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Abstract

In recent times, parameter-efficient tuning
(PET) has been widely explored, as it tunes sig-
nificantly fewer parameters than full-parameter
fine-tuning (FT) while still stimulating suffi-
cient knowledge from large language models
(LLMs) for downstream tasks. Moreover, when
adopting PET to serve multiple tasks, various
tiny task-specific PET modules can be built
on a frozen backbone LLM, avoiding redun-
dantly deploying LLMs. Although PET meth-
ods have significantly reduced the cost of tun-
ing and deploying LLMs, the inference still
suffers from the computation bottleneck of the
LLM. To address this issue, we build an ef-
fective PET framework based on compressed
backbone LLMs, named “CPET”. In CPET,
we systematically evaluate the impact of main-
stream compression techniques on the perfor-
mance of PET modules, and then introduce
knowledge inheritance and knowledge recov-
ery to restore the knowledge loss caused by
compressing the backbone LLM. Our experi-
mental results demonstrate that, owing to the
restoring strategies of CPET, collaborating task-
specific PET modules with a compressed LLM
can achieve comparable performance to collab-
orating with its non-compressed version, and
significantly outperform directly applying FT
or PET to the compressed LLM.

1 Introduction

In recent years, the rise in data scale and com-
puting power has boosted the parameter size of
pre-trained language models (PLMs). While some
small and medium language models with millions
of parameters have shown proficiency in capturing
linguistic (Jawahar et al., 2019), semantic (Yenice-
lik et al., 2020), syntactic (Hewitt and Manning,
2019), and world knowledge (Petroni et al., 2019),
large language models (LLMs) with billions of pa-
rameters (Brown et al., 2020; Black et al., 2022;
Chowdbhery et al., 2022) exhibit more powerful and

comprehensive abilities, especially in terms of cog-
nition and embodiment (Lewkowycz et al., 2022;
Nakano et al., 2021; Driess et al., 2023).

Despite the success of LLMs, one significant
challenge in adapting LLMs to specific real-world
tasks is the cost-effectiveness of tuning and de-
ploying LLMs. In traditional full-parameter fine-
tuning (FT), a single LLM is tuned to multiple task-
specific versions to serve different downstream
tasks, leading to the high resource consumption
of tuning and deployment. To address this chal-
lenge, parameter-efficient tuning (PET) (Houlsby
et al., 2019; Hu et al., 2021; Li and Liang, 2021;
Ben Zaken et al., 2022) has been proposed, which
freezes a LLM as the backbone and adopts tiny
tunable PET modules to stimulate the knowledge
of the LLM for specific tasks. Compared with FT,
PET tunes much fewer parameters while achieving
comparable performance (Ding et al., 2023), and
thus has lower computation and storage overhead
in multi-task serving (Zhou et al., 2022).

Although PET has shown potential in reduc-
ing the cost of tuning and deploying LLMs, the
computation of the whole backbone LLM is in-
evitable, i.e., the inference process is still resource-
intensive, which prevents companies from applying
it to real-world model services. To this end, we em-
ploy task-agnostic compression techniques (Hinton
et al., 2015; Bai et al., 2021; Liang et al., 2021),
which can compress an LLM into a smaller ver-
sion while retaining most of its capabilities (Zhang
et al., 2022a), and build an effective PET frame-
work based on the compressed backbone LLM.
We name this framework “CPET”. Since the com-
putation of a compressed LLM relies on much
lower resources than its non-compressed version,
CPET can achieve better inference efficiency than
existing PET works after deployment. Considering
the compression process of the backbone LLM may
cause some knowledge loss, as shown in Figure 1,
CPET introduce the following two mechanisms to



restore the loss.

(1) PET Knowledge Inheritance. A stronger
backbone model can make learning PET modules
easier, and meanwhile, the PET modules based on
the stronger backbone can also better grasp how to
stimulate task-specific knowledge distributed in the
backbone model. Therefore, we propose to adopt
the PET modules learned on the non-compressed
backbone LLM as the initialization to learn the PET
modules for the compressed backbone LLM. In this
way, the task-related knowledge of PET modules
learned with the help of the non-compressed back-
bone can be inherited to obtain more effective PET
modules for the compressed backbone.

