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Abstract

In Deep Neural Networks (DNN) and Spiking Neural Networks (SNN), the
information of a neuron is computed based on the sum of the amplitudes
(weights) of the electrical potentials received in input from other neurons. We
propose here a new class of neural networks, namely Delay Neural Networks
(DeNN), where the information of a neuron is computed based on the sum of
its input synaptic delays and on the spike times of the electrical potentials
received from other neurons. This way, DeNN are designed to explicitly
use exact continuous temporal information of spikes in both forward and
backward passes, without approximation. (Deep) DeNN are applied here to
images and event-based (audio and visual) data sets. Good performances are
obtained, especially for datasets where temporal information is important,
with much less parameters and less energy than other models.

1 Introduction

Deep Neural Networks (DNN) have gained more and more in complexity, power and perfor-
mance to solve highly complex tasks (Rawat and Wang, 2017). These networks abstract the
functioning of biological neurons. Electrical information is integrated, computed and passed
from the preceding layer to the next. As these networks can use a lot of energy (Strubell
et al., 2019), and aren’t biologically plausible, a new class of neural networks has emerged,
Spiking Neural Networks (SNN), which tend to reproduce the spiking behavior of biological
neurons.

In an SNN, each neuron is represented by an electrical membrane potential, which evolves
according to incoming spikes. Once the membrane potential reaches a threshold, the neuron
emits a spike and its membrane potential is usually reset. This all-or-nothing behavior reduces
the number of computations because neurons possibly do not fire and thus do not activate
downstream neurons. The thresholding of membrane potentials induces a discontinuity in
the model, which impedes mathematical analysis and the computation of the gradient in the
backpropagation algorithm and thus complicates the learning.

Time dimension can be used in different manners in SNN, depending on the model. In (Kim
and Panda, 2021), using rate-coded SNN, it is possible to show that short inter-spike intervals
carry information. In (Thorpe et al., 2001), in order to better account for the precise firing
times of the neurons, a new coding method has emerged, namely Time-To-First-Spike (TTFS)
coding. Thorpe et al. (2001) argue that the biological brain could make use of precise timing
of the spikes, or of the order of arrival of each incoming spike. In TTFS coding, neurons are
usually forced to spike only once, thus constraining the network to arrange spikes in time.
Recently, the learning of synaptic delays has came along the will of using the time dimension
(Zhang and Li, 2020; Hazan et al., 2022; Hammouamri et al., 2023; Pengfei et al., 2023).
Indeed, it can be shown that, for some type of data, delays but not weights are necessary to
solve temporal logic problems (Habashy et al., 2024). Moreover, temporal plasticity can be
used to treat temporal information (Wang and Crus, 2024). For more theoretical analyses
on the interest of synaptic delays in SNN, one can refer to (Maass, 1997; Maass and Schmitt,
1997; Thorpe et al., 2001).
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We present here Delay Neural Networks (DeNN), which can be considered to be a temporal
version of DNN, or an abstract SNN. As classic DNN and SNN treat electrical amplitudes
(or models of), DeNN treat timing information (or a model of). In DeNN, learning happens
through synaptic delays, and an important connection between any two neurons is represented
by a short delay. The firing time of a neuron is computed by directly considering the impact of
each presynaptic spike onto the firing time of the postsynaptic neuron instead of thresholding
a membrane potential. This allows side stepping the challenge of non-differentiability faced
by SNN, and using exact temporal information from input synapses in the forward and
backward passes. We show results on event-based datasets for classification tasks (video and
audio).

The contributions of this work are as follows: (i) We introduce a new general framework
for working in the temporal dimension with deep neural networks, which can be
adapted to deep neural network architectures ; (ii) In this framework, different temporal
kernels can be experimented to learn synaptic delays instead of synaptic weights, with
exact evaluation of the gradient in the temporal dimension ; (iii) On benchmark datasets
(images, videos and audio), DeNN obtains the same, or better performances
than other models, but with much less parameters and less energy cost, with
respect to other models.

2 Related works

2.1 Temporal coding in SNNs

Learning temporal codes has a long history in computational neuroscience. We can cite,
among many other approaches, Tempotron (Gütig and Sompolinsky, 2006) and ReSuMe
(Ponulak and Kasiński, 2009). Tempotron presents an interesting weight synaptic learning
rule for a single neuron to learn for detecting locally synchronous spikes, known as Spike-
Timing-Dependent Plasticity (STDP). ReSUME focuses on making (reservoir networks
of) neurons learn to reproduce template signals (instructions) encoded in precisely timed
sequences of spikes. Instead, the purpose of DeNN is to follow a modernized version of
Time-To-First-Spike (TTFS) temporal code implementing delays, and adapting the idea
to event-based datasets. DeNN neurons learn synaptic and firing delays for firing faster or
slower according to the classification error of a temporal signal in a deep learning network
architecture. While DeNN is currently more oriented to global deep learning mechanisms,
computational neuroscience mechanisms will help in the future to improve and to better
understand the global and local learning mechanisms of DeNNs.

Mostafa (2017) was one of the first to introduce temporal coding in modern deep spiking
neural networks. To do so, they derived an analytic formula to directly compute the firing
times of non-leaky Integrate and Fire (IF) neurons which produce a single spike, i.e., with
infinite refractory period. Zhou et al. (2021) extended this algorithm to more challenging
benchmark datasets in computer vision. Their work was extended to the Spike Response
Model (SRM) neurons by (Comsa et al., 2020), where an equation is solved in the complex
field to find solutions for the good spike timing of the neurons. With the same technique,
Göltz et al. (2021) extended the work in (Mostafa, 2017) to several cases of Leaky Integrate
and Fire neurons (LIF). All these models have in common a methodology to solve an equation
to find the timing of the first spike from a neuron (whether it is an IF neuron, a LIF, an
SRM). With the same methodology, Park et al. (2020) presented equations somewhat simpler
than in (Göltz et al., 2021; Comsa et al., 2020).

Another solution is to adapt the backpropagation algorithms to event-based data (Zhu et al.,
2022). Recent works (Wunderlich and Pehle, 2021; Lee et al., 2023) show that an exact
computation of the gradient for these models is possible, and that rate coding and temporal
coding can be related through loss functions (Zhu et al., 2023). Most of these approaches
are either restricted to specific models (Mostafa, 2017; Comsa et al., 2020; Göltz et al., 2021)
or to approximate gradients (Zhu et al., 2022). Among approximate gradient techniques,
the surrogate gradient allows SNNs to exhibit promising results (Esser et al., 2016; Bellec
et al., 2018; Neftci et al., 2019; Tavanaei et al., 2019). However, this technique remains an
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approximation of the thresholding function used in the forward pass by continuous functions
in the backward pass.

