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ABSTRACT
Video Moment Retrieval (MR) tasks involve predicting the moment
described by a given natural language or spoken language query in
an untrimmed video. In this paper, we propose a novel Maskable
Retentive Network (MRNet) to address two key challenges in MR
tasks: cross-modal guidance and video sequence modeling. Our
approach introduces a new retention mechanism into the multi-
modal Transformer architecture, incorporating modality-specific
attention modes. Specifically, we employ the Unlimited Attention
for language-related attention regions to maximize cross-modal
mutual guidance. Then, we introduce the Maskable Retention for
video-only attention region to enhance video sequence modeling,
that is, recognizing two crucial characteristics of video sequences:
1) bidirectional, decaying, and non-linear temporal associations
between video clips, and 2) sparse associations of key information
semantically related to the query. We propose a bidirectional de-
cay retention mask to explicitly model temporal-distant context
dependencies of video sequences, along with a learnable sparse re-
tention mask to adaptively capture strong associations relevant to
the target event. Extensive experiments conducted on five popular
benchmarks ActivityNet Captions, TACoS, Charades-STA, Activ-
ityNet Speech, and QVHighlights for MR tasks demonstrate the
significant improvements achieved by our method over existing
approaches. Code is available at https://github.com/xian-sh/MRNet.

CCS CONCEPTS
• Computing methodologies → Activity recognition and un-
derstanding; • Information systems→Multimedia and mul-
timodal retrieval.
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Ground Truth (GT): 80.75s 147.34s
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SLMR (Audio Query):

NLMR (Text Query):

Current Clip 

Specific modal constraints for video in cross-modal guidance

 Fading temporal association①

③
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redundancy interferences 
especially in a long video1 

ForwardBackward

②

      

Figure 1: An example of query-based videoMoment Retrieval
(MR). We address the visual contextual association learning
challenge based on characteristics: ① Temporal association
between video clips, ② Redundant background interference.
And we address the cross-modal guidance challenge based on
③ Specific cross-modal attention constraints.

1 INTRODUCTION
As an important application of multimedia andmultimodal retrieval,
query-guided video Moment Retrieval (MR) [8, 53] has attracted
great attention from the research community in recent years [1, 5, 8,
12, 16–18, 22, 50, 57, 58, 63, 66, 67]. TheMR task is initially proposed
with the text as the query to retrieve the target moment within an
untrimmed video, and this task setting still dominates the field of
moment retrieval, which is called NLMR (Natural Language Moment
Retrieval). As speech technology evolves, Xia et al. [53] explore
the possibility of retrieving video with audio query and propose
the ActivityNet Speech dataset and a new MR task, namely SLMR
(Spoken Language Moment Retrieval). Fig. 1 shows their example,
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given a sentence query “the man then rides the bike and it moves
across the snow” or an audio query, the goal of MR tasks is to
find the moment (80.75s-147.34s) that is semantically described
by the query. Recently, some MR-related multi-task work such as
moment retrieval and highlight detection (MR+HD) task has also
been explored [14, 29], where HD refers to additionally determining
the highlightness (or saliency) score of each clip in the predicted
moments. Although these MR tasks are set up differently, they
share some key challenges, i.e., how to improve self-modal context
modeling (especially “visual contextual association learning”) and
“cross-modal guidance” for better video content understanding and
semantic alignment between language and video.

For the above two challenges, we rethink the MR tasks and
highlight the following three characteristics: (C1) Temporal asso-
ciation between video clips. Existing works mostly emphasize
some kind of relational modeling in terms of temporal sequence,
e.g., near-neighbor, recursive, local and global [9, 25, 30, 38]. How-
ever, as shown in Fig. 1, gradually decaying correlations are bidi-
rectional along the timeline, these correlations are complex and
non-linear [3], which may not be adequately expressed for example
by weighting techniques like attention [47]. (C2) Redundant back-
ground interference. The background contains a lot of redundant
information (Fig. 1) that can interfere with the recognition of the
current event, and this redundancy is even worse in long videos,
resulting in the key information semantically related to the target
event being sparsely associated. Thus, additional de-redundancy
strategies are important to highlight the key information in a video
and improve the quality of moment retrieval. (C3) Specific cross-
modal attention constraints. Since the video moment retrieval
is a typical cross-modal task with the language query as guidance,
and inspired by the success of Transformers [47] in cross-modal
tasks [4, 6, 20, 35, 39, 70–73], many recent MR methods [14, 29, 62–
64] adopt the Transformers to achieve the “cross-modal guidance”
with no difference in the attention modes. However, we will no
longer treat the different modalities indiscriminately, we impose the
C1 & C2 constraints on video-only attention region, but not on the
other query-related regions, so as to improve visual modeling and
maximize linguistic guidance. Concretely, in this work, we attempt
to solve the “cross-modal guidance” challenge based on C3 and the
“video sequence modeling” challenge based on C1 & C2.

In this paper, we propose a new Maskable Retentive Network
(MRNet) for MR tasks. The overview of MRNet is shown in Fig. 3.
We first introduce a new retention mechanism [45] into the multi-
modal Transformer architecture. We divide the language and video
attention map into four regions: A(𝑞 → 𝑞), A(𝑞 → 𝑣), A(𝑣 → 𝑞)
and A(𝑣 → 𝑣), so that we can perform modality-specific opera-
tions based on the properties of the modality itself (C3): (1) As the
linguistic semantics are highly condensed and in order to better
maximize the guiding role of language, we set the Unlimited Atten-
tion mode for the language-related regions A(𝑞 → 𝑞), A(𝑞 → 𝑣)
and A(𝑣 → 𝑞), allowing queries can utilize visual details with-
out restriction, and each video clip can response to each query,
thus achieving cross-modal mutual guidance; (2) As for the pure
video branch A(𝑣 → 𝑣), we propose a new Maskable Retention
mechanism to model two characteristics of video sequences (C1 &
C2) together. Specifically, we firstly optimize the original retention
mechanism [45] as a bidirectional decay mask along the timeline to
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Figure 2: Comparison of recent best-performing multi-query
trained MRmethods in terms of model parameters and infer-
ence speed. Our MRNet-M demonstrates the optimal trade-
off between model efficiency and accuracy.

control the range within which the current video sequence token
can be reviewed before and after with gradually fading attention,
which can achieve the bidirectional recurrent sequence modeling
effect. Second, in the video branch A(𝑣 → 𝑣) of 𝑇 ×𝑇 size, a large
number of redundant responses between the video clips serving
as background may interfere with the highlighting of the target
moment regions, and cause the key useful responses to be sparse, so
we further propose a learnable sparse retention mask to adaptively
highlight the strong responses and learn the key specific semantic
associations related to the target event. In addition, to ensure the
sparsity of the video attention, we design a self-supervised sparsity
constraint loss to remove redundant responses.

