Disentangle to Decay: Linear Attention with Trainable Positional Decay for
Length Extrapolation

Anonymous ACL submission

Abstract

Transformer architecture has significantly ad-
vanced Natural Language Processing (NLP)
by delivering outstanding performance. How-
ever, it faces challenges with efficiency and
processing long sequences, attributed to its
quadratic time complexity. Linear attention
offers a more efficient linear time solution but
falls short in language modelling and length
extrapolation compared with traditional Trans-
former. To enhance the performance of linear
attention and fully leverage its capability in
modelling long sequences, we begin with po-
sitional encoding, specifying the constraints
required for positional encoding by linear atten-
tion. Building upon these constraints, we de-
sign a positional encoding for linear attention,
named Disentangle to Decay (D2D), which al-
lows for a seamless conversion between ab-
solute positional encoding (APE) and relative
positional encoding (RPE). To alleviate the in-
stability of directly training D2D, we disentan-
gle D2D into the combination of RPE and APE,
which greatly improves the stability while en-
suring the efficiency of model training. Experi-
ments result shows that, application of D2D in
linear attention significantly improves perfor-
mance in language modelling and length extrap-
olation, demonstrating strong competitiveness
with vanilla Transformer and outperforming
other positional encodings. !

1 Introduction

In recent years, Transformer (Vaswani et al., 2017)
has revolutionized the field of Natural Language
Processing (NLP). Self-attention in Transformer
shows notable abilities on processing sequences.
However, a significant limitation of self-attention
is the cost in terms of time and storage, which in-
creases quadratically with sequence length. This
constraint hinders the extensive application of

'Our code implementation is available at:
https://anonymous.4open.science/t/D2D-0CF7/

Transformer to long sequences and enormous pa-
rameter sizes, especially in autoregressive natural
language generation tasks.

To improve efficiency of Transformer, linear
attention (Katharopoulos et al., 2020) replaces
softmax calculation with a dot-product of ker-
nel feature maps. It shows recurrent prop-
erty (Katharopoulos et al., 2020; Kasai et al., 2021;
Yang et al., 2023), as it can be formulated into Re-
current Neural Networks (RNN) (Hochreiter and
Schmidhuber, 1997) for inference.

However, linear attention suffers from cumu-
lative regularity errors when processing long se-
quences (Schlag et al., 2021), necessitating the use
of specialized mechanisms for information filter-
ing. Positional encodings like ALiBi (Press et al.,
2022) and RoPE (Su et al., 2024), integrate rela-
tive positional information, mitigate the issue of
cumulative errors and extrapolate models to longer
sequences (Sun et al., 2023a; Qin et al., 2024; Yang
et al., 2023). But, due to structural issues with lin-
ear attention, most of these mainstream positional
encodings cannot be directly applied. It necessi-
tates certain adjustments to the model structure and
fails to achieve satisfactory performance.

Our work proposes Disentangle to Decay (D2D),
an innovative decay factor based positional encod-
ing for linear attention. D2D can freely transi-
tion between absolute positional encoding (APE)
and relative positional encoding (RPE). During the
training process, D2D can simultaneously lever-
age the advantages of RPE and APE, transforming
them into a mixture of mask and trainable posi-
tional encoding, thereby enhancing the stability
and computational efficiency of the training. In
the inference phase, D2D can be converted into
APE, thus fulfilling the requirement for transform-
ing linear attention into RNN. Subsequently, D2D
supports for further tuning of decay structures and
achieves outstanding performance. Moreover, D2D
is able for length extrapolation and compatible with

https://anonymous.4open.science/r/D2D-0CF7/

linear attention in mathematical properties. It pro-
vides a solution for simple linear attention models
without additional structure design and achieves
good performance.

We conduct various experiments on language
modelling, length extrapolation and efficient in-
ference. Result shows that D2D enables linear
attention to achieve comparable performance in
language modelling with vanilla attention. And
D2D outperforms existing positional encodings, in-
cluding RoPE (Su et al., 2024) and ALiBi (Press
et al., 2022). We provide an implementation of
transformation to RNN and experiment on infer-
ence speed, which indicates that D2D is efficient.

The main contributions are as follows:

* We propose a positional encoding that incor-
porates both APE and RPE in the form of
positional decay, and analyze the numerical
instability during the decay process.

By adopting a disentanglement approach, we
introduce a new form that combines RPE and
APE into D2D during the training process,
significantly enhancing the stability of D2D,
while still maintaining the efficiency of linear
attention during both inference and training
phases.

We test the language modelling and length
extrapolation capabilities of D2D on large
datasets and explored the performance of vari-
ous major kernel functions when used in con-
junction with D2D.

2 Related Work

2.1 Positional Encoding In Transformer

The calculation of Transformer has been proven
to be insensitive to the position of sequence to-
kens (Zhao et al., 2023). Encoding proper posi-
tional information is considered necessary for fea-
ture extraction of Transformer and efficient com-
puting, especially for long sequences and large pa-
rameters (Kazemnejad et al., 2023). Approaches to
integrate positional information into Transformer
are known as positional encoding (PE).

PE can be categorized into two groups: APE and
RPE. APE exploits absolute positional informa-
tion, like trigonometric functions (Vaswani et al.,
2017) and trainable parameters (Brown et al., 2020;
Zhang et al., 2022). RPE exploits relative distance
between tokens in the calculation, like RoPE (Su
et al., 2024), ALiBi (Press et al., 2022). RPE is

common for LLM (Raffel et al., 2020; Chowdhery
et al., 2023; Scao et al., 2022)

2.2 Linear Attention

Linear attention mechanism adopts kernel func-
tions to approximate softmax calculation with
a simple dot product, aiming at desirably re-
ducing the quadratic space-time complexity. It
can be roughly categorized into kernel-based
and random-based. Kernel-based linear atten-
tion (Choromanski et al., 2021; Katharopoulos
et al., 2020; Qin et al., 2022b,a) processes query
and key with kernel functions. Random-based lin-
ear attention (Peng et al., 2021; Choromanski et al.,
2021) fits expected value through random sampling
to approximate softmax.

Kernel-based linear attention can be transformed
into recurrent form. (Katharopoulos et al., 2020)
provides an approach to transform kernel-based
linear attention to a form like RNN. (Yang et al.,
2023; Sun et al., 2023a) apply both parallel and se-
rial approaches to construct efficient large language
models.

3 Background
3.1 Attention Calculation

Linear attention replaces softmax calculation in
vanilla attention with dot product of query and key.”
(Katharopoulos et al., 2020) provides Eq. 1, as a
unified form of linear and vanilla attention.

Eq. 1 is constructed with similarity calculation
Sim(Q;, K;), which indicates similarity of i-th
token of query and j-th token of key. For vanilla
attention, Sim(Q;, K;) = exp (QZKJT) And for
linear attention, similarity is dot product of query
and key after kernel function 3 ¢ notated in Eq. 2.
Transformations of kernel function should always
be positive. Additionally, we provide background
of vanilla attention in Appendix. A.1 for reference.

