarity between adjacent
layers, with higher values indicating greater redundancy in those layers. In the figure, Q2 and O2 are
the Chinese expressions of Q1 and O1, respectively.

reasoning layers, located in the middle, and (3) textualization layers, positioned near the output.
The conceptualization layers transform natural language into abstract representations, encoding
task-relevant information to facilitate subsequent reasoning. The reasoning layers then process these
abstract representations, deriving an intermediate conceptual form that aligns with the intended output.
Finally, the textualization layers convert these abstract representations back into natural language,
producing the final output. In addition, driven by the observed redundancy (especially in layers closer
to the output) in LLM reasoning, we further split the reasoning stage into active and idle reasoning
layers. Active reasoning layers carry out the main inference work, whereas idle reasoning layers add
little or no new information. Following Jin et al.|(2024)), we hypothesize that the proportion of idle
reasoning layers scales with task complexity, shrinking for harder tasks and growing for easier ones.

To illustrate this hypothesis with a concrete example, consider the input question: “What is the capital
of France?” According to the hypothesis, the conceptualization layers first transform the natural
language query into an abstract concept, which is articulated as “querying the capital of France.” Next,
the reasoning layers process this abstract concept to infer the correct answer in its abstract concept
form, which in this case corresponds to the abstract concept of “Paris.” Finally, the textualization
layers convert this abstract concept back into natural language, generating the output “Paris.”

The upper part of Figure [T] provides a detailed illustration of how an LLM processes this simple
question under the Three-Stage Functional Segmentation hypothesis. The lower part presents a toy
experiment designed to empirically support this hypothesis. Since the conceptualization layers map
natural language inputs into abstract concepts, two semantically equivalent questions in different
languages (Q1 and Q2) should converge to a similar abstract concept of “querying the capital of
France.” Consequently, their hidden states should become more similar as they pass through the
conceptualization layers. In contrast, for two questions in the same language but with different
meanings (Q1 and Q3), the similarity of their hidden states should decrease at this stage. At the
reasoning layer, where the model derives and refines the abstract concept corresponding to the correct
answer, the hidden state similarity between Q1 and Q3 should remain relatively low, while Q1 and
Q2 have undergone similar reasoning processes, and should maintain higher similarity. Finally, in

Under review as a conference paper at ICLR 2026

the textualization layers, where the abstract concept is mapped back into natural language, Q1 and
Q3 should show an increase in similarity, whereas Q1 and Q2 should diverge as their outputs are
rendered in different languages. In addition, we observe that adjacent-layer cosine similarity peaks in
the layers near the textualization stage (roughly layers 17-29), indicating that these layers add little
novel information and exhibit high redundancy, corresponding to the idle reasoning layers.

Following experiments that support the Three-Stage Functional Segmentation hypothesis, we propose
a method for locating the conceptualization, reasoning (further partitioned into active/idle subsets),
and textualization layers. Based on the identified approximate positions of these functional layers,
we introduce Layer-Informed Fine-Tuning (LIFT), which enables efficient and effective adaptation of
LLMs by selectively fine-tuning the most functionally critical layers for a given task—whether they
are conceptualization layers, active reasoning layers, or other specialized modules.

Our contributions can be summarized in three key aspects:

* We propose the hypothesis that LLMs can be functionally divided into conceptualization
layers, reasoning layers, and textualization layers. Moreover, for each task, we further
refined the reasoning layers by partitioning them into active and idle subsets.

* Our experiments provide strong support for our hypothesis and present a method for approx-
imately identifying the ranges of the conceptualization layers, active reasoning layers, idle
reasoning layers and textualization layers.

* We propose LIFT, an approach that achieves efficient and effective fine-tuning by selectively
fine-tuning only those layers most relevant to a given task’s functionality. This method not
only reduces fine-tuning time cost but also enhances performance.

2 RELATED WORKS

Internal Structure of LL.Ms Research on the mechanistic interpretability of LLMs often utilizes
techniques such as the logit lens (Nostalgebraist, [2020), probing (Hewitt & Manning} 2019), and
cosine similarity (Timkey & Van Schijndel, [2021) to explore their internal structures. For instance,
studies posit that intermediate layers form a “semantic hub” where inputs from diverse languages
and modalities are mapped to a shared space (Wu et al.} 2024)), which is geometrically characterized
as a “high-dimensional abstraction phase” critical for initial linguistic processing and downstream
task transferability (Cheng et al., 2024). The effectiveness of these mid-depth representations is
demonstrated by their superior performance on downstream tasks relative to final-layer outputs
(Skean et al.} 2025)), with models also dynamically engaging deeper layers to address more complex
problems (Jin et al.l [2024). A common finding within these frameworks is the phenomenon of a
latent operational language. English-centric models tend to “think™ in English within their abstract
middle layers, only translating concepts into the target language in the final layers (Wendler et al.,
2024;|Zhao et al., 2024; Zhong et al., [2024). This behavior extends to non-English-centric models,
which may develop dual latent languages corresponding to their training data, activating the language
most similar to the target output during processing (Zhong et al., 2024). Further evidence for layer
specialization comes from diverse analytical perspectives. Adopting a neuroscientific approach,
AlKhamissi et al.|(2024) employed functional localizers to identify and causally validate “language-
selective units” concentrated in specific layers that are critical for linguistic tasks. These studies
provide a valuable “map” of the functional properties contained within different layers.

Concurrently, research on model robustness has found that early and final layers are highly sensitive
to structural interventions like deletion or swapping, whereas middle layers are remarkably resilient
(Sun et al., [2025; |[Lad et al., [2024). This resilience is particularly pronounced in the later-middle
layers, which have been shown to be more redundant and less impactful on performance when pruned
compared to earlier layers (Gromov et al., 2024;|Men et al., 2024), further supporting their distinct
functional role.

While these studies provide a valuable “map” of the functional properties within LLM layers, our
work provides a “recipe” for using them. We shift the focus from a static analysis of what is in each
layer to the dynamic transitions between these functional stages. This approach allows us to develop
targeted and parameter-efficient fine-tuning strategies that improve performance by focusing updates
only on functionally-relevant blocks.

Under review as a conference paper at ICLR 2026

Parameter-Efficient Fine-Tuning. The conventional full-parameter fine-tuning paradigm often
incurs high computational costs when fine-tuning LLMs. To address this, parameter-efficient fine-
tuning (PEFT) has emerged as a promising alternative. Key PEFT approaches include Adapter
Tuning (Houlsby et al., 2019; [Pfeiffer et al.l 2020; Karimi Mahabadi et al.,|2021), Prompt Tuning
(L1 et al.l 2023), and Low-Rank Adaptation (LoRA) (Hu et al.,|2021)). Adapter Tuning introduces
trainable adapter modules between all model layers, Prompt Tuning incorporates tunable prefix
tokens into inputs.The original LoRA (Hu et al.l 2021)) decomposes the weight updates for various
parameter matrices into low-rank adaptation matrices. More advanced variants like AdaLoRA (Zhang
et al., 2023) improve upon this by dynamically allocating the parameter budget to more important
weight matrices based on their sensitivity during training. These methods only need to fine-tune
a small subset of parameters, typically less than 1% of the original, and can significantly reduce
computational and memory overhead.

Compared with the above methods, our LIFT focuses on fine-tuning specific layers in the middle,
which follows a distinct trajectory from the above methods and can be seamlessly integrated with
them. For instance, in this paper, we incorporate LoRA to achieve both high performance and
accelerated fine-tuning.

3 PRELIMINARY

3.1 LARGE LANGUAGE MODELS

Large Language Models, such as Llama-3 (Meta, [2024]), are built on a transformer-based architecture
composed of multiple stacked layers. Each layer consists of a multi-head self-attention mechanism
that captures contextual dependencies, a feedforward network for further processing, and residual
connections with layer normalization to stabilize training. In this framework, hidden states represent
the evolving internal representations of tokens, which are progressively enriched layer by layer. These
states are updated iteratively by adding residuals, where the residual is computed as a function of
the hidden states of all preceding tokens. In this paper, we employ four LLMs from different model
families: Llama-3-8B-Instruct (Meta, 2024), Phi-3-mini-4k-instruct (Abdin et al.} 2024), and Qwen2-
7B-Instruct (Yang et al., 2024). These four LLMs were developed by different companies, each
with distinct internal architectures and training methodologies, making them highly representative of
diverse model designs.

3.2 DATASETS

To train and evaluate the reasoning capabilities of LLMs, we select three representative logical reason-
ing datasets: ProofWriter (Tafjord et al.||2020), FOLIO (Han et al., 2022)) and the LogicalDeduction
dataset from BigBench (Srivastava et al., |2022). Our data processing method follows a similar
approach to that proposed in|Pan et al.|(2023). These datasets ensures a comprehensive assessment of
the model’s ability to perform various forms of logical reasoning.

* ProofWriter (Tafjord et al.,[2020) is a widely used dataset for deductive logical reasoning.
In our study, we utilize the open-world assumption subset. This dataset is categorized into
five classes based on the depth of reasoning required. To ensure a rigorous evaluation, we
select the most challenging subset, depth-5.

* FOLIO (Han et al.| [2022)) is a challenging dataset for first-order logic reasoning, featuring
expert-written problems that require complex logical deductions. The questions are presented
in natural language and are closely aligned with real-world knowledge.

* LogicalDeduction is a logical reasoning task from the BigBench benchmark (Srivastava
et al., 2022), focusing on constraint satisfaction problems. The task primarily involves
deducing the order of a sequence of objects given a minimal set of conditions.

In addition to the reasoning dataset, we also conducted experiments on GSM8K, a mathematical
dataset.

* GSMSK (Cobbe et al., 2021): This dataset contains 8,500 grade school-level math problems
that cover a wide range of topics, including arithmetic, algebra, and geometry.

Under review as a conference paper at ICLR 2026

4 THREE-STAGE FUNCTIONAL SEGMENTATION OF LLMSs

In this section, we present our hypothesis, the Three-Stage Functional Segmentation of LLMs, and
provide rigorous and comprehensive experiments to support the hypothesis.

According to this hypothesis, an LLM can be functionally divided into three contiguous stages:

1. Conceptualization layers — located near the input, responsible for transforming natural
language into abstract representations.

2. Reasoning layers — situated in the middle, where task-relevant logical processing occurs.
These can be further divided into active reasoning layers and idle reasoning layers.

3. Textualization layers — positioned near the output, where abstract representations are
mapped back into natural language.

The conceptualization layers encode linguistic inputs into abstract, task-relevant representations. This
initial stage marks a functional transition from processing surface-level language to forming the
conceptual foundation required for logical processing.

The reasoning layers then manipulate these abstract representations to perform logical inference.
Operating on task-specific logic rather than surface linguistics, we hypothesize that hidden states in
this stage will exhibit high similarity for the same task across different languages, yet low similarity
for different tasks within the same language. Furthermore, these layers can be subdivided into active
reasoning layers, which execute core inference, and idle reasoning layers, which are functionally
redundant.

Finally, the textualization layers translate the inferred abstract concepts back into natural language.
This final stage reverses the similarity pattern observed during reasoning: representations for different
tasks converge as they are mapped to a common linguistic form, while those for the same task in
different languages diverge into their respective linguistic outputs.

To investigate the functional segmentation of layers within the LLM, we design the following
experiments during the inference process. Suppose a large language model has K hidden layers
and a task-consistent dataset D,,,, = {dl}i\[:1 Without loss of generality, assume that this dataset
is an English dataset. We then define its corresponding datasets in other natural languages as
DNon-English = {d.}},. The Non-English datasets may include any non-English language supported
by the LLM, such as Chinese, French, Spanish, or Hindi. The identical index ¢ in these datasets
indicates the same semantic content, differing only in language.

When using these two datasets as the input for inference in the LLM, we obtain the hidden state
sets from the last position of each layer in the first autoregressive process, denoted as S(Dy,y) and
S (Dnon-Engtish)- The specific form of these vector sets is as follows:

N N
S(Draw) = {[h%dl)’ h?ah)’ ceey h(lgb)]}) S(DNon—English) = {[h%d;)v h?dé)’ CRE) h(K;)]}

i=1 i=1

where hé“d,) represents the hidden state at the last position in layer & during the first autoregressive
process.

