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ABSTRACT

As Machine Learning as a Service (MLaaS) platforms become prevalent, deep neu-
ral network (DNN) watermarking has gained increasing attention, which enables
one to verify the ownership of a target DNN model in a black-box scenario. Unfor-
tunately, previous watermarking methods are vulnerable to functionality stealing
attacks, thus allowing an adversary to falsely claim the ownership of a DNN model
stolen from its original owner. In this work, we propose a novel margin-based DNN
watermarking approach that is robust to the functionality stealing attacks based
on model extraction and distillation. Specifically, during training, our method
maximizes the margins of watermarked samples by using projected gradient ascent
on them so that their predicted labels cannot change without compromising the
accuracy of the model that the attacker tries to steal. We validate our method on
multiple benchmarks and show that our watermarking method successfully defends
against model extraction attacks, outperforming recent baselines.

1 INTRODUCTION

Deep learning has proven to be a promising strategy for tackling practical problems from real-world
domains such as computer vision (He et al., 2016), natural language processing (Brown et al., 2020),
and speech recognition/synthesis (Baevski et al., 2020). This has led to active deployments of the
deep neural network (DNN) models in real-world artificial intelligence systems. A Machine Learning
as a Service (MLaaS) platform is a notable example of such a practical system, which allows users to
provide input data and access the output of the models that are deployed on the cloud.

Considering that the MLaaS providers put a significant amount of resources for constructing a
high-performing model, their intellectual property rights should be protected. However, DNN
models deployed via MLaaS systems are known to be vulnerable to attacks that aim to steal their
functionalities. Even if the attacker does not have access to the parameters of the deployed models,
the adversary can extract the functionality of the DNN models with black-box functionality stealing
attacks, for instance, model extraction attacks (Orekondy et al., 2019). To mitigate the functionality
stealing threat, prior studies (Uchida et al., 2017; Li et al., 2019; Namba & Sakuma, 2019; Chen et al.,
2021b; Yang et al., 2021; Zhang et al., 2018; Adi et al., 2018; Fan et al., 2019) have suggested DNN
watermarking methods that enable the ownership verification of a stolen model.

These watermarking methods require either black-box or white-box access to the suspicious model
for ownership verification. However, in practical scenarios, the model owners using watermarking
method which requires white-box access would fail to verify their ownership because adversaries
would not allow direct access to the parameters of the stolen model. Due to this limitation, most
existing methods use the trigger set approach (Adi et al., 2018; Zhang et al., 2018; Fan et al., 2019; Li
et al., 2019; Namba & Sakuma, 2019; Zhang et al., 2020a;b; Chen et al., 2021b; Yang et al., 2021; Jia
et al., 2021; Maini et al., 2021; Li et al., 2022), which operates in a black-box setting. For ownership
verification, the model owner conducts statistical testing to demonstrate the behavioral difference
between the watermarked and watermark-free models with a predefined set of samples whose labels
are known to the owner. When doing so, the model owner designs the labels or samples used for the
query set to have an atypical distribution to prevent false alarms.

Despite the numerous attempts for DNN ownership verification, most existing DNN watermarking
methods have failed to demonstrate their robustness against model extraction attacks (Lukas et al.,
2022), which aim to copy the functionality of the target model to the attacker’s model. Although
several recent studies (Jia et al., 2021; Maini et al., 2021; Li et al., 2022) have shown their robustness
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Figure 1: Concept. The circle and rhombus shapes indicate samples from the original objective and the trigger
set for watermarking. The dotted line shows the decision boundary of the standard or the watermarked model
and the solid line shows the decision boundary of the surrogate model, which obtained by the functionality
stealing methods. The figure represents that margins of each trigger sample contributes to watermarked model to
becoming robust against a functionality stealing attack.

against model extraction, we believe that the behavioral differences between the stolen model and the
clean model were insufficient for ownership verification. The watermarking objective of a model is
orthogonal to its original objective due to using the trigger set drawn from the atypical distribution,
letting the model extraction only copies the model’s functionality for the original objective.

