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ABSTRACT

In recent years, the performance of large language models (LLMs) on reasoning
tasks has been remarkable, even surpassing human capabilities on various bench-
marks. However, there remains a lack of clear understanding in the academic
community regarding how the structure and internal parameters of LLMs progres-
sively solve complex reasoning problems. In this study, we investigate the inference
process of LLMs on cross-linguistic materials and propose the hypothesis that LLM
layers exhibit a structured division of labor across conceptualization, reasoning,
and textualization. Conceptualization layers are crucial for transforming natural
language inputs into abstract representations within the LLM, while reasoning
layers play a key role in reasoning over these abstract concepts. Finally, the textu-
alization layers convert these abstract representations back into natural language.
Based on this hypothesis, we propose a novel approach, LIFT, to achieves efficient
and effective finetuning by selectively finetuning only those layers most relevant to
a given task’s functionality. We then conduct extensive experiments to show that
the LIFT method not only accelerates the training process but also significantly
improves model performance.

1 INTRODUCTION

In recent years, large language models (LLMs) (Meta, [2024; [Bai et al., [2023} |Achiam et al.| 2023},
Abdin et al.l 2024} |Guo et al., |2025)) have demonstrated outstanding performance in a wide range
of tasks and made significant progress in handling complex problems such as reasoning (Wei et al.,
2022)), mathematics (OpenAl, 2024; [LlamaWebsitel [2024])), and programming (Guo et al.||2024)). Most
LLMs utilize a deep, multi-layer transformer architecture (Vaswani et al.,|2017), where each layer
comprises self-attention mechanisms and feedforward networks that iteratively refine representations
and capture increasingly complex linguistic patterns. Research on how LLMs internally comprehend
problems, perform reasoning, and ultimately generate correct answers has become a crucial and
highly significant topic.

Many studies investigate the mechanistic interpretability of LLMs using methods such as the logit
lens (Nostalgebraist, |2020), structural probing (Hewitt & Manning, 2019), and cosine-similarity
analyses between hidden states (I1mkey & Van Schijndell |2021). For example, [Wendler et al.| (2024)
found that when generating non-English text, the logit-lens-decoded tokens in the final transformer
layers of the LLM initially resemble English before transitioning into the target language in the last
few layers. Another study (Li et al., |2024)) focuses on the safety of LLMs and finds that certain
consecutive intermediate layers may have the ability to detect harmful questions and decide whether
to refuse to answer them. In addition, [Jin et al.| (2024) finds that complex problems may require more
layers for comprehension and reasoning, whereas simple problems can be processed and resolved
within just a few layers. Parallel to interpretability studies, recent works (Fan et al., [2024; \Gromov
et al.,[2024; [Men et al., 2024) have explored the efficiency and redundancy of large language models,
particularly in layers closer to the output, enabling efficient pruning strategies.

Inspired by these studies, we investigate the functional division of different layers within an LLM.
We propose and provide empirical evidence for the hypothesis that LLM layers exhibit a structured
division of labor across conceptualization, reasoning, and textualization. We refer to this hypothesis
as the Three-Stage Functional Segmentation of LLMs. According to this hypothesis, an LLM can
be divided into three contiguous sections: (1) conceptualization layers, located near the input, (2)
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Figure 1: The upper part of the figure illustrates how an LLM processes a simple question under
the Three-Stage Functional Segmentation hypothesis. The lower part presents a toy experiment
validating this hypothesis by comparing hidden state similarities across conceptualization, reasoning,
and textualization layers. We have also added a curve showing the cosine similarity between adjacent
layers, with higher values indicating greater redundancy in those layers. In the figure, Q2 and O2 are
the Chinese expressions of Q1 and O1, respectively.

reasoning layers, located in the middle, and (3) textualization layers, positioned near the output.
The conceptualization layers transform natural language into abstract representations, encoding
task-relevant information to facilitate subsequent reasoning. The reasoning layers then process these
abstract representations, deriving an intermediate conceptual form that aligns with the intended output.
Finally, the textualization layers convert these abstract representations back into natural language,
producing the final output. In addition, driven by the observed redundancy (especially in layers closer
to the output) in LLM reasoning, we further split the reasoning stage into active and idle reasoning
layers. Active reasoning layers carry out the main inference work, whereas idle reasoning layers add
little or no new information. Following Jin et al.|(2024)), we hypothesize that the proportion of idle
reasoning layers scales with task complexity, shrinking for harder tasks and growing for easier ones.

To illustrate this hypothesis with a concrete example, consider the input question: “What is the capital
of France?” According to the hypothesis, the conceptualization layers first transform the natural
language query into an abstract concept, which is articulated as “querying the capital of France.” Next,
the reasoning layers process this abstract concept to infer the correct answer in its abstract concept
form, which in this case corresponds to the abstract concept of “Paris.” Finally, the textualization
layers convert this abstract concept back into natural language, generating the output “Paris.”

The upper part of Figure [T] provides a detailed illustration of how an LLM processes this simple
question under the Three-Stage Functional Segmentation hypothesis. The lower part presents a toy
experiment designed to empirically support this hypothesis. Since the conceptualization layers map
natural language inputs into abstract concepts, two semantically equivalent questions in different
languages (Q1 and Q2) should converge to a similar abstract concept of “querying the capital of
France.” Consequently, their hidden states should become more similar as they pass through the
conceptualization layers. In contrast, for two questions in the same language but with different
meanings (Q1 and Q3), the similarity of their hidden states should decrease at this stage. At the
reasoning layer, where the model derives and refines the abstract concept corresponding to the correct
answer, the hidden state similarity between Q1 and Q3 should remain relatively low, while Q1 and
Q2 have undergone similar reasoning processes, and should maintain higher similarity. Finally, in
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the textualization layers, where the abstract concept is mapped back into natural language, Q1 and
Q3 should show an increase in similarity, whereas Q1 and Q2 should diverge as their outputs are
rendered in different languages. In addition, we observe that adjacent-layer cosine similarity peaks in
the layers near the textualization stage (roughly layers 17-29), indicating that these layers add little
novel information and exhibit high redundancy, corresponding to the idle reasoning layers.

Following experiments that support the Three-Stage Functional Segmentation hypothesis, we propose
a method for locating the conceptualization, reasoning (further partitioned into active/idle subsets),
and textualization layers. Based on the identified approximate positions of these functional layers,
we introduce Layer-Informed Fine-Tuning (LIFT), which enables efficient and effective adaptation of
LLMs by selectively fine-tuning the most functionally critical layers for a given task—whether they
are conceptualization layers, active reasoning layers, or other specialized modules.

Our contributions can be summarized in three key aspects:

* We propose the hypothesis that LLMs can be functionally divided into conceptualization
layers, reasoning layers, and textualization layers. Moreover, for each task, we further
refined the reasoning layers by partitioning them into active and idle subsets.

* Our experiments provide strong support for our hypothesis and present a method for approx-
imately identifying the ranges of the conceptualization layers, active reasoning layers, idle
reasoning layers and textualization layers.

* We propose LIFT, an approach that achieves efficient and effective fine-tuning by selectively
fine-tuning only those layers most relevant to a given task’s functionality. This method not
only reduces fine-tuning time cost but also enhances performance.