To sum up, our proposed MRNet has parallel training capability
like Transformers and aggregates bidirectional recursive reasoning
capability like RNNs, enhanced visual modelingmethodologies (like
maskable retention, bidirectional decay, learnable sparse retention,
nonlinearity, etc.). Moreover, our proposed architecture is applicable
to NLMR, SLMR and MR+HD tasks and can be implemented in
either single or multi-query training modes. In the validation of our
experiments, the effect is maximized during multi-query training.
The performance of our model is not only good, but also achieves a
trade-off between model size and accuracy, as shown in Fig. 2.

The main contributions of this work can be summarized as fol-
lows: (1) We propose a new Maskable Retentive Network (MRNet)
for three MR tasks (NLMR, SLMR and MR+HD) from a new per-
spective of deep video sequence modeling. It is a new attempt
to introduce the retention mechanism into the multimodal Trans-
former framework for video sequence modeling, which is proven
to have a significant performance advantage over other methods,
and the architectural advantages such as scalability, recurrent se-
quential reasoning and sparsity. (2) We innovatively implement
modality-specific attention modes, set Unlimited Attention for
language-related attention regions to maximize cross-modal mutual
guidance, and propose a new Maskable Retention for pure video
branch for enhanced video sequence modeling. (3) We propose core
video modeling methods: 1) bidirectional retention mask expresses
temporal associations of video sequences (bidirectional, decaying,
non-linear), 2) learnable sparse retention mask adaptively learns
the strong associative responses related to the target event, and a
new self-supervised loss is designed to constrain the sparsity of
video attention region and remove redundant associations. (4) Ex-
tensive experiments are conducted on five benchmarks (ActivityNet



Maskable Retentive Network for Video Moment Retrieval MM ’24, October 28-November 1, 2024, Melbourne, VIC, Australia

…

…

q1
q2
…

qM 

v1
v2
v3
v4
…
vT 

xPos

xPos

Bidirectional Retention Mask

Learnable Sparse Mask

Qq  Kq  Vq

Qv  Kv  Vv

Q

K

V

C.

×N

…

LayerN
orm

FFN
sT

M

…

Match Score Prediction

Unlimited  Attention

Maskable 
Retention

q→q q→v

v→q v→v

MRT Block

Start

End

: M𝑅𝐷

: M𝐿𝑆

L𝑠𝑝𝑎𝑟𝑠𝑒

Figure 3: Overview of our proposed Maskable Retentive Network (MRNet) architecture. The detailed description of MRT block
is given in Sec. 3.2, after passing through multiple MRT blocks, the enhanced video features are used to create a 2D moment
map in order to obtain the moment that best matches the query.

Captions, TACoS, Charades-STA, ActivityNet Speech and QVHigh-
lights datasets) for three MR tasks, and the excellent experimental
results demonstrate the effectiveness of our proposed network.

2 RELATEDWORK
Video Moment Retrieval.We review existing query-guided video
Moment Retrieval (MR) methods in video sequence modeling. Gen-
erally, existing methods address the video modeling and query guid-
ance with specific designs of cross-modal interaction [23, 24, 30, 37,
40, 44, 59, 62–64], feature fusion [16, 22, 54, 60, 61, 65–68], relational
learning [9, 10, 23, 25, 31, 43, 52], etc.. And deep learning architec-
ture technologies for video sequence modeling include clip-level se-
quential inference with RNNs [23, 25, 53, 56, 60, 62–64], moment re-
lation modeling with CNNs [50, 52, 65–67] and GCNs [9, 23, 25, 43],
and recently dominant semantic association learning between clip
tokens with Transformers [14, 16, 19, 22, 25, 29, 30, 41, 44, 53, 62–
64] in MR field. In this paper, we introduce a new retentive decay
mechanism to model complex temporal correlation characteristics
in video (i.e., bidirectional, decaying, non-linear), and propose a
new structural paradigm to address video moment retrieval tasks
involving video and query interactions, which implements deep
video retentive reasoning in a cross-modal environment to rethink
the two key challenges of MR tasks as discussed in the Introduction.
Retentive Network for Video Sequence Modeling. Inspired by
the success of the Transformers [47] in both natural language pro-
cessing and computer vision [2, 6, 11, 34, 39, 48, 69], many effective
transformer-based vision modeling strategies for MR tasks have
been proposed [14, 16, 25, 29, 37, 49, 53, 63, 64]. Zhang et al. [64]
adopt the visual language transformer encoder to jointly learn fine-
grained associations between words and video clips, Xia et al. [53]
propose the video-guided audio transformer decoding representa-
tion pre-training, Lei et al. [14] construct the Moment-DETR frame-
work using transformer-based detection pipeline. The transformer-
based moment retrieval structure enjoys efficient training and high
performance. Recently, there have been some approaches such as
RWKV [32] and RetNet [45] that have started to explore the ad-
vantages of combining Transformers and RNNs to improve the
temporal inference capability of the model. In this paper, we at-
tempt to introduce a new retention mechanism into transformer for

MR tasks. The new retention mechanism has the strengths for video
sequence modeling such as parallel training like Transformers, bidi-
rectional recurrent reasoning via the design of a new bidirectional
decay mask, enhanced association learning through a learnable
sparse retention mask and the nonlinearity regulation by updating
the gate operation of retention.

3 OUR METHOD
3.1 Preliminary
3.1.1 Problem Definition. Given an untrimmed video consisting
of a sequence of 𝑇 video clips, let its corresponding pre-extracted
features be V = {𝑣𝑖 }𝑇𝑖=1 ∈ R𝑇×𝑑

𝑣
, where 𝑑𝑣 is the clip feature

dimension, and Q = {𝑞𝑖 }𝑀𝑖=1 ∈ R𝑀×𝑑𝑞 be a query set consisting of
a number of𝑀 language queries with the 𝑑𝑞-dim feature. The goal
of both MR tasks NLMR (natural language moment retrieval) and
SLMR (spoken language moment retrieval) is to predict the temporal
boundaries (𝜏𝑠𝑡𝑎𝑟𝑡 , 𝜏𝑒𝑛𝑑 ) of target moment described by a given
query 𝑞 (text or audio modality).