Focusing on such an imperfect copy mechanism, we propose a novel watermarking method that allows
to build a model whose trigger set will be transferred to the surrogate models even with functionality
stealing attacks. The functionality stealing methods tend to imitate the decision boundary of the
target model, and thus we propose to train the model such that each query sample in the trigger set
has a sufficient margin by using projected gradient ascent. As our method gives sufficient margins to
the queries, the decision boundary of the surrogate model built by the functionality stealing method
partially copies the margin (see Figure 1). Our margin-based watermarking method outperforms
the previous baseline on watermarking verification tasks against extraction and distillation attacks,
where the latter is the strongest attack that assumes knowledge of the original objective. Last but
not least, our method allows using any kind of the trigger sets as long as the set has distinguishable
characteristics compared to the original task.

Our contributions are threefold:

• We propose a margin-based watermarking method that aims to maximize the margins of the
in-distribution trigger set to mitigate functionality stealing attacks.

• We validate our margin-based watermarking method against two functionality stealing
methods (i.e., extraction and distillation), showing that it achieves the state-of-the-art
watermarking performance.

• We show that the model trained by margin-based watermarking transfers the margin to the
surrogate models.

2 RELATED WORK

2.1 WATERMARKING DEEP NEURAL NETWORKS

DNN watermarking algorithms can be broadly categorized into feature-based (Uchida et al., 2017;
Chen et al., 2019; Rouhani et al., 2019) and trigger set-based methods (Adi et al., 2018; Zhang et al.,
2018; Fan et al., 2019; Li et al., 2019; Namba & Sakuma, 2019; Zhang et al., 2020a;b; Chen et al.,
2021b; Yang et al., 2021; Jia et al., 2021). However, a vast majority of DNN watermarking takes a
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trigger set-based approach, as feature-based watermarking assumes a white-box scenario where we
have access to the parameters of a stolen model for ownership verification.

Zhang et al. (2018), which is the first work on trigger set-based watermarking, propose to watermark a
model by training it over a trigger set, which consists of query images and their target labels. Note that
a target label is a false label with respect to its ground-truth label, and the model owner intentionally
teaches the model to output this target label when a query image is given. Accordingly, the owner’s
model would classify a query image as its predefined target label, whereas other unwatermarked
models would predict a query image as its ground-truth label. The owner can then verify the ownership
of a model by leveraging this gap (i.e., conducting a statistical test or measuring a trigger set recall).
Other trigger set-based schemes also share a similar approach, but slightly differ in how they create
query images, assign target labels, and train the watermarked model.

To evaluate the robustness of the watermarking schemes, researchers have proposed several attacks
that aim to thwart ownership verification. For instance, Adi et al. (2018) proposed to overwrite
watermarks embedded in a DNN model by re-training; Fan et al. (2019) introduced an adversary who
reverse-engineers query images to claim the ownership; Chen et al. (2021a) attempted to fine-tune
the watermarked model to remove watermarks; Namba & Sakuma (2019) demonstrated an attacker
who detects queries that contain query images on the fly; and Jia et al. (2021) evaluated whether
watermarks survive against model extraction attacks, but the surrogate model exhibited an insufficient
statistical difference to claim the model owner’s ownership. Similar to our work, the adversarial
examples can be used for verifying the ownership (Lukas et al., 2020; Le Merrer et al., 2020). In our
case, we construct the trigger set before watermarking, and train the model with a margin which is
differ from directly using adversarial examples for verification.

2.2 MODEL EXTRACTION ATTACKS

Since building a high-performing DNN model requires considerable efforts in designing the model
architecture, constructing a training set, and actual training of the model, an adversary may attempt
to copy the functionality of a remote model into his/her local model. Assuming such an adversary,
researchers have proposed model extraction attacks (i.e. model stealing attacks) that extract the
victim model’s ability to predict images and transfer it into the attacker’s model (Tramér et al., 2016;
Orekondy et al., 2019; Chandrasekaran et al., 2020; Papernot et al., 2017). Specifically, an adversary
in this attack scenario collects an arbitrary set of public data, exploiting the output confidence vector
of a victim model as a labeling oracle, and utilizing the collected pairs to train a counterfeit model.