(2) Model Knowledge Recovery. In addition to
the knowledge of PET modules, the knowledge of
the backbone LLM is also important to perform
well on downstream tasks. Since task-agnostic
compression techniques may result in losing some
task-related knowledge within the backbone LLM,
we add extra knowledge recovery modules into
the compressed model to bridge the knowledge
gap that arises from compressing the LLM. We
point out that compression techniques may weaken
multiple capabilities of the backbone LLLM while
restoring only one of the lost capabilities requires
only a small number of parameters. Through the
supervision of task-specific data, we can recover
most of the lost task-related knowledge through
some tiny recovery modules.

In experiments, we first conduct a comprehen-
sive evaluation of the performance impact brought
by various compression methods. The results show
that compression results in a significant model per-
formance drop without using any knowledge recov-
ery mechanisms. Based on the above observation,
we apply CPET for performance recovery, and the
experimental results indicate that CPET can restore
the model performance to the level before model
compression. Furthermore, computing the com-
pressed backbone LLM requires much lower re-
sources than computing the non-compressed back-
bone, making CPET finally an effective and effi-
cient PET framework.

2 Methodology

In this section, we will introduce how to build the
effective PET framework CPET for compressed
LLMs. Before introducing CPET, we first explain
some essential preliminaries.

2.1 Preliminary

First, we briefly describe the core architecture of
transformer (Vaswani et al., 2017). A transformer
consists of multiple transformer blocks, and each
block includes two components: a multi-head at-
tention and a feed-forward network. Multi-head
attention can be formalized as

MH-ATT(Q, K, V) = [Hy, - ,H,|W?,
H; = ATT(QWE, KW VW), (1)
QK'

ATT(Q,K,V) = softmax( )V,
where WiQ, WZK and WZV are the matrices of the
linear transformations in the ¢-th attention head,
d is the head dimension, H; is the result of the
i-th head, [-, ..., ] is the concatenation of vectors.
Feed-forward network can be formalized as

FEN(X) = 0(XW1 + b1)W3 + by, ()

Where W; and W, are the matrices of the linear
transformations in the feed-forward network, by
and by are the bias vectors of the linear transforma-
tions, o(+) is the activation function.

For simplicity, we denote a LLM M as Y =
f(X;60x1), where f(-) is the function of the whole
transformer architecture, 0 v is the parameters of
the LLM, X is the input and Y is the output. In
the FT setting, all parameters of M (i.e., O¢) are
tuned as follows

O = argmin L(f(X"; 0r), Y, 3)
M

where X!, Y is the data of the downstream task ¢,
L is the loss function of the task ¢. 6% is the final
task-specific model parameters of the LLM M.

In the PET setting, M is frozen, and additional
PET modules P are tuned on task-specific data. We
denote the parameters of PET modules injected to
LLM M as 0p(r)- As shown in Figure 1, the com-
putation of the transformer architecture is slightly
changed due to the injected PET modules and be-
comes Y = fppr(X; 0O, 973(/\/())' The tuning pro-
cess is formalized as

0Py = argegl(iﬁ) L(fpET(X";0M, 0p(1)), YY), (4

where 953 (M) is the final task-specific PET modules
collaborating with the LLM M.

This paper aims to build PET modules based
on a compressed LLM. To this end, after applying
compression algorithms to compress the LLM M,



t

—»[ Add & Layer Norm ]

Original
Block x L

—

Knowledge

Inheritance

1 t
[ FFN ] —»[ Add & Layer Norm ]
S —
—{ Add & Layer Norm | Model Knowledge | FFN R
_______ 5
t R|ecovery
—>[ Add & Layer Norm ]
[ MH-ATT

Compressed
Block x L

Figure 1: The overall design of our CPET. We use LoRA (Hu et al., 2021) as an example of PET.

making M have fewer parameters or lower-bit rep-
resentations, we denote the compressed LLM and
its parameters C and 6 respectively. Then the com-
putation of the compressed model can be described
asyY = f(X, 9(;).

