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Abstract

Transformer architecture has significantly ad-001
vanced Natural Language Processing (NLP)002
by delivering outstanding performance. How-003
ever, it faces challenges with efficiency and004
processing long sequences, attributed to its005
quadratic time complexity. Linear attention006
offers a more efficient linear time solution but007
falls short in language modelling and length008
extrapolation compared with traditional Trans-009
former. To enhance the performance of linear010
attention and fully leverage its capability in011
modelling long sequences, we begin with po-012
sitional encoding, specifying the constraints013
required for positional encoding by linear atten-014
tion. Building upon these constraints, we de-015
sign a positional encoding for linear attention,016
named Disentangle to Decay (D2D), which al-017
lows for a seamless conversion between ab-018
solute positional encoding (APE) and relative019
positional encoding (RPE). To alleviate the in-020
stability of directly training D2D, we disentan-021
gle D2D into the combination of RPE and APE,022
which greatly improves the stability while en-023
suring the efficiency of model training. Experi-024
ments result shows that, application of D2D in025
linear attention significantly improves perfor-026
mance in language modelling and length extrap-027
olation, demonstrating strong competitiveness028
with vanilla Transformer and outperforming029
other positional encodings. 1030

1 Introduction031

In recent years, Transformer (Vaswani et al., 2017)032

has revolutionized the field of Natural Language033

Processing (NLP). Self-attention in Transformer034

shows notable abilities on processing sequences.035

However, a significant limitation of self-attention036

is the cost in terms of time and storage, which in-037

creases quadratically with sequence length. This038

constraint hinders the extensive application of039

1Our code implementation is available at:
https://anonymous.4open.science/r/D2D-0CF7/

Transformer to long sequences and enormous pa- 040

rameter sizes, especially in autoregressive natural 041

language generation tasks. 042

To improve efficiency of Transformer, linear 043

attention (Katharopoulos et al., 2020) replaces 044

softmax calculation with a dot-product of ker- 045

nel feature maps. It shows recurrent prop- 046

erty (Katharopoulos et al., 2020; Kasai et al., 2021; 047

Yang et al., 2023), as it can be formulated into Re- 048

current Neural Networks (RNN) (Hochreiter and 049

Schmidhuber, 1997) for inference. 050

However, linear attention suffers from cumu- 051

lative regularity errors when processing long se- 052

quences (Schlag et al., 2021), necessitating the use 053

of specialized mechanisms for information filter- 054

ing. Positional encodings like ALiBi (Press et al., 055

2022) and RoPE (Su et al., 2024), integrate rela- 056

tive positional information, mitigate the issue of 057

cumulative errors and extrapolate models to longer 058

sequences (Sun et al., 2023a; Qin et al., 2024; Yang 059

et al., 2023). But, due to structural issues with lin- 060

ear attention, most of these mainstream positional 061

encodings cannot be directly applied. It necessi- 062

tates certain adjustments to the model structure and 063

fails to achieve satisfactory performance. 064

Our work proposes Disentangle to Decay (D2D), 065

an innovative decay factor based positional encod- 066

ing for linear attention. D2D can freely transi- 067

tion between absolute positional encoding (APE) 068

and relative positional encoding (RPE). During the 069

training process, D2D can simultaneously lever- 070

age the advantages of RPE and APE, transforming 071

them into a mixture of mask and trainable posi- 072

tional encoding, thereby enhancing the stability 073

and computational efficiency of the training. In 074

the inference phase, D2D can be converted into 075

APE, thus fulfilling the requirement for transform- 076

ing linear attention into RNN. Subsequently, D2D 077

supports for further tuning of decay structures and 078

achieves outstanding performance. Moreover, D2D 079

is able for length extrapolation and compatible with 080
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linear attention in mathematical properties. It pro-081