4.1 COSINE SIMILARITY BETWEEN HIDDEN STATES IN THE SAME LAYER

First, we compute the cosine similarity for the following pairs. These results quantify the similarity
between hidden representations across different layers, offering insights into how information is
processed and transformed within the model.

1. For pairs of the same question in different languages, we randomly select an index ¢ from 1
to N and compute the cosine similarity between different language versions of the same
question 4, denoted as g¥ = cos(h’(“di)7 h?d,_)) forl1 <k <K.

2. For pairs of different questions within the English dataset, we randomly select two indices
i # j from 1 to N and compute the cosine similarity between different question ¢ and j in

English, denoted as r; = cos(h}), h’(“dj)) forl <k<K.

Under review as a conference paper at ICLR 2026

3. For pairs of different questions within the Non-English dataset, we randomly select two
indices ¢ # j from 1 to N and compute the cosine similarity between different question ¢

and j, denoted as bf’j = cos(h?d;), h’(“d;)) forl <k <K.

(a) LLaMA-3-8B-Instruct (b) Phi-3-mini-4k-instruct (c) Qwen2-7B-Instruct on (d) LLaMA-3-8B-Instruct
on GSM8K on GSM8K LogicalDeduction on LogicalDeduction

(e) LLaMA-3-8B-Instruct (f) Phi-3-mini-4k-instruct (g) Qwen2-7B-Instruct on (h) LLaMA-3-8B-Instruct
on FOLIO on FOLIO ProofWriter on ProofWriter

Figure 2: Cosine similarity between Hidden States in the Same Layer

To substantiate our hypothesis, we conduct extensive experiments across multiple models, languages,
and datasets. Specifically, we evaluate four widely used models from different model families: Llama-
3-8B-Instruct (Meta, 2024)), Phi-3-mini-4k-instruct (Abdin et al.|[2024) and Qwen2-7B-Instruct (Yang
et al.} 2024). Furthermore, we assess model behavior across five diverse languages (English, Chinese,
French, Spanish, and Hindi) and three reasoning-focused datasets: ProofWriter (Tafjord et al.|
2020), FOLIO (Han et al., [2022) and LogicalDeduction (Srivastava et al.,|2022). By systematically
analyzing model behavior across these varied conditions, we establish robust empirical evidence
for our proposed hypothesis. The results are shown in Figure 2] demonstrating a high degree of
consistency across models, languages, and datasets, indicating their robustness and broad applicability.
To mitigate the impact of experimental randomness, we randomly repeat the experiments 1000 times

and take the average of g, rf';, b¥ ; for the random i, j’s.

As shown in Figure the green line is the cosine similarity between the first kind of pairs (g;"’s for
different layer k), the red line is the cosine similarity between the second kind of pairs (rﬁ ;s for

different layer k), and the blue line is the cosine similarity between the third kind of pairs (bﬁ ;s for
different layer k).

Our analysis reveals a fundamental divergence between the similarity trends of task-relevant and
task-irrelevant pairs. The task-relevant similarity (green line) follows a clear trajectory: it rises to
form a distinct plateau throughout the middle layers and subsequently declines in the final layers.
Conversely, the task-irrelevant similarity (red and blue lines) exhibits an opposite, U-shaped pattern
of decreasing and then increasing. We note that the initial values can be variable, a phenomenon we
hypothesize is an artifact of the early hidden states’ sensitivity to tokenization differences. Our core
claim, however, is based on these starkly opposing trends, which are consistent across languages and
strongly substantiate our three-stage hypothesis.

We also investigate the internal representations of these transformer-based models by visualizing
hidden states obtained from different language versions of the same dataset, by employing three
widely used dimensionality reduction techniques: Principal component analysis (PCA) (Hotelling,
1933)), t-distributed stochastic neighboring embedding (t-SNE) (Van der Maaten & Hinton, 2008), and
uniform manifold approximation and projection (UMAP) (Mclnnes et al.l 2018)). The visualization
results are consistent with the similarity results in Figure 2} and we defer them to Appendix.

4.2 COSINE SIMILARITY BETWEEN HIDDEN STATE IN ADJACENT LAYERS

To achieve a more refined segmentation of the reasoning layers, we adopt the adjacent-layer cosine
similarity analysis similar to (Gromov et al.| (2024) and Men et al.| (2024). For each dataset in
subsection we compute the cosine similarity between every pair of successive layers. Due to

Under review as a conference paper at ICLR 2026

Adjacent Layer Hidden State Similarity Adjacent Layer idden State Similarity Adjacent Layer Hidden State Similarty

. [\ /\w,mt«««r‘f““" J(\—‘«\H_.mw“\/‘vw-’ ™

N ‘
| |

e i ndex (L L21) o [

(a) LLaMA-3-8B-Instruct on (b) Phi-3-mini-4k-instruct on FO-(c) Qwen2-7B-Instruct on Logi-
GSM8K LIO calDeduction

Figure 3: Cosine Similarity between Hidden Stated in Adjacent Layers

the residual architecture of LLMs, a very high similarity between adjacent layers indicates that the
latter layer contributes little new information and is therefore highly redundant. Consistent with
the findings of |Fan et al.[(2024), (Gromov et al.| (2024), and [Men et al.[(2024), from Figure we
observe that reasoning layers near the textualization stage exhibit similarities exceeding 95% (e.g.,
layers 23-28 in Figure [3a] and layers 24-30 in Figure [3b). We classify these high-similarity layers as
idle reasoning layers, while the remaining reasoning layers with lower adjacent-layer similarity are
designated as active reasoning layers.

4.3 SUMMARY OF EXPERIMENTS

In summary, our extensive analysis across multiple models, languages, and datasets provides com-
pelling evidence for the Three-Stage Functional Segmentation hypothesis. The observed dynam-
ics of representation similarity systematically align with our proposed functions: an initial shift
from linguistic to abstract conceptual encoding (conceptualization), followed by a stage of stable,
language-agnostic processing (reasoning), and a final reversion to linguistic formatting for output
(textualization). This pattern not only validates the functional roles of each stage but also reveals the
existence of idle reasoning layers where information processing plateaus.

Moreover, this segmentation suggests that reasoning layers are critical for logical inference, as they
process task-specific abstract concepts before mapping them to output representations. We may
improve reasoning efficiency and generalization by focusing on reasoning layers in LLM. Due to
the inherent redundancy of large language models, particularly focusing on their active reasoning
layers. In addition, this segmentation further implies that the conceptualization layers are critical
for an LLM’s language understanding, as they mediate the transformation of natural language into
abstract representations. By concentrating on these conceptualization layers, we may also be able to
enhance the language comprehension capabilities of large language models.

5 LIFT: LAYER-INFORMED FINE TUNING

Building upon the hypothesis of functional segmentation proposed in the previous section, we
introduce a fine-tuning method aimed at achieving higher efficiency and improved performance:
Layer-Informed Fine Tuning (LIFT). This method selectively fine-tuning only those layers most
relevant to a given task’s functionality. In this paper, we focus exclusively on applying LIFT to the
conceptualization layers and the reasoning layers. We denote LIFT[a, b) to represent the fine-tuning
process restricted to layers from a to b (excluding layer b).

5.1 LAYER PARTITION

To implement LIFT, it is essential to first identify the location of functional layer segmentation. We
employed a straightforward approach to delineate the layer boundaries. To determine the boundaries
between the conceptualization layers and the reasoning layers, we employ the cosine similarity
between different language versions of the same question g* (as described in Section , represented
by the green line in Figure[2] As previously mentioned in Section[4.1] the green line reflects task-
relevant information, which gradually increases within the conceptualization layers and remains
relatively stable in the reasoning layers. Therefore, the inflection point during its growth phase
can be considered a marker for the functional transition from conceptualization to reasoning. For

Under review as a conference paper at ICLR 2026

this discrete case, we apply the discrete second derivative method to identify the inflection point
(Weisstein). First, we compute the discrete second derivative of the layer-wise similarity g* by

A2gk _ gk+1 . ng + gkq'
Second, we identify the first index k* where Azgk changes sign, i.e., where A2gk*1 Azgk < 0as
the inflection point marking the transition from conceptualization to reasoning.

Next, to partition the reasoning block into active layers and idle layers, we utilize the cosine similarity
between hidden states in adjacent layers described in Section 2] A higher cosine similarity
between adjacent layers indicates greater redundancy. Therefore, we set a threshold value of
and classify consecutive layers exceeding this threshold as idle reasoning layers, and simply select
B = 0.94. This value was chosen empirically, as our observations confirmed that 5 = 0.94 effectively
distinguishes the start of the flat, high-similarity region characteristic of idle reasoning layers. During
our experiments, we observed that for certain datasets, the adjacent cosine similarity of Qwen2-
7B-Instruct did not surpass the threshold 3. In such cases, we conclude that the dataset does not
contain any idle reasoning layers. Based on these methods, we can obtain the specific functional
layer segmentation for different tasks across various models. Due to space limitations, the detailed
segmentation results are provided in the Appendix.

5.2 FINETUNING SETTING

To accelerate the finetuning process, we opted to use the popular LORA framework. LoRA efficiently
fine-tunes large models by introducing low-rank updates, thereby reducing memory usage, speeding
up training, and improving generalization with minimal parameter changes. For the LIFT method, we
apply LoRA layers exclusively to the reasoning layers of the model. In the case of fully finetuning all
transformer layers (FullFT), we add LoRA to all the transformer layers.

One important question in the LIFT method is to choose which layers to finetune. For reasoning
datasets, given their relatively simple linguistic structure but complex reasoning relationships, our
LIFT algorithm is expected to prioritize active reasoning layers for training. However, for mathematics
datasets like GSM8K, determining which layers to finetune requires more consideration. According
to Srivatsa & Kochmar| (2024)), the attributes of GSM8K mathematical problems can be primarily
divided into linguistic features and mathematical features. Their study explored the correlation
between these attributes and the accuracy of LLM responses, revealing that the top-ranked feature
in terms of importance belongs to linguistic features. This finding suggests that the major factor
influencing LLM accuracy in solving GSMS8K is linguistic complexity, hinting that enhancing the
conceptualization layers might be more impactful for improving LLMs’ ability to solve GSM8K.

To further investigate whether solving GSM8K relies more on linguistic capabilities or mathematical
reasoning, we designed the following experiment. To control for variables, our experiment is based
on the templates provided by Mirzadeh et al.|(2024), which allow us to modify only the numerical
components of GSM8K or increase linguistic complexity by adding irrelevant statements. We
conducted experiments on LLaMA-3-8B-Instruct (Meta, [2024) and Phi-3-mini-4k-instruct(Abdin
et al., 2024}, first selecting problems that each model answered correctly with over 90% accuracy
(GSM8K-easy), indicating that the LLM had fully mastered the solution. Using the templates of
these problems, we generated two distinct datasets: GSM8K-hard-number, where simple numbers
were replaced with more complex ones, and GSM8K-hard-language, where irrelevant sentences were
added to the original problems. We fine-tuned both models on the GSMS8K dataset and subsequently
evaluated them on GSM8K-hard-number and GSM8K-hard-language. This approach allows us to
determine which of the linguistic features or mathematical features is primarily enhanced by the
fine-tuning process.

Table[T]presents the performance of the fine-tuned model on GSM8K-hard-number and GSM8K-hard-
language. We observe that fine-tuning has limited effectiveness in enhancing the model’s capability on
GSMB8K-hard-number but significantly improves its performance on GSM8K-hard-language.These
findings suggest that improving language capabilities is more crucial. Therefore, we prioritize LIFT
optimization specifically for the conceptualization layers when dealing with GSM8K.