Another possibility that has been developed is to map classic neurons to spiking neurons, as
in (Rueckauer and Liu, 2018; Park and Yoon, 2021; Kheradpisheh and Masquelier, 2020).
These works allow simpler backpropagation algorithms, since they can leverage better the
properties of analog networks. They are however still restricted to one model of neuron and
can hardly be generalized to other models.

2.2 Synaptic delays

To achieve temporal coding, Single spike SNNs (Mostafa, 2017; Zhang et al., 2019; Zhou
et al., 2021; Comsa et al., 2020; Göltz et al., 2021; Park et al., 2020) intuitively seem also
to be a good framework to learn delays between neurons. Modelling the delays into neural
networks can be tracked back at least to 1989 with Time-Delay Neural Networks (TDNN)
(Waibel et al., 1989). In this work, connections have several synaptic terminals, each with
its own fixed delay and variable weight thus leading to an exploding number of parameters.
Bohte et al. (2002) derived an approach called Spike Prop, with the same architecture for
synaptic terminals and the same drawbacks in terms of memory and computations.

Simpler delay-based models have then been developed. In (Schrauwen and Van Campenhout,
2004; Wu et al., 2006; Shrestha and Orchard, 2018; Hammouamri et al., 2023; Pengfei et al.,
2023) one trainable delay was implemented for each synaptic connection, alongside with
synaptic weights. In (Taherkhani et al., 2015a;b), single output neurons are trained to fire a
spike train at desired times. Also, Taherkhani et al. (2015b) only allow delays to be increased,
which seems biologically implausible. Zhang and Li (2020) presented an interesting joint
synaptic delay-weight plasticity algorithm, and confronted it to a real-world dataset for
speech recognition. More recent works tend to get rid to the single spike constraint, as it
is not reliable for event based datasets (Yu et al., 2023; Hammouamri et al., 2023; Pengfei
et al., 2023; Grappolini and Subramoney, 2023; Deckers et al., 2024; Wang, 2024).

In most of these delay-based works, every synapse has two parameters: a weight and a
delay, effectively doubling the memory cost with respect to analog networks. To the best of
our knowledge, (Hazan et al., 2022) is the only work presenting a weightless spiking neural
network, where learning happens only through synaptic delays. The authors used a learning
rule derived from Spike-Timing-Dependent Plasticity (STDP), and confronted their network
to a classic image classification task. However, their network exhibits low accuracy and
memory performances.

3 Methods

3.1 Forward pass

In our network, instead of weights wij , we use positive delays which represent a simple time
delay between two presynaptic and postsynaptic neurons. In DNN, if a connection between
two neurons is important (inversely not important), its weight |wij | is high (inversely low),
while in DeNN this corresponds to a small (inversely high) delay |dij |. In order to ensure
that the delays dij stay positive during the back-propagation steps, we effectively declare
signed-delays dsij ∈ R, and then compute the delay as a simple Gaussian of the signed-delays:

dij = exp
(
−
(dsij
σj

)2)
(1)

where σj is a parameter learnt for each neuron.

DeNN’s neurons generic definition simply consists of Equation 2. The firing time
of postsynaptic neuron j is computed as a function of the spiking times of the preceding
layer (ti > 0) and synaptic delays:

tj =
∑
i

f(ti, d
s
ij) (2)
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The function f represents the synaptic impact of presynaptic neuron i onto the spiking time
of postsynaptic neuron j, tj . Essentially, for any synaptic input received, which is excitatory
(resp. inhibitory), every neuron j fires earlier (resp. later). In DeNN, low (inversely high)
spiking times would correspond to high (inversely low) activations in DNN.

Many DeNN’s neuron functions f can be derived from Equation 2. The following has
been chosen after considering arrival times ti + dij for presynaptic neuron i and postsynaptic
neuron j:

tj =
∑
i

sign(dsij)
[
κ(ti + dij)− κ(ti + 1)

]
(3)

where κ is a strictly decreasing positive function representing the impact of the incoming
spike onto the firing time of the postsynaptic neuron. The term −κ(ti + 1) represents
an incompressible delay because it decreases the activity of the synapse, and tackles a
discontinuity at dij = 1 (see Section A for more details). The sign of the signed-delay,
between a presynaptic neuron i and a postsynaptic neuron j, is taken into account to
represent the type of the synapse: whether it is an excitatory synapse (negative synapses, to
decrease the time of activation), or an inhibitory one (positive synapse). We found that a
satisfactory kernel κ was the exponential kernel κ(x) = e−x. Thus, with this kernel, each
spike is exponentially more important than subsequent ones. This corresponds to a balanced
mix between TTFS and rank-order coding (Thorpe et al., 2001). In that sense, DeNN is a
temporal abstraction of the behavior of biological neurons. Note that any continuous positive
decreasing function can be used for kernel κ, but the exponential one happens to work well
in practice.

3.2 Standardization and temporal ReLU function

Neurons’ spike times are standardized, with average and standard deviation:

tj =
∑
i

sign(dsij)
[
κ(ti + dij − tq)− κ(ti + 1− tq)

]
(4)

where tq is the activation time of the q-th quantile after which every incoming spike is
canceled.

