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Abstract

In recent times, parameter-efficient tuning001
(PET) has been widely explored, as it tunes sig-002
nificantly fewer parameters than full-parameter003
fine-tuning (FT) while still stimulating suffi-004
cient knowledge from large language models005
(LLMs) for downstream tasks. Moreover, when006
adopting PET to serve multiple tasks, various007
tiny task-specific PET modules can be built008
on a frozen backbone LLM, avoiding redun-009
dantly deploying LLMs. Although PET meth-010
ods have significantly reduced the cost of tun-011
ing and deploying LLMs, the inference still012
suffers from the computation bottleneck of the013
LLM. To address this issue, we build an ef-014
fective PET framework based on compressed015
backbone LLMs, named “CPET”. In CPET,016
we systematically evaluate the impact of main-017
stream compression techniques on the perfor-018
mance of PET modules, and then introduce019
knowledge inheritance and knowledge recov-020
ery to restore the knowledge loss caused by021
compressing the backbone LLM. Our experi-022
mental results demonstrate that, owing to the023
restoring strategies of CPET, collaborating task-024
specific PET modules with a compressed LLM025
can achieve comparable performance to collab-026
orating with its non-compressed version, and027
significantly outperform directly applying FT028
or PET to the compressed LLM.029

1 Introduction030

In recent years, the rise in data scale and com-031

puting power has boosted the parameter size of032

pre-trained language models (PLMs). While some033

small and medium language models with millions034

of parameters have shown proficiency in capturing035

linguistic (Jawahar et al., 2019), semantic (Yenice-036

lik et al., 2020), syntactic (Hewitt and Manning,037

2019), and world knowledge (Petroni et al., 2019),038

large language models (LLMs) with billions of pa-039

rameters (Brown et al., 2020; Black et al., 2022;040

Chowdhery et al., 2022) exhibit more powerful and041

comprehensive abilities, especially in terms of cog- 042

nition and embodiment (Lewkowycz et al., 2022; 043

Nakano et al., 2021; Driess et al., 2023). 044

Despite the success of LLMs, one significant 045

challenge in adapting LLMs to specific real-world 046

tasks is the cost-effectiveness of tuning and de- 047

ploying LLMs. In traditional full-parameter fine- 048

tuning (FT), a single LLM is tuned to multiple task- 049

specific versions to serve different downstream 050

tasks, leading to the high resource consumption 051

of tuning and deployment. To address this chal- 052

lenge, parameter-efficient tuning (PET) (Houlsby 053

et al., 2019; Hu et al., 2021; Li and Liang, 2021; 054

Ben Zaken et al., 2022) has been proposed, which 055

freezes a LLM as the backbone and adopts tiny 056

tunable PET modules to stimulate the knowledge 057

of the LLM for specific tasks. Compared with FT, 058

PET tunes much fewer parameters while achieving 059

comparable performance (Ding et al., 2023), and 060

thus has lower computation and storage overhead 061

in multi-task serving (Zhou et al., 2022). 062

Although PET has shown potential in reduc- 063

ing the cost of tuning and deploying LLMs, the 064

computation of the whole backbone LLM is in- 065

evitable, i.e., the inference process is still resource- 066

intensive, which prevents companies from applying 067

it to real-world model services. To this end, we em- 068

ploy task-agnostic compression techniques (Hinton 069

et al., 2015; Bai et al., 2021; Liang et al., 2021), 070

which can compress an LLM into a smaller ver- 071

sion while retaining most of its capabilities (Zhang 072

et al., 2022a), and build an effective PET frame- 073

work based on the compressed backbone LLM. 074

We name this framework “CPET”. Since the com- 075

putation of a compressed LLM relies on much 076

lower resources than its non-compressed version, 077

CPET can achieve better inference efficiency than 078

existing PET works after deployment. Considering 079

the compression process of the backbone LLM may 080

cause some knowledge loss, as shown in Figure 1, 081

CPET introduce the following two mechanisms to 082
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restore the loss.083