5.3 EXPERIMENTAL RESULTS

Table 2] presents the performance of the original model, full transformer layer fine-tuning by LoRA,
and LIFT by LoRA. We observe that the LIFT approach demonstrates a noticeable improvement in

Under review as a conference paper at ICLR 2026

‘ Llama-3-8B-Instruct ‘Phi—3—mini—4k—instruct

GSMS8K-hard-number \Base model FullFT \Base model FullFT

Accuracy | 75% 45% | 5275% 45.5%

GSMS8K-hard-language ‘ Base model FullFT ‘ Base model FullFT
Accuracy | 56.67% 63.33% | 7225% 1%

Table 1: Performance Comparison of GSM8K-hard-number and GSM8K-hard-language

‘ Llama-3-8B-Instruct ‘ Phi-3-mini-4k-instruct ‘ Qwen2-7B-Instruct
ProofWriter ‘ Base model FullFT LIFT[2,20) ‘ Base model FullFT LIFT[2,26) ‘ Base model FullFT LIFT([3.26)
Accuracy 45.67% 56.12% (£2.02%) 57.67% (£0.36%) | 58.33% 62.75% (£2.30%) 64.88% (+0.72%) | 48.00% 53.17% (+3.10%) 53.46% (+2.36%)
Training Time(s) 1383 1215 - 1107 1023 - 1288 1180
FOLIO ‘ Base model FullFT LIFT[2,20) ‘ Base model FullFT LIFT[2,23) ‘ Base model FullFT LIFT[3,26)
Accuracy 5539% 52.08% (£1.67%) 5821% (£2.35%) | 48.53% 62.50% (£2.42%) 64.09% (£1.09%) | 34.31% 44.98% (+0.74%) 44.73% (+1.98%)
Training Time(s) 332 290 - 249 225 - 310 284
LogicalDeduction ‘ Base model FullFT LIFT(2,22) ‘ Base model FullFT LIFT(2,24) ‘ Base model FullFT LIFT(3,24)
Accuracy 46.33% 53.25% (£1.89%) 53.58% (£2.47%) | 46.67% 61.25% (¥1.00%) 61.75% (¥2.49%) | 50.33% 53.83% (£1.23%) 57.08% (£3.29%)
Training Time(s) 516 460 - 390 357 - 477 428
GSM8K ‘ Base model FullFT LIFT[0,2) ‘ Base model FullFT LIFT[0,2) ‘ Base model FullFT LIFT[0,3)
Accuracy 49.96% 67.76% (£0.57%) 73.96% (£0.98%) | 79.23% 77.14% (+0.34%) 78.34% (+0.73%) | 78.85% 74.53% (+£0.34%) 75.34% (+0.66%)
Training Time(s) 3347 2667 - 2817 2325 - 3500 2785

Table 2: Performance and Training Time Comparison of LoRA Fine-Tuning Methods over 4 Seeds

performance compared to FullFT, while achieving an average reduction of 12.2% in time cost. This
efficiency gain stems from LIFT updating drastically fewer trainable parameters (e.g., only 10.5M
vs. 167.8M for Llama-3 on GSMS8K), which substantially reduces the memory footprint. These
experimental results indicate that by selectively fine-tuning only those layers most relevant to a given
task’s functionality, LIFT can simultaneously enhance model accuracy, reduce training time, and
lower memory requirements.

To further validate the effectiveness of our proposed LIFT algorithm, we conducted ablation experi-
ments by fine-tuning and testing layers outside of the LIFT-selected regions. The detailed results are
provided in the Appendix. From these experiments, it is evident that our LIFT algorithm significantly
outperforms the alternatives. The fine-tuning strategy, which focuses explicitly on functionally rele-
vant layers, demonstrates remarkable improvements in performance. This underscores the importance
of targeting specific functional layers in LLMs for task-specific optimization.

6 CONCLUSION AND LIMITATION

In this work, we introduced a novel hypothesis that LLMs can be functionally segmented into
three distinct layers: conceptualization, reasoning (further partitioned into active/idle subsets), and
textualization. Our experiments validated this hypothesis and demonstrated a method for approxi-
mately identifying the ranges of these segmented layers. To leverage this functional segmentation,
we proposed LIFT, a selective fine-tuning approach that optimally targets the most task-relevant
layers. LIFT not only enhances fine-tuning efficiency by reducing time costs but also improves
task-specific performance. These findings mark a significant step forward in the development of
adaptive, task-focused language models.

On the other hand, this paper examines only four relatively small-scale open-source models with
fewer layers. Although these models have a certain degree of representativeness due to belonging to
different model families, further research is required to determine whether the proposed method is
applicable to larger-scale models, models with different architectures, and even closed-source models.
Furthermore, the effectiveness of fine-tuning textualization layers was not explored in this study,
primarily due to the lack of suitable benchmarks for automatically evaluating tasks related to output
style, which we leave as a direction for future work.

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This research adheres to the ICLR Code of Ethics. Our work centers on the mechanistic interpretability
of large language models and the development of more efficient fine-tuning methodologies. The
datasets utilized in our experiments—ProofWriter, FOLIO, LogicalDeduction, and GSM8K—are
well-established, publicly available benchmarks for evaluating logical and mathematical reasoning.
These datasets do not contain any personally identifiable or sensitive information. The multilingual
datasets were generated by translating these public benchmarks, and we have made them available
for public review. The proposed LIFT method aims to improve computational efficiency, which can
contribute positively by reducing the resources required for model adaptation. We do not foresee any
direct negative societal impacts or ethical concerns arising from our study.

REPRODUCIBILITY STATEMENT

We have made every effort to ensure the reproducibility of our research. All models used in this
study (Llama-3-8B-Instruct, Phi-3-mini-4k-instruct, Qwen2-7B-Instruct) are publicly available, as
described in Section 3.1. The datasets are standard benchmarks, detailed in Section 3.2, with further
examples provided in Appendix B. Our multilingual datasets and the code used for our cosine
similarity analysis are available in the supplementary materials, as noted in Appendix B.2. The
methodology for identifying functional layer boundaries is detailed in Section 5.1 and Appendix E.
Furthermore, Appendix F provides a comprehensive description of our experimental environment,
including hardware specifications, software versions (PyTorch, CUDA), and the complete set of
hyperparameters used for LORA fine-tuning. The supplementary materials also contain the necessary
code to replicate our main experiments and generate the figures presented in the paper.

REFERENCES

Marah Abdin, Jyoti Aneja, Hany Awadalla, Ahmed Awadallah, Ammar Ahmad Awan, Nguyen Bach,
Amit Bahree, Arash Bakhtiari, Jianmin Bao, Harkirat Behl, et al. Phi-3 technical report: A highly
capable language model locally on your phone. arXiv preprint arXiv:2404.14219, 2024.

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Badr AlKhamissi, Greta Tuckute, Antoine Bosselut, and Martin Schrimpf. The llm language
network: A neuroscientific approach for identifying causally task-relevant units. arXiv preprint
arXiv:2411.02280, 2024.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge,
Yu Han, Fei Huang, et al. Qwen technical report. arXiv preprint arXiv:2309.16609, 2023.

Emily Cheng, Diego Doimo, Corentin Kervadec, Turi Macocco, Jade Yu, Alessandro Laio, and Marco
Baroni. Emergence of a high-dimensional abstraction phase in language transformers. arXiv
preprint arXiv:2405.15471, 2024.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. arXiv preprint arXiv:2110.14168,
2021.

Siqi Fan, Xin Jiang, Xiang Li, Xuying Meng, Peng Han, Shuo Shang, Aixin Sun, Yequan Wang,
and Zhongyuan Wang. Not all layers of llms are necessary during inference. arXiv preprint
arXiv:2403.02181, 2024.

Andrey Gromov, Kushal Tirumala, Hassan Shapourian, Paolo Glorioso, and Daniel A Roberts. The
unreasonable ineffectiveness of the deeper layers. arXiv preprint arXiv:2403.17887, 2024.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang, Guanting Chen, Xiao Bi,
Yu Wu, YK Li, et al. Deepseek-coder: When the large language model meets programming—the
rise of code intelligence. arXiv preprint arXiv:2401.14196, 2024.

10

Under review as a conference paper at ICLR 2026

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Simeng Han, Hailey Schoelkopf, Yilun Zhao, Zhenting Qi, Martin Riddell, Wenfei Zhou, James
Coady, David Peng, Yujie Qiao, Luke Benson, et al. Folio: Natural language reasoning with
first-order logic. arXiv preprint arXiv:2209.00840, 2022.

John Hewitt and Christopher D Manning. A structural probe for finding syntax in word representations.
In Proceedings of the 2019 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers),
pp. 4129-4138, 2019.

Harold Hotelling. Analysis of a complex of statistical variables into principal components. Journal
of educational psychology, 24(6):417, 1933.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe,
Andrea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for
nlp. In International conference on machine learning, pp. 2790-2799. PMLR, 2019.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021.

Mingyu Jin, Qinkai Yu, Jingyuan Huang, Qingcheng Zeng, Zhenting Wang, Wenyue Hua, Haiyan
Zhao, Kai Mei, Yanda Meng, Kaize Ding, et al. Exploring concept depth: How large language
models acquire knowledge at different layers? arXiv preprint arXiv:2404.07066, 2024.

Rabeeh Karimi Mahabadi, James Henderson, and Sebastian Ruder. Compacter: Efficient low-rank
hypercomplex adapter layers. Advances in Neural Information Processing Systems, 34:1022-1035,
2021.

Vedang Lad, Jin Hwa Lee, Wes Gurnee, and Max Tegmark. The remarkable robustness of llms:
Stages of inference? arXiv preprint arXiv:2406.19384, 2024.

Lei Li, Yongfeng Zhang, and Li Chen. Prompt distillation for efficient llm-based recommenda-
tion. In Proceedings of the 32nd ACM International Conference on Information and Knowledge
Management, pp. 1348-1357, 2023.

Shen Li, Liuyi Yao, Lan Zhang, and Yaliang Li. Safety layers in aligned large language models: The
key to llm security. arXiv preprint arXiv:2408.17003, 2024.

LlamaWebsite. Introducing Llama 3.2, 2024. URL https://www.llama.com/. Accessed:
14-Oct-2024.

Leland Mclnnes, John Healy, and James Melville. Umap: Uniform manifold approximation and
projection for dimension reduction. arXiv preprint arXiv:1802.03426, 2018.

Xin Men, Mingyu Xu, Qingyu Zhang, Bingning Wang, Hongyu Lin, Yaojie Lu, Xianpei Han, and
Weipeng Chen. Shortgpt: Layers in large language models are more redundant than you expect.
arXiv preprint arXiv:2403.03853, 2024.

Al Meta. Introducing meta llama 3: The most capable openly available Ilm to date. Meta Al, 2024.

Iman Mirzadeh, Keivan Alizadeh, Hooman Shahrokhi, Oncel Tuzel, Samy Bengio, and Mehrdad
Farajtabar. Gsm-symbolic: Understanding the limitations of mathematical reasoning in large
language models, 2024. URL https://arxiv.org/abs/2410.05229,

Nostalgebraist. Interpreting gpt: The logit lens. LessWrong, 2020.
URL https://www.lesswrong.com/posts/AcKRB3wDpdaN6voru/
interpreting—-gpt-the-logit-1lensl. Accessed: 2025-02-12.

OpenAl. Learning to reason with LLMs, 2024. URL https://openai.com/index/
learning-to-reason-with—11ms/. Accessed: 2024-10-14.

11

https://www.llama.com/
https://arxiv.org/abs/2410.05229
https://www.lesswrong.com/posts/AcKRB8wDpdaN6v6ru/interpreting-gpt-the-logit-lens
https://www.lesswrong.com/posts/AcKRB8wDpdaN6v6ru/interpreting-gpt-the-logit-lens
https://openai.com/index/learning-to-reason-with-llms/
https://openai.com/index/learning-to-reason-with-llms/

Under review as a conference paper at ICLR 2026

Liangming Pan, Alon Albalak, Xinyi Wang, and William Yang Wang. Logic-lm: Empowering
large language models with symbolic solvers for faithful logical reasoning. arXiv preprint
arXiv:2305.12295, 2023.