2 RELATED WORKS

Internal Structure of LL.Ms Research on the mechanistic interpretability of LLMs often utilizes
techniques such as the logit lens (Nostalgebraist, [2020), probing (Hewitt & Manning} 2019), and
cosine similarity (Timkey & Van Schijndel, [2021) to explore their internal structures. For instance,
studies posit that intermediate layers form a “semantic hub” where inputs from diverse languages
and modalities are mapped to a shared space (Wu et al.} 2024)), which is geometrically characterized
as a “high-dimensional abstraction phase” critical for initial linguistic processing and downstream
task transferability (Cheng et al., 2024). The effectiveness of these mid-depth representations is
demonstrated by their superior performance on downstream tasks relative to final-layer outputs
(Skean et al.} 2025)), with models also dynamically engaging deeper layers to address more complex
problems (Jin et al.l [2024). A common finding within these frameworks is the phenomenon of a
latent operational language. English-centric models tend to “think™ in English within their abstract
middle layers, only translating concepts into the target language in the final layers (Wendler et al.,
2024;|Zhao et al., 2024; Zhong et al., [2024). This behavior extends to non-English-centric models,
which may develop dual latent languages corresponding to their training data, activating the language
most similar to the target output during processing (Zhong et al., 2024). Further evidence for layer
specialization comes from diverse analytical perspectives. Adopting a neuroscientific approach,
AlKhamissi et al.|(2024) employed functional localizers to identify and causally validate “language-
selective units” concentrated in specific layers that are critical for linguistic tasks. These studies
provide a valuable “map” of the functional properties contained within different layers.

Concurrently, research on model robustness has found that early and final layers are highly sensitive
to structural interventions like deletion or swapping, whereas middle layers are remarkably resilient
(Sun et al., [2025; |[Lad et al., [2024). This resilience is particularly pronounced in the later-middle
layers, which have been shown to be more redundant and less impactful on performance when pruned
compared to earlier layers (Gromov et al., 2024;|Men et al., 2024), further supporting their distinct
functional role.

While these studies provide a valuable “map” of the functional properties within LLM layers, our
work provides a “recipe” for using them. We shift the focus from a static analysis of what is in each
layer to the dynamic transitions between these functional stages. This approach allows us to develop
targeted and parameter-efficient fine-tuning strategies that improve performance by focusing updates
only on functionally-relevant blocks.
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Parameter-Efficient Fine-Tuning. The conventional full-parameter fine-tuning paradigm often
incurs high computational costs when fine-tuning LLMs. To address this, parameter-efficient fine-
tuning (PEFT) has emerged as a promising alternative. Key PEFT approaches include Adapter
Tuning (Houlsby et al., 2019; [Pfeiffer et al.l 2020; Karimi Mahabadi et al.,|2021), Prompt Tuning
(L1 et al.l 2023), and Low-Rank Adaptation (LoRA) (Hu et al.,|2021)). Adapter Tuning introduces
trainable adapter modules between all model layers, Prompt Tuning incorporates tunable prefix
tokens into inputs.The original LoRA (Hu et al.l 2021)) decomposes the weight updates for various
parameter matrices into low-rank adaptation matrices. More advanced variants like AdaLoRA (Zhang
et al., 2023) improve upon this by dynamically allocating the parameter budget to more important
weight matrices based on their sensitivity during training. These methods only need to fine-tune
a small subset of parameters, typically less than 1% of the original, and can significantly reduce
computational and memory overhead.

Compared with the above methods, our LIFT focuses on fine-tuning specific layers in the middle,
which follows a distinct trajectory from the above methods and can be seamlessly integrated with
them. For instance, in this paper, we incorporate LoRA to achieve both high performance and
accelerated fine-tuning.

3 PRELIMINARY

3.1 LARGE LANGUAGE MODELS

Large Language Models, such as Llama-3 (Meta, [2024]), are built on a transformer-based architecture
composed of multiple stacked layers. Each layer consists of a multi-head self-attention mechanism
that captures contextual dependencies, a feedforward network for further processing, and residual
connections with layer normalization to stabilize training. In this framework, hidden states represent
the evolving internal representations of tokens, which are progressively enriched layer by layer. These
states are updated iteratively by adding residuals, where the residual is computed as a function of
the hidden states of all preceding tokens. In this paper, we employ four LLMs from different model
families: Llama-3-8B-Instruct (Meta, 2024), Phi-3-mini-4k-instruct (Abdin et al.} 2024), and Qwen2-
7B-Instruct (Yang et al., 2024). These four LLMs were developed by different companies, each
with distinct internal architectures and training methodologies, making them highly representative of
diverse model designs.

3.2 DATASETS

To train and evaluate the reasoning capabilities of LLMs, we select three representative logical reason-
ing datasets: ProofWriter (Tafjord et al.||2020), FOLIO (Han et al., 2022)) and the LogicalDeduction
dataset from BigBench (Srivastava et al., |2022). Our data processing method follows a similar
approach to that proposed in|Pan et al.|(2023). These datasets ensures a comprehensive assessment of
the model’s ability to perform various forms of logical reasoning.

* ProofWriter (Tafjord et al.,[2020) is a widely used dataset for deductive logical reasoning.
In our study, we utilize the open-world assumption subset. This dataset is categorized into
five classes based on the depth of reasoning required. To ensure a rigorous evaluation, we
select the most challenging subset, depth-5.

* FOLIO (Han et al.| [2022)) is a challenging dataset for first-order logic reasoning, featuring
expert-written problems that require complex logical deductions. The questions are presented
in natural language and are closely aligned with real-world knowledge.

* LogicalDeduction is a logical reasoning task from the BigBench benchmark (Srivastava
et al., 2022), focusing on constraint satisfaction problems. The task primarily involves
deducing the order of a sequence of objects given a minimal set of conditions.

In addition to the reasoning dataset, we also conducted experiments on GSM8K, a mathematical
dataset.

* GSMSK (Cobbe et al., 2021): This dataset contains 8,500 grade school-level math problems
that cover a wide range of topics, including arithmetic, algebra, and geometry.
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4 THREE-STAGE FUNCTIONAL SEGMENTATION OF LLMSs

In this section, we present our hypothesis, the Three-Stage Functional Segmentation of LLMs, and
provide rigorous and comprehensive experiments to support the hypothesis.

According to this hypothesis, an LLM can be functionally divided into three contiguous stages:

1. Conceptualization layers — located near the input, responsible for transforming natural
language into abstract representations.

2. Reasoning layers — situated in the middle, where task-relevant logical processing occurs.
These can be further divided into active reasoning layers and idle reasoning layers.

3. Textualization layers — positioned near the output, where abstract representations are
mapped back into natural language.

The conceptualization layers encode linguistic inputs into abstract, task-relevant representations. This
initial stage marks a functional transition from processing surface-level language to forming the
conceptual foundation required for logical processing.

The reasoning layers then manipulate these abstract representations to perform logical inference.
Operating on task-specific logic rather than surface linguistics, we hypothesize that hidden states in
this stage will exhibit high similarity for the same task across different languages, yet low similarity
for different tasks within the same language. Furthermore, these layers can be subdivided into active
reasoning layers, which execute core inference, and idle reasoning layers, which are functionally
redundant.

Finally, the textualization layers translate the inferred abstract concepts back into natural language.
This final stage reverses the similarity pattern observed during reasoning: representations for different
tasks converge as they are mapped to a common linguistic form, while those for the same task in
different languages diverge into their respective linguistic outputs.