Sim(Qi, K)
Z§:1 Sim(Qi, K;)
Sim(Qs, Kj) = ¢(Qi)p(K;)T 2)
3.2 Positional Encoding

Att; j =)

Positional encoding integrates positional informa-
tion for queries and keys.

*Random-based linear attention is special, and we exclude
them for subsequent discussions.

3In the majority of works on linear attention, query and key
share a common kernel function, but application of different
kernel function for query and key is still legal in definition.

I - -
/ Parallel Training

[\
[
|
. (RPE & APE)
sequnce | (RPE &APE m= |
Length | RPE(i—j) | Q | Global Pb Mask :
| |APE@,APEG) |V | (RPE) |
Ko | ' oa — — |
i I
I\ L ETra('ZibS pe Quew Key Value Parallel Output /l
Cp N i (APE Encoded For Q,K) s
YT Encodingfor . Disentanglementof ~ _,
Positional Decay I;:> Decay Factor —> Output
Kemmel | ,~—— """~~~ ——— " = -
uer N
@Y Cunction (Recurrent Inference (APE) p=pbsps \
|
—|——> APE(i), APE()) ' @ - Do {7 :
[ttt . .
I Fixed P Query Key Value Recurrent :
: Recurrent (APE) (This Iteration) Output |
| Accumulation % (APE Encoded For Q,K) :
Value |]

Figure 1: An overview of D2D for linear attention models. The Query (Q) and Key (K) is firstly transformed through
kernel function. During the parallel training process, P is disentangled into two parts: P? and P*. P? generates
mask using RPE form of positional decay, while P? is integrated into Q and K using APE form of positional decay.
In the recurrent inference, P and P® merge into P, which integrates positional decay with form of APE.

Absolute Positional Encoding For queries)
and keys K with positional information a
[1,2,...,n]. APE can be represented as functions
to add positional information to input sequences,
notated as Eq. 3.

Q = APE(Q,a),K = APE(K,a) (3)
Relative Positional Encoding RPE leverages the
positional difference, ¢ — j, between the ¢-th token
in the query and the j-th token in the key. Con-
sequently, the similarity calculation as depicted in
Eq. 1 incorporates additional relative information,
denoted as g(i — j), in Eq. 4. Here, f signifies a
novel function designed to integrate relative posi-
tional information into the similarity calculation,
where common approaches typically involve either
adding or multiplying g(i — j) to incorporate RPE,
as discussed in (Raffel et al., 2020; Press et al.,
2022).

Sim(Qs, Kj) = f(Qi, Kj, g(i — j))
From APE to RPE Some RPE integrates abso-
Iute position to query and key, which shares similar
forms as APE in Eq. 3. To achieve this, positional
information for tokens with identical relative posi-
tion should only depend on query @), key K and
relative position (¢ — j). That is, Eq. 5 holds for

“)

V1 <14,5 < n(Suetal., 2024).

Sim(APE(Q,i), APE(K,j)) = h(Q, K,i — j)

)
4 Methodology

As demonstrated in Fig. 1, we propose D2D to
integrate relative positional decay in linear atten-
tion. D2D exhibits form of both APE and RPE
for positional decay, we exploit a mixture of APE
and RPE for training, and use APE for recurrent
inference. D2D addresses numeric instability of
positional decay through disentanglement of de-
cay factor. Moreover, it enables further tuning for
positional encodings.

4.1 Encoding for Positional Decay

Relative position information works as essential
information for Transformer calculation, especially
for longer or changeable sequences lengths (Chi
et al., 2022; Neishi and Yoshinaga, 2019). Po-
sitional decay structure like ALiBi (Press et al.,
2022), provides an exponential decay item as
shown in Eq. 6. The base of exponential is no-
tated as decay factors. This enhances models to
focus on adjacent tokens and diminish cumulative
regularity errors. However, direct integration of
RPE is incompatible for kernel-based attention.

Sim(Qi, K;) = ¢(Qi)p(K;)Tv"™7 (6)

To transform linear attention into RNN, similarity
calculation can be decomposed into components
solely dependent on ¢ and on j. Eq. 7 gives a
demonstration, where f, and fj, can be any func-
tions.

Sim(Qi, Kj) = fo(Qi, 1) - fi(Kj,75) (D)
More details about transformation are list in Ap-
pendix. A.2. Our work designs D2D in form of
both APE and RPE. Two forms of PE are identical
in mathematical, and we select proper form with
subsequent model design.

For APE form, we introduce a pair of positional
functions to represent absolute positions respec-
tively for query and key a, 3 : NT — R Xdmoder
and a decay factor P € R ¥%model 35 base of posi-
tional decay, as Eq. 8 shows. d,,0q4e; 1S the dimen-
sion of features for Transformer, known as hidden
size. For further similarity calculation, Q, K with
absolute positional information is exploited.

Qi = Qiexp(a(i)), Kj = K exp(B(j))
a(i) = —iP,B(j) = jP

And Eq. 8 can be transformed into RPE form,
as shown in Eq. 9. In this context, P, indicates a
scalar for d-dimension of vector P. And ¥ indi-
cates a serial summation. Unfortunately, Eq. 9 is
not parallel parallelizable. We provide solutions in
Sec. 4.3.

®)

Sim(Qi, K;) = ¢(Qi)d(K;)T
dimodel—1 A(Qi.a)0 yd)T)
exp(P, Z_J

4.2 Instability In Decay Factor

Similar positional decay structures in Sec. 4.1 ap-
pear in previous works (Sun et al., 2023b; Press
et al., 2022; Sun et al., 2023a). However, the decay
factors in these approaches are typically fixed hy-
perparameters. Since such exponential calculation
with relative position is unstable in numeric. Rea-
sons include large gradients and extreme value for
exponential calculation. It prevents models from
further training and learn more positional infor-
mation. Moreover, decay structures will be more
unstable in long sequences because range of ¢ — j
is larger.

Positional decay will cause inconsistency of
APE and RPE, which limits models transforma-
tion to RNN in inference. Taking the case in

i = j,i — 400 as an example, exp(—P;)"7 in
Eq. 9 should be 1. However, result of Q; and K §
approaches +oo and 0 respectively, which leads to
unexpected numerics in actual computations. Prac-
tically, directly training of decay factor encounters
issue of numerical underflow. Fig. 2 demonstrates
the value of P under direct training. P experi-
ences truncation at approximately 0.12, inhibiting
any further tuning. Normalization methods are

e
0

o OO (OO 00D OO
o

o
&

e e e e
=3 =3 1= =
= = 3 o

Value of Decay Factor

e
o
]

@5?
&
P

e
=3
S

Figure 2: The distribution of decay factor in direct train-
ing (sorted). It is observed that most values truncated
around 0.12 without further tuning.

not effective for this instability, because of the fol-
lowing reasons: (1) In order to transform linear
attention to RNN, normalization based on data dis-
tribution is disabled because it violates calculations
orders and dependencies in Sec. 4.1, for example,
batch-normalization (Ioffe and Szegedy, 2015). (2)
Scaling methods like L.1-normalization will limit
data into a thinner range as a result of stricter sta-
bility requirements. This will cause performance
drop. (3) Clamping decay factor P into a certain
range can limit range of 7P, but this brings little
performance enhancement since ranges for tuning
is too thin.