3.1.2 Feature Encoding. We linearly convert each query token and
video clip token into a unified feature space. Thus, we obtain the
query and video features Q ∈ R𝑀×𝑑 andV ∈ R𝑇×𝑑 , and represent
their concatenated long input sequence as Q||V , where | | denotes
matrix concatenation operation. Considering the differences be-
tween video and language modalities, we independently add posi-
tional embedding for two modalities. Rotary position embedding
method xPos [46] has decomposability and can better express the
relative positional relationships of query and video sequences [42].
So we use it to encode two modalities:

𝑄𝑞 = (Q ·𝑊𝑄𝑞) ⊙ Θ𝑞, 𝐾𝑞 = (Q ·𝑊𝐾𝑞) ⊙ Θ𝑞 ;

𝑄𝑣 = (V ·𝑊𝑄𝑣) ⊙ Θ𝑣, 𝐾𝑣 = (V ·𝑊𝐾𝑣) ⊙ Θ𝑣 ;
𝑉𝑞 = Q ·𝑊𝑉𝑞, 𝑉𝑣 = V ·𝑊𝑉 𝑣 ;
𝑄 = 𝑄𝑞 | |𝑄𝑣, 𝐾 = 𝐾𝑞 | |𝐾𝑣, 𝑉 = 𝑉𝑞 | |𝑉𝑣 ,

(1)

whereΘ𝑞/𝑣 is the complex conjugate ofΘ𝑞/𝑣 = 𝑒𝑖𝜃 [46] respectively,
and 𝑖 is the index of sequence elements.
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3.2 Maskable Retentive Network
In this section, we conduct modality-specific attention modes, that
is, we set Unlimited Attention for language-related attention
regions to maximize cross-modal mutual guidance, and perform
a new Maskable Retention for video branch A(𝑣 → 𝑣) for en-
hanced video sequence modeling. The core videomodelingmethods
(Bidirectional Retention Mask, Learnable Sparse Retention Mask
and self-supervised sparse constraint loss) in Maskable Retention
will be described as follows.

3.2.1 Video-Language Attention. We follow the calculation of video-
language attention A ∈ R(𝑀+𝑇 )×(𝑀+𝑇 ) in transformer. Eq. 2 di-
vides the attention matrix into four blocks:A𝑀×𝑀 ,A𝑀×𝑇 ,A𝑇×𝑀
and A𝑇×𝑇 , which represents four attention regions: A(𝑞 → 𝑞),
A(𝑞 → 𝑣),A(𝑣 → 𝑞) andA(𝑣 → 𝑣). We adopt different attention
modes for different attention regions based on the characteristics
of the modality itself. That is, as videos often contain repetitive or
closely similar visual images and sparsely response to the query, we
apply the Maskable Retention in the visual branch A(𝑣 → 𝑣) to re-
move redundant vision information and model retentive reasoning
in video sequences and enhance temporal context association in
the video. For query branch (other three attention regions), as the
query semantics is relatively dense and doesn’t reach a redundancy
bound (each word in the queries has its own contextual linguistics),
we leave them free to the query branch, so that queries and queries,
and queries and video clip can be associated with each other with-
out limitation in terms of retention calculation, thereby queries
and video clips can provide comprehensive mutual guidance and
semantic alignment as shown in Fig. 3.

A = 𝑄 · 𝐾⊺ =

[
𝑄𝑞

𝑄𝑣

]
· [ 𝐾𝑞

⊺ 𝐾𝑣
⊺ ]

=

[
𝑄𝑞 · 𝐾𝑞⊺ 𝑄𝑞 · 𝐾𝑣

⊺

𝑄𝑣 · 𝐾𝑞⊺ 𝑄𝑣 · 𝐾𝑣
⊺

]
=

[
A𝑀×𝑀 A𝑀×𝑇

A𝑇 ×𝑀 A𝑇 ×𝑇

]
.

(2)

The Unlimited Attention for query branch is tend to maximize the
“linguistic guidance”, and the Maskable Retention for visual branch
A(𝑣 → 𝑣) is designed to enhance the “vision modeling”. Specif-
ically, the additional optimization strategies Maskable Retention
includes two important masking mechanisms, i.e., the Bidirectional
Retention Mechanism (expressed by a matrix M𝑅𝐷 ) and Learnable
Sparse Retention Mask (expressed by a matrix M𝐿𝑆 ). The M𝑅𝐷 is
designed for stronger temporal sequential reasoning and the M𝐿𝑆

is for highlighting key semantic associations in the video. Next we
give the detailed explanations of them.

3.2.2 Bidirectional Retention Mechanism. For modeling the refined
temporal context association between video sequences, we recon-
sider that a video is a sequence with retention relationships in time.
Inspired by the powerful ability in sequence modeling of Retentive
Network (RetNet) for language models [45], we introduce the re-
tention mechanism into retentive reasoning in video sequence for
better visual contextual association learning. Unlike the original Ret-
Net that employing the unidirectional (only forward) retention, we
incorporate a bidirectional explicit retention decay masking
M𝑅𝐷 for A(𝑣 → 𝑣), so that the current token can bidirectionally
review temporal dependencies forward and backward:

BiRetention(𝑉𝑣) = (A𝑇×𝑇 ⊙ M𝑅𝐷 ) ·𝑉𝑣 ; (3)

(M𝑅𝐷 )𝑛,𝑚 = 𝛾 |𝑛−𝑚 | ,M𝑅𝐷 ∈ R𝑇×𝑇 , (4)
where𝛾 is retention decay factor (e.g.,𝛾 = 0.98),𝑛 and𝑚 are the row
and column indices of matrixM𝑅𝐷 , which combines bidirectional
temporal masking and exponential decay along relative distance as
shown in Fig. 3. Based on Eq. 4, we construct gradual decay effect
from near to far on the video segment at the current time step
and explicitly control the valid receptive field range of before and
after the current token by setting a specific 𝛾 value. This is used
to perform recurrent retention reasoning in the video to enhance
the model’s temporally contextual learning ability like RNNs with
transformer architecture.