(1) PET Knowledge Inheritance. A stronger084

backbone model can make learning PET modules085

easier, and meanwhile, the PET modules based on086

the stronger backbone can also better grasp how to087

stimulate task-specific knowledge distributed in the088

backbone model. Therefore, we propose to adopt089

the PET modules learned on the non-compressed090

backbone LLM as the initialization to learn the PET091

modules for the compressed backbone LLM. In this092

way, the task-related knowledge of PET modules093

learned with the help of the non-compressed back-094

bone can be inherited to obtain more effective PET095

modules for the compressed backbone.096

(2) Model Knowledge Recovery. In addition to097

the knowledge of PET modules, the knowledge of098

the backbone LLM is also important to perform099

well on downstream tasks. Since task-agnostic100

compression techniques may result in losing some101

task-related knowledge within the backbone LLM,102

we add extra knowledge recovery modules into103

the compressed model to bridge the knowledge104

gap that arises from compressing the LLM. We105

point out that compression techniques may weaken106

multiple capabilities of the backbone LLM while107

restoring only one of the lost capabilities requires108

only a small number of parameters. Through the109

supervision of task-specific data, we can recover110

most of the lost task-related knowledge through111

some tiny recovery modules.112

In experiments, we first conduct a comprehen-113

sive evaluation of the performance impact brought114

by various compression methods. The results show115

that compression results in a significant model per-116

formance drop without using any knowledge recov-117

ery mechanisms. Based on the above observation,118

we apply CPET for performance recovery, and the119

experimental results indicate that CPET can restore120

the model performance to the level before model121

compression. Furthermore, computing the com-122

pressed backbone LLM requires much lower re-123

sources than computing the non-compressed back-124

bone, making CPET finally an effective and effi-125

cient PET framework.126

2 Methodology127

In this section, we will introduce how to build the128

effective PET framework CPET for compressed129

LLMs. Before introducing CPET, we first explain130

some essential preliminaries.131

2.1 Preliminary 132

First, we briefly describe the core architecture of 133

transformer (Vaswani et al., 2017). A transformer 134

consists of multiple transformer blocks, and each 135

block includes two components: a multi-head at- 136

tention and a feed-forward network. Multi-head 137

attention can be formalized as 138

MH-ATT(Q,K,V) = [H1, · · · ,Hn]W
O,

Hi = ATT(QWQ
i ,KWK

i ,VWV
i ),

ATT(Q,K,V) = softmax(
QK⊤

d
)V,

(1) 139

where WQ
i , WK

i and WV
i are the matrices of the 140

linear transformations in the i-th attention head, 141

d is the head dimension, Hi is the result of the 142

i-th head, [·, . . . , ·] is the concatenation of vectors. 143

Feed-forward network can be formalized as 144

FFN(X) = σ(XW1 + b1)W2 + b2, (2) 145

Where W1 and W2 are the matrices of the linear 146

transformations in the feed-forward network, b1 147

and b2 are the bias vectors of the linear transforma- 148

tions, σ(·) is the activation function. 149

For simplicity, we denote a LLM M as Y = 150

f(X; θM), where f(·) is the function of the whole 151

transformer architecture, θM is the parameters of 152

the LLM, X is the input and Y is the output. In 153

the FT setting, all parameters of M (i.e., θM) are 154

tuned as follows 155

θtM = argmin
θM

L(f(Xt; θM),Yt), (3) 156

where Xt,Yt is the data of the downstream task t, 157

L is the loss function of the task t. θtM is the final 158

task-specific model parameters of the LLM M. 159

In the PET setting, M is frozen, and additional 160

PET modules P are tuned on task-specific data. We 161

denote the parameters of PET modules injected to 162

LLM M as θP(M). As shown in Figure 1, the com- 163

putation of the transformer architecture is slightly 164

changed due to the injected PET modules and be- 165

comes Y = fPET(X; θM, θP(M)). The tuning pro- 166

cess is formalized as 167

θtP(M) = arg min
θP(M)

L(fPET(X
t; θM, θP(M)),Y

t), (4) 168

where θtP(M) is the final task-specific PET modules 169

collaborating with the LLM M. 170

This paper aims to build PET modules based 171

on a compressed LLM. To this end, after applying 172

compression algorithms to compress the LLM M, 173
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Figure 1: The overall design of our CPET. We use LoRA (Hu et al., 2021) as an example of PET.