vides a solution for simple linear attention models082

without additional structure design and achieves083

good performance.084

We conduct various experiments on language085

modelling, length extrapolation and efficient in-086

ference. Result shows that D2D enables linear087

attention to achieve comparable performance in088

language modelling with vanilla attention. And089

D2D outperforms existing positional encodings, in-090

cluding RoPE (Su et al., 2024) and ALiBi (Press091

et al., 2022). We provide an implementation of092

transformation to RNN and experiment on infer-093

ence speed, which indicates that D2D is efficient.094

The main contributions are as follows:095

• We propose a positional encoding that incor-096

porates both APE and RPE in the form of097

positional decay, and analyze the numerical098

instability during the decay process.099

• By adopting a disentanglement approach, we100

introduce a new form that combines RPE and101

APE into D2D during the training process,102

significantly enhancing the stability of D2D,103

while still maintaining the efficiency of linear104

attention during both inference and training105

phases.106

• We test the language modelling and length107

extrapolation capabilities of D2D on large108

datasets and explored the performance of vari-109

ous major kernel functions when used in con-110

junction with D2D.111

2 Related Work112

2.1 Positional Encoding In Transformer113

The calculation of Transformer has been proven114

to be insensitive to the position of sequence to-115

kens (Zhao et al., 2023). Encoding proper posi-116

tional information is considered necessary for fea-117

ture extraction of Transformer and efficient com-118

puting, especially for long sequences and large pa-119

rameters (Kazemnejad et al., 2023). Approaches to120

integrate positional information into Transformer121

are known as positional encoding (PE).122

PE can be categorized into two groups: APE and123

RPE. APE exploits absolute positional informa-124

tion, like trigonometric functions (Vaswani et al.,125

2017) and trainable parameters (Brown et al., 2020;126

Zhang et al., 2022). RPE exploits relative distance127

between tokens in the calculation, like RoPE (Su128

et al., 2024), ALiBi (Press et al., 2022). RPE is129

common for LLM (Raffel et al., 2020; Chowdhery 130

et al., 2023; Scao et al., 2022) 131

2.2 Linear Attention 132

Linear attention mechanism adopts kernel func- 133

tions to approximate softmax calculation with 134

a simple dot product, aiming at desirably re- 135

ducing the quadratic space-time complexity. It 136

can be roughly categorized into kernel-based 137

and random-based. Kernel-based linear atten- 138

tion (Choromanski et al., 2021; Katharopoulos 139

et al., 2020; Qin et al., 2022b,a) processes query 140

and key with kernel functions. Random-based lin- 141

ear attention (Peng et al., 2021; Choromanski et al., 142

2021) fits expected value through random sampling 143

to approximate softmax. 144

Kernel-based linear attention can be transformed 145

into recurrent form. (Katharopoulos et al., 2020) 146

provides an approach to transform kernel-based 147

linear attention to a form like RNN. (Yang et al., 148

2023; Sun et al., 2023a) apply both parallel and se- 149

rial approaches to construct efficient large language 150

models. 151

3 Background 152

3.1 Attention Calculation 153

Linear attention replaces softmax calculation in 154

vanilla attention with dot product of query and key.2 155

(Katharopoulos et al., 2020) provides Eq. 1, as a 156

unified form of linear and vanilla attention. 157

Eq. 1 is constructed with similarity calculation 158

Sim(Qi,Kj), which indicates similarity of i-th 159

token of query and j-th token of key. For vanilla 160

attention, Sim(Qi,Kj) = exp (QiK
T
j ). And for 161

linear attention, similarity is dot product of query 162

and key after kernel function 3 ϕ notated in Eq. 2. 163

Transformations of kernel function should always 164

be positive. Additionally, we provide background 165

of vanilla attention in Appendix. A.1 for reference. 166

Atti,j =
Sim(Qi,Kj)∑i
j=1 Sim(Qi,Kj)

(1) 167

168
Sim(Qi,Kj) = ϕ(Qi)ϕ(Kj)

⊺ (2) 169

3.2 Positional Encoding 170

Positional encoding integrates positional informa- 171

tion for queries and keys. 172

2Random-based linear attention is special, and we exclude
them for subsequent discussions.

3In the majority of works on linear attention, query and key
share a common kernel function, but application of different
kernel function for query and key is still legal in definition.
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Figure 1: An overview of D2D for linear attention models. The Query (Q) and Key (K) is firstly transformed through
kernel function. During the parallel training process, P is disentangled into two parts: P b and P s. P b generates
mask using RPE form of positional decay, while P s is integrated into Q and K using APE form of positional decay.
In the recurrent inference, P b and P s merge into P , which integrates positional decay with form of APE.

Absolute Positional Encoding For queries Q173

and keys K with positional information a =174

[1, 2, . . . , n]. APE can be represented as functions175

to add positional information to input sequences,176

notated as Eq. 3.177

Q̃ = APE(Q,a), K̃ = APE(K,a) (3)178

Relative Positional Encoding RPE leverages the179

positional difference, i− j, between the i-th token180

in the query and the j-th token in the key. Con-181

sequently, the similarity calculation as depicted in182

Eq. 1 incorporates additional relative information,183

denoted as g(i − j), in Eq. 4. Here, f signifies a184

novel function designed to integrate relative posi-185

tional information into the similarity calculation,186

where common approaches typically involve either187

adding or multiplying g(i− j) to incorporate RPE,188

as discussed in (Raffel et al., 2020; Press et al.,189

2022).190

Sim(Qi,Kj) = f(Qi,Kj , g(i− j)) (4)191

From APE to RPE Some RPE integrates abso-192

lute position to query and key, which shares similar193

forms as APE in Eq. 3. To achieve this, positional194

information for tokens with identical relative posi-195

tion should only depend on query Q, key K and196

relative position (i − j). That is, Eq. 5 holds for197

∀1 ≤ i, j ≤ n (Su et al., 2024). 198

Sim(APE(Q, i), APE(K, j)) = h(Q,K, i− j)
(5) 199

4 Methodology 200

As demonstrated in Fig. 1, we propose D2D to 201

integrate relative positional decay in linear atten- 202

tion. D2D exhibits form of both APE and RPE 203

for positional decay, we exploit a mixture of APE 204

and RPE for training, and use APE for recurrent 205

inference. D2D addresses numeric instability of 206

positional decay through disentanglement of de- 207

cay factor. Moreover, it enables further tuning for 208

positional encodings. 209

4.1 Encoding for Positional Decay 210

Relative position information works as essential 211

information for Transformer calculation, especially 212

for longer or changeable sequences lengths (Chi 213

et al., 2022; Neishi and Yoshinaga, 2019). Po- 214

sitional decay structure like ALiBi (Press et al., 215

2022), provides an exponential decay item as 216

shown in Eq. 6. The base of exponential is no- 217

tated as decay factors. This enhances models to 218

focus on adjacent tokens and diminish cumulative 219

regularity errors. However, direct integration of 220

RPE is incompatible for kernel-based attention. 221

Sim(Qi,Kj) = ϕ(Qi)ϕ(Kj)
⊺bi−j (6) 222
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To transform linear attention into RNN, similarity223