Jonas Pfeiffer, Aishwarya Kamath, Andreas Riicklé, Kyunghyun Cho, and Iryna Gurevych. Adapter-
fusion: Non-destructive task composition for transfer learning. arXiv preprint arXiv:2005.00247,
2020.

Oscar Skean, Md Rifat Arefin, Dan Zhao, Niket Patel, Jalal Naghiyev, Yann LeCun, and Ravid
Shwartz-Ziv. Layer by layer: Uncovering hidden representations in language models. arXiv
preprint arXiv:2502.02013, 2025.

Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao, Abu Awal Md Shoeb, Abubakar Abid, Adam
Fisch, Adam R Brown, Adam Santoro, Aditya Gupta, Adria Garriga-Alonso, et al. Beyond the
imitation game: Quantifying and extrapolating the capabilities of language models. arXiv preprint
arXiv:2206.04615, 2022.

KV Srivatsa and Ekaterina Kochmar. What makes math word problems challenging for llms? arXiv
preprint arXiv:2403.11369, 2024.

Qi Sun, Marc Pickett, Aakash Kumar Nain, and Llion Jones. Transformer layers as painters. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 39, pp. 25219-25227, 2025.

Oyvind Tafjord, Bhavana Dalvi Mishra, and Peter Clark. Proofwriter: Generating implications,
proofs, and abductive statements over natural language. arXiv preprint arXiv:2012.13048, 2020.

William Timkey and Marten Van Schijndel. All bark and no bite: Rogue dimensions in transformer
language models obscure representational quality. arXiv preprint arXiv:2109.04404, 2021.

Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine
learning research, 9(11), 2008.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Fukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani Yogatama,
Maarten Bosma, Denny Zhou, Donald Metzler, et al. Emergent abilities of large language models.
arXiv preprint arXiv:2206.07682, 2022.

Eric W. Weisstein. Inflection point. https://mathworld.wolfram.com/
InflectionPoint.htmll A Wolfram Web Resource. Accessed: 2025-09-23.

Chris Wendler, Veniamin Veselovsky, Giovanni Monea, and Robert West. Do llamas work in english?
on the latent language of multilingual transformers. arXiv preprint arXiv:2402.10588, 2024.

Zhaofeng Wu, Xinyan Velocity Yu, Dani Yogatama, Jiasen Lu, and Yoon Kim. The semantic hub
hypothesis: Language models share semantic representations across languages and modalities.
arXiv preprint arXiv:2411.04986, 2024.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li,
Chengyuan Li, Dayiheng Liu, Fei Huang, Guanting Dong, Haoran Wei, Huan Lin, Jialong Tang,
Jialin Wang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Ma, Jin Xu, Jingren Zhou, Jinze Bai,
Jinzheng He, Junyang Lin, Kai Dang, Keming Lu, Keqin Chen, Kexin Yang, Mei Li, Mingfeng
Xue, Na Ni, Pei Zhang, Peng Wang, Ru Peng, Rui Men, Ruize Gao, Runji Lin, Shijie Wang, Shuai
Bai, Sinan Tan, Tianhang Zhu, Tianhao Li, Tianyu Liu, Wenbin Ge, Xiaodong Deng, Xiaohuan
Zhou, Xingzhang Ren, Xinyu Zhang, Xipin Wei, Xuancheng Ren, Yang Fan, Yang Yao, Yichang
Zhang, Yu Wan, Yunfei Chu, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zhihao Fan. Qwen2
technical report. arXiv preprint arXiv:2407.10671, 2024.

Qingru Zhang, Minshuo Chen, Alexander Bukharin, Pengcheng He, Yu Cheng, Weizhu Chen, and Tuo
Zhao. Adaptive budget allocation for parameter-efficient fine-tuning. In The Eleventh International
Conference on Learning Representations, 2023. URL https://openreview.net/forum?
id=1g62uWRJJiY.

12

https://mathworld.wolfram.com/InflectionPoint.html
https://mathworld.wolfram.com/InflectionPoint.html
https://openreview.net/forum?id=lq62uWRJjiY
https://openreview.net/forum?id=lq62uWRJjiY

Under review as a conference paper at ICLR 2026

Yiran Zhao, Wenxuan Zhang, Guizhen Chen, Kenji Kawaguchi, and Lidong Bing. How do large
language models handle multilingualism? Advances in Neural Information Processing Systems,

37:15296-15319, 2024.

Chengzhi Zhong, Fei Cheng, Qianying Liu, Junfeng Jiang, Zhen Wan, Chenhui Chu, Yugo Murawaki,
and Sadao Kurohashi. Beyond english-centric llms: What language do multilingual language

models think in? arXiv preprint arXiv:2408.10811, 2024.

13

Under review as a conference paper at ICLR 2026

A LLM STRUCTURE

Model ‘ Layers ‘ Model ‘ Layers

Llama-3-8B-Instruct 32 Qwen2-7B-Instruct 28
Phi-3-mini-4k-instruct 32

Table 3: Number of layers in each LLM

B DATASETS

B.1 EXAMPLES OF EACH DATASET

B.1.1 PROOFWRITER

"instruction": "The cow is blue. The cow is round. The cow likes the
lion. The cow visits the tiger. The lion is cold. The lion is nice
The lion likes the squirrel. The squirrel is round. The squirrel
sees the lion. The squirrel visits the cow. The tiger likes the
cow. The tiger likes the sgquirrel. If something is cold then it
visits the tiger. If something visits the tiger then it is nice.
If something sees the tiger and it is young then it is blue. If
something is nice then it sees the tiger. If something likes the
squirrel and it likes the cow then it wvisits the tiger. If
something is nice and it sees the tiger then it is young. If the
cow is cold and the cow visits the lion then the lion sees the
squirrel.Based on the above information, is the following
statement true, false, or unknown? The tiger is not young.options:
["A) True’, ’'B) False’, ’'C) Unknown’]",

n” input " : nmn ,
" Output ” : IIB"
B.1.2 FOLIO
"instruction": "All people who regularly drink coffee are dependent on

caffeine. People either regularly drink coffee or joke about
being addicted to caffeine. No one who jokes about being addicted
to caffeine is unaware that caffeine is a drug. Rina is either a
student and unaware that caffeine is a drug, or neither a student
nor unaware that caffeine is a drug. If Rina is not a person
dependent on caffeine and a student, then Rina is either a person
dependent on caffeine and a student, or neither a person dependent

on caffeine nor a student.Based on the above information, is the
following statement true, false, or uncertain? Rina is a person
who jokes about being addicted to caffeine or unaware that

caffeine is a drug.options: [’A) True’, ’'B) False’, ’C) Uncertain
14 J n
4
" input " : nn ,
n” Output ” : "A"

B.1.3 LOGICALDEDUCTION

T

14

Under review as a conference paper at ICLR 2026

"instruction": "The following paragraphs each describe a set of five
objects arranged in a fixed order. The statements are logically
consistent within each paragraph.On a branch, there are five birds

a quail, an owl, a raven, a falcon, and a robin. The owl is the
leftmost. The robin is to the left of the raven. The quail is the
rightmost. The raven is the third from the left.Which of the
following is true?options: [’A) The quail is the rightmost.’, ’'B)
The owl is the rightmost.’, ’C) The raven is the rightmost.’, ’D)
The falcon is the rightmost.’, 'E) The robin is the rightmost.’]",

"inputll .o ",

"output" LY

B.1

4 GSMS8K

"instruction": "Natalia sold clips to 48 of her friends in April, and
then she sold half as many clips in May. How many clips did
Natalia sell altogether in April and May?",

"input n . n ",

"output": "Natalia sold 48/2 = <<48/2=24>>24 clips in May.\nNatalia
sold 48+24 = <<48+24=72>>72 clips altogether in April and May.\n
#H## 72"

B.1

.5 GSMS8K-EASY

"input": "When Sophie watches her nephew, she gets out a variety of
toys for him. The bag of building blocks has 18 blocks in it. The
bin of stuffed animals has 25 stuffed animals inside. The tower of

stacking rings has 3 multicolored rings on it. Sophie recently
bought a tube of bouncy balls, bringing her total number of toys
for her nephew up to 88. How many bouncy balls came in the tube?",

"output": "Let T be the number of bouncy balls in the tube.\nAfter
buying the tube of balls, Sophie has 18.0 + 25.0 + 3.0 + T = 46 +
T = 88.0 toys for her nephew.\nThus, T = 88.0 - 46 =
<<88.0-46=42.0>>42.0 bouncy balls came in the tube.\n#### 42.0",

B.

—_—

.6 GSM8K-HARD-NUMBER

"input": "When Sophie watches her nephew, she gets out a variety of

toys for him. The bag of building blocks has 181 blocks in it. The
bin of stuffed animals has 193 stuffed animals inside. The tower
of stacking rings has 279 multicolored rings on it. Sophie
recently bought a tube of bouncy balls, bringing her total number
of toys for her nephew up to 986. How many bouncy balls came in
the tube?",

"output": "Let T be the number of bouncy balls in the tube.\nAfter
buying the tube of balls, Sophie has 181.0 + 193.0 + 279.0 + T =
653 + T = 986.0 toys for her nephew.\nThus, T = 986.0 — 653 =
<<986.0-653=333.0>>333.0 bouncy balls came in the tube.\n####
333.0",

B.1

.7 GSMS8K-HARD-LANGUAGE

"input": When Sophie watches her nephew, she gets out a variety of
toys for him, ensuring he has plenty of options to choose from.
The bag of building blocks has 18 blocks in it, although some are
slightly worn from previous play sessions. The bin of stuffed
animals has 25 stuffed animals inside, each representing different

characters from his favorite storybook. The tower of stacking

15

Under review as a conference paper at ICLR 2026

rings has 3 multicolored rings on it, which he enjoys stacking in
specific color patterns. Sophie recently bought a tube of bouncy
balls, adding even more excitement to playtime, bringing her total
number of toys for her nephew up to 88. It is worth noting that
she also considered purchasing a set of miniature cars, which were
on sale, but decided against it due to limited space. How many
bouncy balls came in the tube?

"output": Let T be the number of bouncy balls in the tube.\nAfter
buying the tube of balls, Sophie has 18.0 + 25.0 + 3.0 + T = 46 +
T = 88.0 toys for her nephew.\nThus, T = 88.0 - 46 =
<<88.0-46=42.0>>42.0 bouncy balls came in the tube.\n#### 42.0

B.2 MULTILINGUAL DATASET AND AVAILABILITY

To facilitate our multilingual analysis, the original English datasets were translated using the GPT-4
language model. This process generated versions of the datasets in four additional languages: Chinese,
French, Spanish, and Hindi. All translated data used in this study is publicly available for review in
the supplementary material, located at the following path: Codes/Cosine Similarity/

C DETAILS OF COSINE SIMILARITIES OF HIDDEN STATES

To make the Cosine Similarity more pronounced, we adjusted the order of the questions in the dataset,
presenting the options first followed by the question statement. We present here the complete set of
cosine similarities of hidden states from Section 4.

(d) Chinese-
(a) Chinese - Proof Writer ~ (b) Chinese - FOLIO (c) Chinese GSM8K LogicalDeduction

i st

(h) French - LogicalDeduc-
(e) French - Proof Writer (f) French - FOLIO (g) French GSM8K tion

\

(1) Spanish - LogicalDe-
(i) Spanish - ProofWriter (j) Spanish - FOLIO (k) Spanish GSM8K duction

(p) Hindi - LogicalDeduc-
(m) Hindi - ProofWriter (n) Hindi - FOLIO (o) Hindi GSM8K tion

Figure 4: Performance of Llama-3-8B-Instruct across languages and datasets.