It is possible then to cancel (or not) every neuron that fires after some value (typically the
median of the spiking times in the layer), forcing them to an infinite time. This process is
equivalent to a simple lateral inhibition, where the first neurons of a layer to spike in time
impede the neighbouring slower ones. It is equivalent to sending a signal to the neurons
of the layer after the spike corresponding to the q-th quantile to make them silent. With
q = 1, all spikes are fired, this corresponds to a slow regime (Figure 1, left). With q = 0.5,
all spikes after the median (or the average in case of gaussian distribution, see Section G.1
for an experimental illustration) are silent, and this corresponds to the fast regime (Figure 1,
right). In software systems, the DeNN equations simply become:

tj =
∑
i

sign(dsij)
[
κ(zi + dij)− κ(zi + 1)

]
zj = std(tj)

(5)

where std is the standardization process, where we subtract the mean and divide by the
standard deviation of the distribution. As shown in Section B, taking κ(zi + dij) or
κ(ti + dij − tq) is “almost” equivalent, up to a division by standard deviation. For the fast
regime (q = 0.5), a temporal ReLU can be defined as:

TempReLU(z) =

{
z if z < 0

+∞ otherwise
(6)

3.3 Events Preprocessing: event2time algorithm

When event-based datasets consist of images obtained from event-based cameras, pixel-level
intensity changes are captured as events. Since the number of events increases with the
temporal resolution of the camera, the number of events can get large.
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Figure 1: Slow (left) and fast (right) regimes of the DeNN. Each layer outputs spikes after
an integration phase, which duration is calibrated by q. If q = 1, then each layer has to wait
until every neuron of the preceding layer has emitted a spike, which corresponds to the slow
regime. To reduce the latency of the model, it is possible to decrease q (fast regime), so that
each layer can ignore the slowest neurons of the preceding layer.

To deal efficiently with event-based datasets, an algorithm for the pre-processing of events,
inspired from (Zeigler, 2004), was developed (Dagang, 2022). This algorithm greatly reduces
the number of events in the datasets while tracking the most relevant pixels’ activity. In
event-based datasets, a data consists of three coordinates (t, p,x) where t is the time of the
event, p ∈ {−1,+1} is the polarity of the event, and x is the position of the pixel in the
image. Our algorithm, called event2time, accumulates events on each cell over time. Each
cell i stores the timing of the events in a list Li, and when more than 2rN (0 < r < 1, for N
total pixels in the image, and two polarities) cells are active (i.e., have stored one or more
events), an array is built with:

ti =
maxLi −minLi

#Li
; zi = std(ti) (7)

where #Li is the size of the list. We reiterate this process on subsequent events until we
reach the end of the sample. The above equation transforms strongly active cells into fast
cells, and conversely poorly active cells into slow cells. This process is represented in Figure 2.
A sample S is thus represented by M images I1, ..., IM presented successively to the network,
which emits a prediction. Each neuron emits at most one spike per image Is. The prediction
of the network is stored for each image Is, and, at image IM , the pseudo-probability that
the sample is of class c is computed given the past information with a temporal softmin:

P (S = c|I1, I2, ..., IM ) = πc =

∑M
s=1 e

−zc[Is]∑M
s=1

∑K
j=1 e

−zj [Is]
(8)

where zc[Is] represents the standardized activation time for the c-th output neuron at input
image Is = I1, ..., IM . For audio-based datasets, we first applied the speech2spike (Stewart
et al., 2023) algorithm to transform the raw audio into events, and then applied our event2time
algorithm.

3.4 Backward pass

In order to train our network, we use the traditional backpropagation algorithm, where
gradient descent is performed on the signed-delays dsij . Our aim is to decrease important
delays, instead of increasing important weights. The classic learning rule of backpropagation
is used:

dsij ← dsij − η
∂L

∂dsij
(9)

where 0 < η < 1 is the learning rate. Note that, in practice, we used the Adam optimizer,
whose gradient formula is slightly different but can be found in (Diederik and Ba, 2014). The
loss function L at the end of the sequence is the traditional cross-entropy loss for classification
tasks. And we have:

∂L

∂dsij
=

∂L

∂πj

∂πj

∂zj

M∑
s=1

∂zj [Is]

∂tj [Is]

∂tj [Is]

∂dij

∂dij
∂dsij

(10)
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Figure 2: DeNN full pipeline: (1) Events arrive every ∆t timestep, where ∆t is the precision
of the neuromorphic camera, and are used such as by SNN. (2) Using event2time algorithm,
events are aggregated over T∆t timesteps, for one sample, and fed to the network in an
on-line manner. (3) After all events are computed, the sequence of M images can be simulated
much faster jumping from one image to the other without waiting for every ∆t timestep,
giving rise to an off-line latency. (4) Feed-forward network used for each image.

where every term is well defined and is derived from differentiable functions, which allows us
to directly use generic libraries for automatic differentiation, such as PyTorch (Paszke et al.,
2017). More details on the computation of the gradient can be found in Appendix C.

3.5 Short and Long Term Memory

Our preprocessing algorithm captures the temporal dynamics of each sample over short
windows of time. Consider that, on average, each input cell presents an activation (or an
event) every ∆m timesteps. If the dataset has N input cells, and we want 2rN , active cells
on each image Is, then on average, each image Is represents a short-term window of ∆m2rN
timesteps, and the network acquires short term memory. However, for some data, there is
a need for longer term memory. Longer term memory is assigned to each neuron of the
network as follows:

δh = zj [s]− zj [s− h], h = s− ν, ..., s

zj [s]← zj [s] +

s∑
h=s−ν

αh
j sign(δ

h)[exp(−|δh|)− 1]
(11)

where αh
j ∈ [−1, 1] is a learnt parameter for neuron j. Hence, each cell has a long-term

memory equals to ν∆m2rN , with ν a constant hyperparameter. More details can be found
in Section E.

4 Results

4.1 Performance on benchmark datasets

To show that our network is able to tackle temporal data, we confronted it to the event-
based version of MNIST dataset (N-MNIST (Orchard et al., 2015)), to the DVS Gesture

6
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dataset (Amir et al., 2017) which represents hand movements, and to the Google Speech
Command (GSC) dataset (Warden, 2018), which is a speech recognition dataset. In order
to allow for larger comparisons with other models, we also confronted our model to the
MNIST (Le Cun et al., 1998) and CIFAR-10 (Krizhevsky, 2009) datasets. Every training
details and parameter values can be found in Section D. Results and comparison to the
state of the art models are shown in Table 1. For each dataset, we compare to models
that either have the best performance or the best accuracy to parameter ratio (see Table
F.1 for more comparisons on performance). While performances are preserved for visual
tasks, DeNN improves the performances in audio tasks, where temporality is important.
These performances are achieved with architectures much lighter than for other models.
Furthermore, when possible, we computed the average number of computations per sample
in different models, by multiplying the reported firing rate to the number of synapses (see
Appendix F for more details). We show that it is possible to achieve good performances with
fewer computations for MNIST, CIFAR-10, N-MNIST and DVS-Gesture.