3.2.3 Learnable Sparse Retention Mask. In addition to optimizing
the temporal modeling capability of the model, we further optimize
the model’s ability to associate the semantics of video sequences.
Andwe note the fact that inMR tasks, video sequences often contain
a large amount of redundant background information, which can
lead to excessive interference responses in the cross-modal atten-
tion map. And we argue that the strong responses in the attention
map should be sparse, thus we further propose the Learnable Sparse
Retention Mask to focus this issue for better “vision modeling”.

To depict the key semantic associations between video sequence
tokens, we innovatively introduce a learnable sparse mask M𝐿𝑆

that allows the model to focus more on relevant video tokens, learn-
ing an adaptive attention map to optimize for task-specific perfor-
mance improvement. Then, we add a new self-supervised sparse
constraint loss L𝑠𝑝𝑎𝑟𝑠𝑒 for region A(𝑣 → 𝑣) to reduce redundant
noise interference within the video and learn more critical and use-
ful information. We propose an auxiliary variable𝑊𝐿𝑆 of size𝑇 ×𝑇
to buildM𝐿𝑆 , randomly initialize and optimize it during training.
The calculation method forM𝐿𝑆 and sparsity constraint loss are:

M𝐿𝑆 = (1 − I𝑇×𝑇 ) · 𝜎 (𝑊𝐿𝑆 ) + I𝑇×𝑇 ; (5)

L𝑠𝑝𝑎𝑟𝑠𝑒 =
1
𝑇 2

𝑇∑︁
𝑖=1

𝑇∑︁
𝑗=1

��𝜎 (𝑊𝐿𝑆 )𝑖, 𝑗 �� , (6)

here I𝑇×𝑇 is an identity matrix, we adopt the sigmoid function 𝜎
with the threshold of 0.5 to scale𝑊𝐿𝑆 into [0, 1], to build a soft mask.
Here the maskM𝐿𝑆 is decomposed into two parts: self-token mask
I𝑇×𝑇 and inter-token mask (1 − 𝐼𝑇×𝑇 ) · 𝜎 (𝑊𝐿𝑆 ). The self-token
mask is explicit and acts as a diagonal matrix. The minimization
of the objective loss L𝑠𝑝𝑎𝑟𝑠𝑒 of Eq. 6 is mainly imposed on the
inter-token mask term. Finally, L𝑠𝑝𝑎𝑟𝑠𝑒 serves as a regularizer to
force the mask sparse, this drives some of the mask values towards
0, resulting in effective noise suppression. Acting M𝐿𝑆 on video
branchA(𝑣 → 𝑣), would force the model to learn a sparse attention
map that retains only the key correspondences.

3.2.4 Maskable Retentive Transformer Block. We adopt the pro-
posed maskable retention to enhance the video sequence inference
ability of the model. With the learned matricesM𝑅𝐷 andM𝐿𝑆 , we
update the representation of language video attention A:

A′ =


A𝑀×𝑀 A𝑀×𝑇

A𝑇 ×𝑀 A𝑇 ×𝑇 ⊙ M𝑅𝐷 ⊙ M𝐿𝑆︸                         ︷︷                         ︸
Maskable Retention

 ; (7)

MaskRetention(𝑋 ) = Softmax(A′) ·𝑉 . (8)
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Table 1: The statistics of three widely used natural language moment retrieval (NLMR) datasets, the recent spoken language
moment retrieval (SLMR) dataset, and the recent multi-task of moment retrieval and highlight detection (MR+HD) dataset.

Attributes
Datasets NLMR (the query is text in English) SLMR (the query is audio in English) MR+HD (multi-task)

ANetCap [13] TACoS [36] Charades-STA [8] ANetSpeech [53] QVHighlights [14]
Domain Open-world activity Cooking Indoors Open-world activity Vlog / News

Videos / Queries (Total) 14,926 / 71,957 127 / 18,818 6,672 / 16,128 14,926 / 71,957 10,148 / 10,310
Video length / Query length (Avg) 117.61s / 15 words 287.14s / 10 words 30.59s / 7 words 117.61s / 6.22s 150s / 11 words

We set up a 𝑁 -layer MRT block to handle unified language and
video sequence input 𝑋 . A single-layer MRT block is defined as:

𝑋 ′ = 𝑋 +MaskRetention(𝑋 ) ;
MRT(𝑋 ) = 𝑋 ′ + FFN(LayerNorm(𝑋 ′)) .

(9)

The enhanced language and video features are obtained after pass-
ing through 𝑁 -layer MRT blocks, which are denoted as 𝑋𝑁 . Then,
the language and video are represented as Q𝑁 = MRT(𝑋 ) [1 : 𝑀 ; :
] ∈ R𝑀×𝑑 and V𝑁 = MRT(𝑋 ) [𝑀 + 1 : 𝑀 + 𝑇 ; :] ∈ R𝑇×𝑑 , respec-
tively.

3.3 Match Score Prediction
we follow the backend of 2D-TAN [66] to output the match score
map of candidate moments and queries, with the query feature
from the output of MRT block. Specifically, after passing through
multiple MRT blocks, we obtaine enhanced language and video
features, then we use the video features V𝑁 ∈ R𝑇×𝑑 to build the
2D candidate moments map. We compute the Hadamard product
of each query 𝑞 ∈ Q𝑁 ,Q𝑁 ∈ R𝑀×𝑑 , and 2D moments map to
obtain the matching score map 𝑆 ∈ R𝑇×𝑇 with a total of𝐶 moment
candidates. To supervise the score map, we apply the binary cross-
entropy loss to regress the IoU score of each moment:

L𝑖𝑜𝑢 =
1
𝐶

𝐶∑︁
𝑖=1

(𝑦𝑖 log(𝑆𝑖 ) + (1 − 𝑦𝑖 )log(1 − 𝑆𝑖 )) . (10)

We also adopt contrastive learning [52, 67] as an auxiliary posi-
tive and negative samples constraint:

L𝑐𝑜𝑛𝑡𝑟𝑎 = −(
∑︁

𝑞∈Q𝐵

log𝑝 (𝑣𝑞 |𝑞) +
∑︁

𝑣∈V𝐵

log𝑝 (𝑞𝑣 |𝑣) ) , (11)

where Q𝐵 and V𝐵 are the sets of queries and videos in a training
batch. For 𝑣𝑞 ∈ {𝑣+𝑞 , 𝑣−𝑞 }, 𝑣+𝑞 is the moment matched to query 𝑞 (solo
positive sample), 𝑣−𝑞 denotes the moment unmatched to 𝑞 in the
training batch (multiple negative sample). 𝑞𝑣 ∈ {𝑞+𝑣 , 𝑞−𝑣 }, 𝑞+𝑣 is the
query matched to moment 𝑣 , 𝑞−𝑣 denotes the query unmatched to 𝑣
in the training batch. Thus the total training loss is

L = L𝑖𝑜𝑢 + 𝜆𝑠 · L𝑠𝑝𝑎𝑟𝑠𝑒 + 𝜆𝑐 · L𝑐𝑜𝑛𝑡𝑟𝑎 , (12)

where 𝜆𝑠 and 𝜆𝑐 are loss weights, and unsupervised loss term
L𝑠𝑝𝑎𝑟𝑠𝑒 we propose is defined in Eq. 6.