To investigate the functional segmentation of layers within the LLM, we design the following
experiments during the inference process. Suppose a large language model has K hidden layers
and a task-consistent dataset D,,,, = {dl}i\[:1 Without loss of generality, assume that this dataset
is an English dataset. We then define its corresponding datasets in other natural languages as
DNon-English = {d.}},. The Non-English datasets may include any non-English language supported
by the LLM, such as Chinese, French, Spanish, or Hindi. The identical index ¢ in these datasets
indicates the same semantic content, differing only in language.

When using these two datasets as the input for inference in the LLM, we obtain the hidden state
sets from the last position of each layer in the first autoregressive process, denoted as S(Dy,y ) and
S (Dnon-Engtish)- The specific form of these vector sets is as follows:

N N
S(Draw) = {[h%dl)’ h?ah)’ ceey h(lgb)]} ) S(DNon—English) = {[h%d;)v h?dé)’ CRE) h(K;)]}

i=1 i=1

where hé“d,) represents the hidden state at the last position in layer & during the first autoregressive
process.

4.1 COSINE SIMILARITY BETWEEN HIDDEN STATES IN THE SAME LAYER

First, we compute the cosine similarity for the following pairs. These results quantify the similarity
between hidden representations across different layers, offering insights into how information is
processed and transformed within the model.

1. For pairs of the same question in different languages, we randomly select an index ¢ from 1
to N and compute the cosine similarity between different language versions of the same
question 4, denoted as g¥ = cos(h’(“di)7 h?d,_)) forl1 <k <K.

2. For pairs of different questions within the English dataset, we randomly select two indices
i # j from 1 to N and compute the cosine similarity between different question ¢ and j in

English, denoted as r; = cos(h} ), h’(“dj)) forl <k<K.
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3. For pairs of different questions within the Non-English dataset, we randomly select two
indices ¢ # j from 1 to N and compute the cosine similarity between different question ¢

and j, denoted as bf’j = cos(h?d;), h’(“d;)) forl <k <K.

(a) LLaMA-3-8B-Instruct (b) Phi-3-mini-4k-instruct (c) Qwen2-7B-Instruct on (d) LLaMA-3-8B-Instruct
on GSM8K on GSM8K LogicalDeduction on LogicalDeduction

(e) LLaMA-3-8B-Instruct (f) Phi-3-mini-4k-instruct (g) Qwen2-7B-Instruct on (h) LLaMA-3-8B-Instruct
on FOLIO on FOLIO ProofWriter on ProofWriter

Figure 2: Cosine similarity between Hidden States in the Same Layer

To substantiate our hypothesis, we conduct extensive experiments across multiple models, languages,
and datasets. Specifically, we evaluate four widely used models from different model families: Llama-
3-8B-Instruct (Meta, 2024)), Phi-3-mini-4k-instruct (Abdin et al.|[2024) and Qwen2-7B-Instruct (Yang
et al.} 2024). Furthermore, we assess model behavior across five diverse languages (English, Chinese,
French, Spanish, and Hindi) and three reasoning-focused datasets: ProofWriter (Tafjord et al.|
2020), FOLIO (Han et al., [2022) and LogicalDeduction (Srivastava et al.,|2022). By systematically
analyzing model behavior across these varied conditions, we establish robust empirical evidence
for our proposed hypothesis. The results are shown in Figure 2] demonstrating a high degree of
consistency across models, languages, and datasets, indicating their robustness and broad applicability.
To mitigate the impact of experimental randomness, we randomly repeat the experiments 1000 times

and take the average of g, rf';, b¥ ; for the random i, j’s.

As shown in Figure the green line is the cosine similarity between the first kind of pairs (g;"’s for
different layer k), the red line is the cosine similarity between the second kind of pairs (rﬁ ;s for

different layer k), and the blue line is the cosine similarity between the third kind of pairs (bﬁ ;s for
different layer k).

Our analysis reveals a fundamental divergence between the similarity trends of task-relevant and
task-irrelevant pairs. The task-relevant similarity (green line) follows a clear trajectory: it rises to
form a distinct plateau throughout the middle layers and subsequently declines in the final layers.
Conversely, the task-irrelevant similarity (red and blue lines) exhibits an opposite, U-shaped pattern
of decreasing and then increasing. We note that the initial values can be variable, a phenomenon we
hypothesize is an artifact of the early hidden states’ sensitivity to tokenization differences. Our core
claim, however, is based on these starkly opposing trends, which are consistent across languages and
strongly substantiate our three-stage hypothesis.

We also investigate the internal representations of these transformer-based models by visualizing
hidden states obtained from different language versions of the same dataset, by employing three
widely used dimensionality reduction techniques: Principal component analysis (PCA) (Hotelling,
1933)), t-distributed stochastic neighboring embedding (t-SNE) (Van der Maaten & Hinton, 2008), and
uniform manifold approximation and projection (UMAP) (Mclnnes et al.l 2018)). The visualization
results are consistent with the similarity results in Figure 2} and we defer them to Appendix.

4.2 COSINE SIMILARITY BETWEEN HIDDEN STATE IN ADJACENT LAYERS

To achieve a more refined segmentation of the reasoning layers, we adopt the adjacent-layer cosine
similarity analysis similar to (Gromov et al.| (2024) and Men et al.| (2024). For each dataset in
subsection we compute the cosine similarity between every pair of successive layers. Due to
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Figure 3: Cosine Similarity between Hidden Stated in Adjacent Layers

the residual architecture of LLMs, a very high similarity between adjacent layers indicates that the
latter layer contributes little new information and is therefore highly redundant. Consistent with
the findings of |Fan et al.[(2024), (Gromov et al.| (2024), and [Men et al.[(2024), from Figure we
observe that reasoning layers near the textualization stage exhibit similarities exceeding 95% (e.g.,
layers 23-28 in Figure [3a] and layers 24-30 in Figure [3b). We classify these high-similarity layers as
idle reasoning layers, while the remaining reasoning layers with lower adjacent-layer similarity are
designated as active reasoning layers.

4.3 SUMMARY OF EXPERIMENTS

In summary, our extensive analysis across multiple models, languages, and datasets provides com-
pelling evidence for the Three-Stage Functional Segmentation hypothesis. The observed dynam-
ics of representation similarity systematically align with our proposed functions: an initial shift
from linguistic to abstract conceptual encoding (conceptualization), followed by a stage of stable,
language-agnostic processing (reasoning), and a final reversion to linguistic formatting for output
(textualization). This pattern not only validates the functional roles of each stage but also reveals the
existence of idle reasoning layers where information processing plateaus.

Moreover, this segmentation suggests that reasoning layers are critical for logical inference, as they
process task-specific abstract concepts before mapping them to output representations. We may
improve reasoning efficiency and generalization by focusing on reasoning layers in LLM. Due to
the inherent redundancy of large language models, particularly focusing on their active reasoning
layers. In addition, this segmentation further implies that the conceptualization layers are critical
for an LLM’s language understanding, as they mediate the transformation of natural language into
abstract representations. By concentrating on these conceptualization layers, we may also be able to
enhance the language comprehension capabilities of large language models.

5 LIFT: LAYER-INFORMED FINE TUNING

Building upon the hypothesis of functional segmentation proposed in the previous section, we
introduce a fine-tuning method aimed at achieving higher efficiency and improved performance:
Layer-Informed Fine Tuning (LIFT). This method selectively fine-tuning only those layers most
relevant to a given task’s functionality. In this paper, we focus exclusively on applying LIFT to the
conceptualization layers and the reasoning layers. We denote LIFT[a, b) to represent the fine-tuning
process restricted to layers from a to b (excluding layer b).