16

Under review as a conference paper at ICLR 2026

Layer-wise Average Cosine Similarity

Layer-wise Average Cosine Similarity

@ Chinese-
(b) Chinese - FOLIO (c) Chinese GSM8K LogicalDeduction

Cosine Similarity

Similarity

‘ (h) French - LogicalDeduc-
(e) French - Proof Writer (f) French - FOLIO (g) French GSM8K tion

Layer-wise Averd

Layer-wise Average Cosine Simiarity Layer-wise Average Cosine Similarty

" (1) Spanish - LogicalDe-
(i) Spanish - ProofWriter (j) Spanish - FOLIO (k) Spanish GSM8K duction

Layer-wise Average Cosine Similarity jr-vise Average Cosine Similarity

os \\

T e T
. \

" (p) Hindi - LogicalDeduc-
(m) Hindi - Proof Writer (n) Hindi - FOLIO (o) Hindi GSM8K tion

Figure 5: Performance of microsoft_Phi-3-mini-4k-instruct across languages and datasets.

Layer-wise Average Cosine Similarty

(d) Chinese-
(a) Chinese - Proof Writer ~ (b) Chinese - FOLIO (c) Chinese GSM8K LogicalDeduction

Layer-wise Average Cosine Similarity

Cosine sty

(h) French - LogicalDeduc-
(e) French - Proof Writer (f) French - FOLIO (g) French GSM8K tion

Layer-wise Average Cosine Simiarity Layer.wise Average Cosine Similarity

S Sy

-

Cosine Simtary
Cosine simtarty

" (1) Spanish - LogicalDe-
(1) Spanish - ProofWriter (§) Spanish - FOLIO (k) Spanish GSM8K duction

Layer-wise Average Cosine Similarty

o] TN

Layer-wise Average Cosine Simiarity Layerise Average Cosine Similarty Layerwise Average Cosine Similarity —

T T :
W g W g
. T MEAVAZS o SRR

TN

(p) Hindi - LogicalDeduc-
(m) Hindi - Proof Writer (n) Hindi - FOLIO (o) Hindi GSM8K tion

Figure 6: Performance of Qwen2-7B-Instruct across languages and datasets.

17

Under review as a conference paper at ICLR 2026

D DETAILS OF COSINE SIMILARITY BETWEEN HIDDEN STATED IN ADJACENT
LAYERS

In this section, we present the full details of the cosine similarity between hidden states in adjacent

layers. We conduct experiments on three LLMs in subsection [3.1] across four datasets in subsection
[3:2] which directly facilitate the identification of idle reasoning layers.

(a) ProofWriter (b) FOLIO (c) LogicalDeduction (d) GSM8K

Figure 7: Cosine Similarity between Hidden Stated in Adjacent Layers of Llama-3-8B-Instruct

(a) ProofWriter (b) FOLIO (c) LogicalDeduction (d) GSMSK

Figure 8: Cosine Similarity between Hidden Stated in Adjacent Layers of Phi-3-mini-4k-instruct

(a) ProofWriter (b) FOLIO (c) LogicalDeduction (d) GSMSK

Figure 9: Cosine Similarity between Hidden Stated in Adjacent Layers of Qwen2-7B-Instruct

18

Under review as a conference paper at ICLR 2026

E RESULTS OF THE METHOD FOR FUNCTIONAL LAYER SEGMENTATION

In this Section, we provide a detailed explanation of the method used to approximate a reasonable
location in Section [5} and introduce the values we ultimately selected for the functional layer
segmentation.

Our method identifies the boundary between conceptualization and reasoning layers by finding the
first significant inflection point in the cross-lingual task similarity curve (g*). We locate this by
calculating the discrete second derivative, A%2g* = gF¥t1 — 2¢* + ¢*~1, and identifying the first layer
k* where the sign of A%2g* changes. To determine the boundary of idle reasoning layers, we simply
select layers where the adjacent cosine similarity exceeds a predefined threshold .

For instance, for the Llama-3-8B-Instruct model on the Proof Writer dataset (comparing Chinese and
English versions), the layer-wise mean cosine similarities (gk) are: [0.582, 0.640, 0.745,0.772, 0.768,
0.780, 0.781, 0.797, 0.795, 0.812, 0.815, 0.824, 0.851, 0.841, 0.826, 0.826, 0.821, 0.811, 0.811,
0.799, 0.788, 0.793, 0.804, 0.813, 0.799, 0.748, 0.715, 0.677, 0.676, 0.629, 0.515, 0.357]

Calculating the discrete second derivative for this sequence, the first few values are:

o A2g1 = g% —2¢' + ¢° &~ 0.745 — 2(0.640) + 0.582 = +0.047
o A%g2 = g3 —2¢% + g' = 0.772 — 2(0.745) + 0.640 = —0.078

The first sign change occurs at k* = 2, which we identify as the boundary. We have performed this
analysis across all our experimental settings and found this result to be remarkably consistent for this
model. For the vast majority of tasks and languages, the first inflection point for Llama-3 is identified
at layer 2. Based on this robust finding, we select layer 2 as the conceptualization-reasoning boundary
for this model. In contrast, the boundary between active and idle reasoning layers is task-dependent;
generally, more challenging tasks require a larger number of active reasoning layers. The specific
segmentation results are summarized in the table below.

During the experiments, we observed that for certain datasets, the adjacent cosine similarity of
Qwen2-7B-Instruct failed to exceed the threshold /3. In such cases, we conclude that the task does
not contain idle reasoning layers.

Llama-3-8B-Instruct

Datasets conceptualization layers | active reasoning layers | idle reasoning layers | textualization layers
ProofWriter [0,2) [2,20) [20,30) [30,32)
FOLIO [0,2) [2,20) [20,30) [30,32)
LogicalDeduction [0,2) [2,22) [22,30) [30,32)
GSMSK [0,2) [2,22) [22,30) [30,32)

Table 4: Functional Layer Segmentation of Llama-3-8B-Instruct
Phi-3-mini-4k-instruct

Datasets conceptualization layers | active reasoning layers | idle reasoning layers | textualization layers
ProofWriter [0,2) [2,26) [26,31) [31,32)
FOLIO [0,2) [2,23) [23,31) [31,32)
LogicalDeduction [0,2) [2,24) [24,31) [31,32)
GSMSK [0,2) [2,28) [28,31) [31,32)

Table 5: Functional Layer Segmentation of Phi-3-mini-4k-instruct
Qwen?2-7B-Instruct

Datasets conceptualization layers | active reasoning layers | idle reasoning layers | textualization layers
ProofWriter [0,3) [3,26) - [26,28)
FOLIO [0,3) [3,26) - [26,28)
LogicalDeduction [0,3) [3,24) [24,26) [26,28)
GSMSK [0,3) [3,26) - [26,28)

Table 6: Functional Layer Segmentation of Qwen2-7B-Instruct

19

Under review as a conference paper at ICLR 2026

F EXPERIMENTAL DETAILS

F.0.1 TESTING METHOD

We test the finetuned models on their corresponding datasets. Since the reasoning datasets are
multiple-choice questions, we can directly check whether the answers are correct.

For mathematical problems, we extract and compare the numerical answers. If an answer is not
detected, we consider it incorrect by default.

In addition to evaluating the fine-tuning performance of LIFT and full Transformer layers, we also
recorded the training time required for these fine-tuning tasks as another metric.

F.1 EXPERIMENTAL ENVIRONMENT

Our experiments were conducted on a server equipped with four NVIDIA A40 GPUs, each with 46
GB of memory. All training and evaluation tasks were performed on a single A40 GPU. The server is
powered by an AMD EPYC 9654 96-Core Processor with 755 GiB of RAM and 16 TB of storage.

We used Ubuntu 20.04.6 LTS as the operating system, with Python 3.10.14 as the main program-
ming environment. All deep learning experiments were implemented using PyTorch 2.5.1+cul24,
leveraging CUDA for GPU acceleration.

F.2 SOFTWARE AND LIBRARIES
* CUDA Version: 12.5
* Driver Version: 555.58.02
* Deep Learning Framework: PyTorch 2.5.1 with CUDA 12.4 support
* Python Version: 3.10.14
¢ Operating System: Ubuntu 20.04.6 LTS

F.3 TRAINING CONFIGURATION
We fine-tuned these models using the following hyperparameters:

* Learning Rate: le-5

* LoRA Rank: 64

* LoRA Alpha: 128

* LoRA Dropout: 0.05

* Batch Size per Device: 4

* Gradient Accumulation Steps: 8
* Max Sequence Length: 512

* Random Seeds: 0, 1, 2, 3

* Warmup Ratio: 0.03

F.4 EXECUTION STRATEGY

All training and evaluation were executed on a single A40 GPU to maintain consistency. Multi-GPU
capabilities were available but not utilized for this experiment. Distributed strategies like FSDP or
DeepSpeed were not applied in this setup.

G RESULTS OF ABLATION EXPERIMENTS

In this section, we present the results of our ablation experiments. Tables[7] [and [9]report the perfor-
mance of fine-tuning various functional regions of different large language models (LLMs), including

20

Under review as a conference paper at ICLR 2026

the conceptualization layers, active reasoning layers, idle reasoning layers, and textualization layers.
As discussed in Section 5, for the ProofWriter, FOLIO, and LogicalDeduction datasets, our LIFT
algorithm fine-tunes the active reasoning layers. In contrast, for the GSM8K dataset, LIFT targets the
conceptualization layers.

From these experiments, it is evident that our LIFT algorithm significantly outperforms competing
approaches in most cases. The fine-tuning strategy, which focuses explicitly on functionally relevant
layers, yields substantial improvements in task performance. These results highlight the critical role
of selectively targeting specific functional layers within LLMs for effective task-specific optimization.

Llama-3-8B-Instruct
Datasets conceptualization layers | active reasoning layers | idle reasoning layers | textualization layers
ProofWriter 37.25% (+1.04%) 57.67% (+0.36%) 48.08% (+0.75%) 46.38% (+0.89%)
FOLIO 53.43% (+1.65%) 58.21% (+2.35%) 56.74% (+1.29%) 55.51% (£2.31%)
LogicalDeduction 45.67% (+0.72%) 53.58% (+2.47%) 46.83% (*1.67%) 45.25% (+0.88%)
GSMSK 73.96% (+0.98%) 67.87% (+0.64%) 65.22% (+0.53%) 56.48% (+0.58%)

Table 7: Performance of Fine-Tuning over Various Layer Ranges of Llama-3-8B-Instruct

Phi-3-mini-4k-instruct
Datasets conceptualization layers | active reasoning layers | idle reasoning layers | textualization layers
ProofWriter 62.42% (+0.67%) 64.88% (+0.72%) 53.42% (*1.50%) 56.00% (+2.44%)
FOLIO 61.40% (+1.46%) 64.09% (+1.09%) 51.96% (x1.79%) 52.08% (+1.81%)
LogicalDeduction 57.75% (+0.83%) 61.75% (+2.49%) 52.00% (+0.82%) 45.08% (+1.23%)
GSMSK 78.34% (+0.73%) 76.82% (+0.25%) 76.69% (+0.28%) 79.57% (+0.41%)

Table 8: Performance of Fine-Tuning over Various Layer Ranges of Phi-3-mini-4k-instruct

Qwen?2-7B-Instruct
Datasets conceptualization layers | active reasoning layers | idle reasoning layers | textualization layers
ProofWriter 45.50% (+£0.93%) 53.46% (+2.36%) - 47.46% (+0.85%)
FOLIO 27.08% (+4.19%) 44.73% (£1.98%) - 28.55% (+1.62%)
LogicalDeduction 48.08% (+0.83%) 57.08% (+3.29%) 49.00% (+0.47%) 52.58% (+2.15%)
GSMSK 75.34% (+0.66%) 75.78% (+0.24%) - 72.29% (x0.72%)

Table 9: Performance of Fine-Tuning over Various Layer Ranges of Qwen2-7B-Instruct

H RESULTS OF VISUALIZATION OF HIDDEN STATES

In this section, we examine the internal representations of transformer-based models by visualizing
the hidden states derived from different language versions of the same dataset. To facilitate this
analysis, we employ three widely used dimensionality reduction techniques: Principal Component
Analysis (PCA) (Hotelling, |1933)), t-distributed Stochastic Neighbor Embedding (t-SNE) (Van der
Maaten & Hinton, 2008)), and Uniform Manifold Approximation and Projection (UMAP) (McInnes
et al., [2018). For a controlled comparison, we utilize a single dataset with multiple languages,
ensuring that the semantic content remains consistent across all versions. The model processes these
multilingual inputs and generates corresponding hidden state vectors.