making M have fewer parameters or lower-bit rep-174

resentations, we denote the compressed LLM and175

its parameters C and θC respectively. Then the com-176

putation of the compressed model can be described177

as Y = f(X; θC).178

2.2 Framework179

PET methods do not change the LLM backbone ,180

thus adopting PET methods is orthogonal to com-181

pressing the backbone LLM 1. Therefore, we pro-182

pose a more efficient PET framework CPET, by183

first compressing the backbone LLM using task-184

agnostic model compression methods and then ap-185

plying PET methods to the compressed backbone.186

Formally, CPET can be formalized as187

θtP(C) = arg min
θP(C)

L(fPET(X
t; θC , θP(C)),Y

t), (5)188

where θP(C) are the parameters of PET modules189

injected to the compressed LLM C.190

By combining model compression with PET, on191

the one hand, we can take the advantage of PET to192

deploy a unified backbone LLM to serve multiple193

downstream tasks, while only needing to main-194

tain tiny task-specific PET modules for each down-195

stream task. On the other hand, by adopting a com-196

pressed LLM instead of a non-compressed LLM,197

the inference time and resource requirements of the198

backbone model can be significantly reduced. It is199

worth noting that this acceleration is not free. It is200

not difficult to imagine that adopting task-agnostic201

1Compression methods involved in this article do not
change the model structure, which ensure that the insertion
position and quantity of PET modules remain unchanged.

compression methods may weaken the backbone 202

model, which will inevitably affect the search for 203

the optimal parameters θtP(C) and the effect of the 204

final model fPET(X; θC , θ
t
P(C)). 205

As shown in Figure 1, to better learn PET mod- 206

ules for the compressed backbone LLM, we adopt 207

the mechanism to inheriting the PET knowledge 208

from those modules based on the non-compressed 209

backbone. To restore the knowledge loss caused by 210

compressing the backbone LLM, in addition to the 211

PET modules P , we add some knowledge recovery 212

modules R, and Eq. (5) is modified to 213

θtP(C), θ
t
R =

arg min
θP(C),θR

[
L(fPET(X

t; θC , θP(C), θR),Yt)

+ αLDIST(X
t; θM, θC , θP(C), θR)

]
,

(6) 214

where θtR is the parameters of the task- 215

specific recovery modules for the task t, and 216

fPET(X; θC , θ
t
P(C), θ

t
R) is finally used to serve the 217

task t. LDIST(X
t; θM, θC , θP(C), θR) is the loss 218

function for model knowledge recovery, which will 219

be introduced later. In subsequent sections, we 220

will elaborate on how to conduct PET knowledge 221

inheritance and model knowledge recovery. 222

2.3 PET Knowledge Inheritance 223

Instead of training PET modules based on the com- 224

pressed LLM from scratch, we propose training 225

PET based on the original non-compressed LLM 226

first, then adapting the learned PET modules to 227

the compressed LLM. The adaption from the non- 228

compressed LLM to the compressed LLM can save 229

convergence time and improve performance for 230

3



learning PET modules on the compressed LLM. In-231

tuitively, it is more effective for a teacher to teach232

students the fundamentals of a discipline and then233

let students adapt their comprehension based on234

their circumstances rather than directly letting stu-235

dents learn from scratch. Formally, we first use236

Eq. (4) to obtain the parameters of task-specific237

PET modules θtP(M) based on the non-compressed238

LLM M, and then use θtP(M) as the initialization239

to obtain the parameters of task-specific PET mod-240

ules for the compressed LLM C, i.e., obtain θtP(C)241

in Eq. (5) and Eq. (6).242

2.4 Model Knowledge Recovery243

Since the reduction of parameters in the com-244

pressed LLM C may cause performance degrada-245

tion, we thus propose to inject knowledge recovery246

modules R into C to recover the lost knowledge.247

As shown in Figure 1, we add a bypass next to each248

linear layer to add a small amount of change to the249

output states of these linear layers. To avoid in-250

troducing too many parameters, the recovery mod-251

ules R adopt the typical bottleneck MLP struc-252

ture. Formally, we denote an arbitrary matrix in the253

compressed LLM as W and the linear transforma-254

tion as XW, the modified transformation becomes255

XW + σ(XD)U, where D is the down-sampling256

matrix, σ(·) is the activation function, and U is the257

up-sampling matrix. D and U together form θR.258

To help obtain θtR for the task t, we design a dis-259

tillation objective. Specifically, we first select the260

PET modules trained with Eq. (4) as the teacher,261

and then select the PET modules and recovery mod-262

ules in Eq. (6) as the student, the whole distillation263

loss is given as264

LDIST(X
t; θM, θC, θP(C), θR) =

1

|Xt|
∥∥fPET(X

t; θM, θtP(M))− fPET(X
t; θC , θP(C), θR)