5.1 LAYER PARTITION

To implement LIFT, it is essential to first identify the location of functional layer segmentation. We
employed a straightforward approach to delineate the layer boundaries. To determine the boundaries
between the conceptualization layers and the reasoning layers, we employ the cosine similarity
between different language versions of the same question g* (as described in Section , represented
by the green line in Figure[2] As previously mentioned in Section[4.1] the green line reflects task-
relevant information, which gradually increases within the conceptualization layers and remains
relatively stable in the reasoning layers. Therefore, the inflection point during its growth phase
can be considered a marker for the functional transition from conceptualization to reasoning. For
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this discrete case, we apply the discrete second derivative method to identify the inflection point
(Weisstein). First, we compute the discrete second derivative of the layer-wise similarity g* by

A2gk _ gk+1 . ng + gkq'
Second, we identify the first index k* where Azgk changes sign, i.e., where A2gk*1 Azgk < 0as
the inflection point marking the transition from conceptualization to reasoning.

Next, to partition the reasoning block into active layers and idle layers, we utilize the cosine similarity
between hidden states in adjacent layers described in Section 2] A higher cosine similarity
between adjacent layers indicates greater redundancy. Therefore, we set a threshold value of
and classify consecutive layers exceeding this threshold as idle reasoning layers, and simply select
B = 0.94. This value was chosen empirically, as our observations confirmed that 5 = 0.94 effectively
distinguishes the start of the flat, high-similarity region characteristic of idle reasoning layers. During
our experiments, we observed that for certain datasets, the adjacent cosine similarity of Qwen2-
7B-Instruct did not surpass the threshold 3. In such cases, we conclude that the dataset does not
contain any idle reasoning layers. Based on these methods, we can obtain the specific functional
layer segmentation for different tasks across various models. Due to space limitations, the detailed
segmentation results are provided in the Appendix.

5.2 FINETUNING SETTING

To accelerate the finetuning process, we opted to use the popular LORA framework. LoRA efficiently
fine-tunes large models by introducing low-rank updates, thereby reducing memory usage, speeding
up training, and improving generalization with minimal parameter changes. For the LIFT method, we
apply LoRA layers exclusively to the reasoning layers of the model. In the case of fully finetuning all
transformer layers (FullFT), we add LoRA to all the transformer layers.

One important question in the LIFT method is to choose which layers to finetune. For reasoning
datasets, given their relatively simple linguistic structure but complex reasoning relationships, our
LIFT algorithm is expected to prioritize active reasoning layers for training. However, for mathematics
datasets like GSM8K, determining which layers to finetune requires more consideration. According
to Srivatsa & Kochmar| (2024)), the attributes of GSM8K mathematical problems can be primarily
divided into linguistic features and mathematical features. Their study explored the correlation
between these attributes and the accuracy of LLM responses, revealing that the top-ranked feature
in terms of importance belongs to linguistic features. This finding suggests that the major factor
influencing LLM accuracy in solving GSMS8K is linguistic complexity, hinting that enhancing the
conceptualization layers might be more impactful for improving LLMs’ ability to solve GSM8K.

To further investigate whether solving GSM8K relies more on linguistic capabilities or mathematical
reasoning, we designed the following experiment. To control for variables, our experiment is based
on the templates provided by Mirzadeh et al.|(2024), which allow us to modify only the numerical
components of GSM8K or increase linguistic complexity by adding irrelevant statements. We
conducted experiments on LLaMA-3-8B-Instruct (Meta, [2024) and Phi-3-mini-4k-instruct(Abdin
et al., 2024}, first selecting problems that each model answered correctly with over 90% accuracy
(GSM8K-easy), indicating that the LLM had fully mastered the solution. Using the templates of
these problems, we generated two distinct datasets: GSM8K-hard-number, where simple numbers
were replaced with more complex ones, and GSM8K-hard-language, where irrelevant sentences were
added to the original problems. We fine-tuned both models on the GSMS8K dataset and subsequently
evaluated them on GSM8K-hard-number and GSM8K-hard-language. This approach allows us to
determine which of the linguistic features or mathematical features is primarily enhanced by the
fine-tuning process.

Table[T]presents the performance of the fine-tuned model on GSM8K-hard-number and GSM8K-hard-
language. We observe that fine-tuning has limited effectiveness in enhancing the model’s capability on
GSMB8K-hard-number but significantly improves its performance on GSM8K-hard-language.These
findings suggest that improving language capabilities is more crucial. Therefore, we prioritize LIFT
optimization specifically for the conceptualization layers when dealing with GSM8K.

5.3 EXPERIMENTAL RESULTS

Table 2] presents the performance of the original model, full transformer layer fine-tuning by LoRA,
and LIFT by LoRA. We observe that the LIFT approach demonstrates a noticeable improvement in
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‘ Llama-3-8B-Instruct ‘Phi—3—mini—4k—instruct

GSMS8K-hard-number \Base model  FullFT \Base model  FullFT

Accuracy | 75% 45% | 5275%  45.5%

GSMS8K-hard-language ‘ Base model FullFT ‘ Base model  FullFT
Accuracy | 56.67%  63.33% | 7225% 1%

Table 1: Performance Comparison of GSM8K-hard-number and GSM8K-hard-language

‘ Llama-3-8B-Instruct ‘ Phi-3-mini-4k-instruct ‘ Qwen2-7B-Instruct
ProofWriter ‘ Base model FullFT LIFT[2,20) ‘ Base model FullFT LIFT[2,26) ‘ Base model FullFT LIFT([3.26)
Accuracy 45.67%  56.12% (£2.02%) 57.67% (£0.36%) | 58.33%  62.75% (£2.30%) 64.88% (+0.72%) | 48.00%  53.17% (+3.10%) 53.46% (+2.36%)
Training Time(s) 1383 1215 - 1107 1023 - 1288 1180
FOLIO ‘ Base model FullFT LIFT[2,20) ‘ Base model FullFT LIFT[2,23) ‘ Base model FullFT LIFT[3,26)
Accuracy 5539%  52.08% (£1.67%) 5821% (£2.35%) | 48.53%  62.50% (£2.42%) 64.09% (£1.09%) | 34.31%  44.98% (+0.74%) 44.73% (+1.98%)
Training Time(s) 332 290 - 249 225 - 310 284
LogicalDeduction ‘ Base model FullFT LIFT(2,22) ‘ Base model FullFT LIFT(2,24) ‘ Base model FullFT LIFT(3,24)
Accuracy 46.33%  53.25% (£1.89%) 53.58% (£2.47%) | 46.67%  61.25% (¥1.00%) 61.75% (¥2.49%) | 50.33%  53.83% (£1.23%) 57.08% (£3.29%)
Training Time(s) 516 460 - 390 357 - 477 428
GSM8K ‘ Base model FullFT LIFT[0,2) ‘ Base model FullFT LIFT[0,2) ‘ Base model FullFT LIFT[0,3)
Accuracy 49.96%  67.76% (£0.57%) 73.96% (£0.98%) | 79.23%  77.14% (+0.34%) 78.34% (+0.73%) | 78.85%  74.53% (+£0.34%) 75.34% (+0.66%)
Training Time(s) 3347 2667 - 2817 2325 - 3500 2785

Table 2: Performance and Training Time Comparison of LoRA Fine-Tuning Methods over 4 Seeds

performance compared to FullFT, while achieving an average reduction of 12.2% in time cost. This
efficiency gain stems from LIFT updating drastically fewer trainable parameters (e.g., only 10.5M
vs. 167.8M for Llama-3 on GSMS8K), which substantially reduces the memory footprint. These
experimental results indicate that by selectively fine-tuning only those layers most relevant to a given
task’s functionality, LIFT can simultaneously enhance model accuracy, reduce training time, and
lower memory requirements.