4.3 Disentanglement of Decay Factor

Sec. 4.1 proposes RPE and APE form of D2D.
However, it is not available in actual computation.
Since decay factor does not support for direct tun-
ing due to numeric instability in Sec. 4.2. More-
over, as shown in Eq. 9 RPE form of D2D exhibits
a serial summation, and this is not acceptable for
parallel training. In this section, we propose a novel
approach to disentangle decay factor P. We will
introduce methods and calculation implementation
of disentanglement for decay factor.

Disentanglement To address numeric instabil-
ity and achieve parallelism, we provide a disen-
tanglement solution as shown in Fig. 3. And we
aim to demonstrate ideal decay factor distributions

through disentangled P. We decompose P into
h attention heads, as P = concat(Py,...,Py),
where concat stands for vector concentration
(Headwise split is based on multi head atten-
tion (Vaswani et al., 2017), more backgrounds can
be found in Appendix. A.1.) For [-th attention head,
we disentangle P, € R into P, = Plb + P7.
Here, P} € R'dn = [pPb ... P}] consists of
a scalar Plb = 2_%, delineating a rough range
for PP. And Pf € R'*% is a trainable vector
of small numerical values, to enable further tun-
ing.And Eq. 10 shows calculation after disentangle-
ment, where Sim(Q;, K;)[l] stands for similarity
calculation of [-th attention head.

As depicted in Fig. 3, P? constitutes the major
component of P. Compared to P*, P? has larger
numerical values and a broader range. The values
of this part are fixed during training. By setting the
magnitude of P?, the numerical range of P can be
limited. And the numerical range of P? is signifi-
cantly smaller than that of P itself, which endows
D2D training with enhanced stability and avoids
the truncation phenomenon depicted in Fig. 2.

-

head, head,

Figure 3: Illustration of disentanglement. Green circle
stands for each index of P is sum of fixed PP and
trainable P*, aiming to fit ideal distribution of P (board
line with squares).

SZm(QZ,KJ)[l] = @b X 95
Oy = exp (—PP)~7

"= oxp(iBp) oxp(—j)

(10)

Calculation Implementation Eq. 10 enables
D2D to be compatible with efficient parallel calcu-
lation implementation. Sim(Q);, K;)[l] is decom-
posed into two parts. The first part is ©p, which

Lioio
P 1,00
P 10
Pl

Figure 4: An instance of decay mask (length n = 4).
The element in the ¢-th row and j-th column of the ma-
trix corresponds M; ;. The part where j > 7 is assigned
a value of 0 due to the presence of the causal mask,
to ensure attention is unidirectional in autoregressive
language modelling tasks.

is same for all computations within the head. So
it can be calculated once and applied in all subse-
quent calculation, with a mask matrix M like Fig. 4.
And this mask can be integrated into attention score
along with causal mask in vanilla attention. This
is implemented by element-wise product of matri-
ces, which is efficient in calculation. The second
part is @4, which varies for each dimension within
the head. The P?® in ©; are similar to P in Eq. 8§,
directly acting on Q and K in the form of APE,
and are ultimately expressed in the form of matrix
multiplication. This enables the computation of O
to fully leverage the GPU’s acceleration for matrix
operations, ensuring efficiency during training.

Algorithm. 1 and Algorithm. 2 demonstrate algo-
rithmic process of linear attention when employing
D2D. Par refers to the process of model parallel
training, while Rec pertains to the process of se-
rial model inference. For input, Q, K, V, M, P, n
remain the same meaning as former part of paper.
04, xd,, indicates a zero matrix with size dj, x dj.
For calculation, splithead function represents the
operation of splitting the query, key, and value into
multiple heads, which is used for the multi-head
attention mechanism. mergehead function repre-
sents the operation of merging heads, combining
the output results of the multi-head attention mech-
anism into a single head for subsequent calcula-
tions. S, Z are intermediate variables generated in
recurrent computation, details can be found in Ap-
pendix. A.2. = stands for element-wise division for
matrices, while © stands for element-wise product
for matrices.

S Experiments and Analysis

In this section, we apply our design of PE and lin-
ear attention into vanilla Transformer for language

Algorithm 1 Parallel Training
1: procedure PAR(Q, K,V, M, P? n)
2: K+ KT

3 QK « 6(Q),6(K)

4: a<+[0,1,...,n—1]

5: C + exp (a- P?)
6
7
8
9

Q+—Q+C
K+« Kol
Q, K,V <« splithead (Q, K,V)
: Att+ Q- KoM
10: for: < 0,ton —1do

n—1
11: Atti < Atti/ Z (Att@j)
=0

12: end for

13: O+ Att-V

14: O <« mergehead (O)
15: return O

16: end procedure

Algorithm 2 Recurrent Inference

1: procedure REC(Q, K, V, P®, P* n)
2: K+ KT

3 P« P+ P

4: P + exp(P)

5: S,Z<—Odhxdh,0dhx1

6 Q, K,V <« splithead (Q, K, V)
7 fori < Oton —1do

8 Qi, Ki = ¢(Qi), p(K;)

9: S+~ SOP+K;-V;

10: Z+—ZOP+ Kz

12: end for

13: O « concat(Oy,...,0y)

14: O + mergehead (O)

15: return O

16: end procedure

modelling. We contrast our methods with main-
stream PE on linear attention and vanilla Trans-
former. Additionally, we conduct length extrapo-
lation experiments for these models. Experiments
demonstrate that our designed position embedding
offers a significant advantage for linear attention
on autoregressive language models. Moreover, we
provide an implementation to transform linear at-
tention based on D2D to RNN and compare its in-
ference speed with vanilla GPT in Appendix. A.6.
Experiment show that our model is efficient when
sequence length grows.

5.1 Experiment Settings

Models Implementation We implement all of
our models in the Huggingface framework *. We
select GPT-2 (Brown et al., 2020) for backbone
of auto-regressive language models. All models are
trained and validated on 4xNVIDIA V100 GPUs.
More details are record in Appendix A.3

Datasets For language modelling, we select
OpenWebText (Gokaslan and Cohen, 2019) dataset
for experiments. OpenWebText corpus is sourced
from Reddit-linked URLs, covering a wide range of
topics from news to blogs. It’s designed for training
large-scale language models with diverse internet
text. For efficiency and limitation on computations,
we sample part of OpenWebText for experiments.
Column of texts for experiments are described in
the following Table 1.