∥∥2

2
,

(7)265

where Xt is the input data of the task t. As shown266

in Eq. (6), instead of first learning the recovery267

modules and then adding the inherited PET mod-268

ules for further adaptation, we simultaneously con-269

duct knowledge recovery and tune PET modules.270

3 Experiment271

3.1 Datasets272

Since PET methods are usually evaluated on273

language understanding tasks, we thus evaluate274

CPET on 5 datasets from SuperGLUE (Wang et al.,275

2019), a public leaderboard commonly used to276

Dataset #training #validation

BoolQ 9427 3270
CB 250 56
RTE 2490 277
COPA 400 100
WiC 5428 638

Table 1: The statistics of the datasets used for experi-
ments, which are from SuperGLUE (Wang et al., 2019).

measure the language understanding performance 277

of models, including BoolQ (Clark et al., 2019), 278

CB (De Marneffe et al., 2019), RTE (Bentivogli 279

et al., 2009), COPA (Roemmele et al., 2011), 280

and WiC (Pilehvar and Camacho-Collados, 2018). 281

More details are shown in Table 1. For all datasets, 282

we use accuracy (%) as the metric for evaluation. 283

Considering our goal is to evaluate the impact of a 284

compressed backbone LLM on PET modules and to 285

demonstrate whether the mechanisms in CPET can 286

restore the lost knowledge caused by compression 287

methods, for simplicity, we thus directly use the 288

validation sets in SuperGLUE for test. 289

3.2 Baseline and Implementation Details 290

As both PET and CPET need a backbone LLM, 291

we thus use T5-3B (Raffel et al., 2020) (with 3 292

billion parameters) as the backbone model in our 293

experiments. To compress the backbone, we di- 294

rectly use the open-source toolkit BMCook (Zhang 295

et al., 2022a) to compress T5-3B into various com- 296

pressed versions, including quantization, structured 297

pruning, unstructured pruning, and MoEfication. A 298

subset of The Pile (Gao et al., 2020) data is used 299

for compression. 300

To evaluate the effectiveness of CPET, we com- 301

pare our framework with 4 baseline paradigms that 302

adapt LLMs to specific tasks: (1) FT (LLM): no 303

extra parameters are involved, and all parameters 304

of the original T5-3B are tuned to handle specific 305

tasks. (2) PET (LLM): PET modules are attached 306

to the original T5-3B, and only the parameters of 307

PET modules are tunable while the parameters of 308

the backbone LLM are frozen. (3) FT (CLM): 309

various compressed versions of T5-3B are used as 310

the starting point, and then all parameters of these 311

compressed LLMs are tuned on task-specific data. 312

(4) PET (CLM): PET modules are attached to var- 313

ious compressed versions of T5-3B, and then these 314

compressed backbone LLMs are frozen and PET 315

modules are tuned on task-specific data. 316
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Datasets Paradigm
Original

Quantization
Unstructured Structured

MoEfication
LLM Pruning Pruning

BoolQ
FT 88.0 87.0 87.4 83.0 85.7

PET 88.4 87.3 (0.3 ↑) 86.8 (0.6 ↓) 79.6 (3.4 ↓) 87.8 (2.1 ↑)
CPET - 89.2 (2.2 ↑) 87.6 (0.2 ↑) 85.7 (2.7 ↑) 88.4 (2.7 ↑)

CB
FT 100.0 98.2 94.6 91.1 96.4

PET 98.2 94.6 (3.6 ↓) 98.2 (3.6 ↑) 75.0 (16.1 ↓) 92.9 (3.5 ↓)
CPET - 98.2 (0.0 ↑) 98.2 (3.6 ↑) 94.6 (3.5 ↑) 98.2 (1.8 ↑)

RTE
FT 89.3 88.2 89.3 79.6 86.8

PET 89.6 84.3 (3.9 ↓) 79.6 (9.7 ↓) 65.4 (14.2 ↓) 86.1 (0.7 ↓)
CPET - 91.4 (3.2 ↑) 85.7 (3.6 ↓) 76.8 (2.8 ↓) 89.3 (2.5 ↑)