calculation can be decomposed into components224

solely dependent on i and on j. Eq. 7 gives a225

demonstration, where fq and fk can be any func-226

tions.227

Sim(Qi,Kj) = fq(Qi, i) · fk(Kj , j) (7)228

More details about transformation are list in Ap-229

pendix. A.2. Our work designs D2D in form of230

both APE and RPE. Two forms of PE are identical231

in mathematical, and we select proper form with232

subsequent model design.233

For APE form, we introduce a pair of positional234

functions to represent absolute positions respec-235

tively for query and key α, β : N+ → R1×dmodel ,236

and a decay factor P ∈ R1×dmodel as base of posi-237

tional decay, as Eq. 8 shows. dmodel is the dimen-238

sion of features for Transformer, known as hidden239

size. For further similarity calculation, Q̃, K̃ with240

absolute positional information is exploited.241

Q̃i = Qi exp(α(i)), K̃j = Kj exp(β(j))

α(i) = −iP , β(j) = jP
(8)242

And Eq. 8 can be transformed into RPE form,243

as shown in Eq. 9. In this context, Pd indicates a244

scalar for d-dimension of vector P . And Σ indi-245

cates a serial summation. Unfortunately, Eq. 9 is246

not parallel parallelizable. We provide solutions in247

Sec. 4.3.248

Sim(Qi,Kj) = ϕ(Q̃i)ϕ(K̃j)
⊺

=

dmodel−1∑
d=0

ϕ(Qi,d)ϕ(Kj,d)
⊺

exp(Pd)
i−j

(9)249

4.2 Instability In Decay Factor250

Similar positional decay structures in Sec. 4.1 ap-251

pear in previous works (Sun et al., 2023b; Press252

et al., 2022; Sun et al., 2023a). However, the decay253

factors in these approaches are typically fixed hy-254

perparameters. Since such exponential calculation255

with relative position is unstable in numeric. Rea-256

sons include large gradients and extreme value for257

exponential calculation. It prevents models from258

further training and learn more positional infor-259

mation. Moreover, decay structures will be more260

unstable in long sequences because range of i− j261

is larger.262

Positional decay will cause inconsistency of263

APE and RPE, which limits models transforma-264

tion to RNN in inference. Taking the case in265

i = j, i → +∞ as an example, exp(−Pd)
i−j in 266

Eq. 9 should be 1. However, result of Q̃i and K̃j 267

approaches +∞ and 0 respectively, which leads to 268

unexpected numerics in actual computations. Prac- 269

tically, directly training of decay factor encounters 270

issue of numerical underflow. Fig. 2 demonstrates 271

the value of P under direct training. P experi- 272

ences truncation at approximately 0.12, inhibiting 273

any further tuning. Normalization methods are
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Figure 2: The distribution of decay factor in direct train-
ing (sorted). It is observed that most values truncated
around 0.12 without further tuning.

274
not effective for this instability, because of the fol- 275

lowing reasons: (1) In order to transform linear 276

attention to RNN, normalization based on data dis- 277

tribution is disabled because it violates calculations 278

orders and dependencies in Sec. 4.1, for example, 279

batch-normalization (Ioffe and Szegedy, 2015). (2) 280

Scaling methods like L1-normalization will limit 281

data into a thinner range as a result of stricter sta- 282

bility requirements. This will cause performance 283

drop. (3) Clamping decay factor P into a certain 284

range can limit range of iP , but this brings little 285

performance enhancement since ranges for tuning 286

is too thin. 287

4.3 Disentanglement of Decay Factor 288

Sec. 4.1 proposes RPE and APE form of D2D. 289

However, it is not available in actual computation. 290

Since decay factor does not support for direct tun- 291

ing due to numeric instability in Sec. 4.2. More- 292

over, as shown in Eq. 9 RPE form of D2D exhibits 293

a serial summation, and this is not acceptable for 294

parallel training. In this section, we propose a novel 295

approach to disentangle decay factor P . We will 296

introduce methods and calculation implementation 297

of disentanglement for decay factor. 298

Disentanglement To address numeric instabil- 299

ity and achieve parallelism, we provide a disen- 300

tanglement solution as shown in Fig. 3. And we 301

aim to demonstrate ideal decay factor distributions 302
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through disentangled P . We decompose P into303