4.2 Energy Consumption

Based on the theoretical computational complexity of Table F.1, energy consumption results
have been computed in Table F.2 for the neuromorphic supercomputer of the Human Brain
Project, SpiNNaker (Painkras et al., 2013). We show that DeNN consumes less energy than
other best performing models on all datasets, except maybe for DVS gesture, where we could
not find the firing rate of the best performing model. Furthermore, as discussed in Section F,
these good results will be improved in the near future. Exponential function operations are
essential for machine learning. This is leading to increased research in electrical engineering
to reduce hardware energy consumption. Impressive power reduction has been achieved
recently on the electronic devices used by neuromorphic computers (Costa et al., 2023).

4.3 Choice of kernel κ

The class of model presented in this work is general enough to work with any kernel, as
long as it is a decreasing positive function. Although the kernel that works best is the
exponential κ(x) = exp(−x), we found satisfying result with the inverse κ(x) = x−1. To
avoid double negatives (when both x and dsij are negative), we shifted the Gaussian curve
(after standardization) by three units to the right and clipped the (standardized) spike times
to a minimum of 0.001. We reported an accuracy of 96.62% for the MNIST dataset, and
97.76% for the neuromorphic version. Note that in order to compare only the change in
kernel, we used the same architectures and hyperparameters as for κ(x) = exp(−x). It should
be possible to obtain even better results by adapting the architectures and parameters of the
model. Also, for resources reason, these simulations were performed only on small datasets.

4.4 Time for event-based models and event-based datasets

To show how a DeNN uses the temporal information in event-based datasets, Figure 3 depicts
the probabilities that a sound S is of class c given the past, for a sample of sound drawn from
the GSC dataset. The probabilities clearly evolve with time and inputs, as the networks
get more information about the stimulus. Figure 4b shows the evolution of accuracy on
GSC dataset for different values of long-term memory. With hyperparameter memory length
value ν = 5 (Equation 11), the model already classifies correctly about 93% of inputs, and it
crosses 96% at ν ≥ 10.

We also note that the activity of neurons accelerates in the direction of the movement for
the DVS-Gesture dataset, as illustrated in Figure 5. We computed the difference δ (see
Equation 11) between neurons of the first layer’s feature maps created after the input of a
sample of the DVS-Gesture dataset. We found that, in the direction of a movement (here a
right-hand counter clockwise), neurons tend to decrease their relative timing spike to others
(i.e. zj [s] < zj [s− 1]), while they increase afterwards. This is consistent with the hypothesis
that time in visual system encodes speed and direction of stimuli (Saleh Vahdatpour and
Zhang, 2024). To further explore the time dimension in the DVS-Gesture dataset, an
experiment was run where the total number of timesteps during inference was truncated. The
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Table 1: Comparison of performance accuracy on benchmark datasets. When possible, we
computed the exact number of active synapses in the model. A synapse is considered active
if it transmits a value other than 0. See Appendix F for more details on the average number
of computations based on computational complexity. W stands for weight training, and D
for delay.

Model # Parameters
/ active

Avg FLOPS
per object

Top-1%
Accuracy

Acc / log(#Params)
ratio

MNIST
(Zhang et al., 2020), W 635,200 - 98.40% 7.8472

(Kheradpisheh and Masquelier, 2020), W 317,600 / 35,755 35,755 97.40% 9.2899
DeNN (q = 1), D 79,400 / 14,804 14,804 97.46% 10.1493

DeNN (q = 0.5), D 79,400 / 8,135 8,135 97.43% 10.8208
CIFAR-10

(Zhou et al., 2021), W 54.2 · 106 249.4 · 106 92.68% 5.2043
(Park and Yoon, 2021), W 33.6 · 106 - 91.90% 5.3029

DeNN (q = 1), D 5.8 · 106 / 2.3 · 106 61.5 · 106 90.59% 6.1843
DeNN (q = 0.5), D 5.8 · 106 / 1.4 · 106 43.2 · 106 87.09% 6.1539

N-MNIST
(Fang et al., 2021), W - - 99.61% -
(Zhu et al., 2022), W 35,800 - 99.39% 9.5006
DeNN (q = 0.5), D 15,696 / 11,788 665,262 98.06% 10.5666

DVS-Gesture
(Cordone et al., 2021), W 13,992 < 10 · 106 92.01% 9.6383

(Man et al., 2023), W - - 98.23% -
DeNN (q = 0.5), D 19,216 / 7,895 5.8 · 106 97.57% 10.8725

GSC
(Bittar and Garner, 2024), W+D 1.5 · 106 - 97.05% 6.6667

(Deckers et al., 2024), W+D 610,000 ∼ 3.45 · 106 95.69% 7.1833
DeNN (q = 1), D 175,467 ∼ 3.6 · 106 97.73% 8.0934

Figure 3: Graph of probabilities p for each class of the dataset given the past at each timestep
t, for a sound of the GSC dataset ("Off").

(a) Accuracy obtained with different maximum
timesteps for a model trained on full samples, for
the DVS-Gesture dataset.

(b) Accuracy obtained on the GSC dataset with
models with short (ν = 0) to long-term memory.

Figure 4: Ablation studies for DVS-Gesture and GSC
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results are presented in Figure 4a. It is shown that a DeNN can achieve good performance
in a few timesteps, which hints that the time dimension in the DVS-Gesture dataset might
not be the most important dimension. Indeed, samples in this dataset are composed of
periodic movements. Hence, only a few periods are required to really discriminate between
movements.

Figure 5: Top line: Input images I2 to I6 from a right-hand counter clockwise movement of
the DVS-Gesture dataset, obtained after application of our preprocessing algorithm. Bottom
line: Differences δ between neurons of the first convolutional layer’s feature maps at images
Is and Is−1. Darker pixels indicate faster neurons between two timesteps. Note that neurons
in the range [−1, 1] are canceled for clarity of image, leaving us with neurons where the
difference is significant enough.