2.2 Framework

PET methods do not change the LLLM backbone ,
thus adopting PET methods is orthogonal to com-
pressing the backbone LLM !. Therefore, we pro-
pose a more efficient PET framework CPET, by
first compressing the backbone LLM using task-
agnostic model compression methods and then ap-
plying PET methods to the compressed backbone.
Formally, CPET can be formalized as

Op(c) = arg soin L(fpET(X"360c, 7)), Y"),  (5)
P

where 0p(c) are the parameters of PET modules
injected to the compressed LLM C.

By combining model compression with PET, on
the one hand, we can take the advantage of PET to
deploy a unified backbone LLM to serve multiple
downstream tasks, while only needing to main-
tain tiny task-specific PET modules for each down-
stream task. On the other hand, by adopting a com-
pressed LLM instead of a non-compressed LLM,
the inference time and resource requirements of the
backbone model can be significantly reduced. It is
worth noting that this acceleration is not free. It is
not difficult to imagine that adopting task-agnostic

!Compression methods involved in this article do not

change the model structure, which ensure that the insertion
position and quantity of PET modules remain unchanged.

compression methods may weaken the backbone
model, which will inevitably affect the search for
the optimal parameters 95, © and the effect of the
final model fper(X;6c, 9;,(6)).

As shown in Figure 1, to better learn PET mod-
ules for the compressed backbone LLM, we adopt
the mechanism to inheriting the PET knowledge
from those modules based on the non-compressed
backbone. To restore the knowledge loss caused by
compressing the backbone LLM, in addition to the
PET modules P, we add some knowledge recovery
modules R, and Eq. (5) is modified to

03’(C)70§2:
arg min [ﬁ(fPET(Xt§QCaeP(C)aaR)th) (6)

Op(c) 9=

+ aLloist(X'; 00, bc, 0p(c), Or)],

where 6% is the parameters of the task-
specific recovery modules for the task ¢, and
feer(X; Oc, H%(C), (953) is finally used to serve the
task t. Lpist(XY; Om,0c,0p(c), Or) is the loss
function for model knowledge recovery, which will
be introduced later. In subsequent sections, we
will elaborate on how to conduct PET knowledge
inheritance and model knowledge recovery.

2.3 PET Knowledge Inheritance

Instead of training PET modules based on the com-
pressed LLM from scratch, we propose training
PET based on the original non-compressed LLM
first, then adapting the learned PET modules to
the compressed LLM. The adaption from the non-
compressed LLM to the compressed LLM can save
convergence time and improve performance for



learning PET modules on the compressed LLM. In-
tuitively, it is more effective for a teacher to teach
students the fundamentals of a discipline and then
let students adapt their comprehension based on
their circumstances rather than directly letting stu-
dents learn from scratch. Formally, we first use
Eq. (4) to obtain the parameters of task-specific
PET modules 9;,( M) based on the non-compressed

LLM M, and then use 65, () as the initialization
to obtain the parameters of task-specific PET mod-
ules for the compressed LLM C, i.e., obtain 953((1)
in Eq. (5) and Eq. (6).

2.4 Model Knowledge Recovery

Since the reduction of parameters in the com-
pressed LLM C may cause performance degrada-
tion, we thus propose to inject knowledge recovery
modules R into C to recover the lost knowledge.
As shown in Figure 1, we add a bypass next to each
linear layer to add a small amount of change to the
output states of these linear layers. To avoid in-
troducing too many parameters, the recovery mod-
ules R adopt the typical bottleneck MLP struc-
ture. Formally, we denote an arbitrary matrix in the
compressed LLM as W and the linear transforma-
tion as X W, the modified transformation becomes
XW + o0(XD)U, where D is the down-sampling
matrix, o(-) is the activation function, and U is the
up-sampling matrix. D and U together form 0.