13,288,030
1,662,260

Train
Valid

Table 1: Statistics of columns for datasets in experi-
ments.

Baselines We select linear attention with AL-
iBi (Press et al., 2022), RoPE (Su et al., 2024), Posi-
tional Embedding in vanilla Transformer (Vaswani
et al., 2017). Additionally, we select vanilla Trans-
former with softmax attention for contrastive con-
cerns. Details about initialization and calculation
for PE can be found in Appendix A.4.

Kernel Selection For linear attention, there is no
one-size-fits-all criterion for selecting the kernel
function. Thus, we select some commonly used
kernel functions and test them for experiments.
Exponential (EXP) Kernel : ¢(z) = exp (z).
ELU kernel: ¢(x) = elu(z) + 1. elu is ELU
function in (Clevert et al., 2016).

Metrics For the language model task, we use
perplexity (PPL) (Brown et al., 1993) to measure
performance. Lower PPL for language modelling
reflects better language modelling ability.

5.2 Language Modelling

Language modelling capabilities for various base-
lines are demonstrated in Table. 2. Firstly, D2D
outperforms other PE and vanilla attention in lan-
guage modelling task. Compared to ALiBi and

*https://huggingface.co/
>https://huggingface.co/openai-community/gpt2

PE Kernels PPL(Train) PPL(Valid) PE Kernel PPL
o EXP 49.30 50.75 . EXP 49.80
Vanillia APE ALiBi
ELU 49.40 50.86 ELU 49.37
EXP 44.66 47.85 EXP 50.81
RoPE RoPE
ELU 44.59 47.80 ELU 51.25
. EXP 45.24 48.18 EXP 49.23
ALIiBi D2D
ELU 44.88 47.85 ELU 48.54
DD EXP 44.70 47.80 '
ELU 43.82 46.90 Table 3 Result on length ex.trapolatlon tests. Values
- - underlined are denoted as optimal results.
Attention w/o Linear 45.74 47.66

Table 2: Perplexity of language modelling tasks, lower
ppl shows better performance. Values underlined are
denoted as optimal results.

RoPE, D2D provides effective improvement for lin-
ear attention. We also discover that the impact of
our designed position embedding varies with differ-
ent types of kernel functions. Language modelling
performance varies with kernel functions, and we
provide more detailed experiments to discuss this
in Appendix. A.7. Additionally, linear attention
models with extra PE shows a wider gap between
performance on training and valid sets than vanilla
GPT. Linear attention still has limitations on gen-
eralization. In Appendix A.5,we provide further
discussion with PPL during training process.

5.3 Length Extrapolation

Models based on linear attention exhibit substan-
tial competitiveness in generating long texts. It is
imperative that we ensure the position encoding
we design possesses adequate length extrapolation
capability to fully leverage the advantages of linear
attention.

"Train short and test long" is the key for length
extrapolation test. More consciously, we train mod-
els with normal length in datasets (512). Then, we
obtain longer texts by repeating and concatenating
the same text 4 times.

The following table describes perplexity of re-
peating texts. Vanilla APE in GPT-2 is not able
for length extrapolation, so that we do not mention
it in the experiments. As shown in Table. 3, our
position encoding demonstrates superior length ex-
trapolation capability than other RPE. Compared to
ALIiBi, our position encoding strategy introduces
more trainable parameters, offering stronger rep-
resentational power. This enables the model to fit
more appropriate position encoding during train-
ing. Compared to RoPE, the constant positivity

and smoothness of our position encoding are the
main reasons for its better performance. Although
ROoPE exhibits decay for larger relative positions,
the oscillatory circumstances of trigonometric func-
tions can lead to significant numerical jitter during
this decay. Additionally, the introduction of RoPE
cannot guarantee that the values of Sim/(Q, K) are
positive, and normalization is weakened for this
reason in Eq. 14. We believe this affects the gen-
eralization ability of the position encoding on long
texts and the normalization during training for lin-
ear attention.

5.4 Ablation Study

In designing D2D, we experiment with various
methods. Table. 4 presents the performance of
these methods in language modelling, with evalua-
tion criteria consistent with Section 5.1.

PE Kernel PPL(Train) PPL(Valid)
) EXP 49.30 50.75
Vanilla APE
ELU 49.40 50.86
ELU 43.82 46.90
D2D - -
EXP 44.70 47.80
D2D EXP 45.24 48.33
wlo PY
D2D EXP 45.24 48.23
wlo P?
DD EXP 4551 48.57
w/ Vanilla APE

Table 4: Results for ablation study. w/o means without
and w/ means with. Values underlined are denoted as
optimal results.

Kernel We explore different choices for the ker-
nel function in Eq. 9, primarily testing ¢(z) =
exp(z) and ¢(x) = elu(x) + 1 as the kernel
functions. These two are selected as representa-
tives mainly due to their significant differences in
mathematical properties (detailed discussion can be

found in Appendix. A.7), making them suitable for
our tests. Table. 4 shows that, without special posi-
tional encoding, there is no significant difference in
language modelling capability between two kernel
functions. However, after applying D2D, the model
using elu(x) + 1 demonstrates significantly better
language modelling performance than the one us-
ing exp(x). We believe this is because D2D carries
more prior information, encouraging the model to
focus on several adjacent tokens. This leads to the
exp(x), which has better focus ability (Han et al.,
2023), having more difficulty in fully capturing the
dataset’s information during training. This will re-
sult in a decrease in final language modelling capa-
bility. Appendix. A.8 provides a feasible approach
to measure the focus ability of kernel functions.

Disentangled components of decay factor De-
cay factor P primarily consists of two compo-
nents ®: P and P®. As shown in Table. 4, when
used individually, both components demonstrate
similar language modelling capabilities. However,
using PP alone achieves better performance on the
validation set, indicating that P? endows the model
with stronger generalization performance. When
both components are utilized together, the model’s
language modelling capability significantly im-
proves. We believe that P? exhibits stronger prior
information during training, encouraging the model
to pay more attention to adjacent token parts, thus
enhancing the model’s generalization ability in
long sequence modelling. On the other hand, P*
provides stronger representational capacity on this
foundation, leading to an overall enhancement in
the model’s language modelling capability.

Moreover, we demonstrate outcomes of P? and
P? in the first layer of the model after full training.
We extract P? and P* from the trained model,
sum them, and then sort the combined values for a
clearer presentation of the training results as shown
in Fig. 5. The figure illustrates that disentanglement
is effective for information representative.

Absolute Positional Encoding In constructing
the model, we also consider adding a trainable ab-
solute positional encoding at the input, similar to
GPT2-small. However, as shown in Table. 4, mod-
els augmented with absolute positional encoding
demonstrate inferior performance in language mod-
elling capability.

SFor simplicity, we concatenate headwise vectors into a
whole one.