Model extraction attacks could be used to erase watermarks, as it would not introduce the watermark
of a victim model into a new model. Since the public images used for model extraction are randomly
collected, the query samples from the trigger set is highly unlikely to be included in the surrogate
dataset; the surrogate model thus has little chance to copy the exact trigger set during extraction. In
this regard, several researchers have designed watermarking schemes that are robust against model
extraction (Jia et al., 2021; Maini et al., 2021; Li et al., 2022). Jia et al. (2021) tightly coupled the
model’s original task with the query image prediction task using the soft nearest neighbor loss so
that watermarks always remain if the attacker copies the victim model’s capability of predicting
regular images. For ownership verification, Maini et al. (2021) suggested measuring the distance
between the data points in the owner’s training set and the decision boundary of a suspicious model.
The key observation behind their approach is that knowledge learned from the owner’s training set
propagates to all counterfeit models. Unlike the previous methods, our method does not require the
query samples for the trigger set to be out-of-distribution samples, and thus we can use in-distribution
samples for watermarking. This is beneficial since the out-of-distribution (OOD) samples could be
easily filtered out using OOD detectors, to hinder ownership verification. While the previous works
couple or associate the trigger set with the original objective to transfer the watermarking into the
surrogate models, our method does not and leads to learn strong correlation by giving the margin to
queries.

3 METHOD

In this section, we first introduce a general trigger set-based watermarking scheme, and then describe
our method.
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3.1 WATERMARKING BY USING TRIGGER SET

Let the original objective be learning the mapping hθ from x to y in D = {(x, y)}, parameterized
by θ. To watermark the model, the model owner constructs the trigger set Dq = {(xq, yq)} for the
ownership verification. Suppose the owner discovers the suspicious model which is believed to be a
counterfeit model extracted from the target model hθ. To verify the ownership, the owner can query
the samples in the trigger set Dq to the suspicious model and compare the statistics of the response
from hθ and that of the suspicious model.

Label
of D 1 2 0 8 1

Label
of Dq

0 3 2 7 6

Figure 2: An example of the trigger set Dq. The
standard model maps the samples to the corre-
sponding labels from D, but the watermarked
model maps the samples to the labels from Dq .

If the ordinary mapping of D has the similar
statistics to Dq, the ownership verification is
difficult. Thus, we should ensure that the map-
ping of Dq is clearly distinguishable from the
ordinary mapping. If the sample of the trigger
set xq is sampled from the original objective D,
then there exists a corresponding mapping y′q in
D. Thus, the corresponding label yq should be
differ from y′q , and the mapping of xq to yq can
give a strong evidence for verifying the owner-
ship. The example of the mapping is illustrated
in Figure 2.

The basic way to learn the mapping of both D
and Dq is to use the training objective given by,

min
θ

E(x,y)∼D\D′
q

[
ℓ
(
hθ(x), y

)]
+ E(xq,yq)∼Dq

[
ℓ
(
hθ(xq), yq

)]
, (1)

where the mapping of D′
q should be rejected for watermarking. Training with the objective in

Equation 1 can easily watermark the given model, achieving perfect accuracy on Dq. However, the
functionality stealing methods diminishes the correlation of the trigger set (see Table 1). This is
because the mapping of the trigger set Dq is the false mapping for the original objective D, and thus
the samples from Dq is considered as the outliers.

3.2 MARGIN-BASED WATERMARKING

Table 1: The results for the method in Equation 1.
Since the opposite label of Dq is considered as the
outliers for the functionality stealing attacks, the
surrogate model obtained by extraction does not
maintain the correlation of the trigger set.