To help obtain (952 for the task ¢, we design a dis-
tillation objective. Specifically, we first select the
PET modules trained with Eq. (4) as the teacher,
and then select the PET modules and recovery mod-
ules in Eq. (6) as the student, the whole distillation
loss is given as

Loist(X'5 00, 0c, 0pc), 0r) =

|| foer (X5 001, 05 n)) — foer(X'30c, 0p(c), %) |5,
@)
where X' is the input data of the task t. As shown
in Eq. (6), instead of first learning the recovery
modules and then adding the inherited PET mod-
ules for further adaptation, we simultaneously con-
duct knowledge recovery and tune PET modules.

1
Xt

3 Experiment

3.1 Datasets

Since PET methods are usually evaluated on
language understanding tasks, we thus evaluate
CPET on 5 datasets from SuperGLUE (Wang et al.,
2019), a public leaderboard commonly used to

Dataset ‘ #training | #validation

BoolQ 9427 3270
CB 250 56
RTE 2490 277
COPA 400 100
WiC 5428 638

Table 1: The statistics of the datasets used for experi-
ments, which are from SuperGLUE (Wang et al., 2019).

measure the language understanding performance
of models, including BoolQ (Clark et al., 2019),
CB (De Marneffe et al., 2019), RTE (Bentivogli
et al., 2009), COPA (Roemmele et al., 2011),
and WiC (Pilehvar and Camacho-Collados, 2018).
More details are shown in Table 1. For all datasets,
we use accuracy (%) as the metric for evaluation.
Considering our goal is to evaluate the impact of a
compressed backbone LLM on PET modules and to
demonstrate whether the mechanisms in CPET can
restore the lost knowledge caused by compression
methods, for simplicity, we thus directly use the
validation sets in SuperGLUE for test.

3.2 Baseline and Implementation Details

As both PET and CPET need a backbone LLM,
we thus use T5-3B (Raffel et al., 2020) (with 3
billion parameters) as the backbone model in our
experiments. To compress the backbone, we di-
rectly use the open-source toolkit BMCook (Zhang
et al., 2022a) to compress T5-3B into various com-
pressed versions, including quantization, structured
pruning, unstructured pruning, and MoEfication. A
subset of The Pile (Gao et al., 2020) data is used
for compression.

To evaluate the effectiveness of CPET, we com-
pare our framework with 4 baseline paradigms that
adapt LLMs to specific tasks: (1) FT (LLM): no
extra parameters are involved, and all parameters
of the original T5-3B are tuned to handle specific
tasks. (2) PET (LLM): PET modules are attached
to the original T5-3B, and only the parameters of
PET modules are tunable while the parameters of
the backbone LLM are frozen. (3) FT (CLM):
various compressed versions of T5-3B are used as
the starting point, and then all parameters of these
compressed LLMs are tuned on task-specific data.
(4) PET (CLM): PET modules are attached to var-
ious compressed versions of T5-3B, and then these
compressed backbone LLMs are frozen and PET
modules are tuned on task-specific data.



. Original . Unstructured ~ Structured .
Datasets Paradigm LLM Quantization Pruning Pruning MoEfication
FT 88.0 87.0 87.4 83.0 85.7
BoolQ PET 88.4 873(0.317) 86.8(06])) 79.6(3.4]) 87.8(2.17)
CPET - 89.2(2.217) 87.6(0.27) 8572717 884277
FT 100.0 98.2 94.6 91.1 96.4
CB PET 98.2 946(3.61) 982367 750(16.1]) 929(3.5])
CPET - 98.2(0.07) 9823617 946357 982(1.871)
FT 89.3 88.2 89.3 79.6 86.8
RTE PET 89.6 84.3(39]) 79.6(09.7]) 654(14.2]) 86.1(0.7])
CPET - 914 (3.21) 8573.6)) 768(2.8]) 8931257
FT 88.0 90.0 85.0 73.0 84.0
COPA PET 87.0 85.0(5.0]) 84.0(1.0)) 73.00.07) 83.0(1.0))
CPET - 88.0(2.0]) 850001 7603.07) 87.03.01)
FT 74.9 73.5 75.1 70.1 73.5
WiC PET 75.4 734 0.1 71.3(3.8)) 675126 73.8(0.37)
CPET - 747 (1.271) 744(0.7)) 706057 7420.71)

Table 2: Comparisons between CPET and baselines (%). We present the highest scores of the model on the
development set. In parentheses “()”, we compare both PET (CLM) method and CPET method with FT (CLM), and
then use 1 and | to indicate relative performance improvement or decrease.