4 EXPERIMENTS
4.1 Datasets and Evaluation Metrics
4.1.1 Datasets. To evaluate the performance of our proposed MR-
Net, we conduct experiments for three MR tasks (NLMR, SLMR,
MR+HD) on five benchmarks as statistically described in Tab. 1.
For NLMR task, three widely used datasets include: 1) ActivityNet

Captions (ANetCap) [13] dataset contains 19, 209 videos from
YouTube. Following the dataset partitioning [66], we use val_2
as the test set. Specifically, there are 37,417 and 17,031 sentence-
moment pairs for train and test, respectively. 2) TACoS [36] dataset
contains 127 videos where activities occur in the kitchen. It has 75
and 25 samples for training and testing, respectively. 3) Charades-
STA [8] dataset contains 9, 848 videos that contains indoor activities.
Following the same dataset split as [8] for fair comparisons, it has
12,408 and 3,720 samples for training and testing, respectively.

To validate the scalability of our model, we also conduct exper-
iments on the recently proposed MR-related datasets. For SLMR
task, there is currently only one publicActivityNet Speech (ANet-
Speech) [53]. The queries of which are audios in English, obtained
by volunteers reading text captions, and its dataset division is con-
sistent with ANetCap dataset. For the MR+HD multi-task, The
QVHighlights [14] dataset is recently proposed for joint moment
retrieval and highlight detection tasks, it contains 10,148 open-
world videos and 10,310 queries, we follow its data splits [14, 29].

4.1.2 Evaluation Metrics. Following the convention [8, 30, 66], we
evaluate the performance of Moment Retrieval on two main met-
rics: 1) Recall:We adopt “R@𝑘 , IoU@𝜇” as the evaluation metric,
which represents the percentage of top-𝑘 predicted moments whose
tIoU (temporal Intersection Over Union) with the ground-truth mo-
ment is larger than 𝜇. We consider the following tIoU threshold
values 𝜇 = {0.1, 0.3, 0.5, 0.7}. 2)mIoU:We also adopt mIoU as the
evaluation metric to count the average value of tIoU of all test
samples. Additionally, for QVHighlights dataset, we follow official
protocol [14]: mean average precision (mAP) is also a metric for
Moment Retrieval (MR) and HIT@1 indicates the hit ratio of the
top-scoring clip to metric Highlight Detection (HD) task.

4.2 Implementation Details
4.2.1 Feature Extraction. For the preliminary extraction of video
features, we use the C3D feature on ANetCap, ANetSpeech and
TACoS from 2D-TAN [66], the I3D feature on Charades-STA from
[30], as well as SlowFast/CLIP features on QVHighlights provided
by [14] for a fair comparison. We set the number of sampled clips
𝑇 to 64 for ANetCap and Charades-STA, 128 for TACoS, and 75
for QVHighlights. For text features, following previous work [14,
52], we adopt the GloVe [33], BERT [39] feature and CLIP [35]
feature (only on QVHighlights [14]). We extract the audio feature
of ANetSpeech with the pre-trained Data2vec [2] model.

4.2.2 Model Settings. We implement two layers of MRNet block.
For the back-end decoder setup, we adopt the same 2D proposal
generation as 2D-TAN [66] and MMN [52] for the NLMR and SLMR
tasks, and employ the same back-end (2-layer decoder and task loss
settings) as Moment-DETR [14] and QD-DETR [29] for the joint
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Table 2: Evaluation results for ANetCap and TACoS datasets. The best results and second best performance are marked with
bold and underline, respectively. We list the main visual processing backbones. “MRNet-S” and “MRNet-M” refer to the model
with single-query training mode and multi-query mode, respectively.

Method Backbones Text
ANetCap TACoS

R@1, IoU@ R@5, IoU@ mIoU R@1, IoU@ R@5, IoU@ mIoU0.3 0.5 0.7 0.3 0.5 0.7 0.1 0.3 0.5 0.1 0.3 0.5
VSLNet [63] Transformer GloVe 63.16 43.22 26.16 - - - 43.19 - 29.61 24.27 - - - 24.11
2D-TAN [66] CNN GloVe 59.45 44.51 26.54 85.53 77.13 61.96 - 47.59 37.29 25.32 70.31 57.81 45.04 -
CSMGAN [25] RNN/GCN GloVe 49.11 29.15 77.43 59.63 - 33.90 27.09 53.98 41.22 -
CPNet [16] Transformer GloVe - 40.56 21.63 - - - 40.65 - 42.61 28.29 - - - 28.69
VSLNet-L [62] Transformer GloVe 62.35 43.86 27.51 - - - 44.06 - 47.11 36.34 - - - 36.61
MS-2D-TAN [65] CNN GloVe 61.04 46.16 29.21 87.30 78.80 60.85 - 49.24 41.74 34.29 78.33 67.01 56.76 -
MSAT [64] Transformer - - 48.02 31.78 - 78.02 63.18 - - 48.79 37.57 - 67.63 57.91 -
RaNet [9] GCN/CNN GloVe - 45.59 28.67 - 75.93 62.97 - - 43.34 33.54 - 67.33 55.09 -
FVMR [10] Transformer GloVe 60.63 45.00 26.85 86.11 77.42 61.04 - 53.12 41.48 29.12 78.12 64.53 50.00 -
MMN [52] CNN BERT 65.05 48.59 29.26 87.25 79.50 64.76 - 51.39 39.24 26.17 78.03 62.03 47.39 -
MGPN [44] CNN/Transformer GloVe - 47.92 30.47 - 78.15 63.56 - - 48.81 36.74 - 71.46 59.24 -
DCLN [61] CNN GloVe 65.58 44.41 24.80 84.65 74.04 56.67 - 65.16 44.96 28.72 82.40 66.13 51.91 -
SPL [23] Transformer/GCN GloVe - 52.89 32.04 - 82.65 67.21 - - 42.73 32.58 - 64.30 50.17 -
VGCL [53] Transformer/RNN GloVe 60.57 42.96 25.68 - - - 43.34 - - - - - - -
MA3SRN [22] Transformer/GCN GloVe - 51.97 31.39 - 84.05 68.11 - - 47.88 37.65 - 66.02 54.27 -
PTRM [67] CNN BERT 66.41 50.44 31.18 - - - 47.68 - - - - - - -
CRaNet [43] GCN/CNN GloVe - 47.27 30.34 - 78.84 63.51 - - 47.86 37.02 - 70.78 58.39 -
BMRN [40] Transformer/CNN BERT - 48.47 31.15 - 81.37 64.44 - - - - - - - -
PLN [68] CNN GloVe 59.65 45.66 29.28 89.66 76.65 63.06 44.12 53.74 43.89 31.12 75.56 65.11 52.89 29.70
DFM [50] CNN GloVe 58.84 45.92 32.18 - - - - - 40.04 28.57 - - - 27.35
MRNet-S (Ours) Retentive Network GloVe 71.92 54.91 31.58 91.28 85.98 73.73 51.48 70.01 53.74 37.54 88.05 77.76 64.76 37.41
MRNet-S (Ours) Retentive Network BERT 73.40 55.40 32.46 90.82 85.24 72.23 51.80 69.43 54.49 37.84 87.60 77.26 64.73 37.51
MRNet-M (Ours) Retentive Network GloVe 74.74 59.40 39.12 90.91 85.12 73.45 54.86 71.71 55.41 38.54 89.43 77.18 64.78 38.19
MRNet-M (Ours) Retentive Network BERT 77.57 63.30 42.68 91.60 86.25 75.92 57.62 71.98 56.16 41.31 89.33 78.43 66.21 39.45