h attention heads, as P = concat(P1, . . . ,Ph),304

where concat stands for vector concentration305

(Headwise split is based on multi head atten-306

tion (Vaswani et al., 2017), more backgrounds can307

be found in Appendix. A.1.) For l-th attention head,308

we disentangle Pl ∈ R1×dh into Pl = P b
l + P s

l .309

Here, P b
l ∈ R1×dh = [P b

l , . . . , P
b
l ] consists of310

a scalar P b
l = 2−

h
l , delineating a rough range311

for P b
l . And P s

l ∈ R1×dh is a trainable vector312

of small numerical values, to enable further tun-313

ing.And Eq. 10 shows calculation after disentangle-314

ment, where Sim(Qi,Kj)[l] stands for similarity315

calculation of l-th attention head.316

As depicted in Fig. 3, P b constitutes the major317

component of P . Compared to P s, P b has larger318

numerical values and a broader range. The values319

of this part are fixed during training. By setting the320

magnitude of P b, the numerical range of P can be321

limited. And the numerical range of P s is signifi-322

cantly smaller than that of P itself, which endows323

D2D training with enhanced stability and avoids324

the truncation phenomenon depicted in Fig. 2.

head1 head2 head3
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𝑷𝑙,𝑑
𝑏

𝑷𝑙,𝑑
𝑠

𝑷𝑙,𝑑

…

V
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u
e

2−
ℎ
𝑙

Figure 3: Illustration of disentanglement. Green circle
stands for each index of P is sum of fixed P b and
trainable P s, aiming to fit ideal distribution of P (board
line with squares).

325

Sim(Qi,Kj)[l] = Θb ×Θs

Θb = exp (−P b
l )

i−j

Θs =
ϕ(Qi)

exp(iP s
l )

(
ϕ(Kj)

exp(−jP s
l )

)⊺
(10)326

Calculation Implementation Eq. 10 enables327

D2D to be compatible with efficient parallel calcu-328

lation implementation. Sim(Qi,Kj)[l] is decom-329

posed into two parts. The first part is Θb, which330

1 0 0

P 1 0

P2 P 1

P3 P2 P 1

0

0

0

Figure 4: An instance of decay mask (length n = 4).
The element in the i-th row and j-th column of the ma-
trix corresponds Mi,j . The part where j > i is assigned
a value of 0 due to the presence of the causal mask,
to ensure attention is unidirectional in autoregressive
language modelling tasks.

is same for all computations within the head. So 331

it can be calculated once and applied in all subse- 332

quent calculation, with a mask matrix M like Fig. 4. 333

And this mask can be integrated into attention score 334

along with causal mask in vanilla attention. This 335

is implemented by element-wise product of matri- 336

ces, which is efficient in calculation. The second 337

part is Θs, which varies for each dimension within 338

the head. The P s in Θs are similar to P in Eq. 8, 339

directly acting on Q and K in the form of APE, 340

and are ultimately expressed in the form of matrix 341

multiplication. This enables the computation of Θs 342

to fully leverage the GPU’s acceleration for matrix 343

operations, ensuring efficiency during training. 344

Algorithm. 1 and Algorithm. 2 demonstrate algo- 345

rithmic process of linear attention when employing 346

D2D. Par refers to the process of model parallel 347

training, while Rec pertains to the process of se- 348

rial model inference. For input, Q,K, V,M,P s, n 349

remain the same meaning as former part of paper. 350

0dh×dh indicates a zero matrix with size dh × dh. 351

For calculation, splithead function represents the 352

operation of splitting the query, key, and value into 353

multiple heads, which is used for the multi-head 354

attention mechanism. mergehead function repre- 355

sents the operation of merging heads, combining 356

the output results of the multi-head attention mech- 357

anism into a single head for subsequent calcula- 358

tions. S,Z are intermediate variables generated in 359

recurrent computation, details can be found in Ap- 360

pendix. A.2. ÷ stands for element-wise division for 361

matrices, while ⊙ stands for element-wise product 362

for matrices. 363

5 Experiments and Analysis 364

In this section, we apply our design of PE and lin- 365

ear attention into vanilla Transformer for language 366
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Algorithm 1 Parallel Training

1: procedure PAR(Q,K, V,M,P s, n)
2: K ← K⊺

3: Q,K ← ϕ(Q), ϕ(K)
4: a← [0, 1, . . . , n− 1]
5: C ← exp (a · P s)
6: Q← Q÷ C
7: K ← K ⊙ C
8: Q,K, V ← splithead (Q,K, V )
9: Att← Q ·K ⊙M

10: for i← 0, to n− 1 do

11: Atti ← Atti/
n−1∑
j=0

(Atti,j)

12: end for
13: O ← Att · V
14: O ← mergehead (O)
15: return O
16: end procedure

Algorithm 2 Recurrent Inference

1: procedure REC(Q,K, V,P b,P s, n)
2: K ← K⊺

3: P ← P b + P s

4: P ← exp (P )
5: S,Z ← 0dh×dh ,0dh×1

6: Q,K, V ← splithead (Q,K, V )
7: for i← 0 to n− 1 do
8: Qi,Ki ← ϕ(Qi), ϕ(Ki)
9: S ← S ⊙ P +Ki · Vi