All the above paradigms and our CPET are
implemented with the open-source toolkit Open-
Delta (Ding et al., 2023). For a fair comparison,
we use LoRA method (Hu et al., 2021) as a repre-
sentative PET method for both baseline paradigms
and CPET. We inject LoRA modules into those
weight matrices Q and K in the attention layer
(Eq. (1)). We set the bottleneck dimension of the
LoRA modules to 32 in all settings. We also set
the bottleneck dimension of our recovery modules
to 32. For FT (LLM) and FT (CLM), the learning
rate is among {le — 5,3e — 5,5e — 5}. For PET
(LLM), PET (CLM), and our CPET, the learning
rate is among {le — 3,5e — 4, le — 4}, consider-
ing tuning PET modules usually requires a higher
learning rate than fine-tuning LLMs. The batch
size is among {16,32,64}. The weight decay is
set to 1e — 2. For all datasets, we tune 20 epochs
and use the first 10% steps for warmup. The best
model checkpoint is selected by considering the
performance on validation sets. The coefficient in
Eq. (6) is default to a = 0.05.

3.3 Overall Results

Table 2 shows the performance of CPET and base-
lines. From the table, we can find that:

(1) Experiments comparing FT and PET show
that using PET can consistently achieve compa-
rable results to using FT, whether on the original

LLM or on a compressed version. This indicates
that utilizing PET can significantly decrease the
number of parameters needed without compromis-
ing the task performance when serving multiple
downstream tasks.

(2) Comparing the original LLM and its com-
pressed versions, the results of the fine-tuning pro-
cess show that the compressed LLMs perform not
as well as the original LLM. It suggests that task-
agnostic compression methods lead to losing some
knowledge related to downstream tasks. That is
to say, in order to improve the inference speed,
the performance of the compressed model may de-
crease due to the acceleration process. At this time,
if there is a mechanism to make up the performance
gap without affecting the inference speed, applying
compression methods will be more reasonable.

(3) Within the compressed model, CPET con-
sistently outperforms vanilla PET methods. Such
results indicate that task capabilities are effec-
tively migrated through knowledge inheritance and
knowledge recovery mechanisms. Among all meth-
ods, CPET can match the best performance of
those fine-tuning baselines, showing the migrated
knowledge can effectively improve the model per-
formance on downstream tasks. In other words,
our method is more effective than directly building
PET modules based on a compressed LLM and can
maintain good results in low-resource applications.



LLM | Q | UP| SP | M | PET | CPET
28 |07 |14 |14]13]002]| 0.12

Table 3: Tunable parameters (billion) of different meth-
ods. “Q”, “UP”, “SP”, and “M” represent quantization,
unstructured pruning, structured pruning, and MoEfica-
tion, respectively. In “PET” and “CPET”, the number
of parameters in the backbone has been excluded.

On the other hand, as shown in Table 3, the size of
tunable parameters for CPET is relatively close to
that of vanilla PET methods, which is much smaller
than the size of the original and compressed LLMs.

(4) Through cross-comparisons between differ-
ent compression models, we find that quantization
and MokEfication have relatively little loss on the
model performance, and can completely restore the
performance of the original LLM using our method.
However, the pruning methods cause more perfor-
mance loss. Although our method can significantly
recover the performance loss caused by the pruning
methods, it still cannot fully recover to the level
before compression.