COPA
FT 88.0 90.0 85.0 73.0 84.0

PET 87.0 85.0 (5.0 ↓) 84.0 (1.0 ↓) 73.0 (0.0 ↑) 83.0 (1.0 ↓)
CPET - 88.0 (2.0 ↓) 85.0 (0.0 ↑) 76.0 (3.0 ↑) 87.0 (3.0 ↑)

WiC
FT 74.9 73.5 75.1 70.1 73.5

PET 75.4 73.4 (0.1 ↓) 71.3 (3.8 ↓) 67.5 (2.6 ↓) 73.8 (0.3 ↑)
CPET - 74.7 (1.2 ↑) 74.4 (0.7 ↓) 70.6 (0.5 ↑) 74.2 (0.7 ↑)

Table 2: Comparisons between CPET and baselines (%). We present the highest scores of the model on the
development set. In parentheses “()”, we compare both PET (CLM) method and CPET method with FT (CLM), and
then use ↑ and ↓ to indicate relative performance improvement or decrease.

All the above paradigms and our CPET are317

implemented with the open-source toolkit Open-318

Delta (Ding et al., 2023). For a fair comparison,319

we use LoRA method (Hu et al., 2021) as a repre-320

sentative PET method for both baseline paradigms321

and CPET. We inject LoRA modules into those322

weight matrices Q and K in the attention layer323

(Eq. (1)). We set the bottleneck dimension of the324

LoRA modules to 32 in all settings. We also set325

the bottleneck dimension of our recovery modules326

to 32. For FT (LLM) and FT (CLM), the learning327

rate is among {1e − 5, 3e − 5, 5e − 5}. For PET328

(LLM), PET (CLM), and our CPET, the learning329

rate is among {1e − 3, 5e − 4, 1e − 4}, consider-330

ing tuning PET modules usually requires a higher331

learning rate than fine-tuning LLMs. The batch332

size is among {16, 32, 64}. The weight decay is333

set to 1e− 2. For all datasets, we tune 20 epochs334

and use the first 10% steps for warmup. The best335

model checkpoint is selected by considering the336

performance on validation sets. The coefficient in337

Eq. (6) is default to α = 0.05.338

3.3 Overall Results339

Table 2 shows the performance of CPET and base-340

lines. From the table, we can find that:341

(1) Experiments comparing FT and PET show342

that using PET can consistently achieve compa-343

rable results to using FT, whether on the original344

LLM or on a compressed version. This indicates 345

that utilizing PET can significantly decrease the 346

number of parameters needed without compromis- 347

ing the task performance when serving multiple 348

downstream tasks. 349

(2) Comparing the original LLM and its com- 350

pressed versions, the results of the fine-tuning pro- 351

cess show that the compressed LLMs perform not 352

as well as the original LLM. It suggests that task- 353

agnostic compression methods lead to losing some 354

knowledge related to downstream tasks. That is 355

to say, in order to improve the inference speed, 356

the performance of the compressed model may de- 357

crease due to the acceleration process. At this time, 358

if there is a mechanism to make up the performance 359

gap without affecting the inference speed, applying 360

compression methods will be more reasonable. 361

(3) Within the compressed model, CPET con- 362

sistently outperforms vanilla PET methods. Such 363

results indicate that task capabilities are effec- 364

tively migrated through knowledge inheritance and 365

knowledge recovery mechanisms. Among all meth- 366

ods, CPET can match the best performance of 367

those fine-tuning baselines, showing the migrated 368

knowledge can effectively improve the model per- 369

formance on downstream tasks. In other words, 370

our method is more effective than directly building 371

PET modules based on a compressed LLM and can 372

maintain good results in low-resource applications. 373
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LLM Q UP SP M PET CPET

2.8 0.7 1.4 1.4 1.3 0.02 0.12

Table 3: Tunable parameters (billion) of different meth-
ods. “Q”, “UP”, “SP”, and “M” represent quantization,
unstructured pruning, structured pruning, and MoEfica-
tion, respectively. In “PET” and “CPET”, the number
of parameters in the backbone has been excluded.