10: Z ← Z ⊙ P +Ki

11: Oi ← (Qi · S)/(Qi ·Z)
12: end for
13: O ← concat(O1, . . . , On)
14: O ← mergehead (O)
15: return O
16: end procedure

modelling. We contrast our methods with main-367

stream PE on linear attention and vanilla Trans-368

former. Additionally, we conduct length extrapo-369

lation experiments for these models. Experiments370

demonstrate that our designed position embedding371

offers a significant advantage for linear attention372

on autoregressive language models. Moreover, we373

provide an implementation to transform linear at-374

tention based on D2D to RNN and compare its in-375

ference speed with vanilla GPT in Appendix. A.6.376

Experiment show that our model is efficient when377

sequence length grows.378

5.1 Experiment Settings 379

Models Implementation We implement all of 380

our models in the Huggingface framework 4. We 381

select GPT-2 5 (Brown et al., 2020) for backbone 382

of auto-regressive language models. All models are 383

trained and validated on 4xNVIDIA V100 GPUs. 384

More details are record in Appendix A.3 385

Datasets For language modelling, we select 386

OpenWebText (Gokaslan and Cohen, 2019) dataset 387

for experiments. OpenWebText corpus is sourced 388

from Reddit-linked URLs, covering a wide range of 389

topics from news to blogs. It’s designed for training 390

large-scale language models with diverse internet 391

text. For efficiency and limitation on computations, 392

we sample part of OpenWebText for experiments. 393

Column of texts for experiments are described in 394

the following Table 1.

Train 13,288,030

Valid 1,662,260

Table 1: Statistics of columns for datasets in experi-
ments.

395

Baselines We select linear attention with AL- 396

iBi (Press et al., 2022), RoPE (Su et al., 2024), Posi- 397

tional Embedding in vanilla Transformer (Vaswani 398

et al., 2017). Additionally, we select vanilla Trans- 399

former with softmax attention for contrastive con- 400

cerns. Details about initialization and calculation 401

for PE can be found in Appendix A.4. 402

Kernel Selection For linear attention, there is no 403

one-size-fits-all criterion for selecting the kernel 404

function. Thus, we select some commonly used 405

kernel functions and test them for experiments. 406

Exponential (EXP) Kernel : ϕ(x) = exp (x). 407

ELU kernel: ϕ(x) = elu(x) + 1. elu is ELU 408

function in (Clevert et al., 2016). 409

Metrics For the language model task, we use 410

perplexity (PPL) (Brown et al., 1993) to measure 411

performance. Lower PPL for language modelling 412

reflects better language modelling ability. 413

5.2 Language Modelling 414

Language modelling capabilities for various base- 415

lines are demonstrated in Table. 2. Firstly, D2D 416

outperforms other PE and vanilla attention in lan- 417

guage modelling task. Compared to ALiBi and 418

4https://huggingface.co/
5https://huggingface.co/openai-community/gpt2
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PE Kernels PPL(Train) PPL(Valid)

Vanillia APE
EXP 49.30 50.75

ELU 49.40 50.86

RoPE
EXP 44.66 47.85

ELU 44.59 47.80

ALiBi
EXP 45.24 48.18

ELU 44.88 47.85

D2D
EXP 44.70 47.80

ELU 43.82 46.90

Attention w/o Linear 45.74 47.66

Table 2: Perplexity of language modelling tasks, lower
ppl shows better performance. Values underlined are
denoted as optimal results.

RoPE, D2D provides effective improvement for lin-419

ear attention. We also discover that the impact of420

our designed position embedding varies with differ-421

ent types of kernel functions. Language modelling422

performance varies with kernel functions, and we423

provide more detailed experiments to discuss this424

in Appendix. A.7. Additionally, linear attention425

models with extra PE shows a wider gap between426

performance on training and valid sets than vanilla427

GPT. Linear attention still has limitations on gen-428

eralization. In Appendix A.5,we provide further429

discussion with PPL during training process.430

5.3 Length Extrapolation431

Models based on linear attention exhibit substan-432

tial competitiveness in generating long texts. It is433

imperative that we ensure the position encoding434

we design possesses adequate length extrapolation435

capability to fully leverage the advantages of linear436

attention.437

"Train short and test long" is the key for length438

extrapolation test. More consciously, we train mod-439

els with normal length in datasets (512). Then, we440

obtain longer texts by repeating and concatenating441

the same text 4 times.442

The following table describes perplexity of re-443

peating texts. Vanilla APE in GPT-2 is not able444

for length extrapolation, so that we do not mention445

it in the experiments. As shown in Table. 3, our446

position encoding demonstrates superior length ex-447

trapolation capability than other RPE. Compared to448

ALiBi, our position encoding strategy introduces449

more trainable parameters, offering stronger rep-450

resentational power. This enables the model to fit451

more appropriate position encoding during train-452

ing. Compared to RoPE, the constant positivity453

PE Kernel PPL

ALiBi
EXP 49.80

ELU 49.37

RoPE
EXP 50.81

ELU 51.25

D2D
EXP 49.23

ELU 48.54

Table 3: Result on length extrapolation tests. Values
underlined are denoted as optimal results.

and smoothness of our position encoding are the 454

main reasons for its better performance. Although 455

RoPE exhibits decay for larger relative positions, 456

the oscillatory circumstances of trigonometric func- 457

tions can lead to significant numerical jitter during 458

this decay. Additionally, the introduction of RoPE 459

cannot guarantee that the values of Sim(Q,K) are 460

positive, and normalization is weakened for this 461

reason in Eq. 14. We believe this affects the gen- 462

eralization ability of the position encoding on long 463

texts and the normalization during training for lin- 464

ear attention. 465

5.4 Ablation Study 466

In designing D2D, we experiment with various 467

methods. Table. 4 presents the performance of 468

these methods in language modelling, with evalua- 469

tion criteria consistent with Section 5.1.