0.5

04 -

Value

0.2 o

0.1

0.0

64 128 192 256 320 384 448 512 576 640 704
Index

Figure 5: Outcomes of P? and P* in the first layer. The
dashed line represents PP, and the solid line indicates
the sum of P® and P*.

6 Conclusion

In this paper, we design a positional encoding,
D2D, for models based on linear attention. By ana-
lyzing the conditions under which linear attention
can be transformed into RNN, we ascertain that
D2D needs to facilitate the conversion between ab-
solute and relative positional encoding. Leveraging
this characteristic, we disentangle D2D during the
training process, transforming it into a combination
of APE and RPE to enhance training stability. In
the inference process, we fully convert D2D into
APE, enabling the transformation of linear atten-
tion into an RNN form. This fully leverages the
advantages of linear attention in terms of time com-
plexity and space complexity during the inference
process. Models utilizing D2D linear attention
have demonstrated commendable performance in
language modelling and length extrapolation.

7 Limitation

Our positional encoding demonstrates effectiveness
across various kernel functions, though the extent
of the effect is somewhat dependent on the choice
of kernel function. Based on our experiments, we
find that elu(z) + 1 is a good choice for the kernel
function, but we cannot provide a very systematic
theoretical explanation for this choice. Addition-
ally, the initialization of P? significantly impacts
the stability of training and the final results. Manu-
ally adjusting P? is quite labor-intensive, which is
not conducive to the rapid and simple application
of our positional encoding in other models. More-
over, due to computational resource limitations, we

are unable to verify whether D2D achieves better
performance in models with a larger number of
parameters.

References

Rie Kubota Ando and Tong Zhang. 2005. A framework
for learning predictive structures from multiple tasks
and unlabeled data. Journal of Machine Learning
Research, 6:1817-1853.

Galen Andrew and Jianfeng Gao. 2007. Scalable train-
ing of L1-regularized log-linear models. In Proceed-
ings of the 24th International Conference on Machine
Learning, pages 33-40.

Peter F. Brown, Stephen A. Della Pietra, Vincent J.
Della Pietra, and Robert L. Mercer. 1993. The math-
ematics of statistical machine translation: Parameter
estimation. Computational Linguistics, 19(2):263—
311.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric
Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,
Jack Clark, Christopher Berner, Sam McCandlish,
Alec Radford, Ilya Sutskever, and Dario Amodei.
2020. Language models are few-shot learners. In Ad-
vances in Neural Information Processing Systems 33:
Annual Conference on Neural Information Process-
ing Systems 2020, NeurIPS 2020, December 6-12,
2020, virtual.

Ta-Chung Chi, Ting-Han Fan, Peter J. Ramadge, and
Alexander Rudnicky. 2022. KERPLE: kernelized
relative positional embedding for length extrapola-
tion. In Advances in Neural Information Processing
Systems 35: Annual Conference on Neural Informa-
tion Processing Systems 2022, NeurIPS 2022, New
Orleans, LA, USA, November 28 - December 9, 2022.

Krzysztof Marcin Choromanski, Valerii Likhosherstov,
David Dohan, Xingyou Song, Andreea Gane, Tamas
Sarlos, Peter Hawkins, Jared Quincy Davis, Afroz
Mohiuddin, Lukasz Kaiser, David Benjamin Be-
langer, Lucy J. Colwell, and Adrian Weller. 2021.
Rethinking attention with performers. In 9¢h Inter-
national Conference on Learning Representations,
ICLR 2021, Virtual Event, Austria, May 3-7, 2021.
OpenReview.net.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts,
Paul Barham, Hyung Won Chung, Charles Sutton,
Sebastian Gehrmann, Parker Schuh, Kensen Shi,
Sasha Tsvyashchenko, Joshua Maynez, Abhishek
Rao, Parker Barnes, Yi Tay, Noam Shazeer, Vin-
odkumar Prabhakaran, Emily Reif, Nan Du, Ben
Hutchinson, Reiner Pope, James Bradbury, Jacob

Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin,
Toju Duke, Anselm Levskaya, Sanjay Ghemawat,
Sunipa Dev, Henryk Michalewski, Xavier Garcia,
Vedant Misra, Kevin Robinson, Liam Fedus, Denny
Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim,
Barret Zoph, Alexander Spiridonov, Ryan Sepassi,
David Dohan, Shivani Agrawal, Mark Omernick, An-
drew M. Dai, Thanumalayan Sankaranarayana Pil-
lai, Marie Pellat, Aitor Lewkowycz, Erica Moreira,
Rewon Child, Oleksandr Polozov, Katherine Lee,
Zongwei Zhou, Xuezhi Wang, Brennan Saeta, Mark
Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathy
Meier-Hellstern, Douglas Eck, Jeff Dean, Slav Petrov,
and Noah Fiedel. 2023. Palm: Scaling language mod-
eling with pathways. Journal of Machine Learning
Research, 24(240):1-113.

Djork-Arné Clevert, Thomas Unterthiner, and Sepp
Hochreiter. 2016. Fast and accurate deep network
learning by exponential linear units (elus). In 4¢h In-
ternational Conference on Learning Representations,
ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016,
Conference Track Proceedings.

Aaron Gokaslan and Vanya Cohen. 2019. Open-
webtext corpus. http://Skylion@@7.github.io/
OpenWebTextCorpus.

Dongchen Han, Xuran Pan, Yizeng Han, Shiji Song,
and Gao Huang. 2023. Flatten transformer: Vision
transformer using focused linear attention. In Pro-
ceedings of the IEEE/CVF International Conference
on Computer Vision (ICCV), pages 5961-5971.

Sepp Hochreiter and Jiirgen Schmidhuber. 1997. Long
short-term memory. Neural Computation, 9(8):1735-
1780.

Sergey loffe and Christian Szegedy. 2015. Batch nor-
malization: accelerating deep network training by re-
ducing internal covariate shift. In Proceedings of the
32nd International Conference on International Con-
ference on Machine Learning - Volume 37, ICML’15,
page 448-456. JMLR .org.

Jungo Kasai, Hao Peng, Yizhe Zhang, Dani Yogatama,
Gabriel Ilharco, Nikolaos Pappas, Yi Mao, Weizhu
Chen, and Noah A. Smith. 2021. Finetuning pre-
trained transformers into RNNs. In Proceedings
of the 2021 Conference on Empirical Methods in
Natural Language Processing, pages 10630—10643,
Online and Punta Cana, Dominican Republic. Asso-
ciation for Computational Linguistics.

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pap-
pas, and Francois Fleuret. 2020. Transformers
are rnns: Fast autoregressive transformers with lin-
ear attention. In Proceedings of the 37th Interna-
tional Conference on Machine Learning, ICML’20.
JMLR.org.