To further validate the effectiveness of our proposed LIFT algorithm, we conducted ablation experi-
ments by fine-tuning and testing layers outside of the LIFT-selected regions. The detailed results are
provided in the Appendix. From these experiments, it is evident that our LIFT algorithm significantly
outperforms the alternatives. The fine-tuning strategy, which focuses explicitly on functionally rele-
vant layers, demonstrates remarkable improvements in performance. This underscores the importance
of targeting specific functional layers in LLMs for task-specific optimization.

6 CONCLUSION AND LIMITATION

In this work, we introduced a novel hypothesis that LLMs can be functionally segmented into
three distinct layers: conceptualization, reasoning (further partitioned into active/idle subsets), and
textualization. Our experiments validated this hypothesis and demonstrated a method for approxi-
mately identifying the ranges of these segmented layers. To leverage this functional segmentation,
we proposed LIFT, a selective fine-tuning approach that optimally targets the most task-relevant
layers. LIFT not only enhances fine-tuning efficiency by reducing time costs but also improves
task-specific performance. These findings mark a significant step forward in the development of
adaptive, task-focused language models.

On the other hand, this paper examines only four relatively small-scale open-source models with
fewer layers. Although these models have a certain degree of representativeness due to belonging to
different model families, further research is required to determine whether the proposed method is
applicable to larger-scale models, models with different architectures, and even closed-source models.
Furthermore, the effectiveness of fine-tuning textualization layers was not explored in this study,
primarily due to the lack of suitable benchmarks for automatically evaluating tasks related to output
style, which we leave as a direction for future work.
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ETHICS STATEMENT

This research adheres to the ICLR Code of Ethics. Our work centers on the mechanistic interpretability
of large language models and the development of more efficient fine-tuning methodologies. The
datasets utilized in our experiments—ProofWriter, FOLIO, LogicalDeduction, and GSM8K—are
well-established, publicly available benchmarks for evaluating logical and mathematical reasoning.
These datasets do not contain any personally identifiable or sensitive information. The multilingual
datasets were generated by translating these public benchmarks, and we have made them available
for public review. The proposed LIFT method aims to improve computational efficiency, which can
contribute positively by reducing the resources required for model adaptation. We do not foresee any
direct negative societal impacts or ethical concerns arising from our study.

REPRODUCIBILITY STATEMENT

We have made every effort to ensure the reproducibility of our research. All models used in this
study (Llama-3-8B-Instruct, Phi-3-mini-4k-instruct, Qwen2-7B-Instruct) are publicly available, as
described in Section 3.1. The datasets are standard benchmarks, detailed in Section 3.2, with further
examples provided in Appendix B. Our multilingual datasets and the code used for our cosine
similarity analysis are available in the supplementary materials, as noted in Appendix B.2. The
methodology for identifying functional layer boundaries is detailed in Section 5.1 and Appendix E.
Furthermore, Appendix F provides a comprehensive description of our experimental environment,
including hardware specifications, software versions (PyTorch, CUDA), and the complete set of
hyperparameters used for LORA fine-tuning. The supplementary materials also contain the necessary
code to replicate our main experiments and generate the figures presented in the paper.
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A LLM STRUCTURE

Model ‘ Layers ‘ Model ‘ Layers

Llama-3-8B-Instruct 32 Qwen2-7B-Instruct 28
Phi-3-mini-4k-instruct 32

Table 3: Number of layers in each LLM

B DATASETS

B.1 EXAMPLES OF EACH DATASET

B.1.1 PROOFWRITER

"instruction": "The cow is blue. The cow is round. The cow likes the
lion. The cow visits the tiger. The lion is cold. The lion is nice
The lion likes the squirrel. The squirrel is round. The squirrel
sees the lion. The squirrel visits the cow. The tiger likes the
cow. The tiger likes the sgquirrel. If something is cold then it
visits the tiger. If something visits the tiger then it is nice.
If something sees the tiger and it is young then it is blue. If
something is nice then it sees the tiger. If something likes the
squirrel and it likes the cow then it wvisits the tiger. If
something is nice and it sees the tiger then it is young. If the
cow is cold and the cow visits the lion then the lion sees the
squirrel.Based on the above information, is the following
statement true, false, or unknown? The tiger is not young.options:
["A) True’, ’'B) False’, ’'C) Unknown’]",

n” input " : nmn ,
" Output ” : IIB"
B.1.2 FOLIO
"instruction": "All people who regularly drink coffee are dependent on

caffeine. People either regularly drink coffee or joke about
being addicted to caffeine. No one who jokes about being addicted
to caffeine is unaware that caffeine is a drug. Rina is either a
student and unaware that caffeine is a drug, or neither a student
nor unaware that caffeine is a drug. If Rina is not a person
dependent on caffeine and a student, then Rina is either a person
dependent on caffeine and a student, or neither a person dependent

on caffeine nor a student.Based on the above information, is the
following statement true, false, or uncertain? Rina is a person
who jokes about being addicted to caffeine or unaware that

caffeine is a drug.options: [’A) True’, ’'B) False’, ’C) Uncertain
14 J n
4
" input " : nn ,
n” Output ” : "A"

B.1.3 LOGICALDEDUCTION

T

14



Under review as a conference paper at ICLR 2026

"instruction": "The following paragraphs each describe a set of five
objects arranged in a fixed order. The statements are logically
consistent within each paragraph.On a branch, there are five birds

a quail, an owl, a raven, a falcon, and a robin. The owl is the
leftmost. The robin is to the left of the raven. The quail is the
rightmost. The raven is the third from the left.Which of the
following is true?options: [’A) The quail is the rightmost.’, ’'B)
The owl is the rightmost.’, ’C) The raven is the rightmost.’, ’D)
The falcon is the rightmost.’, 'E) The robin is the rightmost.’]",

"inputll .o ",

"output" LY

B.1

4 GSMS8K

"instruction": "Natalia sold clips to 48 of her friends in April, and
then she sold half as many clips in May. How many clips did
Natalia sell altogether in April and May?",

"input n . n ",

"output": "Natalia sold 48/2 = <<48/2=24>>24 clips in May.\nNatalia
sold 48+24 = <<48+24=72>>72 clips altogether in April and May.\n
#H## 72"

B.1

.5 GSMS8K-EASY

"input": "When Sophie watches her nephew, she gets out a variety of
toys for him. The bag of building blocks has 18 blocks in it. The
bin of stuffed animals has 25 stuffed animals inside. The tower of

stacking rings has 3 multicolored rings on it. Sophie recently
bought a tube of bouncy balls, bringing her total number of toys
for her nephew up to 88. How many bouncy balls came in the tube?",

"output": "Let T be the number of bouncy balls in the tube.\nAfter
buying the tube of balls, Sophie has 18.0 + 25.0 + 3.0 + T = 46 +
T = 88.0 toys for her nephew.\nThus, T = 88.0 - 46 =
<<88.0-46=42.0>>42.0 bouncy balls came in the tube.\n#### 42.0",

B.