4.5 Latency

Figure 2 shows that while SNN requires a discrete time simulation in real time, with a ∆t
step (see step (1)), DeNN can use a discrete event simulation without any ∆t step (see step
(3)). As shown in step (2), DeNN on-line latency is theoretically lower than SNN on-line
latency, because a DeNN does not have to wait for the last ∆t step to be consumed after last
image at T∆t step. For the online latency, a timestep on the Gesture dataset represents, on
average, 0.6227 seconds of the sample, and 0.6099 seconds for the N-MNIST dataset. On-line
property relies on the fact that input events are received in real time (e.g., by an event-based
camera of a robot/car). However, as shown in step (3), if on-line learning in real time is not
required, DeNN allows as fast as possible discrete event simulation. All the images are fed
to the network in a sequence leading to smaller off-line latency LDeNN

OFF = 0.066 seconds on
a NVIDIA GeForce RTX 3080 Laptop GPU; for the Gesture dataset. This is particularly
interesting for example to train cars for automated driving by off line simulation. This
allows greatly reducing training time and energy consumption. We show on Figure 4a the
comparison with other SNN models for the Gesture dataset. We note that models reporting
better accuracy are also models with higher latencies. Note that this as-fast-as-possible
discrete event simulations do not depend on slow or fast regime. Although the slow regime
requires receiving all the spikes from the previous layer to compute the output spike times of
the layer, it does not require waiting for any real time discrete time step ∆t. Even in a slow
regime, layers can be simulated as fast as possible. The only difference of the fast regime is
that it reduces the number of computations and execution time, while slightly decreasing
performances.

4.6 Functioning of the network

Figure 6 shows the activity of synapses connecting the neurons in the intermediate layer of
the classifier to the eighth output neuron, for the MNIST dataset, for images of the digit 8.
In a DeNN (left), very few synapses are of extreme importance to make the output neuron
spike much before the others, while others synapses are silent. In an ANN (right), there
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must be a balance between inhibition and excitation. The main difference between the
ANN and the DeNN stems in the fact that, in our network, paths that are irrelevant do not
show any activity, while in an ANN they are inhibited. This shows how DeNN is able to
drastically decrease the number of computations with respect to other models. All couples
(neuron, digit) have been computed and are available on figures I.1 (for MNIST) and I.2 (for
CIFAR-10).

This behaviour might be due to the peculiar derivative of tj with respect to the parameter
dsij . As shown in Figure C.1, the derivative is close or equal to zero for almost every input zi.
Even when the input is sufficiently strong (reminding that negative z is quicker input than
others), the derivative plunges toward zero at dsij = 0, which means that synapses will have
trouble changing signs. Some will get asymptotically close to zero (negative or positive),
while never being able to change sign.

Figure 6: Synaptic activity is defined as sign(dsij)[κ(zi + dij)− κ(zi + 1)] for a DeNN(on the
left) and wijxi for an ANN (on the right). Each dot is a synapse.

5 Conclusion

A new class of neural networks was presented. These networks are able to treat temporal
information, arguing they are, alongside (Hazan et al., 2022), the first network to be fully
temporally coded, by taking into account the spike order’s importance, as presented in
(Thorpe et al., 2001; Liu et al., 2023). Indeed, the model in (Hazan et al., 2022) is temporally
coded, but lacks performances. Finally, DeNN are able to achieve satisfying results on tasks
with much less parameters than other models, and with less computations. On audio task,
where temporality is important, DeNN demonstrates better results than state-of-the-art
models. We also show that DeNN use less energy than other models. On datasets where
temporal dimension is crucial, DeNN use less energy with better performance results than
the adaptive LIF model used in (Bittar and Garner, 2022; 2024; Deckers et al., 2024).

Since the equations for the DeNN are general, it is possible to adapt any (continuous)
architecture to the DeNN with few efforts. We were indeed able to very easily apply our
model to convolutional architectures, and try out different kernels κ fairly easily. Conversion
of existing architectures to spiking one would be an interesting development for DeNN,
as in (Man et al., 2023; 2024). A limitation can be discussed for long-term memory hard
window definition. The memory cost increases with ν for sequences longer than a few seconds.
However we have to note that thanks to our preprocessing algorithm, one timestep in our
model is equal to ∆m2rN timesteps in real time. With ν, the memory goes to ν∆m2rN , as
explained in Section 3.5. It should be possible to encode sequences longer than a few seconds
with few adaptations to the preprocessing algorithm (for example, with a bigger r). Also, we
show in Table F.2 that even with ν = 25, the DeNN uses less energy than the adLIF used
in (Deckers et al., 2024), which uses coupled dynamic equations, one for the short memory
(membrane potential), and one for the long-term memory (recovery variable).

This work should open new perspectives to the field of temporal coded networks, as the need
to better take into account the temporality of information, especially with the rising use of
event-based cameras and brain-inspired learning.
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Supplementary

A Spiking time continuity

We show on Figure A.1 how the term −κ(zi + 1) corrects a discontinuity at dij = 1. If
dij = 1, dsij = 0.

sgn(dsij)kappa(t+ dij) −−−−−→
ds
ij→0−

−kappa(t+ 1)

sgn(dsij)kappa(t+ dij) −−−−−→
ds
ij→0+

kappa(t+ 1)
(12)

Since κ is a strictly decreasing positive function, −kappa(t+ 1) < kappa(t+ 1), hence there
is a discontinuity at dij = 1.

Figure A.1: Synaptic activity with and without the correction term, as a function of delays
dij .

B Spiking time standardization

Taking κ(zi + dij) in Equation 4, or κ(ti + dij − tq), in Equation 5, is “almost” equivalent,
up to a division by standard deviation.

Taking the median quantile tq = t0.5, if ti are normally distributed (which they are, see
Figure G.1), we have:

X := zi + dij =
ti − t0.5

σ
+ dij ∼ N(dij , 1)

Y := ti − t0.5 + dij ∼ N(dij , σ).
(13)

The difference we get in evaluating κ(ti + dij − t0.5) and κ( ti−t0.5
σ + dij) depends on σ. It

can get high the further σ gets from 1. However, dividing by σ allows for better numerical
stability in the evaluation of κ kernel, because it allows every layer to operate in the same
range of values. Moreover, the division will reflect during backpropagation algorithm, because
it will appear in the derivatives. Hence, the two mechanisms are “almost” equivalent.