Amirhossein Kazemnejad, Inkit Padhi, Karthikeyan
Natesan, Payel Das, and Siva Reddy. 2023. The
impact of positional encoding on length generaliza-
tion in transformers. In Thirty-seventh Conference
on Neural Information Processing Systems.

https://aclanthology.org/J93-2003
https://aclanthology.org/J93-2003
https://aclanthology.org/J93-2003
https://aclanthology.org/J93-2003
https://aclanthology.org/J93-2003
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
http://papers.nips.cc/paper_files/paper/2022/hash/37a413841a614b5414b333585e7613b8-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/37a413841a614b5414b333585e7613b8-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/37a413841a614b5414b333585e7613b8-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/37a413841a614b5414b333585e7613b8-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/37a413841a614b5414b333585e7613b8-Abstract-Conference.html
https://openreview.net/forum?id=Ua6zuk0WRH
http://jmlr.org/papers/v24/22-1144.html
http://jmlr.org/papers/v24/22-1144.html
http://jmlr.org/papers/v24/22-1144.html
http://arxiv.org/abs/1511.07289
http://arxiv.org/abs/1511.07289
http://arxiv.org/abs/1511.07289
http://Skylion007.github.io/OpenWebTextCorpus
http://Skylion007.github.io/OpenWebTextCorpus
http://Skylion007.github.io/OpenWebTextCorpus
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.18653/v1/2021.emnlp-main.830
https://doi.org/10.18653/v1/2021.emnlp-main.830
https://doi.org/10.18653/v1/2021.emnlp-main.830
https://openreview.net/forum?id=Drrl2gcjzl
https://openreview.net/forum?id=Drrl2gcjzl
https://openreview.net/forum?id=Drrl2gcjzl
https://openreview.net/forum?id=Drrl2gcjzl
https://openreview.net/forum?id=Drrl2gcjzl

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

Masato Neishi and Naoki Yoshinaga. 2019. On the
relation between position information and sentence
length in neural machine translation. In Proceedings
of the 23rd Conference on Computational Natural
Language Learning (CoNLL), pages 328-338, Hong
Kong, China. Association for Computational Linguis-
tics.

Hao Peng, Nikolaos Pappas, Dani Yogatama, Roy
Schwartz, Noah A. Smith, and Lingpeng Kong. 2021.
Random feature attention. In 9th International Con-
ference on Learning Representations, ICLR 2021, Vir-
tual Event, Austria, May 3-7, 2021. OpenReview.net.

Ofir Press, Noah A. Smith, and Mike Lewis. 2022. Train
short, test long: Attention with linear biases enables
input length extrapolation. In The Tenth International
Conference on Learning Representations, ICLR 2022,
Virtual Event, April 25-29, 2022. OpenReview.net.

Zhen Qin, Xiaodong Han, Weixuan Sun, Dongxu Li,
Lingpeng Kong, Nick Barnes, and Yiran Zhong.
2022a. The devil in linear transformer. In Proceed-
ings of the 2022 Conference on Empirical Methods
in Natural Language Processing, pages 7025-7041,
Abu Dhabi, United Arab Emirates. Association for
Computational Linguistics.

Zhen Qin, Dong Li, Weigao Sun, Weixuan Sun,
Xuyang Shen, Xiaodong Han, Yunshen Wei, Bao-
hong Lv, Xiao Luo, Yu Qiao, and Yiran Zhong. 2024.
Transnormerllm: A faster and better large language
model with improved transnormer.

Zhen Qin, Weixuan Sun, Hui Deng, Dongxu Li, Yun-
shen Wei, Baohong Lv, Junjie Yan, Lingpeng Kong,
and Yiran Zhong. 2022b. cosformer: Rethinking
softmax in attention. In The Tenth International Con-
ference on Learning Representations, ICLR 2022,
Virtual Event, April 25-29, 2022. OpenReview.net.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. J. Mach. Learn. Res., 21(1).

Mohammad Sadegh Rasooli and Joel R. Tetreault. 2015.
Yara parser: A fast and accurate dependency parser.
Computing Research Repository, arXiv:1503.06733.
Version 2.

Teven Le Scao, Angela Fan, Christopher Akiki, El-
lie Pavlick, Suzana Ilic, Daniel Hesslow, Roman
Castagné, Alexandra Sasha Luccioni, Frangois Yvon,
Matthias Gallé, Jonathan Tow, Alexander M. Rush,
Stella Biderman, Albert Webson, Pawan Sasanka Am-
manamanchi, Thomas Wang, Benoit Sagot, Niklas
Muennighoff, Albert Villanova del Moral, Olatunji
Ruwase, Rachel Bawden, Stas Bekman, Angelina

10

McMillan-Major, Iz Beltagy, Huu Nguyen, Lucile
Saulnier, Samson Tan, Pedro Ortiz Suarez, Vic-
tor Sanh, Hugo Laurencon, Yacine Jernite, Julien
Launay, Margaret Mitchell, Colin Raffel, Aaron
Gokaslan, Adi Simhi, Aitor Soroa, Alham Fikri
Aji, Amit Alfassy, Anna Rogers, Ariel Kreisberg
Nitzav, Canwen Xu, Chenghao Mou, Chris Emezue,
Christopher Klamm, Colin Leong, Daniel van Strien,
David Ifeoluwa Adelani, and et al. 2022. BLOOM:
A 176b-parameter open-access multilingual language
model. CoRR, abs/2211.05100.

Imanol Schlag, Kazuki Irie, and Jiirgen Schmidhuber.
2021. Linear transformers are secretly fast weight
programmers. In Proceedings of the 38th Interna-
tional Conference on Machine Learning, ICML 2021,
18-24 July 2021, Virtual Event, volume 139 of Pro-
ceedings of Machine Learning Research, pages 9355—
9366. PMLR.

Jianlin Su, Murtadha H. M. Ahmed, Yu Lu, Shengfeng
Pan, Wen Bo, and Yunfeng Liu. 2024. Roformer: En-
hanced transformer with rotary position embedding.
Neurocomputing, 568:127063.

Yutao Sun, Li Dong, Shaohan Huang, Shuming Ma,
Yugqing Xia, Jilong Xue, Jianyong Wang, and Furu
Wei. 2023a. Retentive network: A successor to
transformer for large language models. CoRR,
abs/2307.08621.

Yutao Sun, Li Dong, Barun Patra, Shuming Ma, Shao-
han Huang, Alon Benhaim, Vishrav Chaudhary, Xia
Song, and Furu Wei. 2023b. A length-extrapolatable
transformer. In Proceedings of the 61st Annual Meet-
ing of the Association for Computational Linguis-
tics (Volume 1: Long Papers), pages 14590—-14604,
Toronto, Canada. Association for Computational Lin-
guistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Proceedings of the 31st International
Conference on Neural Information Processing Sys-
tems, NIPS’17, page 6000-6010, Red Hook, NY,
USA. Curran Associates Inc.