3.4 Ablation Studies

To further analyze how different mechanisms in
CPET help restore the loss caused by model com-
pression methods, we use the BoolQ dataset for
further ablation studies. The results are shown in
Table 4. From the results, we can find that:

(1) PET knowledge inheritance is effective. By
initializing the tunable parameters with the PET
modules trained on the non-compressed LLM, the
task performance of the combination of the final
PET modules and the compressed LLM has been
greatly improved. This indicates that in the opti-
mization space of the compressed LLM, it is diffi-
cult to optimize the optimal task-specific parame-
ters of PET modules based on random initialization,
but the optimal PET modules can be achieved much
easier using PET knowledge inheritance.

(2) Model knowledge recovery is effective. Ta-
ble 2 shows that CPET improves the task perfor-
mance by adding our knowledge recovery mecha-
nisms. We need to further prove that such perfor-
mance improvement is not only due to the direct
increase in the parameter size brought by these ad-
ditional recovery modules. From Table 4, we find
that only adding the extra recovery modules brings
less performance improvement than our complete
framework. This suggests combining recovery

I R D| Q |UP|SP | M

87.3 | 86.8 | 79.6 | 87.8
v 88.7 | 87.5 | 81.0 | 87.7
v v 88.3 | 88.1 | 83.6 | 88.5
v v v 892|876 857|884

Table 4: The ablation study on BoolQ (%). “I”’ means
the tunable parameters are inherited from the PET mod-
ules trained on the non-compressed LLM. “R” means
the recovery modules are injected into the compressed
model, but the distillation objective is not applied. “D”
means that the distillation objective is used.

modules with knowledge distillation to enhance
PET modules is necessary.

3.5 Convergence of CPET

Although we are primarily concerned with the final
speed and performance at the end of the training
process, the method usability may be compromised
if the training process spends too much time. There-
fore, based on four different compression LLMs,
we compare the convergence speed of tuning PET
modules to handle the BoolQ dataset.

From Figure 2, we find that due to our PET
knowledge inheritance mechanism, our method is
superior to the vanilla PET methods in terms of
convergence speed and final results. Furthermore,
when quantization, unstructured pruning or MoEfi-
cation is used, the inheritance mechanism gives
our method a better starting point for tuning PET
modules. While in the case of structured pruning,
even though the initial point of our method does not
work well on tasks, it is closer to the optimal point
in the optimization space and converges faster.

Moreover, due to the existence of numerous
downstream tasks, the PET modules based on a
unified backbone LLLM may be trained by commu-
nity users on their own data and then uploaded to
the Internet. When adapting these PET modules
to a compressed backbone LLLM, there may not
be any task-specific data available for the adap-
tation process. From Figure 2, we can find that
when quantization or MoEfication is used, we can
achieve ideal results under the zero-shot adaptation
condition by directly using the PET inheritance
mechanism we proposed.

3.6 Performance on the Mixture of
Compression Methods

To evaluate CPET on a higher compression ratio,
we further adopt the mixture of compression meth-



Quanitzation Unstructred Pruning

Structured Pruning MoEfication

90| ———— 901

80 80

—

704 701

Acc
Acc

60 60

501 501

Acc

901 90

804 80

70 70

Acc

601 60
—— vanilla PET
inherited PET

—— CPET

L —

504 501

4075 5 10 H % 5

epoch

15 10

epoch

15 20

45 B 10 B 05 5 15

epoch

15 10

epoch

20
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Method | BoolQ | CB | RTE | COPA | WiC

FT 88.0 | 100 | 89.3 | 88.0 | 74.9
CPET 86.7 | 100 | 86.1 | 85.0 | 75.3

Table 5: The results of applying CPET on the mixture
of compression methods (%).

ods, including quantization, unstructured pruning,
and MokEfication, to compress the backbone LLM.
The compressed model is around 16 x smaller than
T5-3B. We compare the performance of CPET,
based on this 16 x smaller compressed model, to
the performance of fine-tuning T5-3B. Table 5
shows the experimental results. From the table,
we conclude that our method is compatible and can
be easily applied to highly compressed models that
use multiple compression methods.