Model Watermarked Extraction

Obj. Acc. 0.9310 0.9060
Wat. Acc. 1.0000 0.0000

To overcome such weakness, the training objec-
tive should make the model learn strong corre-
lation of the trigger set Dq into the model hθ,
and thus the watermarking is not removed even
with the functionality stealing attacks. To this
end, we propose a margin-based watermarking
method for deep neural networks. The idea is
inspired from the adversarial attack and robust
training (Madry et al., 2018).

The objective of our margin-based watermarking
is given as follows:

min
θ

E(x,y)∼D\D′
q

[
ℓ
(
hθ(x), y

)]
+ E(xq,yq)∼Dq

[
max
tr

ℓ
(
hθ(tr(xq)), yq

)]
, (2)

where tr indicates a semantic-preserving transformation which cannot change the mapping of xq to
yq .

For adversarial training, the objective is to defend against the adversarial attacks which try to lead
the model into making incorrect predictions by adding a small amount of ℓp perturbation. Thus,
the adversarial training utilizes the valid transformation as the ℓp perturbations. We also utilize the
transformation by adding limited ℓp perturbation, which is given by

min
θ

E(x,y)∼D\D′
q

[
ℓ
(
hθ(x), y

)]
+ E(xq,yq)∼Dq

[
max

∥δ∥∞≤ϵ
ℓ
(
hθ(xq + δ), yq

)]
, (3)

where ϵ is the hyperparameter for choosing the proper margin. To solve the inner maximization
problem of Equation 3, we can use the projected gradient ascent that is commonly used for adversarial
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Algorithm 1 Margin-based watermarking
Input: The original objective D, trigger set (watermarking set) Dq, model hθ, learning rate for
parameter ηθ, loss function ℓ, step size for projected gradient ascent α, maximum bound for projected
gradient ascent ϵ, # of iteration K.
Output: Watermarked model hθ.

while not converge do
xbatch, ybatch ∼ D
ℓobj ← ℓ(hθ(xbatch), ybatch)
xwat, ywat ∼ Dq

δ ← 0xwat

for iter in range(K) do
ℓ̂wat ← ℓ(hθ(xwat + δ), ywat)

δ ← δ + α · sign(∇xwat
ℓ̂wat)

δ ← Proj(δ, ϵ)
end for
ℓwat ← ℓ(hθ(xwat + δ), ywat)
ℓ← ℓobj + ℓwat

θ ← θ − ηθ · ∇θℓ
end while

training (Madry et al., 2018). The solution of the inner maximization term in Equation 3 depends on
the current parameters of the model. Thus, the training objective will ensure that the model’s decision
boundary has a large margin to each query. The given margin of the trigger set induces the twisted
decision boundary of the model when compared with that of the standard model. Since the prediction
for any sample internally represents the clue of the distorted decision boundary of hθ, the margin can
be transferred by the functionality stealing methods. Also, we can guarantee the model learns the
mapping of xq to yq when the loss of xq + δ with yq converges to the sufficiently small value, since
it is the upper bound for the loss of xq to yq. The entire watermarking procedure of our method is
described in Algorithm 1.

4 EXPERIMENTS

4.1 FUNCTIONALITY STEALING: DISTILLATION AND EXTRACTION

To begin, we briefly introduce the distillation and extraction which are used for the functionality
stealing methods.

Distillation is originally proposed for distilling the knowledge from the large model to the small
model. The training objective of the distillation is written as,

min
θ̂

E(x,y)∼D

[
α · ℓ

(
ĥθ̂(x), y

)
+ β · ℓ̃

(
ĥθ̂(x), hθ(x)

)]
, (4)

where ĥθ̂ is the surrogate model (student model), α and β are hyperparameters. Note that the dataset
D is same as the training dataset used for learning teacher model hθ. When considering the scenario
of the functionality stealing by the adversary, the distillation is not applicable in practice since the
distillation requires the source dataset which used for training the watermarked model. Also, the
distillation objective is composed of two measures, the loss with the true label and the loss with the
target model. Thus, for watermarked model, the distillation can be seen as the untargeted adversary
since the original objective has no correlation or negative correlation with the trigger set. From the
viewpoint, the distillation can be considered as the upper bound for functionality stealing method,
which means that the distillation is the most powerful adversary. We provide the additional discussion
about the distillation in the appendix B.2.