Table 3: Evaluation results for Charades-STA dataset.

Method R@1, IoU@ R@5, IoU@ mIoU0.3 0.5 0.7 0.3 0.5 @0.7
DRN [60] - 53.09 31.75 - 89.06 60.05 -
TMLGA [38] 67.53 52.02 33.74 - - - -
LGI [30] 72.96 59.46 35.48 - - - 51.38
BPNet [54] 65.48 50.75 31.64 - - - 46.34
CPNet [16] - 60.27 38.74 - - - 52.00
MS-2D-TAN [65] - 60.08 37.39 - 89.06 59.17 -
FVMR [10] - 55.01 33.74 - 89.17 57.24 -
I2N [31] - 56.61 34.14 - 81.48 55.19 -
PLN [68] 68.60 56.02 35.16 94.54 87.63 62.34 49.09
M2DCapsN [26] - 55.03 31.61 - 84.33 63.71 -
MRNet-S (Ours) 74.17 60.03 38.25 96.29 88.79 69.92 53.01
MRNet-M (Ours) 74.65 60.30 38.20 96.51 89.09 69.52 53.27

Table 4: Evaluation results for ANetSpeech dataset. † denotes
the result reproduced by us.

Method R@1, IoU@ R@5, IoU@ mIoU0.3 0.5 0.7 0.3 0.5 0.7
VSLNet 46.75 29.08 16.24 - - - 34.01
VGCL [53] 49.80 30.05 16.63 - - - 35.36
SIL [51] 49.46 30.26 15.22 82.28 63.73 35.48 34.52
VSLNet† 51.02 30.38 17.45 - - - 37.04
MMN† 51.98 35.69 20.77 85.46 75.29 56.87 37.81
MRNet-S (Ours) 66.72 49.80 29.12 90.24 84.05 72.53 48.12
MRNet-M (Ours) 70.41 54.61 34.00 90.82 85.19 73.10 51.31

MR+HD task. For training, we control the sparse ratio ofM𝐿𝑆 to
25%, and set the loss weight 𝜆𝑠 ofL𝑠𝑝𝑎𝑟𝑠𝑒 to 10.0 for all datasets. The

Table 5: Evaluation results for QVHighlights dataset. As one
query per video, we only test the single-query trainingmode.

Method

MR HD
R@1, IoU@ mAP >= Very Good
@0.5 @0.7 @0.5 @0.75 Avg. mAP HIT@1

MCN [1] 11.41 2.72 24.94 8.22 10.67 - -
CAL [7] 25.49 11.54 23.40 7.65 9.89 - -
CLIP [35] 16.88 5.19 18.11 7.00 7.67 31.30 61.04
XML [15] 41.83 30.35 44.63 31.73 32.14 34.49 55.25
XML+ [14] 46.69 33.46 47.89 34.67 34.90 35.38 55.06
Moment-DETR [14] 52.89 33.02 54.82 29.40 30.73 35.69 55.60
UMT [27] 56.23 41.18 53.83 37.01 36.12 38.18 59.99
MH-DETR [55] 60.05 42.48 60.75 38.13 38.38 38.22 60.51
QD-DETR [29] 62.40 44.98 62.52 39.88 39.86 38.94 62.40
UniVTG [21] 58.86 40.86 57.60 35.59 35.47 38.20 60.96
MRNet-S (Ours) 64.85 46.63 65.11 42.06 41.63 39.69 63.55

contrastive loss weight 𝜆𝑐 is consistent with MMN [52], i.e., 0.1 for
ANetCap and TACoS, 0.05 for Charades-STA. We use AdamW [28]
optimizer with a learning rate 8 × 10−4 for ANetCap, 1 × 10−3 for
Charades-STA and 15 × 10−4 for TACoS, and batch size 12 for all
datasets. The setup for ANetSpeech is the same as for ANetCap.

4.2.3 Training Modes. In MR task, one-to-one (1 query to 1 video)
training is known as single- query training [63, 66, 68], many-to-
one (many queries to one video) training is known as multi-query
training [24, 50, 52, 67]. We test the effect of single-query training
and adopt a multi-query training model to maximize the linguistic
guidance from queries. Noting that during inference, regardless
of any training mode, the evaluation is a fair single query input
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to predict a uniquely corresponding moment, consistent with the
convention of the MR tasks [8, 16, 66].