—_—

.6 GSM8K-HARD-NUMBER

"input": "When Sophie watches her nephew, she gets out a variety of

toys for him. The bag of building blocks has 181 blocks in it. The
bin of stuffed animals has 193 stuffed animals inside. The tower
of stacking rings has 279 multicolored rings on it. Sophie
recently bought a tube of bouncy balls, bringing her total number
of toys for her nephew up to 986. How many bouncy balls came in
the tube?",

"output": "Let T be the number of bouncy balls in the tube.\nAfter
buying the tube of balls, Sophie has 181.0 + 193.0 + 279.0 + T =
653 + T = 986.0 toys for her nephew.\nThus, T = 986.0 — 653 =
<<986.0-653=333.0>>333.0 bouncy balls came in the tube.\n####
333.0",

B.1

.7 GSMS8K-HARD-LANGUAGE

"input": When Sophie watches her nephew, she gets out a variety of
toys for him, ensuring he has plenty of options to choose from.
The bag of building blocks has 18 blocks in it, although some are
slightly worn from previous play sessions. The bin of stuffed
animals has 25 stuffed animals inside, each representing different

characters from his favorite storybook. The tower of stacking
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rings has 3 multicolored rings on it, which he enjoys stacking in
specific color patterns. Sophie recently bought a tube of bouncy
balls, adding even more excitement to playtime, bringing her total
number of toys for her nephew up to 88. It is worth noting that
she also considered purchasing a set of miniature cars, which were
on sale, but decided against it due to limited space. How many
bouncy balls came in the tube?

"output": Let T be the number of bouncy balls in the tube.\nAfter
buying the tube of balls, Sophie has 18.0 + 25.0 + 3.0 + T = 46 +
T = 88.0 toys for her nephew.\nThus, T = 88.0 - 46 =
<<88.0-46=42.0>>42.0 bouncy balls came in the tube.\n#### 42.0

B.2 MULTILINGUAL DATASET AND AVAILABILITY

To facilitate our multilingual analysis, the original English datasets were translated using the GPT-4
language model. This process generated versions of the datasets in four additional languages: Chinese,
French, Spanish, and Hindi. All translated data used in this study is publicly available for review in
the supplementary material, located at the following path: Codes/Cosine Similarity/

C DETAILS OF COSINE SIMILARITIES OF HIDDEN STATES

To make the Cosine Similarity more pronounced, we adjusted the order of the questions in the dataset,
presenting the options first followed by the question statement. We present here the complete set of
cosine similarities of hidden states from Section 4.

(d) Chinese-
(a) Chinese - Proof Writer ~ (b) Chinese - FOLIO (c) Chinese GSM8K  LogicalDeduction

i st

(h) French - LogicalDeduc-
(e) French - Proof Writer (f) French - FOLIO (g) French GSM8K  tion

\

(1) Spanish - LogicalDe-
(i) Spanish - ProofWriter (j) Spanish - FOLIO (k) Spanish GSM8K  duction

(p) Hindi - LogicalDeduc-
(m) Hindi - ProofWriter (n) Hindi - FOLIO (o) Hindi GSM8K tion

Figure 4: Performance of Llama-3-8B-Instruct across languages and datasets.
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Layer-wise Average Cosine Similarity

Layer-wise Average Cosine Similarity

@ Chinese-
(b) Chinese - FOLIO (c) Chinese GSM8K  LogicalDeduction

Cosine Similarity

Similarity

‘ (h) French - LogicalDeduc-
(e) French - Proof Writer (f) French - FOLIO (g) French GSM8K  tion

Layer-wise Averd

Layer-wise Average Cosine Simiarity Layer-wise Average Cosine Similarty

" (1) Spanish - LogicalDe-
(i) Spanish - ProofWriter (j) Spanish - FOLIO (k) Spanish GSM8K  duction

Layer-wise Average Cosine Similarity jr-vise Average Cosine Similarity

os \\

T e T
. \

" (p) Hindi - LogicalDeduc-
(m) Hindi - Proof Writer (n) Hindi - FOLIO (o) Hindi GSM8K tion

Figure 5: Performance of microsoft_Phi-3-mini-4k-instruct across languages and datasets.

Layer-wise Average Cosine Similarty

(d) Chinese-
(a) Chinese - Proof Writer ~ (b) Chinese - FOLIO (c) Chinese GSM8K  LogicalDeduction

Layer-wise Average Cosine Similarity

Cosine sty

(h) French - LogicalDeduc-
(e) French - Proof Writer (f) French - FOLIO (g) French GSM8K tion

Layer-wise Average Cosine Simiarity Layer.wise Average Cosine Similarity

S Sy

-

Cosine Simtary
Cosine simtarty

" (1) Spanish - LogicalDe-
(1) Spanish - ProofWriter (§) Spanish - FOLIO (k) Spanish GSM8K  duction

Layer-wise Average Cosine Similarty

o] TN

Layer-wise Average Cosine Simiarity Layerise Average Cosine Similarty Layerwise Average Cosine Similarity —

T T :
W g W g
. T MEAVAZS o SRR

TN

(p) Hindi - LogicalDeduc-
(m) Hindi - Proof Writer (n) Hindi - FOLIO (o) Hindi GSM8K tion

Figure 6: Performance of Qwen2-7B-Instruct across languages and datasets.
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D DETAILS OF COSINE SIMILARITY BETWEEN HIDDEN STATED IN ADJACENT
LAYERS

In this section, we present the full details of the cosine similarity between hidden states in adjacent

layers. We conduct experiments on three LLMs in subsection [3.1] across four datasets in subsection
[3:2] which directly facilitate the identification of idle reasoning layers.

(a) ProofWriter (b) FOLIO (c) LogicalDeduction (d) GSM8K

Figure 7: Cosine Similarity between Hidden Stated in Adjacent Layers of Llama-3-8B-Instruct

(a) ProofWriter (b) FOLIO (c) LogicalDeduction (d) GSMSK

Figure 8: Cosine Similarity between Hidden Stated in Adjacent Layers of Phi-3-mini-4k-instruct

(a) ProofWriter (b) FOLIO (c) LogicalDeduction (d) GSMSK

Figure 9: Cosine Similarity between Hidden Stated in Adjacent Layers of Qwen2-7B-Instruct
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E RESULTS OF THE METHOD FOR FUNCTIONAL LAYER SEGMENTATION

In this Section, we provide a detailed explanation of the method used to approximate a reasonable
location in Section [5} and introduce the values we ultimately selected for the functional layer
segmentation.

Our method identifies the boundary between conceptualization and reasoning layers by finding the
first significant inflection point in the cross-lingual task similarity curve (g*). We locate this by
calculating the discrete second derivative, A%2g* = gF¥t1 — 2¢* + ¢*~1, and identifying the first layer
k* where the sign of A%2g* changes. To determine the boundary of idle reasoning layers, we simply
select layers where the adjacent cosine similarity exceeds a predefined threshold .