On the other hand, as shown in Table 3, the size of374

tunable parameters for CPET is relatively close to375

that of vanilla PET methods, which is much smaller376

than the size of the original and compressed LLMs.377

(4) Through cross-comparisons between differ-378

ent compression models, we find that quantization379

and MoEfication have relatively little loss on the380

model performance, and can completely restore the381

performance of the original LLM using our method.382

However, the pruning methods cause more perfor-383

mance loss. Although our method can significantly384

recover the performance loss caused by the pruning385

methods, it still cannot fully recover to the level386

before compression.387

3.4 Ablation Studies388

To further analyze how different mechanisms in389

CPET help restore the loss caused by model com-390

pression methods, we use the BoolQ dataset for391

further ablation studies. The results are shown in392

Table 4. From the results, we can find that:393

(1) PET knowledge inheritance is effective. By394

initializing the tunable parameters with the PET395

modules trained on the non-compressed LLM, the396

task performance of the combination of the final397

PET modules and the compressed LLM has been398

greatly improved. This indicates that in the opti-399

mization space of the compressed LLM, it is diffi-400

cult to optimize the optimal task-specific parame-401

ters of PET modules based on random initialization,402

but the optimal PET modules can be achieved much403

easier using PET knowledge inheritance.404

(2) Model knowledge recovery is effective. Ta-405

ble 2 shows that CPET improves the task perfor-406

mance by adding our knowledge recovery mecha-407

nisms. We need to further prove that such perfor-408

mance improvement is not only due to the direct409

increase in the parameter size brought by these ad-410

ditional recovery modules. From Table 4, we find411

that only adding the extra recovery modules brings412

less performance improvement than our complete413

framework. This suggests combining recovery414

I R D Q UP SP M

87.3 86.8 79.6 87.8
✓ 88.7 87.5 81.0 87.7
✓ ✓ 88.3 88.1 83.6 88.5
✓ ✓ ✓ 89.2 87.6 85.7 88.4

Table 4: The ablation study on BoolQ (%). “I” means
the tunable parameters are inherited from the PET mod-
ules trained on the non-compressed LLM. “R” means
the recovery modules are injected into the compressed
model, but the distillation objective is not applied. “D”
means that the distillation objective is used.

modules with knowledge distillation to enhance 415

PET modules is necessary. 416

3.5 Convergence of CPET 417

Although we are primarily concerned with the final 418

speed and performance at the end of the training 419

process, the method usability may be compromised 420

if the training process spends too much time. There- 421

fore, based on four different compression LLMs, 422

we compare the convergence speed of tuning PET 423

modules to handle the BoolQ dataset. 424

From Figure 2, we find that due to our PET 425

knowledge inheritance mechanism, our method is 426

superior to the vanilla PET methods in terms of 427

convergence speed and final results. Furthermore, 428

when quantization, unstructured pruning or MoEfi- 429

cation is used, the inheritance mechanism gives 430

our method a better starting point for tuning PET 431

modules. While in the case of structured pruning, 432

even though the initial point of our method does not 433

work well on tasks, it is closer to the optimal point 434

in the optimization space and converges faster. 435

Moreover, due to the existence of numerous 436

downstream tasks, the PET modules based on a 437

unified backbone LLM may be trained by commu- 438

nity users on their own data and then uploaded to 439

the Internet. When adapting these PET modules 440

to a compressed backbone LLM, there may not 441

be any task-specific data available for the adap- 442

tation process. From Figure 2, we can find that 443

when quantization or MoEfication is used, we can 444

achieve ideal results under the zero-shot adaptation 445

condition by directly using the PET inheritance 446

mechanism we proposed. 447

3.6 Performance on the Mixture of 448

Compression Methods 449

To evaluate CPET on a higher compression ratio, 450

we further adopt the mixture of compression meth- 451
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Figure 2: The convergence of vanilla PET, inherited PET, and CPET.

Method BoolQ CB RTE COPA WiC

FT 88.0 100 89.3 88.0 74.9
CPET 86.7 100 86.1 85.0 75.3

Table 5: The results of applying CPET on the mixture
of compression methods (%).