4.3 Comparisons to the State-of-The-Art
4.3.1 ANetCap and TACoS for NLMR task. These two datasets are
the ones most evaluated in MR tasks. The ANetCap dataset is the
largest open-domain dataset for MR task, the video duration of
TACoS dataset is the longest. We compare our MRNet with recent
NLMR state-of-the-art (SOTA) methods [9, 10, 16, 22, 23, 25, 40, 43,
44, 50, 52, 53, 61–68]. Tab. 2 demonstrates the absolute advantages
of our method compared to other methods across the ANetCap
and TACoS datasets. Our MRNet-S has reached SOTA performance,
when we adopt a multi-query training mode, our model’s perfor-
mance has been further improved, language guidance is maximized.
Specifically, our MRNet-M achieves a new SOTA performance on
all metrics, such as R@1, IoU@0.5 (63.30 on ANetCap, 41.31 on
TAcoS), and mIoU (57.62 on ANetCap, 39.45 on TAcoS).

4.3.2 Charades-STA for NLMR task. The Charades-STA dataset
has the shortest query descriptions (avg. 7.22 words), and shortest
video durations (avg. 30.6s), it requires the identification of more
subtle human movements and the extraction of more linguistic in-
formation. Despite this limitation, our MRNet achieves comparable
performance to other state-of-the-art methods on the Charades-STA
dataset, as indicated in Tab. 3. Specifically, our MRNet-M outper-
forms other methods in terms of R@1, IoU0.3, R@1, IoU@0.5, and
mIoU metrics with values of 74.65, 60.30, and 53.27, respectively.

4.3.3 ANetSpeech for SLMR task. We validate the performance ad-
vantages of ourMRNet for SLMR task on theANetSpeech dataset [53],
when the queries are audios in English. We reproduce the evalua-
tions of the typical MR methods VSLNet [63] and MMN [52], and
compare our model with other state-of-the-art methods VGCL [53]
and SIL [51]. The results are shown in Tab. 4, our MRNet-M cur-
rently has optimal performances on ANetSpeech dataset, e.g., 34.00
on R@1, IoU@0.7, and 51.31 on mIoU, which has significant perfor-
mance improvement compared to other MR methods, demonstrat-
ing our model’s good scalability on MR tasks.

4.3.4 QVHighlights for the MR+HD multi-task. We further vali-
date our model on the multi-task MR-related dataset QVHighlights
(MR+HD) [14]. This joint task includes both finding relevant mo-
ments and predicting the highlighted score of each clip in them.
The comparisons with existing works are detailed in Tab. 5. From
the results, our model demonstrates performance on par with SOTA
models, achieving an 𝑅@1, 𝐼𝑜𝑈@0.7 of 46.63 for moment retrieval,
and a HIT@1 of 63.55 for highlight detection. It further affirms the
robust universality of our model on MR+HD tasks.

4.4 Ablation Studies
In this part, we evaluate the impact of various factors of the pro-
posed MRNet to answer the following research questions (all ex-
periments are based on MRNet-M): Q1: How do two core mask
components M𝑅𝐷 and M𝐿𝑆 contribute to the performance of our
MRNet? Q2: Is a bidirectional retention more effective than a unidi-
rectional one? Which non-linear operation is more effective: Soft-
Max or Swish Gate? Q3:Will the self-supervised sparsity loss be
beneficial? How to set this loss’s weight 𝜆𝑠 and the sparsity ratio 𝛼

of theM𝐿𝑆 to be optimal? Q4:Which masking mode is more effec-
tive: only masking video or full masking on the entire cross-modal
map? An qualitative case of cross-modal retention map. Q5: The
quantitative case analysis of video moment retrieval.

4.4.1 Main Module Analysis (Q1). We verify the contributions of
the main two mask componentsM𝑅𝐷 andM𝐿𝑆 of our proposed
MRNet framework, i.e., bidirectional retention mask module and
learnable sparse retention mask module. As shown in Tab. 6, we
combine the retentive network backbone and the 2D proposal back-
end of 2D-TAN [66] as the baseline (Row 1), namely removing
M𝑅𝐷 andM𝐿𝑆 from the model. In our work, the proposed baseline
is a new architecture, it is equipped with RetNet [45] in a cross-
modal Transformer architecture, which integrates the strengths
such as Transformer (Parallel learning, Eq. 2), RetNet (Rerecursive
inference, Eq. 3), nonlinearity regulation (Eq. 8). Compared with
the SOTA methods in Tab. 2, the performance of the baseline is
good enough. Furthermore, with the independent addition of the
bidirectional retention mask M𝑅𝐷 or the learnable sparse reten-
tion mask M𝐿𝑆 on the baseline, the model achieves a considerable
performance improvement. When we model bidirectional video
temporal associations and then add sparsity mask as a constraint
to erase unnecessary dependencies in video sequences, the perfor-
mance of the model is further improved. The results show that both
mask modules of MRNet are coordinated and compatible, and con-
tribute to achieving significant improvement on the representation
learning and generalization performance of the MR model.

4.4.2 Retention Mechanism Analysis (Q2). There are two opera-
tions that we optimize in the Retentionmodule as shown in Fig. 5: (1)
From unidirectional to bidirectional. If we use unidirectional reten-
tion mask instead of bidirectionalM𝑅𝐷 (the unidirectionalM𝑅𝐷

has only forward mask as (M𝑅𝐷 )𝑛,𝑚 = 𝛾𝑛−𝑚 𝑖 𝑓 𝑛 ≥ 𝑚; 𝑒𝑙𝑠𝑒 0.),
the performance of the model is compromised, e.g., R@1, IoU@0.5
decreased by 1.60 point, this indicates that bidirectional M𝑅𝐷 is
indeed stronger in its ability to model video sequences than uni-
directional in our MRNet. (2) SoftMax over Gating: we define the
“MaskRetention” approach in Eq. 8 that adopts the SoftMax opera-
tion (Transformer-like), while Swish Gate is specifically designed
to handle the model’s nonlinearity in original Retention [45], we
use SoftMax instead, the Fig. 5 (right) shows the advantages of the
SoftMax operation over the Swish Gate operation, which promises
both complexity reduction and performance improvement.