C Backward computation

The loss function at the end of the sequence is the traditional cross-entropy loss for classifi-
cation tasks:

L = −
K∑
c

targetc log(πc) (14)
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with

P (S = c|I1, I2, ..., IT ) = πc =

∑T
s e−zc[Is]∑T

s

∑K
j e−zj [Is]

(15)

and
∂L

∂πc
= − 1

πc
(16)

∂πc

zl
=

{
πc(πc − 1) if l = c

πcπl if l ̸= c
(17)

For differentiating the zj variable, we need to take into account the fact that zj depends on
the input Is. Thus:

∂zj
∂dsij

=

T∑
s

∂zj [Is]

∂tj [Is]

∂tj [Is]

∂dij

∂dij
∂dsij

(18)

with κ(x) = e−x as kernel, we have:

∂tj
∂dsij

[Is] =
2|dsij |
σ2

dije
−(zi[Is]+dij) (19)

represented on Figure C.1. In order to tackle vanishing and exploding gradients which could
arise, a gradient normalization is implemented at each layer, using the Frobenius norm of
the gradient matrix.

Figure C.1: Derivative of tj with respect to parameter dsij .

D Training details

Widespread PyTorch library (Python version 3.8.6, PyTorch 1.10.0, (Paszke et al., 2017))
has been used for achieving fair performance comparisons and also for its high capabilities.
Experiments were conducted on a RTX 2080 Ti GPU.

Models’ architectures are described in Table D.1 and parameters used for learning on each
dataset are detailed in Table D.2 in Appendix. The Adam algorithm (Diederik and Ba, 2014)
with default parameters is used to perform the backpropagation.
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Table D.1: Architectures used for the different datasets. A convolutional layer described as
8c5s2 means 8 filters of size 5x5 with a stride of 2. A minpool layer with 2x2 kernels and a
stride of 2 is described as p2s2.

Dataset Model Architecture
MNIST 784-100-10

CIFAR-10 VGG-9
N-MNIST 8c5s2 - 16c3s1 - p2s2 - 32c3s1 - 32c3s1 - p2s2 - 10

DVS-Gesture 8c7s3 - 16c5s2 - p2s2 - 32c3s1 - 32c3s1 - p2s2 - 11
GSC 60-256-256-256-35

Table D.2: Parameter values for each dataset.

Parameters MNIST CIFAR-10 N-MNIST DVS-Gesture GSC
Batch size 4096 512 16 16 700

Learning Rate 0.001 0.001 0.001 0.001 0.001
LR Scheduler - - - - CosineAnnealing

∆ - - 4 4 1
r - - 0.05 0.05 0.1

Seed 22756400 76446569 94240977 98074194 36887311
s2s channels - - - - 30
s2s threshold - - - - 0.75

ν - - 0 0 25

E Long-term memory

Long-term memory is added to the network thanks to this equation:

δh = zj [s]− zj [s− h], h = s− ν, ..., s

zj [s]← zj [s] +

s∑
h=s−ν

αh
j sign(δ

h)[exp(−|δh|)− 1]
(20)

The mechanism is represented on Figure E.1. The main mechanism is that, if neuron j is
faster than its neighbors (δh > 0 or zj [s − h] < zj [s]), then it gets a small boost (zj [s] is
decreased). Conversely, if it was slower than its neighbors, then it gets a small punishment
(zj [s] is increased). Note that αh

j is a learnable parameter in the range [−1, 1], so the network
can decide to reverse boost and punishment.

F Computational complexities & energy cost

It is described here how to obtain the average number of computations per object derived
for Table 1.

For sparse convolutions used in (Cordone et al., 2021), the average number of active sites na

(Graham et al., 2018) per layer per timestep can be computed with the ratio of the number
of spikes in a layer to the number of timesteps. However, we are unable to know the spatial
distribution of activated sites. For a lower bound estimation, it can be assumed that each of
them was visited exactly once, thus underestimating the number of computations. The lower
bound for average number of computations per layer and timestep is then naC

ℓ
oC

ℓ−1
o , with

Cℓ the number of channels of the convolutional layer, and the total number of computations
per one sample of the dataset is obtained by summing over all layers and all timesteps, and
is approximately of 1.2 · 106 computations. An upper bound can be obtained by assuming
that active sites are densely grouped on a square of side

√
na, which gives, when summing

over all layers and timesteps, approximately 10 · 106 computations.

SpiNNaker power consumptions can be found in (Painkras et al., 2013). The energy
consumption per instruction can be inferred as follows. The power of a SpiNNaker’s chip is
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Figure E.1: Representation of the term sign(δh)[exp(−|δh|)− 1] in Equation 20

1W peak. The idle total chip power is then made up of the idle chip power (0.36W) plus the
SDRAM (0.170W), i.e., 0.53W. Of the remaining active power (1W - 0.53W = 0.47W), each
link could use 0.063W and there are six, so 0.378W. Leaving, 0.47W - 0.378W = 0.092W,
for core activity. There are 18 cores, so this is 0.0051W per core. Each clock cycle takes
5 · 10−9 seconds, so the energy consumption per clock cycle is then 2.56 · 10−11J .

From cores’ technical documentation ARM (2004), it can be found that each multiplication
requires 2 clock cycles and each addition/subtraction 1 clock cycle. Using SpiNNaker own
code (Partzsch et al., 2017), based on fixed-point calculations (Partzsch et al., 2017), each
exponential function computation requires 95 clock cycles1.

Table F.2 presents the energy consumption on SpiNNaker neuromorphic supercomputer.

Note that neuromorphic chips functioning and electronic architecture (Orchard et al., 2021;
Akopyan et al., 2015; Mayr et al., 2019) are based on discrete event simulations. Many
discrete time (synchronous) models, presented in Table F.2, have the energy consumption
advantage of not using exponential functions. However, their spike time is not exact, being up
to the time step precision. In discrete event (asynchronous) models (like DeNN), spike times
are exact but their computations come with the price of exponential function computations.
However, many machine learning approaches require exponential functions. Currently, it is a
problem taken seriously by electronics engineers. Energy consumption cost of an exponential
function computation has recently been reduced to the insignificant cost of 3.63 · 10−12J for
VLSI CMOS technology (Costa et al., 2023), which is used by neuromorphic computers.

G Distribution of neurons’ spike times before standardization

We show on figure G.1 that the distributions of the spike times inside a layer, before the
standardization process, is gaussian.

H Functioning of the network

We show on Figure H.1 how a convolutional filter follows the activity in time.