On the other hand, model extraction is another functionality stealing method. The training objective
for model extraction is given by,

min
θ̂

E(x̃,ỹ)∼D̃

[
ℓ̃
(
ĥθ̂(x̃), hθ(x̃)

)]
, (5)
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Table 2: Results for watermarking DNNs against functionality stealing methods. All the models have
the trigger set with size 100. For the watermark accuracy of the model without watermarking, the
lower is better since the accuracy of the watermarking can have more statistical significance. The
result shows that our method strictly outperforms the baseline for ownership verification using DNN
watermarking.

Dataset SVHN CIFAR10 CIFAR100

Method EWE Ours EWE Ours EWE Ours

Watermarked
Model

Obj. Acc. 0.9015 ± 0.0110 0.9222 ± 0.0230 0.8610 ± 0.0054 0.8947 ± 0.0066 0.5511 ± 0.0167 0.5966 ± 0.0662
Wat. Acc. 0.4532 ± 0.1517 1.0000 ± 0.0000 0.2668 ± 0.0822 1.0000 ± 0.0000 0.6814 ± 0.1016 1.0000 ± 0.0000

Distillation Obj. Acc. 0.9325 ± 0.0030 0.9307 ± 0.0211 0.8888 ± 0.0035 0.9255 ± 0.0043 0.6373 ± 0.0040 0.5731 ± 0.0616
Wat. Acc. 0.0495 ± 0.0165 0.6600 ± 0.1054 0.0164 ± 0.0105 0.6667 ± 0.1930 0.0573 ± 0.0342 0.2733 ± 0.2031

Extraction
(same source)

Obj. Acc. 0.8844 ± 0.0092 0.9321 ± 0.0223 0.8397 ± 0.0102 0.9063 ± 0.0328 0.5300 ± 0.0157 0.6363 ± 0.0812
Wat. Acc. 0.7623 ± 0.0802 0.8200 ± 0.1453 0.5101 ± 0.0558 0.7300 ± 0.0300 0.3090 ± 0.1134 0.7500 ± 0.3477

Extraction
(different source)

Obj. Acc. 0.6499 ± 0.0455 0.9354 ± 0.0179 0.7076 ± 0.0040 0.8699 ± 0.0008 0.3210 ± 0.0182 0.4998 ± 0.0780
Wat. Acc. 0.9540 ± 0.0385 0.7467 ± 0.0321 0.6624 ± 0.1422 0.8033 ± 0.0611 0.3576 ± 0.0487 0.8967 ± 0.1447

Model w/o
Watermark

Obj. Acc. 0.9629 ± 0.0017 0.9356 ± 0.0031 0.7422 ± 0.0019
Wat. Acc. 0.0326 ± 0.0125 0.0067 ± 0.0058 0.0002 ± 0.0002 0.0000 ± 0.0000 0.0122 ± 0.0123 0.0067 ± 0.0115

where D̃ is the surrogate dataset for extraction and ℓ̃ is the loss function which can be differ from
the original loss function ℓ. As the Equation 5 shows that the surrogate dataset should not be
same with the dataset used for training the target model hθ. Even using the different dataset, the
previous work shows that the model extraction can achieve the reasonable performance of the original
objective (Orekondy et al., 2019). Also, the loss function ℓ̃ for model extraction can have various
types, including cross entropy, KL divergence and ℓ1-loss. To validate the watermarking methods, we
perform two types of model extraction with two different surrogate datasets for each watermarked
model. In all the cases, we used KL divergence for the loss function ℓ̃.