4 Related Work

This work is related to PLMs, LLMs, PET, and
model compression. We mainly introduce typi-
cal PET and model compression methods. More
details on PLMs and LLMs can refer to the sur-
vey (Qiu et al., 2020; Bommasani et al., 2021).

4.1 Parameter-Efficient Tuning

In recent years, transformer-based (Vaswani et al.,
2017) PLMs have been widely explored, such as
GPT (Brown et al., 2020) and BERT (Devlin et al.,
2018). With the increase in both the amount of
pre-training data and the size of PLMs’ parame-
ters, large-scale PLMs (Kaplan et al., 2020), i.e.,
LLMs (Brown et al., 2020; Black et al., 2022;
Chowdhery et al., 2022) also emerge and show
excellent capabilities (Wei et al., 2022), espe-
cially in some cognitive and embodied scenar-
ios (Lewkowycz et al., 2022; Nakano et al., 2021;
Driess et al., 2023). Although an LLM can acquire
rich knowledge from massive pre-training data to
handle complex tasks in a zero-shot or few-shot

manner (Brown et al., 2020; Black et al., 2022), to
better stimulate the knowledge stored in the LLM
to serve downstream tasks, there is still a need
for adapting the LLM to various task-specific sce-
narios. For traditional PLMs, fine-tuning all pa-
rameters of PLMs is the mainstream way to adapt
them (Church et al., 2021), yet its parameter ineffi-
ciency makes this way costly to adapt LLMs (Ding
et al., 2023). Moreover, maintaining a task-specific
version of LLMs for each downstream task is unac-
ceptably resource-intensive (Zhou et al., 2022).

To adapt LLMs to task-specific scenarios in
a more efficient manner, various PET meth-
ods (Lester et al., 2021; Houlsby et al., 2019;
Hu et al., 2021; Li and Liang, 2021; Ben Zaken
et al., 2022) have been proposed, where LLMs
are frozen and some model-independent tunable
modules are injected into the transformer architec-
ture of LLMs to help the adaptation process. PET
modules are usually tiny, which can significantly
reduce the cost of adapting LLMs. PET modules
can be inserted into different locations within the
transformer architecture. For instance, prompt tun-
ing (Lester et al., 2021) and prefix tuning (Li and
Liang, 2021) are two methods that prepend tunable
embeddings to the input and hidden states, respec-
tively. Adapter tuning (Houlsby et al., 2019) ap-
plies tunable transformation between adjacent mod-
ules. BitFit (Ben Zaken et al., 2022) and LoRA (Hu
et al., 2021) make minor internal modifications to
the modules of the transformer architecture.

As mentioned before, LLMs have acquired rich
capabilities and just need an efficient way to stimu-
late these capabilities. The role of tunable PET
modules is to learn task features and serve as
triggers to stimulate task-specific capabilities in
LLMs (Ding et al., 2023). Sufficient experiments
show that collaborating task-specific PET mod-
ules and a frozen LLM can reach comparable
performance to fine-tuning all parameters of the
LLM. Furthermore, since different task-specific



PET modules can share a unified frozen LLM as
their backbone, this also leads to lower computa-
tion and storage overhead in multi-task serving and
switching (Zhou et al., 2022). In general, the emer-
gence of PET methods significantly reduces the
cost of tuning and deploying LLMs.

4.2 Model Compression

Although PET methods can reduce the cost of tun-
ing and deploying LL.Ms, the computation bottle-
neck of the LLM itself still exists. Therefore, to
further improve efficiency for model serving, it is
crucial to speed up the computation of LLMs, and
model compression is a commonly used solution.
Considering that the PET modules of different tasks
usually work together on a unified backbone LLM,
here we mainly introduce task-agnostic model com-
pression (Sanh et al., 2019) rather than task-specific
compression (Sun et al., 2019) for LLMs, including
quantization, pruning, and MoEfication.