ods, including quantization, unstructured pruning,452

and MoEfication, to compress the backbone LLM.453

The compressed model is around 16× smaller than454

T5-3B. We compare the performance of CPET,455

based on this 16× smaller compressed model, to456

the performance of fine-tuning T5-3B. Table 5457

shows the experimental results. From the table,458

we conclude that our method is compatible and can459

be easily applied to highly compressed models that460

use multiple compression methods.461

4 Related Work462

This work is related to PLMs, LLMs, PET, and463

model compression. We mainly introduce typi-464

cal PET and model compression methods. More465

details on PLMs and LLMs can refer to the sur-466

vey (Qiu et al., 2020; Bommasani et al., 2021).467

4.1 Parameter-Efficient Tuning468

In recent years, transformer-based (Vaswani et al.,469

2017) PLMs have been widely explored, such as470

GPT (Brown et al., 2020) and BERT (Devlin et al.,471

2018). With the increase in both the amount of472

pre-training data and the size of PLMs’ parame-473

ters, large-scale PLMs (Kaplan et al., 2020), i.e.,474

LLMs (Brown et al., 2020; Black et al., 2022;475

Chowdhery et al., 2022) also emerge and show476

excellent capabilities (Wei et al., 2022), espe-477

cially in some cognitive and embodied scenar-478

ios (Lewkowycz et al., 2022; Nakano et al., 2021;479

Driess et al., 2023). Although an LLM can acquire480

rich knowledge from massive pre-training data to481

handle complex tasks in a zero-shot or few-shot482

manner (Brown et al., 2020; Black et al., 2022), to 483

better stimulate the knowledge stored in the LLM 484

to serve downstream tasks, there is still a need 485

for adapting the LLM to various task-specific sce- 486

narios. For traditional PLMs, fine-tuning all pa- 487

rameters of PLMs is the mainstream way to adapt 488

them (Church et al., 2021), yet its parameter ineffi- 489

ciency makes this way costly to adapt LLMs (Ding 490

et al., 2023). Moreover, maintaining a task-specific 491

version of LLMs for each downstream task is unac- 492

ceptably resource-intensive (Zhou et al., 2022). 493

To adapt LLMs to task-specific scenarios in 494

a more efficient manner, various PET meth- 495

ods (Lester et al., 2021; Houlsby et al., 2019; 496

Hu et al., 2021; Li and Liang, 2021; Ben Zaken 497

et al., 2022) have been proposed, where LLMs 498

are frozen and some model-independent tunable 499

modules are injected into the transformer architec- 500

ture of LLMs to help the adaptation process. PET 501

modules are usually tiny, which can significantly 502

reduce the cost of adapting LLMs. PET modules 503

can be inserted into different locations within the 504

transformer architecture. For instance, prompt tun- 505

ing (Lester et al., 2021) and prefix tuning (Li and 506

Liang, 2021) are two methods that prepend tunable 507

embeddings to the input and hidden states, respec- 508

tively. Adapter tuning (Houlsby et al., 2019) ap- 509

plies tunable transformation between adjacent mod- 510

ules. BitFit (Ben Zaken et al., 2022) and LoRA (Hu 511

et al., 2021) make minor internal modifications to 512

the modules of the transformer architecture. 513

As mentioned before, LLMs have acquired rich 514

capabilities and just need an efficient way to stimu- 515

late these capabilities. The role of tunable PET 516

modules is to learn task features and serve as 517

triggers to stimulate task-specific capabilities in 518

LLMs (Ding et al., 2023). Sufficient experiments 519

show that collaborating task-specific PET mod- 520

ules and a frozen LLM can reach comparable 521

performance to fine-tuning all parameters of the 522

LLM. Furthermore, since different task-specific 523
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PET modules can share a unified frozen LLM as524