1Energy consumption results are extracted from a very interesting discussion with Andrew Rowley,
researcher from the Human Brain Project in the School of Computer Science at the University of
Manchester, and in charge of SpiNNaker developments.
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Table F.1: We set nℓ the number of neurons in layer ℓ, nℓ
s the number of spiking neurons in

layer ℓ, while T is the total number of timesteps. I and C represent sets of causal spikes
(Mostafa, 2017; Göltz et al., 2021; Comsa et al., 2020). For rate coding networks, τ represents
the ratio of the total number of spikes observed in T timesteps to the total number of neurons
(Datta et al., 2021). For convolutional layers, Hℓ

o,W
ℓ
o , C

ℓ
o and kℓ are the height and width of

the feature maps, the number of channels and the size of the kernel.

Dataset
Neural coding Model Computational

complexity
Accuracy

MNIST
TTFS (Zhang et al., 2020) O

(
nl[T − 1 + T (nℓ−1

s + 1)]
)

98.40%
TTFS (Kheradpisheh et al., 2022) O

(
nℓ[T − 1 + T (nℓ−1

s + 1) + nℓ−1
s̄ ]

)
97.00%

TTFS (Comsa et al., 2020) O
(
nℓ−1 + |I|nℓ

)
97.96%

TTFS (Im et al., 2022) O
(
nℓ[T − 1 + T (nℓ−1

s + 1)]
)

96.00%
TTFS (Oh et al., 2022) O

(
T [nℓ(nℓ−1

s + 1)]
)

96.90%
TTFS (Mostafa, 2017) O

(
nℓ−1 + 2|C|nℓ

)
97.55%

TTFS (Göltz et al., 2021) O
(
nℓ−1 + |C|nℓ

)
97.10%

TTFS (Kheradpisheh and Masquelier, 2020) O
(
nℓ[T (nℓ−1

s + 1) + T − 1 + nℓ−1
s̄ ]

)
97.40%

Temporal DeNN (q = 1) O
(
nℓ[nℓ−1 + 2]

)
97.46%

Temporal DeNN (q = 0.5) O
(
nℓ[nℓ−1

s + 2]
)

97.43%
CIFAR-10

TTFS (Datta et al., 2021) O
(
Cℓ

oH
ℓ
oW

ℓ
o [τC

ℓ−1
o Cℓ

ok
ℓ2 + 2T − 1]

)
91.41%

TTFS (Zhou et al., 2021) O
(
Cℓ−1

o kℓ2 [Hℓ
oW

ℓ
ok

ℓ2(|C|+ 1) + Cℓ
oH

ℓ
oW

ℓ
o ]
)

92.68%
TTFS (Park et al., 2020) O

(
Hℓ

oW
ℓ
oC

ℓ
o[τC

ℓ−1
o kℓ2 + 1]

)
91.43%

Temporal DeNN (q = 1) O
(
Cℓ

oH
ℓ
oW

ℓ
o [C

ℓ−1
o kℓ2 + 2]

)
90.59%

Temporal DeNN (q = 0.5) O
(
Cℓ

oH
ℓ
oW

ℓ
o [τC

ℓ−1
o kℓ2 + 2]

)
87.09%

N-MNIST
Rate (Lee et al., 2016) O

(
nℓ[τnℓ−1 + T (2 + nℓ)]

)
98.74%

Rate (Wu et al., 2018) O
(
nℓ[τnℓ−1 + T ]

)
98.78%

Rate (Shrestha and Orchard, 2018) O
(
Hℓ

oW
ℓ
oC

ℓ
o[T + τCℓ−1

o kℓ2 ]
)

99.20%
Rate (Kaiser et al., 2020) O

(
Hℓ

oW
ℓ
oC

ℓ
o[T + τCℓ−1

o kℓ2 ]
)

96%
Rate (Jin et al., 2018) O

(
nℓ[τnℓ−1 + T ]

)
98.84%

Rate (Lee et al., 2020) O
(
Hℓ

oW
ℓ
oC

ℓ
o[T + τCℓ−1

o kℓ2 ]
)

99.09%
Rate (Cheng et al., 2020) O

(
Hℓ

oW
ℓ
oC

ℓ
o[τ(C

ℓ−1
o kℓ2 + k2

ω) + T )]
)

99.45%
Rate (Fang et al., 2020) O

(
Hℓ

oW
ℓ
oC

ℓ
o[T + τCℓ−1

o kℓ2 ]
)

99.39%
Rate (He et al., 2020) O

(
nℓ[τnℓ−1 + T ]

)
98.28%

Rate (Fang et al., 2021) O
(
Hℓ

oW
ℓ
oC

ℓ
o[T + τCℓ−1

o kℓ2 ]
)

99.61%
Temporal DeNN (q = 0.5) O

(
Cℓ

oH
ℓ
oW

ℓ
o [τC

ℓ−1
o kℓ2 + 2]

)
98.06%

DVS Gesture
Rate (Shrestha and Orchard, 2018) O

(
Hℓ

oW
ℓ
oC

ℓ
o[T + τCℓ−1

o kℓ2 ]
)

93.64%
Rate (Kaiser et al., 2020) O

(
Hℓ

oW
ℓ
oC

ℓ
o[T + τCℓ−1

o kℓ2 ]
)

95.54%
Rate (Fang et al., 2020) O

(
Hℓ

oW
ℓ
oC

ℓ
o[T + τCℓ−1

o kℓ2 ]
)

96.09%
Rate (He et al., 2020) O

(
nℓ[τnℓ−1 + T ]

)
93.40%

Rate (Fang et al., 2021) O
(
Hℓ

oW
ℓ
oC

ℓ
o[T + τCℓ−1

o kℓ2 ]
)

97.57%
Rate (Cordone et al., 2021) O

(
Tnt

aC
ℓ
oC

ℓ−1
o

)
92.01%

Temporal DeNN (q = 0.5) O
(
Cℓ

oH
ℓ
oW

ℓ
o [τC

ℓ−1
o kℓ2 + 2]

)
97.57%

GSC
Temporal (Hammouamri et al., 2023) - 95.35%
Temporal (Bittar and Garner, 2024) - 97.05%
Temporal (Deckers et al., 2024) - 95.69%

Rate (Wang et al., 2024) - 92.90%
Rate (He et al., 2024) - 87.33%
Rate (Boeshertz et al., 2024) - 93.33%

Temporal DeNN (q = 1) O
(
nℓ[nℓ−1 + 2 + ν]

)
97.73%

I Synaptic impacts of spikes

Figure I.1 presents the synaptic impact of each spike of the intermediary layer onto the
output layer, for the fully connected DeNN for solving the MNIST task, and in Figure I.2
the same matrix is shown for the CIFAR-10 dataset.
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Table F.2: Energy consumption of models. All symbols are the same as in Table F.1.