PE Kernel PPL(Train) PPL(Valid)

Vanilla APE
EXP 49.30 50.75

ELU 49.40 50.86

D2D
ELU 43.82 46.90

EXP 44.70 47.80

D2D
w/o P b

EXP 45.24 48.33

D2D
w/o P s

EXP 45.24 48.23

D2D
w/ Vanilla APE

EXP 45.51 48. 57

Table 4: Results for ablation study. w/o means without
and w/ means with. Values underlined are denoted as
optimal results.

470

Kernel We explore different choices for the ker- 471

nel function in Eq. 9, primarily testing ϕ(x) = 472

exp(x) and ϕ(x) = elu(x) + 1 as the kernel 473

functions. These two are selected as representa- 474

tives mainly due to their significant differences in 475

mathematical properties (detailed discussion can be 476

7



found in Appendix. A.7), making them suitable for477

our tests. Table. 4 shows that, without special posi-478

tional encoding, there is no significant difference in479

language modelling capability between two kernel480

functions. However, after applying D2D, the model481

using elu(x) + 1 demonstrates significantly better482

language modelling performance than the one us-483

ing exp(x). We believe this is because D2D carries484

more prior information, encouraging the model to485

focus on several adjacent tokens. This leads to the486

exp(x), which has better focus ability (Han et al.,487

2023), having more difficulty in fully capturing the488

dataset’s information during training. This will re-489

sult in a decrease in final language modelling capa-490

bility. Appendix. A.8 provides a feasible approach491

to measure the focus ability of kernel functions.492

Disentangled components of decay factor De-493

cay factor P primarily consists of two compo-494

nents 6: P b and P s. As shown in Table. 4, when495

used individually, both components demonstrate496

similar language modelling capabilities. However,497

using P b alone achieves better performance on the498

validation set, indicating that P b endows the model499

with stronger generalization performance. When500

both components are utilized together, the model’s501

language modelling capability significantly im-502

proves. We believe that P b exhibits stronger prior503

information during training, encouraging the model504

to pay more attention to adjacent token parts, thus505

enhancing the model’s generalization ability in506

long sequence modelling. On the other hand, P s507

provides stronger representational capacity on this508

foundation, leading to an overall enhancement in509

the model’s language modelling capability.510

Moreover, we demonstrate outcomes of P b and511

P s in the first layer of the model after full training.512

We extract P b and P s from the trained model,513

sum them, and then sort the combined values for a514

clearer presentation of the training results as shown515

in Fig. 5. The figure illustrates that disentanglement516

is effective for information representative.517

Absolute Positional Encoding In constructing518

the model, we also consider adding a trainable ab-519

solute positional encoding at the input, similar to520

GPT2-small. However, as shown in Table. 4, mod-521

els augmented with absolute positional encoding522

demonstrate inferior performance in language mod-523

elling capability.524

6For simplicity, we concatenate headwise vectors into a
whole one.

0 64 128 192 256 320 384 448 512 576 640 704
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Figure 5: Outcomes of P b and P s in the first layer. The
dashed line represents P b, and the solid line indicates
the sum of P b and P s.

6 Conclusion 525

In this paper, we design a positional encoding, 526

D2D, for models based on linear attention. By ana- 527

lyzing the conditions under which linear attention 528

can be transformed into RNN, we ascertain that 529

D2D needs to facilitate the conversion between ab- 530

solute and relative positional encoding. Leveraging 531

this characteristic, we disentangle D2D during the 532

training process, transforming it into a combination 533

of APE and RPE to enhance training stability. In 534

the inference process, we fully convert D2D into 535

APE, enabling the transformation of linear atten- 536

tion into an RNN form. This fully leverages the 537

advantages of linear attention in terms of time com- 538

plexity and space complexity during the inference 539

process. Models utilizing D2D linear attention 540

have demonstrated commendable performance in 541

language modelling and length extrapolation. 542

7 Limitation 543

Our positional encoding demonstrates effectiveness 544

across various kernel functions, though the extent 545

of the effect is somewhat dependent on the choice 546

of kernel function. Based on our experiments, we 547

find that elu(x) + 1 is a good choice for the kernel 548

function, but we cannot provide a very systematic 549

theoretical explanation for this choice. Addition- 550

ally, the initialization of P b significantly impacts 551

the stability of training and the final results. Manu- 552

ally adjusting P b is quite labor-intensive, which is 553

not conducive to the rapid and simple application 554

of our positional encoding in other models. More- 555

over, due to computational resource limitations, we 556

8



are unable to verify whether D2D achieves better557

performance in models with a larger number of558

parameters.559
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A Appendix786