For instance, for the Llama-3-8B-Instruct model on the Proof Writer dataset (comparing Chinese and
English versions), the layer-wise mean cosine similarities (gk) are: [0.582, 0.640, 0.745,0.772, 0.768,
0.780, 0.781, 0.797, 0.795, 0.812, 0.815, 0.824, 0.851, 0.841, 0.826, 0.826, 0.821, 0.811, 0.811,
0.799, 0.788, 0.793, 0.804, 0.813, 0.799, 0.748, 0.715, 0.677, 0.676, 0.629, 0.515, 0.357]

Calculating the discrete second derivative for this sequence, the first few values are:

o A2g1 = g% —2¢' + ¢° &~ 0.745 — 2(0.640) + 0.582 = +0.047
o A%g2 = g3 —2¢% + g' = 0.772 — 2(0.745) + 0.640 = —0.078

The first sign change occurs at k* = 2, which we identify as the boundary. We have performed this
analysis across all our experimental settings and found this result to be remarkably consistent for this
model. For the vast majority of tasks and languages, the first inflection point for Llama-3 is identified
at layer 2. Based on this robust finding, we select layer 2 as the conceptualization-reasoning boundary
for this model. In contrast, the boundary between active and idle reasoning layers is task-dependent;
generally, more challenging tasks require a larger number of active reasoning layers. The specific
segmentation results are summarized in the table below.

During the experiments, we observed that for certain datasets, the adjacent cosine similarity of
Qwen2-7B-Instruct failed to exceed the threshold /3. In such cases, we conclude that the task does
not contain idle reasoning layers.

Llama-3-8B-Instruct

Datasets conceptualization layers | active reasoning layers | idle reasoning layers | textualization layers
ProofWriter [0,2) [2,20) [20,30) [30,32)
FOLIO [0,2) [2,20) [20,30) [30,32)
LogicalDeduction [0,2) [2,22) [22,30) [30,32)
GSMSK [0,2) [2,22) [22,30) [30,32)

Table 4: Functional Layer Segmentation of Llama-3-8B-Instruct
Phi-3-mini-4k-instruct

Datasets conceptualization layers | active reasoning layers | idle reasoning layers | textualization layers
ProofWriter [0,2) [2,26) [26,31) [31,32)
FOLIO [0,2) [2,23) [23,31) [31,32)
LogicalDeduction [0,2) [2,24) [24,31) [31,32)
GSMSK [0,2) [2,28) [28,31) [31,32)

Table 5: Functional Layer Segmentation of Phi-3-mini-4k-instruct
Qwen?2-7B-Instruct

Datasets conceptualization layers | active reasoning layers | idle reasoning layers | textualization layers
ProofWriter [0,3) [3,26) - [26,28)
FOLIO [0,3) [3,26) - [26,28)
LogicalDeduction [0,3) [3,24) [24,26) [26,28)
GSMSK [0,3) [3,26) - [26,28)

Table 6: Functional Layer Segmentation of Qwen2-7B-Instruct
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F EXPERIMENTAL DETAILS

F.0.1 TESTING METHOD

We test the finetuned models on their corresponding datasets. Since the reasoning datasets are
multiple-choice questions, we can directly check whether the answers are correct.

For mathematical problems, we extract and compare the numerical answers. If an answer is not
detected, we consider it incorrect by default.

In addition to evaluating the fine-tuning performance of LIFT and full Transformer layers, we also
recorded the training time required for these fine-tuning tasks as another metric.

F.1 EXPERIMENTAL ENVIRONMENT

Our experiments were conducted on a server equipped with four NVIDIA A40 GPUs, each with 46
GB of memory. All training and evaluation tasks were performed on a single A40 GPU. The server is
powered by an AMD EPYC 9654 96-Core Processor with 755 GiB of RAM and 16 TB of storage.

We used Ubuntu 20.04.6 LTS as the operating system, with Python 3.10.14 as the main program-
ming environment. All deep learning experiments were implemented using PyTorch 2.5.1+cul24,
leveraging CUDA for GPU acceleration.

F.2 SOFTWARE AND LIBRARIES
* CUDA Version: 12.5
* Driver Version: 555.58.02
* Deep Learning Framework: PyTorch 2.5.1 with CUDA 12.4 support
* Python Version: 3.10.14
¢ Operating System: Ubuntu 20.04.6 LTS

F.3 TRAINING CONFIGURATION
We fine-tuned these models using the following hyperparameters:

* Learning Rate: le-5

* LoRA Rank: 64

* LoRA Alpha: 128

* LoRA Dropout: 0.05

* Batch Size per Device: 4

* Gradient Accumulation Steps: 8
* Max Sequence Length: 512

* Random Seeds: 0, 1, 2, 3

* Warmup Ratio: 0.03

F.4 EXECUTION STRATEGY

All training and evaluation were executed on a single A40 GPU to maintain consistency. Multi-GPU
capabilities were available but not utilized for this experiment. Distributed strategies like FSDP or
DeepSpeed were not applied in this setup.

G RESULTS OF ABLATION EXPERIMENTS

In this section, we present the results of our ablation experiments. Tables[7] [ and [9]report the perfor-
mance of fine-tuning various functional regions of different large language models (LLMs), including
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the conceptualization layers, active reasoning layers, idle reasoning layers, and textualization layers.
As discussed in Section 5, for the ProofWriter, FOLIO, and LogicalDeduction datasets, our LIFT
algorithm fine-tunes the active reasoning layers. In contrast, for the GSM8K dataset, LIFT targets the
conceptualization layers.

From these experiments, it is evident that our LIFT algorithm significantly outperforms competing
approaches in most cases. The fine-tuning strategy, which focuses explicitly on functionally relevant
layers, yields substantial improvements in task performance. These results highlight the critical role
of selectively targeting specific functional layers within LLMs for effective task-specific optimization.

Llama-3-8B-Instruct
Datasets conceptualization layers | active reasoning layers | idle reasoning layers | textualization layers
ProofWriter 37.25% (+1.04%) 57.67% (+0.36%) 48.08% (+0.75%) 46.38% (+0.89%)
FOLIO 53.43% (+1.65%) 58.21% (+2.35%) 56.74% (+1.29%) 55.51% (£2.31%)
LogicalDeduction 45.67% (+0.72%) 53.58% (+2.47%) 46.83% (*1.67%) 45.25% (+0.88%)
GSMSK 73.96% (+0.98%) 67.87% (+0.64%) 65.22% (+0.53%) 56.48% (+0.58%)

Table 7: Performance of Fine-Tuning over Various Layer Ranges of Llama-3-8B-Instruct

Phi-3-mini-4k-instruct
Datasets conceptualization layers | active reasoning layers | idle reasoning layers | textualization layers
ProofWriter 62.42% (+0.67%) 64.88% (+0.72%) 53.42% (*1.50%) 56.00% (+2.44%)
FOLIO 61.40% (+1.46%) 64.09% (+1.09%) 51.96% (x1.79%) 52.08% (+1.81%)
LogicalDeduction 57.75% (+0.83%) 61.75% (+2.49%) 52.00% (+0.82%) 45.08% (+1.23%)
GSMSK 78.34% (+0.73%) 76.82% (+0.25%) 76.69% (+0.28%) 79.57% (+0.41%)

Table 8: Performance of Fine-Tuning over Various Layer Ranges of Phi-3-mini-4k-instruct

Qwen?2-7B-Instruct
Datasets conceptualization layers | active reasoning layers | idle reasoning layers | textualization layers
ProofWriter 45.50% (+£0.93%) 53.46% (+2.36%) - 47.46% (+0.85%)
FOLIO 27.08% (+4.19%) 44.73% (£1.98%) - 28.55% (+1.62%)
LogicalDeduction 48.08% (+0.83%) 57.08% (+3.29%) 49.00% (+0.47%) 52.58% (+2.15%)
GSMSK 75.34% (+0.66%) 75.78% (+0.24%) - 72.29% (x0.72%)

Table 9: Performance of Fine-Tuning over Various Layer Ranges of Qwen2-7B-Instruct

H RESULTS OF VISUALIZATION OF HIDDEN STATES

In this section, we examine the internal representations of transformer-based models by visualizing
the hidden states derived from different language versions of the same dataset. To facilitate this
analysis, we employ three widely used dimensionality reduction techniques: Principal Component
Analysis (PCA) (Hotelling, |1933)), t-distributed Stochastic Neighbor Embedding (t-SNE) (Van der
Maaten & Hinton, 2008)), and Uniform Manifold Approximation and Projection (UMAP) (McInnes
et al., [2018). For a controlled comparison, we utilize a single dataset with multiple languages,
ensuring that the semantic content remains consistent across all versions. The model processes these
multilingual inputs and generates corresponding hidden state vectors.