The visualizations produced by PCA, t-SNE, and UMAP (shown in the following figure) provide a
robust basis for analyzing the hidden state representations across different languages. Our results
reveal a consistent pattern in the evolution of hidden states across the layers of the language model.
Specifically, in the input-adjacent and output-adjacent layers, internal representations tend to form
clusters based on language. In contrast, in the intermediate layers, hidden states from different
languages become increasingly intermixed, exhibiting a clear phenomenon of language blending.
This suggests that while early and late layers are more language-specific, intermediate layers abstract
away from surface linguistic forms and encode more universal semantic representations.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

T-SNE, Layer 1

T-SNE, Layer 6

T-SNE, Layer 11

T-SNE, Layer 16

T-SNE, Layer 2

T-SNE, Layer 7

T-SNE, Layer 12

T-SNE, Layer 17

T-SNE, Layer 3

T-SNE, Layer 8

T-SNE, Layer 13

T-SNE, Layer 18

R LB
¢ Yy

T-SNE, Layer 31

T-SNE, Layer 27

T-SNE, Layer 28

|
ﬁ

T-SNE, Layer 4

T-SNE, Layer 9

T-SNE, Layer 14

T-SNE, Layer 19

T-SNE, Layer 5

T-SNE, Layer 10

T-SNE, Layer 15

T-SNE, Layer 20

T-SNE, Layer 29

T-SNE, Layer 32

Figure 10: T-SNE visualizations for layers 1-32 of Llama-3-8B-Instruct on the GSM8K dataset.

22

Under review as a conference paper at ICLR 2026

T-SNE, Layer 1

T-SNE, Layer 6

T-SNE, Layer 11

T-SNE, Layer 16

T-SNE, Layer 21

T-SNE, Layer 26

T-SNE, Layer 31

T-SNE, Layer 2

T-SNE, Layer 7

T-SNE, Layer 12

T-SNE, Layer 17

T-SNE, Layer 22

T-SNE, Layer 27

T-SNE, Layer 3

T-SNE, Layer 8

T-SNE, Layer 13

T-SNE, Layer 18

T-SNE, Layer 23

T-SNE, Layer 28

T-SNE, Layer 4

T-SNE, Layer 9

T-SNE, Layer 14

T-SNE, Layer 19

T-SNE, Layer 24

T-SNE, Layer 29

T-SNE, Layer 5

T-SNE, Layer 10

T-SNE, Layer 15

T-SNE, Layer 20

T-SNE, Layer 25

T-SNE, Layer 30

T-SNE, Layer 32

Figure 11: T-SNE visualizations for layers 1-32 of Llama-3-8B-Instruct on the FOLIO dataset.

23

Under review as a conference paper at ICLR 2026

T-SNE, Layer 1

X
L »
z QS” bd? ‘4:';;
TR EY ey e
. i"' 3

>3

Cad

T-SNE, Layer 6

T-SNE, Layer 11

T-SNE, Layer 16

T-SNE, Layer 21

T-SNE, Layer 31

T-SNE, Layer 2

T-SNE, Layer 7

T-SNE, Layer 12

T-SNE, Layer 17

T-SNE, Layer 22

T-SNE, Layer 27

T-SNE, Layer 3 T-SNE, Layer 4

T-SNE, Layer 8 T-SNE, Layer 9

T-SNE, Layer 13 T-SNE, Layer 14
T-SNE, Layer 18 T-SNE, Layer 19

T-SNE, Layer 23

T-SNE, Layer 28

T-SNE, Layer 24

T-SNE, Layer 29

T-SNE, Layer 5

T-SNE, Layer 10

T-SNE, Layer 15

T-SNE, Layer 20

T-SNE, Layer 32

Figure 12: T-SNE visualizations for layers 1-32 of Llama-3-8B-Instruct on the LogicalDeduction

dataset.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

T-SNE, Layer 2

IiE p!h-- -2 =
el | ..-#,f

: Q ki hpol ‘é. o~
. “ge

T-SNE, Layer 6 T-SNE, Layer 7

T-SNE, Layer 11

T-SNE, Layer 16

T-SNE, Layer 12

T-SNE, Layer 17

e iE . iE & =
Lara® Toa - ,.h"‘ o
fpe2s waty PR

B SR NFINE Y By . 1E
T-SNE, Layer 3 T-SNE, Layer 4 T-SNE, Layer 5
T-SNE, Layer 8 T-SNE, Layer 9 T-SNE, Layer 10

T-SNE, Layer 13

et

T-SNE, Layer 18

Yy
Hif

[B R
o Al B Y 3 L8
h mm- sk SSE
T-SNE, Layer 21 T-SNE, Layer 22 T-SNE, Layer 23
- | Ry "‘ -
- ." ’W Je ""
e e, E=ai jnsm
T-SNE, Layer 26 T-SNE, Layer 27 T-SNE, Layer 28
e .‘.. B
E % [] . 01
E A
oo ¥
T-SNE, Layer 31

T-SNE, Layer 14

T-SNE, Layer 15

el e
el e, L "#_ 4
L e 3
T-SNE, Layer 19 T-SNE, Layer 20
gl APl | - ’.3
B e I e
i < ‘. A
*3 BT
T-SNE, Layer 24 T-SNE, Layer 25
A 83,
B n“,‘*- E ':..' so-
e "d
T-SNE, Layer 29 T-SNE, Layer 30
* =
e =
ARSI
Teem
h A0
T-SNE, Layer 32

Figure 13: T-SNE visualizations for layers 1-32 of Llama-3-8B-Instruct on the Proof Writer dataset.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

e RRRE-~

I I ;\
¢ _ ¥ %N
PCA, Layer 1 PCA, Layer 2 PCA, Layer 3
PCA, Layer 6 PCA, Layer 7 PCA, Layer 8

PCA, Layer 11 PCA, Layer 12 PCA, Layer 13

PCA, Layer 16 PCA, Layer 17 PCA, Layer 18

PCA, Layer 27

PCA, Layer 28

PCA, Layer 31

PCA, Layer 4

PCA, Layer 5

PCA, Layer 9 PCA, Layer 10

PCA, Layer 14

PCA, Layer 15

PCA, Layer 19 PCA, Layer 20

PCA, Layer 29

PCA, Layer 32

Figure 14: PCA visualizations for layers 1-32 of Llama-3-8B-Instruct on the GSMS8K dataset.

26

Under review as a conference paper at ICLR 2026

L= . ‘N PN
o e i
e =
PCA, Layer 1 PCA, Layer 2
PCA, Layer 6 PCA, Layer 7

PCA, Layer 11

PCA, Layer 16

PCA, Layer 21

PCA, Layer 12

PCA, Layer 17

PCA, Layer 22

PCA, Layer 3

PCA, Layer 8

PCA, Layer 13

PCA, Layer 18

PCA, Layer 23

PCA, Layer 4

PCA, Layer 9

PCA, Layer 14

PCA, Layer 19

PCA, Layer 24

PCA, Layer 5

PCA, Layer 10

PCA, Layer 15

PCA, Layer 20

PCA, Layer 26

PCA, Layer 31

PCA, Layer 27

PCA, Layer 28

PCA, Layer 29

PCA, Layer 32

Figure 15: PCA visualizations for layers 1-32 of Llama-3-8B-Instruct on the FOLIO dataset.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

i io '
- - s = -
- b ® L
PCA, Layer 1 PCA, Layer 2 PCA, Layer 3
PCA, Layer 6 PCA, Layer 7 PCA, Layer 8

PCA, Layer 11 PCA, Layer 12 PCA, Layer 13

PCA, Layer 16

PCA, Layer 17 PCA, Layer 18

PCA, Layer 23

-
Lo

¥

PCA, Layer 28

i

PCA, Layer 26 PCA, Layer 27

PCA, Layer 31

PCA, Layer 4

PCA, Layer 5

PCA, Layer 9 PCA, Layer 10

PCA, Layer 14 PCA, Layer 15

PCA, Layer 19

PCA, Layer 20

PCA, Layer 29

PCA, Layer 32

Figure 16: PCA visualizations for layers 1-32 of Llama-3-8B-Instruct on the LogicalDeduction

dataset.

28

Under review as a conference paper at ICLR 2026

1512

1513

1514 .. . P
1515 . N E : 35
1516 |- i- 8
1517 LI e NI O
1518 e E 8 = a = ,
1519 PCA, Layer 1 PCA, Layer 2 PCA, Layer 3 PCA, Layer 4 PCA, Layer 5
1520

1521

1522

1523

1524

1525 PCA, Layer 6 PCA, Layer 7 PCA, Layer 8 PCA, Layer 9 PCA, Layer 10
1526

1527

1528

1529

1530

1531

1532 PCA, Layer 11 PCA, Layer 12 PCA, Layer 13 PCA, Layer 14 PCA, Layer 15
1533

1534

1535

1536

1537

1538

1539 PCA, Layer 16 PCA, Layer 17 PCA, Layer 18
1540
1541
1542 :
1543 i
1544
1545
1546
1547
1548 o o

1549 : % iE t ﬂ'; ; ’
1550 AR, YN il - '
1551 ii‘:E;J 1::~ i:"l!b“'1522> : ;?ZE
1552 e .- 8
1553
1554
1555
1556
1557
1558 : Pumy .
1559 AESERESE—— e e
1560
1561
1562
1563
1564
1565

PCA, Layer 23

Hifi

PCA, Layer 27 PCA, Layer 28 PCA, Layer 29 PCA, Layer 30

PCA, Layer 31 PCA, Layer 32

Figure 17: PCA visualizations for layers 1-32 of Llama-3-8B-Instruct on the ProofWriter dataset.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

UMAP, Layer 3

i

UMAP, Layer 6

UMAP, Layer 13

-

UMAP, Layer 18

-
~

i

) .
- .-
UMAP, Layer 26
E L1 < ‘e
UMAP, Layer 31

UMAP, Layer 27

UMAP, Layer 28

le I
. .-
UMAP, Layer 29 UMAP, Layer 30
e
. Q:
UMAP, Layer 32

Figure 18: UMAP visualizations for layers 1-32 of Llama-3-8B-Instruct on the GSMS8K dataset.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

a . 1 : siE ; ; =
I X 5 i i ol
= . .I ﬂ“ ﬁ i&.

UMAP, Layer 6

UMAP, Layer 11

L

UMAP, Layer 18 UMAP, Layer 19 UMAP, Layer 20

5 LE N .
5 .
|o i .
KA '
- =)

- T e s . o= I e
. - = - e T *
i - i Py o i
E‘ § - e -’ - L d . \. . .
KT, . ~ . -
7 . - d D - *

UMAP, Layer 26 UMAP, Layer 27 UMAP, Layer 28 UMAP, Layer 29 UMAP, Layer 30

: 'y

E L N 1 b 3 E Y . .
& .-

UMAP, Layer 31 UMAP, Layer 32

Figure 19: UMAP visualizations for layers 1-32 of Llama-3-8B-Instruct on the FOLIO dataset.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

UMAP, Layer 7 UMAP, Layer 8 UMAP, Layer 9 UMAP, Layer 10

13 W SIS -y 2 1l e 1
ila m.:g”*“ RS- IR Ly [i
-.-,‘-_;.lff;ﬁg;;,u LT R T DR .

UMAP, Layer 11 UMAP, Layer 12 UMAP, Layer 13 UMAP, Layer 14 UMAP, Layer 15

:
® i

[, = T
& pe
*
UMAP, Layer 23
: v TE L - .
. .! o - - . . .
b 5 Ry ot s, Pl oY NG
- A E - s e

UMAP, Layer 26 UMAP, Layer 27 UMAP, Layer 28 UMAP, Layer 29 UMAP, Layer 30

UMAP, Layer 31 UMAP, Layer 32

Figure 20: UMAP visualizations for layers 1-32 of Llama-3-8B-Instruct on the LogicalDeduction
dataset.