4.2 EXPERIMENTAL SETUP

We verify the efficacy of our method, by validating it on benchmark datasets, namely CIFAR10,
CIFAR100 and SVHN. For all experiments, we firstly train the watermarked model with the objective
described in Section 3. Next, we perform functionality stealing attacks for each watermarked model.
As for functionality stealing attacks to defend against, we first consider distillation, which is the
strongest attack that is only possible in the white-box attack scenario. Also, we consider model
extraction with both the same dataset to the training dataset, and a different dataset. For CIFAR10
dataset experiments, we perform model extraction with CIFAR10 and CIFAR100 surrogate dataset,
for SVHN, we use SVHN and CIFAR10, and for CIFAR100, we use CIFAR100 and CIFAR10.
We expect that the model extraction with the dataset used for learning the target model is the best
adversary for the model extraction (Jia et al., 2021), but for fair comparison, we assume the realistic
setting for model watermarking and attacks. For all the experiments, we used the ResNet-34 (He et al.,
2016) for the watermarked model and the ResNet-34 for extraction and ResNet-18 for distillation of
the surrogate model.

We randomly select the trigger set from the validation set of the original objective, i.e., our method
does not have any constraints on the choice of trigger set. The corresponding label of each query
is randomly selected from the false labels with respect to its ground-truth label, which ensures
the statistics of the trigger set is clearly distinguishable with the original objective. We follow the
hyperparameters of He et al. (2016) for training all the ResNets and Hinton et al. (2015) for distillation.
For our method, we set the margin as ∥δ∥∞ ≤ 5/255 and number of steps K = 5 in Equation 3
and Algorithm 1. All the experiments are done by one Titan Xp or RTX 2080Ti GPU. The detailed
description of our experiments are in Section B.1 of the appendix.

4.3 RESULTS ON FUNCTIONALITY STEALING

Table 2 shows the original and watermarking accuracies of different models against model extraction
and distillation attacks for different two methods, margin-based watermarking and EWE (Jia et al.,
2021) which we found by measuring the watermark accuracy. All the experiments are done for
3 times with the trigger set size of 100 and we denote the mean and standard deviation for each
experiment. The result show that our method achieves perfect accuracy on the trigger set, while EWE
fail to do so. This allows to clearly distinguish the standard model and watermarked model of ours.
Additionally, our method achieves better objective performance on all the cases. For the ownership
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(a) Obj. Acc. w.r.t. no. of query (b) Obj. Acc. w.r.t. no. of iter K (c) Obj. Acc. w.r.t. coef. λ

(d) Wat. Acc. w.r.t. no. of query (e) Wat. Acc. w.r.t. no. of iter K (f) Wat. Acc. w.r.t. coef. λ

Figure 3: Comparison of hyperparameters. We measure the objective accuracy and watermark
accuracy for both watermarked model and stolen model while varying the size of the trigger set,
number of iterations (margin), and coefficient λ in Equation 6. The shaded region shows the standard
deviation of the estimated values.

verification of the suspicious models, our method outperforms the watermark accuracy for all the
cases except the case of SVHN, extraction with different source. Since the EWE models on SVHN
utilizes the CIFAR10 samples for the trigger set, the watermark accuracy of this surrogate model
can achieve the high watermarking accuracy. Even the watermark accuracy is high in the surrogate
model, the watermark accuracy of the watermarked model shows lower than of the surrogate model,
which can confuse the ownership verification. Moreover, although the model extraction partially
erase the watermark, the models trained with our method still achieve sufficiently high watermark
accuracy for verifying the ownership. The models with distillation or extraction show sufficiently high
watermarking accuracy, we can assure the model which steal the functionality or not by measuring
the watermarking accuracy since the standard model achieves near 0 accuracy on the trigger set.