their backbone, this also leads to lower computa-525

tion and storage overhead in multi-task serving and526

switching (Zhou et al., 2022). In general, the emer-527

gence of PET methods significantly reduces the528

cost of tuning and deploying LLMs.529

4.2 Model Compression530

Although PET methods can reduce the cost of tun-531

ing and deploying LLMs, the computation bottle-532

neck of the LLM itself still exists. Therefore, to533

further improve efficiency for model serving, it is534

crucial to speed up the computation of LLMs, and535

model compression is a commonly used solution.536

Considering that the PET modules of different tasks537

usually work together on a unified backbone LLM,538

here we mainly introduce task-agnostic model com-539

pression (Sanh et al., 2019) rather than task-specific540

compression (Sun et al., 2019) for LLMs, including541

quantization, pruning, and MoEfication.542

In traditional PLMs, 32-bit floating-point num-543

bers are mainly used to represent models. As544

the model size gradually increases, representing545

LLMs in a 32-bit format consumes too much GPU546

memory and computing time. To address this is-547

sue, mixed-precision training (Micikevicius et al.,548

2017) is adopted to represent LLMs with 16-bit549

floating-point numbers. To further reduce the mem-550

ory overhead and improve the model speed, quan-551

tization methods are applied to represent models552

with fixed-point numbers, from 8-bit (Zafrir et al.,553

2019), 4-bit (Frantar et al., 2023) to 1-bit (Bai554

et al., 2021). To avoid the performance degrada-555

tion caused by quantization, quantization-aware556

training (QAT) (Stock et al., 2021) has also been557

proposed to use a small amount of data to adjust the558

distribution of model parameters for quantization.559

Different from quantization methods that com-560

press the representation of each parameter, pruning561

methods directly discard some parameters. Com-562

monly used pruning methods include structured563

pruning (Fan et al., 2020; Wang et al., 2020; Zhang564

et al., 2021; Xia et al., 2022) and unstructured prun-565

ing (Han et al., 2015; Chen et al., 2020; Xu et al.,566

2021). Structured pruning aims to find useless mod-567

ules and remove them completely, such as erasing568

all parameters in a linear layer. Unstructured prun-569

ing only removes individual parameters, such as570

deleting some parameters to form a sparse matrix.571

MoEfication (Zhang et al., 2022b), inspired by572

the mixture-of-experts (MoE) transformer (Lep-573

ikhin et al., 2021), aims to divide the parameters of 574

LLMs into multiple partitions, and each time only a 575

few partitions are used to compute the final results. 576

Although most of the currently popular LLMs are 577

dense models, studies have shown that dense LLMs 578

are activated sparsely, and different parameter ar- 579

eas are activated by different data to form some 580

skill partitions (Wang et al., 2022; Dai et al., 2021; 581

Suau et al., 2020; Panigrahi et al., 2023). Specifi- 582

cally, by analyzing the sparse pattern of activation 583

states in LLMs, the linear layers of LLMs are sliced 584

to MoE, and an expert router is trained to select 585

experts. During the computation process, a cer- 586

tain proportion of relevant experts is dynamically 587

activated according to the input data. 588

Typically, to make a compressed LLM behave 589

the same as its original version, distillation objec- 590

tives are often used to align the pre-compression 591

and post-compression models, including aligning 592

both output and intermediate states (Hinton et al., 593

2015; Sun et al., 2019; Jiao et al., 2020; Liu et al., 594

2022; Park et al., 2021). Due to space limita- 595

tions, more compression details can refer to the 596

survey (Liang et al., 2021; Xu and McAuley, 2022). 597

5 Conclusion 598

In this paper, we propose an effective PET frame- 599

work based on the compressed LLM (named CPET) 600

to further reduce the resource requirements and 601

inference speed when deploying LLM and PET 602

modules to serve downstream tasks. Considering 603

task-agnostic compression methods may cause los- 604

ing some task-specific knowledge, we introduce 605

PET knowledge inheritance and model knowledge 606

recovery to restore the lost knowledge. By inherit- 607

ing the prior task knowledge of the PET modules 608

learned on the non-compressed LLM, searching for 609

the optimal PET modules for the compressed LLM 610

becomes easier. Moreover, by introducing knowl- 611

edge recovery modules to recover task-specific ca- 612

pabilities lost in the compression phase, collab- 613

orating PET modules with the compressed LLM 614

can achieve comparable performance to those PET 615

modules based on the non-compressed LLM. The 616

experimental results show that CPET can outper- 617

form baselines based on the compressed LLM, 618

and meanwhile, CPET maintains the advantages 619

of PET methods for multi-task serving. This paper 620

mainly accelerates the inference of PET methods 621

and LLMs. We leave the computation bottleneck 622

of LLMs in the tuning process as future work. 623
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6 Limitations624

In this paper, we only use T5-3B as the backbone625

LLM. For the selection of PET methods, we only626

choose LoRA as a representative. In fact, our627

framework can be applied to any LLM and PET628

method. Therefore, we will conduct experiments629

on more combinations of LLMs and PET mod-630

ules to demonstrate the generalization of our frame-631

work. The compression method adopted in this632

paper does not change the the number of layers of633

the backbone LLM. However, for those compres-634

sion methods that change the hidden dimensions of635

the model, how to transfer the knowledge of PET636

modules on the non-compressed LLM remains an637

open problem for our future work.638
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