32

Under review as a conference paper at ICLR 2026

o i N]

E u . .: - i . . I
s ol LN ¥ -]
i 2. " ;

UMAP, Layer 3

p .

R
UMAP, Layer 8

UMAP, Layer 11 UMAP, Layer 12 UMAP, Layer 13 UMAP, Layer 14 UMAP, Layer 15

UMAP, Layer 26 UMAP, Layer 27 UMAP, Layer 28 UMAP, Layer 29 UMAP, Layer 30

v ‘ . - N ,. g

E . » i | N }
. o 3 »

UMAP, Layer 31 UMAP, Layer 32

Figure 21: UMAP visualizations for layers 1-32 of Llama-3-8B-Instruct on the ProofWriter dataset.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

T-SNE, Layer 6

T-SNE, Layer 11

T-SNE, Layer 16

T-SNE, Layer 21

T-SNE, Layer 7

T-SNE, Layer 12

T-SNE, Layer 17

§ ; , v’ X{ b 'u. - P ;:‘ - .
: ’f;' 3%)‘-' ;] "h&:ﬂ
T-SNE, Layer 1 T-SNE, Layer 3

T-SNE, Layer 8

T-SNE, Layer 13

T-SNE, Layer 18

T-SNE, Layer 31

T-SNE, Layer 27

T-SNE, Layer 28

wly W5

1, W Ly g
*y oAt
e e L]

T-SNE, Layer 4 T-SNE, Layer 5

T-SNE, Layer 9

T-SNE, Layer 14

T-SNE, Layer 19

T-SNE, Layer 10

T-SNE, Layer 15

T-SNE, Layer 20

T-SNE, Layer 29

T-SNE, Layer 32

Figure 22: T-SNE visualizations for layers 1-32 of Phi-3-mini-4k-instruct on the GSM8K dataset.

34

Under review as a conference paper at ICLR 2026

T-SNE, Layer 5

T-SNE, Layer 2 T-SNE, Layer 3 T-SNE, Layer 4

T-SNE, Layer 1

T-SNE, Layer 6 T-SNE, Layer 7 T-SNE, Layer 8 T-SNE, Layer 9 T-SNE, Layer 10

T-SNE, Layer 11 T-SNE, Layer 12 T-SNE, Layer 13 T-SNE, Layer 14 T-SNE, Layer 15

T-SNE, Layer 16 T-SNE, Layer 17 T-SNE, Layer 18 T-SNE, Layer 19 T-SNE, Layer 20
T-SNE, Layer 21 T-SNE, Layer 22 T-SNE, Layer 23 T-SNE, Layer 24 T-SNE, Layer 25
reT | e | N
T-SNE, Layer 26 T-SNE, Layer 27 T-SNE, Layer 28 T-SNE, Layer 29 T-SNE, Layer 30
T-SNE, Layer 31 T-SNE, Layer 32

Figure 23: T-SNE visualizations for layers 1-32 of Phi-3-mini-4k-instruct on the FOLIO dataset.

35

Under review as a conference paper at ICLR 2026

.,
'A'°

1038
i Yol
e

<
LS,
gt
‘h' e
0,0.'
s

2

¥
Br]
.

T-SNE, Layer 6

T-SNE, Layer 11

T-SNE, Layer 16

T-SNE, Layer 21

T-SNE, Layer 26

T-SNE, Layer 31

T-SNE, Layer 7

T-SNE, Layer 12

T-SNE, Layer 17

T-SNE, Layer 22

T-SNE, Layer 27

T-SNE, Layer 8

T-SNE, Layer 13

T-SNE, Layer 18

T-SNE, Layer 23

T-SNE, Layer 28

T-SNE, Layer 9

T-SNE, Layer 14

T-SNE, Layer 19

T-SNE, Layer 24

T-SNE, Layer 10

T-SNE, Layer 15

T-SNE, Layer 20

T-SNE, Layer 25

T-SNE, Layer 29

T-SNE, Layer 32

Figure 24: T-SNE visualizations for layers 1-32 of Phi-3-mini-4k-instruct on the LogicalDeduction
dataset.

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

o & -
s &

T-SNE, Layer 6

T-SNE, Layer 11

T-SNE, Layer 16

T-SNE, Layer 7

T-SNE, Layer 12

T-SNE, Layer 17

T-SNE, Layer 8

T-SNE, Layer 13

Tt 3 %af [o¥%a"
;id'-*ﬂ“' Bl T ens B s ne
e g e @ Rt e
- z L e 1 ® ‘.
T-SNE, Layer 21 T-SNE, Layer 22 T-SNE, Layer 23
¥ . e N
S L %

L R A
ER",@ §'.“” l"”.“

- X SE_E a
T-SNE, Layer 26 T-SNE, Layer 27 T-SNE, Layer 28
- “ 0" 5
| e WY e
E:.Q_” - 4
T-SNE, Layer 31

.
$
5
W

b v e

T-SNE, Layer 9

T-SNE, Layer 14

T-SNE, Layer 10

T-SNE, Layer 15

oF

T-SNE, Layer 19

. 0y 8%
N B
i ES
T-SNE, Layer 24 T-SNE, Layer 25
T e wE [8w E
‘:g"'-.’? N "'":v 14
- ',’.y ¥ L g
. % N -
N‘ o "'n-— - “"m- R
T-SNE, Layer 29 T-SNE, Layer 30
°® “0 5
- Dy ‘1‘
L age
-
T-SNE, Layer 32

Figure 25: T-SNE visualizations for layers 1-32 of Phi-3-mini-4k-instruct on the ProofWriter dataset.

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

hd = - B -
‘ B yiNEks ~ EQ?.N,
S L SN po—
PCA, Layer 1 PCA, Layer 2 PCA, Layer 3

mmmmmmmmmm [—— s

]tf*

ifii

PCA, Layer 8

PCA, Layer 11 PCA, Layer 12 PCA, Layer 13

PCA, Layer 16 PCA, Layer 17 PCA, Layer 18

v

i-
i

PCA, Layer 27 PCA, Layer 28

PCA, Layer 31

PCA, Layer 9 PCA, Layer 10

PCA, Layer 14

PCA, Layer 15

PCA, Layer 19

PCA, Layer 20

PCA, Layer 24

PCA, Layer 29

PCA, Layer 32

Figure 26: PCA visualizations for layers 1-32 of Phi-3-mini-4k-instruct on the GSMS8K dataset.

38

Under review as a conference paper at ICLR 2026

7 S ’
PCA, Layer 2 PCA, Layer 3
PCA, Layer 6 PCA, Layer 7 PCA, Layer 8

PCA, Layer 11

PCA, Layer 16

PCA, Layer 21

PCA, Layer 26

PCA, Layer 31

PCA, Layer 12

PCA, Layer 17

PCA, Layer 22

PCA, Layer 27

PCA, Layer 13

PCA, Layer 18

PCA, Layer 23

PCA, Layer 28

\
- ,,—--'.4 ‘ t 5
. tenn
B S
PCA, Layer 4 PCA, Layer 5
PCA, Layer 9 PCA, Layer 10

PCA, Layer 14

PCA, Layer 19

PCA, Layer 24

PCA, Layer 15

PCA, Layer 20

PCA, Layer 25

PCA, Layer 29

PCA, Layer 32

Figure 27: PCA visualizations for layers 1-32 of Phi-3-mini-4k-instruct on the FOLIO dataset.

39

Under review as a conference paper at ICLR 2026

2106

2107

21 08 - V'“““"'”‘j""‘(b SiESESESES = b f = 3 i : = - b
2110k .
2111 A s |
2112 T 7
2113 PCA, Layer 1 PCA, Layer 2 PCA, Layer 3 PCA, Layer 4

’ lEn VAR

........... O [s org

2114 (I =
2115 - '

2116 o SR

2117 4 hd
2118
2119
2120
2121
2122 .
2123 1]
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142 e . e . B
2143 - \ = _j“’f’f‘ > "’”‘“ 8 ™
2144 | “a I- NrRE)
2145 aE S - s ‘ / | - \
2146 . T o oo ’
2147 PCA, Layer 26 PCA, Layer 27 PCA, Layer 28 PCA, Layer 29
2148
2149
2150
2151
2152
2153
2154 PCA, Layer 31 PCA, Layer 32
2155

2156

2157 Figure 28: PCA visualizations for layers 1-32 of Phi-3-mini-4k-instruct on the LogicalDeduction
2158 dataset.

2159

PCA, Layer 12 PCA, Layer 14 PCA, Layer 15

PCA, Layer 18 PCA, Layer 19 PCA, Layer 20

T .
z,;:*" ; |

LRt

PCA, Layer 23

sy

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2026

/ """""" T E / = +
| 1./ -
B ,,, ,,,,,, a/ T
PCA, Layer 1 PCA, Layer 2 PCA, Layer 3

(N IR TR

- 2 .

e B “
PCA, Layer 6 PCA, Layer 7 PCA, Layer 8

PCA, Layer 11

PCA, Layer 12

PCA, Layer 13

? i

i

iy

PCA, Layer 9

PCA, Layer 5

PCA, Layer 10

PCA, Layer 23 PCA, Layer 24 PCA, Layer 25

PCA, Layer 31

PCA, Layer 27

PCA, Layer 28

PCA, Layer 29

PCA, Layer 32

Figure 29: PCA visualizations for layers 1-32 of Phi-3-mini-4k-instruct on the ProofWriter dataset.

41

Under review as a conference paper at ICLR 2026

L "a
e = e o ‘e a Mo
. e ¢

. ! ’: Ld ‘>

i

rE
L -
s f - b
o #

@ . -

iy LS vE
- Py 0 - »

pe ‘e & - ¢ P
| .- - >
UMAP, Layer 26 UMAP, Layer 27 UMAP, Layer 28
T
RN .

>

»

UMAP, Layer 31

UMAP, Layer 19

| -.J' : o ..
2 i
- =
UMAP, Layer 24 UMAP, Layer 25
. . ".
= o

UMAP, Layer 29 UMAP, Layer 30
LR RN I
.‘ I P
UMAP, Layer 32

Figure 30: UMAP visualizations for layers 1-32 of Phi-3-mini-4k-instruct on the GSM8K dataset.

42

Under review as a conference paper at ICLR 2026

|
NE

uf

\

|

UMAP, Layer 19

ZTTE PV 0 T
e °) -
- ’ | Y ¢ } ? RS
r < - -~ : N
s = L J B
UMAP, Layer 26 UMAP, Layer 27 UMAP, Layer 28 UMAP, Layer 29 UMAP, Layer 30
¢ e < iE
| . J § & -
|om “~
S s
UMAP, Layer 31 UMAP, Layer 32

Figure 31: UMAP visualizations for layers 1-32 of Phi-3-mini-4k-instruct on the FOLIO dataset.

43

Under review as a conference paper at ICLR 2026

UMAP, Layer 6

(T T

B :"OnQ

EIE S
’.‘v

Rz >

~

$
i

V3

-

UMAP, Layer 8
S F

o

ERed .
bt
W,

UMAP, Layer 13

2t e
!f_;.' .
=SS

UMAP, Layer 16

e TTT s
EPNE 1. : L
% e s
Pt i %
UMAP, Layer 21 UMAP, Layer 22 UMAP, Layer 23
. X
N | v
.t
e
UMAP, Layer 27 UMAP, Layer 28

UMAP, Layer 31

} e iF
| b
o -
R -
T

| R

b
0 é‘
‘? t
: 14
UMAP, Layer 20

UMAP, Layer 29

ie Lol

- v
.+t

UMAP, Layer 25

UMAP, Layer 32

Figure 32: UMAP visualizations for layers 1-32 of Phi-3-mini-4k-instruct on the LogicalDeduction

dataset.