A.1 Notations Of Vanilla Transformer787

In the transformer architecture, X is transformed788

into three distinct sequences, namely query (Q),789

key (K), and value (V ), through separate linear790

projections. This projection is split into h atten-791

tion heads, known as Multi Head Attention. As792

shown in Eq. 11, l-th head transform Q,K, V into793

dh dimension, obtaining Ql,Kl, Vl.794

Ql = QWQ
l

Kl = KWK
l

Vl = VW V
l

WQ
l ,WK

l ,W V
l ∈ Rdmodel×dh

(11)795

Attention calculation is defined as Eq. 12, where796

Att is known as attention score.797

Att = softmax
(
QK⊺

√
dh

)
Attention(Q,K, V ) = Att · V

(12)798

And final output of attention needs to concatenate799

(notated as concat in equations) each head and800

apply a linear projection.801

MultiHead(Q,K, V )

= concat(head1, . . . , headh)WO,

headl = Attention(QWQ
l ,KWK

l , V W V
l )

WO ∈ Rdmodel×dmodel

(13)802

A.2 Conversion of Kernel-Based Linear803

Attention to RNN804

The process of converting kernel-based linear at-805

tention to an RNN framework hinges on the ability806

to decompose the similarity calculation into inde-807

pendent functions of queries and keys. Here, we808

delve into the mathematical underpinnings of this809

conversion, starting with the general form of linear810

attention:811

Atti,j =
ϕ(Qi)ϕ(Kj)

⊺∑i
j=1 ϕ(Qi)ϕ(Kj)

⊺812

The computation of the updated representation813

V ′
i involves weighting by the attention scores:814

V ′
i =

∑i
j=1 ϕ(Qi)ϕ(Kj)

⊺Vj∑i
j=1 ϕ(Qi)ϕ(Kj)

⊺815

Parameter Value
Number of Layers 12

Attention Heads 12 per layer

Hidden Dimension 64 per attention head

Batch Size 640

Training Text Length 512 tokens

Learning Rate 5e-4

Learning Rate Schedule Cosine

Warmup Rounds 1000

Epochs 1

Gradient Optimizer Adam (Kingma and Ba, 2015)

Total Parameters 137M

Table 5: Training Configuration and Model Parameters

This equation can be simplified by recognizing 816

that ϕ(Qi) can be factored out, leading to a recur- 817

sive form that mirrors RNN computations: 818

V ′
i =

ϕ(Qi)(Si−1 + ϕ(Ki)
⊺Vi)

ϕ(Qi)(Zi−1 + ϕ(Ki)
⊺)

819

with Si−1 and Zi−1 representing cumulative sums 820

over j up to i − 1, allowing for an RNN-like it- 821

erative update mechanism. This section will pro- 822

vide a detailed walkthrough of the derivation of 823

these equations, underlining the critical role of the 824

absence of cross terms in enabling the RNN con- 825

version. We will illustrate through examples and 826

further algebraic manipulation how this condition 827

facilitates the transformation, ensuring the feasibil- 828

ity of maintaining cumulative variables akin to S 829

and Z for sequential processing. 830

A.3 Implementation Details of Experiments 831

The specific model parameters and training settings 832

are presented in Table. 5. 833

A.4 Calculation and Initialization of 834

Positional Encoding 835

ALiBi (Press et al., 2022) integrates decay for rela- 836

tive positions in the following Eq. 6. The base of 837

decay b is fixed and initialized headwise. 838

RoPE (Su et al., 2024) exploits APE to catch 839

relative Positional information. We select imple- 840

mentation for linear attention as Eq. 14, where Ri 841

stands for RoPE positional encoding for position i. 842

RoPE cancels applications of APE in normalization 843

of similarity calculation. 844

Sim(Qi,Kj) = (Riϕ(Qi))(Rjϕ(Kj)
⊺)

Atti,j =
Sim(Qi,Kj)∑i
j=1 ϕ(Qi)ϕ(Kj)⊺

(14) 845
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Vanilla APE of Transformer (Vaswani et al.,846

2017) applies a trainable embedding 7 for absolute847

positional information E(a),a = [1, 2, . . . , n].848

The embedding is initialized randomly.849

Sim(Qi,Kj) = ϕ(Qi + E(a)i)ϕ(Kj + E(a)j)
⊺

(15)850

For D2D, we initialize P s
l for each head l with851

a zero vector 0 ∈ R1×dh . P b
l is initialized with852

scalar P b
l in Eq. 16, where h indicates the number853

of heads, and then fill the vector P b
l with the scalar.854

P b
l = 2−

h
l (16)855

A.5 Fitting Process Analysis856
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Figure 6: logPPL on the former 60% steps for Vanilla
GPT and linear attention using D2D.