Songlin Yang, Bailin Wang, Yikang Shen, Rameswar
Panda, and Yoon Kim. 2023. Gated linear attention
transformers with hardware-efficient training. CoRR,
abs/2312.06635.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel
Artetxe, Moya Chen, Shuohui Chen, Christopher
Dewan, Mona T. Diab, Xian Li, Xi Victoria Lin,
Todor Mihaylov, Myle Ott, Sam Shleifer, Kurt Shus-
ter, Daniel Simig, Punit Singh Koura, Anjali Srid-
har, Tianlu Wang, and Luke Zettlemoyer. 2022.
OPT: open pre-trained transformer language mod-
els. CoRR, abs/2205.01068.

Liang Zhao, Xiaocheng Feng, Xiachong Feng, Bing Qin,
and Ting Liu. 2023. Length extrapolation of trans-
formers: A survey from the perspective of position
encoding. CoRR, abs/2312.17044.

http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://doi.org/10.18653/v1/K19-1031
https://doi.org/10.18653/v1/K19-1031
https://doi.org/10.18653/v1/K19-1031
https://doi.org/10.18653/v1/K19-1031
https://doi.org/10.18653/v1/K19-1031
https://openreview.net/forum?id=QtTKTdVrFBB
https://openreview.net/forum?id=R8sQPpGCv0
https://openreview.net/forum?id=R8sQPpGCv0
https://openreview.net/forum?id=R8sQPpGCv0
https://openreview.net/forum?id=R8sQPpGCv0
https://openreview.net/forum?id=R8sQPpGCv0
https://doi.org/10.18653/v1/2022.emnlp-main.473
http://arxiv.org/abs/2307.14995
http://arxiv.org/abs/2307.14995
http://arxiv.org/abs/2307.14995
https://openreview.net/forum?id=Bl8CQrx2Up4
https://openreview.net/forum?id=Bl8CQrx2Up4
https://openreview.net/forum?id=Bl8CQrx2Up4
http://arxiv.org/abs/1503.06733
https://doi.org/10.48550/ARXIV.2211.05100
https://doi.org/10.48550/ARXIV.2211.05100
https://doi.org/10.48550/ARXIV.2211.05100
https://doi.org/10.48550/ARXIV.2211.05100
https://doi.org/10.48550/ARXIV.2211.05100
http://proceedings.mlr.press/v139/schlag21a.html
http://proceedings.mlr.press/v139/schlag21a.html
http://proceedings.mlr.press/v139/schlag21a.html
https://doi.org/10.1016/J.NEUCOM.2023.127063
https://doi.org/10.1016/J.NEUCOM.2023.127063
https://doi.org/10.1016/J.NEUCOM.2023.127063
https://doi.org/10.48550/ARXIV.2307.08621
https://doi.org/10.48550/ARXIV.2307.08621
https://doi.org/10.48550/ARXIV.2307.08621
https://doi.org/10.18653/v1/2023.acl-long.816
https://doi.org/10.18653/v1/2023.acl-long.816
https://doi.org/10.18653/v1/2023.acl-long.816
https://doi.org/10.48550/ARXIV.2312.06635
https://doi.org/10.48550/ARXIV.2312.06635
https://doi.org/10.48550/ARXIV.2312.06635
https://doi.org/10.48550/ARXIV.2205.01068
https://doi.org/10.48550/ARXIV.2205.01068
https://doi.org/10.48550/ARXIV.2205.01068
https://doi.org/10.48550/ARXIV.2312.17044
https://doi.org/10.48550/ARXIV.2312.17044
https://doi.org/10.48550/ARXIV.2312.17044
https://doi.org/10.48550/ARXIV.2312.17044
https://doi.org/10.48550/ARXIV.2312.17044

A Appendix

A.1 Notations Of Vanilla Transformer

In the transformer architecture, X is transformed
into three distinct sequences, namely query (Q),
key (K), and value (V), through separate linear
projections. This projection is split into h atten-
tion heads, known as Multi Head Attention. As
shown in Eq. 11, [-th head transform @, K,V into
dy, dimension, obtaining), K;, V;.

Q =Qw/?
K = KWK
Vi=vwY (I

VVIQ, VVZK, VVlV c RYmodel Xdn

Attention calculation is defined as Eq. 12, where
Att is known as attention score.

T
Att = softmax <Q

i)
(12)

vy
Attention(Q, K, V) = Att -V

And final output of attention needs to concatenate
(notated as concat in equations) each head and
apply a linear projection.

MultiHead(Q, K, V)
= concat(heady, . .., head,)Wo,

head; = Attention(QWS, KWK, v}

WO c Rdmodelemodel
(13)

A.2 Conversion of Kernel-Based Linear
Attention to RNN

The process of converting kernel-based linear at-
tention to an RNN framework hinges on the ability
to decompose the similarity calculation into inde-
pendent functions of queries and keys. Here, we
delve into the mathematical underpinnings of this
conversion, starting with the general form of linear
attention:

o 'qb(Qi)Qb(Kj)T
L Qi) (KT

The computation of the updated representation
V/ involves weighting by the attention scores:

Att

v i QKT

L QKT

11

Parameter Value
Number of Layers 12
Attention Heads 12 per layer

Hidden Dimension 64 per attention head

Batch Size 640

Training Text Length 512 tokens

Learning Rate Se-4

Learning Rate Schedule Cosine

Warmup Rounds 1000

Epochs 1

Gradient Optimizer Adam (Kingma and Ba, 2015)
Total Parameters 137M

Table 5: Training Configuration and Model Parameters

This equation can be simplified by recognizing
that ¢(Q;) can be factored out, leading to a recur-
sive form that mirrors RNN computations:

v AQi)(Si-1 + o(Ki)Vi)
C o(Qi)(Ziey + S(K)T)

with S;_1 and Z;_; representing cumulative sums
over j up to ¢ — 1, allowing for an RNN-like it-
erative update mechanism. This section will pro-
vide a detailed walkthrough of the derivation of
these equations, underlining the critical role of the
absence of cross terms in enabling the RNN con-
version. We will illustrate through examples and
further algebraic manipulation how this condition
facilitates the transformation, ensuring the feasibil-
ity of maintaining cumulative variables akin to S
and Z for sequential processing.

A.3 Implementation Details of Experiments

The specific model parameters and training settings
are presented in Table. 5.

A.4 Calculation and Initialization of
Positional Encoding

ALiBi (Press et al., 2022) integrates decay for rela-
tive positions in the following Eq. 6. The base of
decay b is fixed and initialized headwise.

ROPE (Su et al., 2024) exploits APE to catch
relative Positional information. We select imple-
mentation for linear attention as Eq. 14, where R;
stands for RoPE positional encoding for position <.
ROPE cancels applications of APE in normalization
of similarity calculation.