The visualizations produced by PCA, t-SNE, and UMAP (shown in the following figure) provide a
robust basis for analyzing the hidden state representations across different languages. Our results
reveal a consistent pattern in the evolution of hidden states across the layers of the language model.
Specifically, in the input-adjacent and output-adjacent layers, internal representations tend to form
clusters based on language. In contrast, in the intermediate layers, hidden states from different
languages become increasingly intermixed, exhibiting a clear phenomenon of language blending.
This suggests that while early and late layers are more language-specific, intermediate layers abstract
away from surface linguistic forms and encode more universal semantic representations.
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Figure 10: T-SNE visualizations for layers 1-32 of Llama-3-8B-Instruct on the GSM8K dataset.
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Figure 11: T-SNE visualizations for layers 1-32 of Llama-3-8B-Instruct on the FOLIO dataset.
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Figure 12: T-SNE visualizations for layers 1-32 of Llama-3-8B-Instruct on the LogicalDeduction

dataset.
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Figure 13: T-SNE visualizations for layers 1-32 of Llama-3-8B-Instruct on the Proof Writer dataset.
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Figure 14: PCA visualizations for layers 1-32 of Llama-3-8B-Instruct on the GSMS8K dataset.
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Figure 15: PCA visualizations for layers 1-32 of Llama-3-8B-Instruct on the FOLIO dataset.
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Figure 16: PCA visualizations for layers 1-32 of Llama-3-8B-Instruct on the LogicalDeduction

dataset.
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Figure 17: PCA visualizations for layers 1-32 of Llama-3-8B-Instruct on the ProofWriter dataset.
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Figure 18: UMAP visualizations for layers 1-32 of Llama-3-8B-Instruct on the GSMS8K dataset.
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Figure 19: UMAP visualizations for layers 1-32 of Llama-3-8B-Instruct on the FOLIO dataset.
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Figure 20: UMAP visualizations for layers 1-32 of Llama-3-8B-Instruct on the LogicalDeduction
dataset.
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Figure 21: UMAP visualizations for layers 1-32 of Llama-3-8B-Instruct on the ProofWriter dataset.
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Figure 22: T-SNE visualizations for layers 1-32 of Phi-3-mini-4k-instruct on the GSM8K dataset.
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Figure 23: T-SNE visualizations for layers 1-32 of Phi-3-mini-4k-instruct on the FOLIO dataset.
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Figure 24: T-SNE visualizations for layers 1-32 of Phi-3-mini-4k-instruct on the LogicalDeduction
dataset.

36



1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

o & -
s &

T-SNE, Layer 6

T-SNE, Layer 11

T-SNE, Layer 16

T-SNE, Layer 7

T-SNE, Layer 12

T-SNE, Layer 17

T-SNE, Layer 8

T-SNE, Layer 13

Tt 3 %af [o¥%a"
;id'-*ﬂ“' Bl T ens B s ne
e g e @ Rt e
- z L e 1 ® ‘.
T-SNE, Layer 21 T-SNE, Layer 22 T-SNE, Layer 23
¥ . e N
S L %

L R A
ER",@ §'.“” l"”.“

- X SE_E a
T-SNE, Layer 26 T-SNE, Layer 27 T-SNE, Layer 28
- “ 0" 5
| e WY e
E:.Q_” - 4
T-SNE, Layer 31

.
$
5
W

b v e

T-SNE, Layer 9

T-SNE, Layer 14

T-SNE, Layer 10

T-SNE, Layer 15

oF

T-SNE, Layer 19

. 0y 8%
N B
i ES
T-SNE, Layer 24 T-SNE, Layer 25
T e wE [ 8w E
‘:g"'-.’? N "'":v 14
- ',’.y ¥ L g
. % N -
N‘ o "'n-— - “"m- R
T-SNE, Layer 29 T-SNE, Layer 30
°® “0 5
- Dy ‘1‘
L age
-
T-SNE, Layer 32

Figure 25: T-SNE visualizations for layers 1-32 of Phi-3-mini-4k-instruct on the ProofWriter dataset.
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Figure 26: PCA visualizations for layers 1-32 of Phi-3-mini-4k-instruct on the GSMS8K dataset.
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Figure 27: PCA visualizations for layers 1-32 of Phi-3-mini-4k-instruct on the FOLIO dataset.
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Figure 29: PCA visualizations for layers 1-32 of Phi-3-mini-4k-instruct on the ProofWriter dataset.
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Figure 30: UMAP visualizations for layers 1-32 of Phi-3-mini-4k-instruct on the GSM8K dataset.
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Figure 31: UMAP visualizations for layers 1-32 of Phi-3-mini-4k-instruct on the FOLIO dataset.
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Figure 32: UMAP visualizations for layers 1-32 of Phi-3-mini-4k-instruct on the LogicalDeduction

dataset.
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Figure 33: UMAP visualizations for layers 1-32 of Phi-3-mini-4k-instruct on the ProofWriter dataset.
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Figure 35: T-SNE visualizations for layers 1-28 of Qwen2-7B-Instruct on the FOLIO dataset.
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Figure 36: T-SNE visualizations for layers 1-28 of Qwen2-7B-Instruct on the LogicalDeduction

dataset.
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Figure 37: T-SNE visualizations for layers 1-28 of Qwen2-7B-Instruct on the ProofWriter dataset.
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Figure 39: PCA visualizations for layers 1-28 of Qwen2-7B-Instruct on the FOLIO dataset.
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Figure 40: PCA visualizations for layers 1-28 of Qwen2-7B-Instruct on the LogicalDeduction dataset.
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Figure 41: PCA visualizations for layers 1-28 of Qwen2-7B-Instruct on the ProofWriter dataset.
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Figure 42: UMAP visualizations for layers 1-28 of Qwen2-7B-Instruct on the GSMS8K dataset.
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Figure 43: UMAP visualizations for layers 1-28 of Qwen2-7B-Instruct on the FOLIO dataset.
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Figure 44: UMAP visualizations for layers 1-28 of Qwen2-7B-Instruct on the LogicalDeduction
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Figure 45: UMAP visualizations for layers 1-28 of Qwen2-7B-Instruct on the Proof Writer dataset.

57



Under review as a conference paper at ICLR 2026

I LLM USAGE

In the preparation of this manuscript, a large language model (LLM) was used to aid and polish the
writing process. The authors have reviewed and edited all text and take full responsibility for the
content of this paper.

58