As shown in Fig. 6, during training, we find that857

D2D and position encodings like ALiBi make lin-858

ear attention more aggressive throughout the train-859

ing process. Specifically, the perplexity (PPL) de-860

creases faster during the training process. A similar861

trend occurs in the validation set, but gap between862

vanilla GPT and D2D is narrowed. For other PE863

like RoPE or ALiBi, vanilla GPT can reach a lower864

PPL at last even with a higher start.865

We speculate that this may be due to the intro-866

duction of relative positional information, allow-867

ing the model to learn sequence information more868

7Trainable embedding is only added in the first layer of
GPT-2 in vanilla implementation.

quickly. However, the original version of GPT has 869

a slower start in terms of Perplexity (PPL) decrease, 870

but maintains a longer optimization process, and 871

finally reaches comparable performance as linear 872

attention. We analyze that linear attention, by re- 873

moving the softmax, still has many shortcomings 874

in terms of normalization. D2D and other Rela- 875

tive Positional Encodings (RPE) provide a shortcut, 876

endowing the model with the prior knowledge of 877

"focusing on nearby tokens", thereby achieving 878

better performance. The softmax operation still 879

possesses good properties and stronger learning 880

capabilities. 881

A.6 Experiments For Effective Inference 882
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Figure 7: Average infercene time for sequence with dif-
ferent length. L.A. with D2D stands for linear attention
with D2D.

To ensure that D2D exhibits superiority in terms 883

of inference speed compared to the vanilla model, 884

we conduct speed tests for language generation 885

at the inference stage. We transform our method 886

into RNN-form to achieve O(n) time complexity. 887

We eliminate the "End of Sequence" (EOS) token 888

from the vocabulary to guarantee the production of 889

texts that conform to specified length criteria. We 890

conducte ten experiments for each model at each 891

length and took the average as the generation time. 892

The weights of the model are subjected to random 893

initialization, given that this has no impact on the 894

assessment of generation speed. 895

Results indicate that inference time complex- 896

ity of our method is lower than that of the vanilla 897

GPT, and as the inference length increases, the ad- 898

vantages of our method become increasingly pro- 899

nounced. When the sequence length is relatively 900

short, the improvement in time is not very pro- 901

nounced, as the fundamental computations and data 902
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copying still require a certain amount of time.903

A.7 Detailed Result of Kernel Selection904

For linear attention, there is no one-size-fits-all905

criterion for selecting the kernel function; thus, it906

is essential to choose the most appropriate kernel907

function based on the position encoding we use. As908

demonstrated in Table. 2, for the position encoding909

we employ, using elu(x)+ 1 as the kernel function910

achieves a lower perplexity (ppl) compared to using911

exp(x).912

To further ascertain which kernel function holds913

an advantage, we employ a new method to vali-914

date that elu(x) + 1 is the better choice. The spe-915

cific experimental scheme is as follows: We first916

train a linear attention model with exp(x) as the917

kernel function on 10% of the training data from918

OpenWebText. After the training is completed, we919

replace the kernel function with a three-layer Mul-920

tilayer Perceptron (MLP) network, retaining the921

rest of the trained parameters and setting them to922

be non-trainable. We then conduct extensive fitting923

on 1% of the training data from OpenWebText. Fi-924

nally, we extract the trained kernel function from925

this model and plot its function graph. As shown
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Figure 8: We fully train a three-layer MLP network in
place of the kernel function on 1% of OpenWebText’s
training dataset, which is ultimately extracted to draw
the function image. This is the image of the kernel
function for the first layer of the entire network, and the
images for the remaining layers are similar to this one.

926
in Fig. 8, the fully trained three-layer MLP net-927

work is close to a linear function when x is large,928

which means the trained three-layer MLP network929

is closer to elu(x) + 1 than to the exp(x). relu(x)930

also possesses similar mathematical properties as931

elu(x) + 1, but relu(x)’s gradient of 0 at x<0 is932

unfavorable for training, so we prefer to choose933

elu(x)+1 as the kernel function rather than choose 934

relu(x). 935

A.8 Kernel Function Concentration Analysis 936

We refer to the ability of a kernel function to focus 937

on one or several tokens as the function’s focus abil- 938

ity (Han et al., 2023). To more conveniently assess 939

a kernel function’s focus ability from a mathemati- 940

cal perspective, we use the coefficient of variation 941

of the kernel function under a specific distribution 942

as a mathematical indicator to judge the kernel 943

function’s focus ability. 944

Coefficient of Variation The coefficient of varia- 945

tion is a normalized measure of the dispersion of a 946

probability distribution, defined as the ratio of the 947

standard deviation to the mean. The expression is 948

as follows: 949

cv =
σ

µ
× 100% (17) 950

Where σ is the standard deviation of the distribu- 951

tion, µ is the mean of the distribution, and cv is the 952

coefficient of variation of the distribution. Since 953

the calculation of attention scores involves normal- 954

ization, the coefficient of variation, as opposed to 955

mean or variance, can avoid the impact of overall 956

numerical scaling. This aligns with the purpose of 957

normalization and is more suitable for measuring 958

the focus ability of kernel functions. 959

13


	Introduction
	Related Work
	Positional Encoding In Transformer
	Linear Attention

	Background
	Attention Calculation
	Positional Encoding

	Methodology
	Encoding for Positional Decay
	Instability In Decay Factor
	Disentanglement of Decay Factor

	Experiments and Analysis
	Experiment Settings
	Language Modelling
	Length Extrapolation
	Ablation Study

	Conclusion
	Limitation
	Appendix
	Notations Of Vanilla Transformer
	Conversion of Kernel-Based Linear Attention to RNN
	Implementation Details of Experiments
	Calculation and Initialization of Positional Encoding
	Fitting Process Analysis
	Experiments For Effective Inference
	Detailed Result of Kernel Selection
	Kernel Function Concentration Analysis