Model Energy
Consumption

On
SpiNNaker

MNIST
(Zhang et al., 2020) Tτnℓnℓ−1(2ADD + 2MUL+ IF ) 114TτµJ

(Kheradpisheh and Masquelier, 2020) Tτnℓnℓ−1(ADD + 3IF ) 532µJ
DeNN (q = 1) nℓ

(
τnℓ−1(2EXP + 3ADD) + 2MUL+ 5ADD

)
+ 2MUL 73µJ

DeNN (q = 0.5) nℓ
(
τnℓ−1(2EXP + 3ADD) + 2MUL+ 5ADD

)
+ 2MUL 40µJ

CIFAR-10
(Zhou et al., 2021) Cℓ

oH
ℓ
oW

ℓ
o

(
3MUL+ADD[2τCℓ−1

o kℓ2 + 1] + EXP [τkℓ2Cℓ−1
o ] + IF

)
620, 190µJ

DeNN (q = 1) Cℓ
oH

ℓ
oW

ℓ
o

(
τCℓ−1

o kℓ2(2EXP + 3ADD) + 2MUL+ 5ADD
)
+ 2MUL 381, 371µJ

DeNN (q = 0.5) Cℓ
oH

ℓ
oW

ℓ
o

(
τCℓ−1

o kℓ2(2EXP + 3ADD) + 2MUL+ 5ADD
)
+ 2MUL 232,161µJ

N-MNIST
(Zhu et al., 2022) TCℓ

oH
ℓ
oW

ℓ
o

(
ADD(τcℓ−1

o kℓ2 + 3) + 2MUL+ 2EXP + IF
)

4301(0.9τ + 1)µJ

(Fang et al., 2021) TCℓ
oH

ℓ
oW

ℓ
o

(
ADD(τCℓ−1

o kℓ2 + 3) + 2MUL+ IF
)

13, 687τ + 375µJ

DeNN (q = 0.5) T
[
Cℓ

oH
ℓ
oW

ℓ
o

(
τCℓ−1

o kℓ2(2EXP + 3ADD) + 2MUL+ 5ADD
)
+ 2MUL

]
11,616µJ

DVS Gesture
(Fang et al., 2021) TCℓ

oH
ℓ
oW

ℓ
o

(
ADD(τCℓ−1

o kℓ2 + 3) + 2MUL+ IF
)

404, 604τ + 11, 267µJ

DeNN (q = 0.5) T
[
Cℓ

oH
ℓ
oW

ℓ
o

(
τCℓ−1

o kℓ2(2EXP + 3ADD) + 2MUL+ 5ADD
)
+ 2MUL

]
312, 476µJ

GSC
(Bittar and Garner, 2024) Tnℓ

(
ADD[τ(n

ℓ

2
+ nℓ−1) + 3] + 4MUL+ COMP + 2EXP + 2MUL+ 2ADD

)
39, 4812(τ + 0.21)µJ

(Deckers et al., 2024) Tnℓ
(
ADD[τ2nℓ−1 + 8] + 7MUL+ COMP

)
25, 005µJ

DeNN (q = 1) T
[
nℓ

(
τnℓ−1(2EXP + 3ADD) +MUL(ν + 2) + νEXP + 5ADD

)
+ 2MUL

]
20,715µJ

Table F.3: Comparison of datasets, models and architectures in time and space dimensions.

Model
ANN IF LIF adLIF - DeNN

Spatial Dim
Time Dim Null Poor Medium Strong

A
rc

hi
te

ct
. Fully Connected Null

Poor GSC
Medium MNIST

Convolutional Strong CIFAR Gesture

Figure G.1: Distribution of neurons’ spike times before standardization for the hidden layer
of a network trained on the MNIST dataset, averaged over each class of images. Theoretical
probability density function plot in solid orange line.
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Figure H.1: Top line: input images Is. On bottom line: feature maps showing that the filter
follows in time the areas that have the most activity.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

F
ig

ur
e

I.1
:

T
hi

s
gr

id
of

10
x1

0
gr

ap
hs

re
pr

es
en

ts
th

e
10

ou
tp

ut
ne

ur
on

s
in

co
lu

m
ns

fo
r

ea
ch

im
ag

e
ca

te
go

ry
in

lin
e,

fo
r

th
e

M
N

IS
T

da
ta

se
t.

E
ac

h
po

in
t

on
ea

ch
gr

ap
h

re
pr

es
en

ts
th

e
av

er
ag

e
sy

na
pt

ic
im

pa
ct

of
on

e
in

te
rm

ed
ia

te
ne

ur
on

on
to

th
e

ou
tp

ut
ne

ur
on

,t
he

im
ag

e
co

ns
id

er
ed

.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

F
ig

ur
e

I.
2:

T
hi

s
gr

id
of

10
x1

0
gr

ap
hs

re
pr

es
en

ts
th

e
10

ou
tp

ut
ne

ur
on

s
in

co
lu

m
ns

fo
r

ea
ch

im
ag

e
ca

te
go

ry
in

lin
e,

fo
r

th
e

C
IF

A
R

10
da

ta
se

t.
E

ac
h

po
in

t
on

ea
ch

gr
ap

h
re

pr
es

en
ts

th
e

av
er

ag
e

sy
na

pt
ic

im
pa

ct
of

on
e

in
te

rm
ed

ia
te

ne
ur

on
on

to
th

e
ou

tp
ut

ne
ur

on
,t

he
im

ag
e

co
ns

id
er

ed
.

24


	Introduction
	Related works
	Temporal coding in SNNs
	Synaptic delays

	Methods
	Forward pass
	Standardization and temporal ReLU function
	Events Preprocessing: event2time algorithm
	Backward pass
	Short and Long Term Memory

	Results
	Performance on benchmark datasets
	Energy Consumption
	Choice of kernel 
	Time for event-based models and event-based datasets
	Latency
	Functioning of the network

	Conclusion
	Spiking time continuity
	Spiking time standardization
	Backward computation
	Training details
	Long-term memory
	Computational complexities & energy cost
	Distribution of neurons' spike times before standardization
	Functioning of the network
	Synaptic impacts of spikes