4.4.3 Masking Sparsity Constraint (Q3). We evaluate the effect of
self-supervised loss L𝑠𝑝𝑎𝑟𝑠𝑒 that is used to constrain the sparsity of
learnable maskM𝐿𝑆 . From Tab. 7, L𝑠𝑝𝑎𝑟𝑠𝑒 is effective in improving
the performance of the model. We further give the ablation of two
important hyperparameters ofM𝐿𝑆 in Fig. 6, i.e., the loss weight 𝜆𝑠
ofL𝑠𝑝𝑎𝑟𝑠𝑒 and the sparsity ratio 𝛼 (%) ofM𝐿𝑆 , where 𝛼 controls the
mask’s proportion ofM𝐿𝑆 during training by setting the average
convergence cutoff threshold for M𝐿𝑆 at 0.5𝛼 . The optimal setting
of 𝜆𝑠 is 10.0, and the sparsity ratio 𝛼 is 25%.

4.4.4 Masking Mode Analysis (Q4). We discuss different masking
modes for the vision-language attention map. The “No masking
(vanilla attention)”, “Onlymasking video” and “Full masking”modes
in Fig. 7 correspond to the first, second and last rows of Tab. 8,
respectively. In our solution, we leave the query free and focus
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Query: Several shots are shown of people riding boats and 
swimming in the water as well as drinking and dancing.

MMN 206.67
GT

MRNet (Ours)

50.63 152.93
77.50

154.9951.67

(a) ANetCap Dataset

Query:                                                                   (They speak to 
one another as a man cooks for them in front and mixes ingredients together.)

MMN
GT

MRNet (Ours)

51.25 142.37
23.73 177.96

142.3747.46

(b) ANetSpeech Dataset

Query: An animation of a boy and a girl in uniforms walking on 
a park and talking about depression.

GT78 96 108 114
9654 108 124
96MRNet (Ours) 78 110 116

QD-DETR

(c) QVHighlights Dataset

Figure 4: Qualitative results. Compared with MMN and QD-DETR, our MRNet can locate more accurate temporal regions.

Table 6: R@1 results of MRNet w/o maskM𝑅𝐷 andM𝐿𝑆 .

M𝑅𝐷 M𝐿𝑆
ANetCap Charades-STA

0.5 0.7 mIoU 0.5 0.7 mIoU
✗ ✗ 58.59 38.93 54.72 57.80 36.72 51.25
✓ ✗ 61.06 40.28 56.04 58.95 37.31 52.57
✗ ✓ 61.33 40.39 56.23 59.03 37.28 52.54
✓ ✓ 63.30 42.68 57.62 60.27 38.39 53.14

55.0
57.5
60.0
62.5
65.0

63.30

57.62

61.70

56.65

IoU@0.5 IoU@0.7  mIoU 40.0
42.5 42.68

41.98

Bidirectional
Unidirectional

55.0
57.5
60.0
62.5
65.0

63.30

57.62

62.56

56.92

IoU@0.5 IoU@0.7  mIoU 40.0
42.5 42.68

41.91

SoftMax
Swish Gate

Figure 5: Ablation studies on Directionality of M𝑅𝐷 , and
Nonlinear operation of MaskRetention on ANetCap dataset.

Table 7: R@1 results of MRNet w/o sparsity loss L𝑠𝑝𝑎𝑟𝑠𝑒 .

M𝐿𝑆 L𝑠𝑝𝑎𝑟𝑠𝑒
ANetCap Charades-STA

0.5 0.7 mIoU 0.5 0.7 mIoU
✗ ✗ 61.06 40.28 56.04 58.95 37.31 52.57
✓ ✗ 62.79 41.86 57.04 60.00 38.23 52.98
✓ ✓ 63.30 42.68 57.62 60.27 38.39 53.14

on the sparsity of video, with the core idea of removing redun-
dancy within the video and making the most of query semantics.
From Tab. 8, we test different mask combinations, whenever it
comes to query-related masking, there is some performance degra-
dation, which confirms our above core idea, i.e., only “masking
“A(𝑣 → 𝑣) is optimal. Moreover, from Fig. 7, if we mask the whole
vision-language map, the performance is higher than that with “No
masking”, this indicates that vanilla attention brings redundant
correlations (𝑇 × 𝑇 ) and hurts performance. It is reasonable and
effective to consider removing redundancy between video attention
responses. The visualized mask retention map of our solution “Only
masking video” shows that the retention mask is well concentrated
in the groundtruth (GT) region, the response in the other regions
is close to 0, realizing effective noise suppression.

4.4.5 Qualitative Results (Q5). In order to better understand the
moment retrieval results of our MRNet, we take three videos from
ANetCap, ANetSpeech, and QVHighlights datasets as examples
and display the qualitative results of them in Fig. 4. Compared
with the strong MR methods MMN [52] and QD-DETR [29], our
proposed MRNet has almost no gap compared to GroundTruth (GT)

0.0 0.5 1.0 5.0 10.0 20.0
s

62.6
62.7
62.8
62.9
63.0
63.1
63.2
63.3

R@
1,

Io
U@

0.
5

62.79

62.94

63.23 63.25
63.3

63.0

0 15% 25% 50% 75% 1

63.15
63.23

63.3
63.21

63.11

62.64

Figure 6: Ablation studies on the sparsity loss weight 𝜆𝑠 of
L𝑠𝑝𝑎𝑟𝑠𝑒 and the sparsity ratio 𝛼 of M𝐿𝑆 on ANetCap dataset.

Table 8: R@1 results for masking different attention region
on ANetCap dataset. The first row refers to vanilla attention.

A(𝑣 → 𝑣) A(𝑞 → 𝑞) A(𝑣 → 𝑞) A(𝑞 → 𝑣) IoU0.3 IoU0.5 IoU0.7
✗ ✗ ✗ ✗ 73.39 58.59 38.93
✓ ✗ ✗ ✗ 77.57 63.30 42.68
✓ ✓ ✗ ✗ 76.73 62.18 41.69
✓ ✓ ✓ ✗ 75.56 61.47 41.02
✓ ✓ ✓ ✓ 75.09 60.40 40.39
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Figure 7: Masking modes analysis on ANetCap dataset. Con-
vergence curves and visualization of “Only masking video”.

across three datasets, which indicates that broad adaptability of
our approach to MR-related tasks. Overall, the visualization results
demonstrate the effectiveness of our proposed MRNet.

5 CONCLUSION
In this paper, we propose a compact single-stream Maskable Reten-
tive Network (MRNet) as a new structural paradigm for addressing
video Moment Retrieval tasks involving video and query interac-
tions, which implements video retentive reasoning in a cross-modal
environment. The effectiveness of MRNet framework has been
demonstrated on five standard benchmarks for three MR tasks.
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