Sim(Qi, Kj) = (Rid(Q:)) (R p(K;)T)
S G(QoU)T

(14)

Att; ;=

Vanilla APE of Transformer (Vaswani et al.,
2017) applies a trainable embedding ’ for absolute
positional information F(a),a = [1,2,...,n].
The embedding is initialized randomly.

Sim(Qi, Kj) = ¢(Qi + E(a))¢(K; + E(a);)T
(15)

For D2D, we initialize P® for each head [with

a zero vector 0 € R1*dn, Plb is initialized with
scalar Plb in Eq. 16, where h indicates the number
of heads, and then fill the vector Plb with the scalar.

— ot (16)

A.5 Fitting Process Analysis

L [Vanilla Train
o5 —— D2D Train
s
-
o
£ 5.0
en
2
4.5
4.0
Steps
5490 . .
5 U R bttt Vanilla Valid
Wz \
\ —— D2D Valid
5.0
~~~
é 48
&
on 4.6
2
4.4
4.2
4.0

Steps

Figure 6: log PPL on the former 60% steps for Vanilla
GPT and linear attention using D2D.

As shown in Fig. 6, during training, we find that
D2D and position encodings like ALiBi make lin-
ear attention more aggressive throughout the train-
ing process. Specifically, the perplexity (PPL) de-
creases faster during the training process. A similar
trend occurs in the validation set, but gap between
vanilla GPT and D2D is narrowed. For other PE
like RoPE or ALiBi, vanilla GPT can reach a lower
PPL at last even with a higher start.

We speculate that this may be due to the intro-
duction of relative positional information, allow-
ing the model to learn sequence information more

"Trainable embedding is only added in the first layer of
GPT-2 in vanilla implementation.

12

quickly. However, the original version of GPT has
a slower start in terms of Perplexity (PPL) decrease,
but maintains a longer optimization process, and
finally reaches comparable performance as linear
attention. We analyze that linear attention, by re-
moving the softmax, still has many shortcomings
in terms of normalization. D2D and other Rela-
tive Positional Encodings (RPE) provide a shortcut,
endowing the model with the prior knowledge of
"focusing on nearby tokens", thereby achieving
better performance. The softmax operation still
possesses good properties and stronger learning
capabilities.

A.6 Experiments For Effective Inference

| —A— L.A.withD2D _

; ‘
2 100 o i
g —E&—  Vanilla GPT i i
Q i i
L I
A 80 - : ‘
(5] I I
£ : !
s 60 - ! .
Q | I
= i
(5} i
15 i
£ 401 +
: 1
% ]
5 201 1
£ 1

.

4096
Sequence Length (Tokens)

1024 2048

Figure 7: Average infercene time for sequence with dif-
ferent length. L.A. with D2D stands for linear attention
with D2D.

To ensure that D2D exhibits superiority in terms
of inference speed compared to the vanilla model,
we conduct speed tests for language generation
at the inference stage. We transform our method
into RNN-form to achieve O(n) time complexity.
We eliminate the "End of Sequence" (EOS) token
from the vocabulary to guarantee the production of
texts that conform to specified length criteria. We
conducte ten experiments for each model at each
length and took the average as the generation time.
The weights of the model are subjected to random
initialization, given that this has no impact on the
assessment of generation speed.

Results indicate that inference time complex-
ity of our method is lower than that of the vanilla
GPT, and as the inference length increases, the ad-
vantages of our method become increasingly pro-
nounced. When the sequence length is relatively
short, the improvement in time is not very pro-
nounced, as the fundamental computations and data



copying still require a certain amount of time.

A.7 Detailed Result of Kernel Selection

For linear attention, there is no one-size-fits-all
criterion for selecting the kernel function; thus, it
is essential to choose the most appropriate kernel
function based on the position encoding we use. As
demonstrated in Table. 2, for the position encoding
we employ, using elu(x) + 1 as the kernel function
achieves a lower perplexity (ppl) compared to using
exp(z).

To further ascertain which kernel function holds
an advantage, we employ a new method to vali-
date that elu(z) + 1 is the better choice. The spe-
cific experimental scheme is as follows: We first
train a linear attention model with exp(z) as the
kernel function on 10% of the training data from
OpenWebText. After the training is completed, we
replace the kernel function with a three-layer Mul-
tilayer Perceptron (MLP) network, retaining the
rest of the trained parameters and setting them to
be non-trainable. We then conduct extensive fitting
on 1% of the training data from OpenWebText. Fi-
nally, we extract the trained kernel function from
this model and plot its function graph. As shown

25
—— Kernel Output

/

/

0.0

=75 =50 25 2.5

Input x

5.0

Figure 8: We fully train a three-layer MLP network in
place of the kernel function on 1% of OpenWebText’s
training dataset, which is ultimately extracted to draw
the function image. This is the image of the kernel
function for the first layer of the entire network, and the
images for the remaining layers are similar to this one.

in Fig. 8, the fully trained three-layer MLP net-
work is close to a linear function when x is large,
which means the trained three-layer MLP network
is closer to elu(z) + 1 than to the exp(x). relu(z)
also possesses similar mathematical properties as
elu(z) + 1, but relu(z)’s gradient of 0 at x<0 is
unfavorable for training, so we prefer to choose

13

elu(x)+1 as the kernel function rather than choose
relu(z).

A.8 Kernel Function Concentration Analysis

We refer to the ability of a kernel function to focus
on one or several tokens as the function’s focus abil-
ity (Han et al., 2023). To more conveniently assess
a kernel function’s focus ability from a mathemati-
cal perspective, we use the coefficient of variation
of the kernel function under a specific distribution
as a mathematical indicator to judge the kernel
function’s focus ability.

Coefficient of Variation The coefficient of varia-
tion is a normalized measure of the dispersion of a
probability distribution, defined as the ratio of the
standard deviation to the mean. The expression is

as follows:

co = 2 % 100%
1

Where o is the standard deviation of the distribu-
tion, p is the mean of the distribution, and ¢, is the
coefficient of variation of the distribution. Since
the calculation of attention scores involves normal-
ization, the coefficient of variation, as opposed to
mean or variance, can avoid the impact of overall
numerical scaling. This aligns with the purpose of
normalization and is more suitable for measuring
the focus ability of kernel functions.

(17)



	Introduction
	Related Work
	Positional Encoding In Transformer
	Linear Attention

	Background
	Attention Calculation
	Positional Encoding

	Methodology
	Encoding for Positional Decay
	Instability In Decay Factor
	Disentanglement of Decay Factor

	Experiments and Analysis
	Experiment Settings
	Language Modelling
	Length Extrapolation
	Ablation Study

	Conclusion
	Limitation
	Appendix
	Notations Of Vanilla Transformer
	Conversion of Kernel-Based Linear Attention to RNN
	Implementation Details of Experiments
	Calculation and Initialization of Positional Encoding
	Fitting Process Analysis
	Experiments For Effective Inference
	Detailed Result of Kernel Selection
	Kernel Function Concentration Analysis