44

Under review as a conference paper at ICLR 2026

- . e 2 =
i r % . Lod . L4 L L)
< - T .® . e o .. .
.o I “e
UMAP, Layer 26 UMAP, Layer 27 UMAP, Layer 28
LY
UMAP, Layer 31

T v
" (] x ' - . 1
4 R - °
ve ‘ 0 : .
UMAP, Layer 29 UMAP, Layer 30
L T L4 s
: B,
UMAP, Layer 32

Figure 33: UMAP visualizations for layers 1-32 of Phi-3-mini-4k-instruct on the ProofWriter dataset.

45

Under review as a conference paper at ICLR 2026

2430

2431

2432

2433

2434

2435

2436 T T e FLTE : T et T T w B T T E
2437 o g ﬁ‘;‘ 2 g s e h’%;-s ":‘aﬁ,c 4
2438 ['®) ‘”" L e s S !ﬂ':”..‘ oy . c% . |
2139 1 %m Evip t amy s e
2440 T T T

2441

2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454 T-SNE, Layer 11 T-SNE, Layer 12 T-SNE, Layer 13
2455

2456

2457

2458

2459

2460

2461 T-SNE, Layer 16 T-SNE, Layer 17 T-SNE, Layer 18 T-SNE, Layer 19
2462

2463 T e ———
2464 : ' = 1. e = e Bs 1. :i’ ig E
Y L P8¢ Sop Com o

2466 1™ 9 - 1 e 1 g i

b4 . woa s

.
“

&

¢
A
5
3

’

'

&
a‘
o'

5
:

2467 - - - - -

2468 T-SNE, Layer 22 T-SNE, Layer 23 T-SNE, Layer 24 T-SNE, Layer 25
2469

2470 S

2471 & . ”’

2472 t ,“ ‘

2473 : &

2474 R

2475 T-SNE, Layer 26 T-SNE, Layer 27 T-SNE, Layer 28
2476

2477

2478 Figure 34: T-SNE visualizations for layers 1-28 of Qwen2-7B-Instruct on the GSM8K dataset.
2479

2480

2481

2482

2483

46

Under review as a conference paper at ICLR 2026

T-SNE, Layer 1

T-SNE, Layer 6

T-SNE, Layer 11

T-SNE, Layer 16

T-SNE, Layer 21

ma

T-SNE, Layer 26

T-SNE, Layer 2

T-SNE, Layer 7

T-SNE, Layer 12

T-SNE, Layer 17

T-SNE, Layer 22

T-SNE, Layer 3

T-SNE, Layer 8

T-SNE, Layer 13

T-SNE, Layer 18

T-SNE, Layer 23

T-SNE, Layer 27

T-SNE, Layer 4

T-SNE, Layer 9

T-SNE, Layer 14

T-SNE, Layer 19

T-SNE, Layer 24

T-SNE, Layer 5

T-SNE, Layer 10

T-SNE, Layer 15

T-SNE, Layer 20

T-SNE, Layer 25

T-SNE, Layer 28

Figure 35: T-SNE visualizations for layers 1-28 of Qwen2-7B-Instruct on the FOLIO dataset.

47

Under review as a conference paper at ICLR 2026

T-SNE, Layer 6

T-SNE, Layer 11

T-SNE, Layer 16

T-SNE, Layer 21

T-SNE, Layer 26

T-SNE, Layer 7

T-SNE, Layer 12

T-SNE, Layer 17

T-SNE, Layer 22

T-SNE, Layer 8

T-SNE, Layer 13

T-SNE, Layer 18

T-SNE, Layer 23

T-SNE, Layer 27

T-SNE, Layer 9

T-SNE, Layer 14

T-SNE, Layer 19

T-SNE, Layer 24

T-SNE, Layer 5

T-SNE, Layer 10

T-SNE, Layer 15

T-SNE, Layer 20

T-SNE, Layer 28

Figure 36: T-SNE visualizations for layers 1-28 of Qwen2-7B-Instruct on the LogicalDeduction

dataset.

48

2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645

Under review as a conference paper at ICLR 2026

o
%
®

T-SNE, Layer 11

T-SNE, Layer 16

: fi“"c‘ Qk
B "

T-SNE, Layer 7

T-SNE, Layer 12

T-SNE, Layer 17

T-SNE, Layer 8

T-SNE, Layer 13

T-SNE, Layer 18

Fee

T-SNE, Layer 21

T-SNE, Layer 26

T-SNE, Layer 22

T-SNE, Layer 27

T-SNE, Layer 4

- - e'é?'::?
;":'.h’v&’
B @ _ oo

-

T-SNE, Layer 9

T-SNE, Layer 14

T-SNE, Layer 19

» L E
%3“.!-‘:

-

(Al

T-SNE, Layer 10

T-SNE, Layer 15

T-SNE, Layer 20

T-SNE, Layer 24

T-SNE, Layer 28

Figure 37: T-SNE visualizations for layers 1-28 of Qwen2-7B-Instruct on the ProofWriter dataset.

49

Under review as a conference paper at ICLR 2026

2646
2647
2648
2649
2650
2651

P - — P
2653 _:\.:r, _;*- .. ‘!}‘
2658 | & L g "
2655 E » ‘

g
2656 o T ‘ o
2657 PCA, Layer 1 PCA, Layer 2 PCA, Layer 3 PCA, Layer 4 PCA, Layer 5

i

,

i
{uiggi

.

2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681 I
2682

2683

2684 PCA, Layer 21 PCA, Layer 22
2685
2686
2687
2688
2689
2690
2691 PCA, Layer 26 PCA, Layer 27 PCA, Layer 28
2692

2693

2694 Figure 38: PCA visualizations for layers 1-28 of Qwen2-7B-Instruct on the GSM8K dataset.
2695

2696

2697

2698

2699

PCA, Layer 8

PCA, Layer 13

PCA, Layer 18 PCA, Layer 19 PCA, Layer 20

i

PCA, Layer 24

50

2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753

Under review as a conference paper at ICLR 2026

PCA, Layer 6

PCA, Layer 11

PCA, Layer 16

PCA, Layer 21

PCA, Layer 26

PCA, Layer 7

PCA, Layer 12

PCA, Layer 17

PCA, Layer 22

PCA, Layer 3

PCA, Layer 8

PCA, Layer 13

PCA, Layer 18

PCA, Layer 23

PCA, Layer 27

PCA, Layer 4

PCA, Layer 9

PCA, Layer 14

PCA, Layer 19

PCA, Layer 5

PCA, Layer 10

PCA, Layer 15

PCA, Layer 20

PCA, Layer 24

PCA, Layer 28

Figure 39: PCA visualizations for layers 1-28 of Qwen2-7B-Instruct on the FOLIO dataset.

51

2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807

Under review as a conference paper at ICLR 2026

; i S s =
E . I o o
s2sssss ! T W
PCA, Layer 1 PCA, Layer 2 PCA, Layer 3
Pl ot Fleg g &
T) ‘{ R % &
PCA, Layer 6 PCA, Layer 7 PCA, Layer 8

PCA, Layer 11

PCA, Layer 16

PCA, Layer 12

PCA, Layer 17

PCA, Layer 13

PCA, Layer 18

PCA, Layer 26

PCA, Layer 22

e
PCA, Layer 27

o
gg:!t.“ ‘.
PCA, Layer 4

&
»

PCA, Layer 9

PCA, Layer 14

PCA, Layer 19

PCA, Layer 10

PCA, Layer 15

PCA, Layer 24

PCA, Layer 28

Figure 40: PCA visualizations for layers 1-28 of Qwen2-7B-Instruct on the LogicalDeduction dataset.

52

2808
2809
2810
2811

2812
2813
2814
2815
2816
2817
2818
2819
2820
2821

2822
2823
2824
2825
2826
2827
2828
2829
2830
2831

2832
2833
2834
2835
2836
2837
2838
2839
2840
2841

2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861

Under review as a conference paper at ICLR 2026

1 B 5 % g
i I
- s : P - |- hat
.) T &=
PCA, Layer 1 PCA, Layer 2 PCA, Layer 3
e ' 3
PCA, Layer 6 PCA, Layer 8

PCA, Layer 11

PCA, Layer 13

PCA, Layer 18

PCA, Layer 26

PCA, Layer 22

AT R
B

PCA, Layer 23

Hil

o 8

PCA, Layer 27

T
PCA, Layer 4

PCA, Layer 5

PCA, Layer 10

PCA, Layer 15

5‘?: A~
. ff)

PCA, Layer 24

PCA, Layer 25

PCA, Layer 28

Figure 41: PCA visualizations for layers 1-28 of Qwen2-7B-Instruct on the ProofWriter dataset.

53

Under review as a conference paper at ICLR 2026

: iy B T E
i d 8 e . ? L
- ’ ' L) L

it -] ™ — »
UMAP, Layer 1 UMAP, Layer 2 UMAP, Layer 3
- ‘ “ , -
i - : - ‘- »
e 2 =
UMAP, Layer 6 UMAP, Layer 7 UMAP, Layer 8

il® ° 1
UMAP, Layer 21

UMAP, Layer 26

- E
- -
UMAP, Layer 22

L
-
® L4
E -
UMAP, Layer 23
—= =
&- -
- -
‘ =
UMAP, Layer 27

I I
UMAP, Layer 4 UMAP, Layer 5
I

e I
UMAP, Layer 9 UMAP, Layer 10

- 8
»
®
]
UMAP, Layer 24

» .' &—
» °

~ ! ‘\
UMAP, Layer 25

UMAP, Layer 28

Figure 42: UMAP visualizations for layers 1-28 of Qwen2-7B-Instruct on the GSMS8K dataset.

54

Under review as a conference paper at ICLR 2026

- -
I

‘ -
UMAP, Layer 21

UMAP, Layer 26

T# =
€9

‘ F 3

UMAP, Layer 22

L]
e »
-5
UMAP, Layer 23
A : -
*
UMAP, Layer 27

UMAP, Layer 24

UMAP, Layer 28

Figure 43: UMAP visualizations for layers 1-28 of Qwen2-7B-Instruct on the FOLIO dataset.

55

Under review as a conference paper at ICLR 2026

i Tl
UMAP, Layer 2 UMAP, Layer 3
““““ e . P

hi - = . . .: h 'h r

o0 o - L] <3 - -
ERRRA Be a2 T e e

- ‘.." -~ - -t <

UMAP, Layer 6 UMAP, Layer 7 UMAP, Layer 8

‘ .)5#"' =

"

i L I NERIE I o
L 4 "4‘ ‘G -\k‘“ . }\ *?Iﬂ*
» L+ i IS

UMAP, Layer 13

e
UMAP, Layer 5
< L 2 = .
g, iy e s
ey ~
UMAP, Layer 9 UMAP, Layer 10
A E
-

UMAP, Layer 22

UMAP, Layer 26

UMAP, Layer 27

UMAP, Layer 24

UMAP, Layer 28

Figure 44: UMAP visualizations for layers 1-28 of Qwen2-7B-Instruct on the LogicalDeduction

dataset.

56

Under review as a conference paper at ICLR 2026

- = ¢ = ER E
i ‘e i : s o° i . 7 i
- < - - ?
2 r . P~ - > >

-~ |t -

e - . " 3 Py -

. . s

- ity e - 0.

UMAP, Layer 1 UMAP, Layer 2 UMAP, Layer 3 UMAP, Layer 4

= _ —=r o T ‘ =
..... i A= .
. 1 . T e
- .

| P! s i . N c i . * - o= ’ .

: d 7 . ! -
| - ’ T, ¥
A L - = PS - ‘~ o

UMAP, Layer 21 UMAP, Layer 22 UMAP, Layer 23 UMAP, Layer 24 UMAP, Layer 25

" i e
E Mo .
UMAP, Layer 26 UMAP, Layer 27 UMAP, Layer 28

Figure 45: UMAP visualizations for layers 1-28 of Qwen2-7B-Instruct on the Proof Writer dataset.

57

Under review as a conference paper at ICLR 2026

I LLM USAGE

In the preparation of this manuscript, a large language model (LLM) was used to aid and polish the
writing process. The authors have reviewed and edited all text and take full responsibility for the
content of this paper.

58