In traditional PLMs, 32-bit floating-point num-
bers are mainly used to represent models. As
the model size gradually increases, representing
LLMs in a 32-bit format consumes too much GPU
memory and computing time. To address this is-
sue, mixed-precision training (Micikevicius et al.,
2017) is adopted to represent LLMs with 16-bit
floating-point numbers. To further reduce the mem-
ory overhead and improve the model speed, quan-
tization methods are applied to represent models
with fixed-point numbers, from 8-bit (Zafrir et al.,
2019), 4-bit (Frantar et al., 2023) to 1-bit (Bai
et al., 2021). To avoid the performance degrada-
tion caused by quantization, quantization-aware
training (QAT) (Stock et al., 2021) has also been
proposed to use a small amount of data to adjust the
distribution of model parameters for quantization.

Different from quantization methods that com-
press the representation of each parameter, pruning
methods directly discard some parameters. Com-
monly used pruning methods include structured
pruning (Fan et al., 2020; Wang et al., 2020; Zhang
etal., 2021; Xia et al., 2022) and unstructured prun-
ing (Han et al., 2015; Chen et al., 2020; Xu et al.,
2021). Structured pruning aims to find useless mod-
ules and remove them completely, such as erasing
all parameters in a linear layer. Unstructured prun-
ing only removes individual parameters, such as
deleting some parameters to form a sparse matrix.

MoEfication (Zhang et al., 2022b), inspired by
the mixture-of-experts (MoE) transformer (Lep-

ikhin et al., 2021), aims to divide the parameters of
LLMs into multiple partitions, and each time only a
few partitions are used to compute the final results.
Although most of the currently popular LLMs are
dense models, studies have shown that dense LLMs
are activated sparsely, and different parameter ar-
eas are activated by different data to form some
skill partitions (Wang et al., 2022; Dai et al., 2021;
Suau et al., 2020; Panigrahi et al., 2023). Specifi-
cally, by analyzing the sparse pattern of activation
states in LL.Ms, the linear layers of LLMs are sliced
to MoE, and an expert router is trained to select
experts. During the computation process, a cer-
tain proportion of relevant experts is dynamically
activated according to the input data.

Typically, to make a compressed LLLM behave
the same as its original version, distillation objec-
tives are often used to align the pre-compression
and post-compression models, including aligning
both output and intermediate states (Hinton et al.,
2015; Sun et al., 2019; Jiao et al., 2020; Liu et al.,
2022; Park et al., 2021). Due to space limita-
tions, more compression details can refer to the
survey (Liang et al., 2021; Xu and McAuley, 2022).

5 Conclusion

In this paper, we propose an effective PET frame-
work based on the compressed LLM (named CPET)
to further reduce the resource requirements and
inference speed when deploying LLM and PET
modules to serve downstream tasks. Considering
task-agnostic compression methods may cause los-
ing some task-specific knowledge, we introduce
PET knowledge inheritance and model knowledge
recovery to restore the lost knowledge. By inherit-
ing the prior task knowledge of the PET modules
learned on the non-compressed LLM, searching for
the optimal PET modules for the compressed LLM
becomes easier. Moreover, by introducing knowl-
edge recovery modules to recover task-specific ca-
pabilities lost in the compression phase, collab-
orating PET modules with the compressed LLM
can achieve comparable performance to those PET
modules based on the non-compressed LLM. The
experimental results show that CPET can outper-
form baselines based on the compressed LLM,
and meanwhile, CPET maintains the advantages
of PET methods for multi-task serving. This paper
mainly accelerates the inference of PET methods
and LLMs. We leave the computation bottleneck
of LLMs in the tuning process as future work.



6 Limitations

In this paper, we only use T5-3B as the backbone
LLM. For the selection of PET methods, we only
choose LoRA as a representative. In fact, our
framework can be applied to any LLM and PET
method. Therefore, we will conduct experiments
on more combinations of LLMs and PET mod-
ules to demonstrate the generalization of our frame-
work. The compression method adopted in this
paper does not change the the number of layers of
the backbone LLM. However, for those compres-
sion methods that change the hidden dimensions of
the model, how to transfer the knowledge of PET
modules on the non-compressed LLM remains an
open problem for our future work.
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