4.4 THE CHOICE OF THE MARGIN AND QUERY

The size of the trigger set We measure the performance of our method while varying the size
of the trigger set. Since training the model to predict the assigned labels for the query samples
in the trigger set provides false signals that conflict with conventional training, we conjecture that
the size of the trigger set may be effective for the watermarking. Also, for ownership verification,
being able to watermark a large trigger set is beneficial for ownership verification since the statistical
significance can be measured more precisely. We vary the size of the trigger set as 20 to 200, and the
results are shown in Figure 3a and 3d. The stolen model from the watermarked model with bigger
size of the trigger set shows lower watermark accuracy. This tendency arise from the false mapping
characteristics of the trigger set, that the method can being unstable with the large size of the trigger
set. This shows that the margin-based approach can inject the strong correlation of the trigger set, but
can only inject limited size of the false mapping. However, for the smaller size of the trigger set, the
stolen model captures the most of the watermarking. Thus, we recommend to use the limited size of
the trigger set, such as 100 which used for our experiments in Table 2.

Varying the margin Although our method achieves good watermarking performance on DNNs,
however, the performance of the model on the original test set is decreased. This is somehow similar
to the result of adversarial training, which trades-off the accuracy with robustness to adversarial
perturbations. We investigate how to achieve good watermarking performance without sacrificing
the model accuracy on conventional examples. To this end, we consider two settings. First, we can
control the margin by increasing/decreasing the penalty (i.e., ϵ in Equation 3) and the number of
iterations (K in Equation 3). We vary the number of iterations and maximum perturbation size ϵ
for margin, and the results are shown in Figure 3b and 3e. The results show that weaker margin by
smaller K improves the performance of the original objective. However, since the margin decreases,
the signal for the watermarked query samples decreases as well, with the model extraction attacks.
Further, when the margin increases, the training becomes unstable. We conjecture that the mapping of
the trigger set is opposite to the true mapping, thus the training becomes unstable where the maximum
margin size increases. This result also implies that there exists trade-off between watermarking
performance and the performance on the original samples.
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Figure 4: Degradation of accuracy according to change of the maximum radius in watermarked and
surrogate models. The shaded region shows the standard deviation of the estimated values. The result
proves that our intuition is reflected to the watermarking.

Another way is to control the effect of the watermarking loss, by controlling the coefficient λ in the
below objective:

min
θ

E(x,y)∼D\D′
q

[
ℓ
(
hθ(x), y

)]
+ λE(xq,yq)∼Dq

[
max

∥δ∥∞≤ϵ
ℓ
(
hθ(xq + δ), yq

)]
. (6)

We set the coefficient λ as 0.25 to 2 respectively. The results with varying λ are provided in Figure 3c
and 3f. The results show that varying λ in range 0.25 to 2 does not show difference over both the
original objective and watermark. This suggests that the margin size is more important than the ratio
between the original and watermarking objective. We additionally perform experiments of the choice
of the query by selecting each query as a Mixup (Zhang et al., 2017) query, which is in Section B.3
of the appendix.

4.5 LABELING STRATEGY FOR TRIGGER SETS

Figure 5: Objective and watermark accuracy for
the watermarked model and its surrogate (by ex-
traction) across the different labeling strategies.

Our method is designed to distort the model’s
decision boundaries by assigning a false label
for each one of the trigger set. For each trigger
image, we randomly selected one of the false
labels with respect to its ground-truth label. Con-
sidering that the choice of a trigger set and its
corresponding false labels may vary the distor-
tion of a decision boundary, we compare the
watermark and original task accuracies over dif-
ferent labeling strategies.

We leverage the confidence scores that the model
without watermarking emits for each query to
choose a label. Note that a strategy of selecting
a false label having the highest confidence score
would distort the decision boundary less compared to that of using the lowest confidence score.
Therefore, we compare these two cases (i.e., selecting the highest and lowest confidence score) to the
random labeling strategy. The results are shown in Figure 5.

In all the cases, the watermarked model showed the perfect watermark accuracy so we omitted it
in the figure. When using the highest confidence score strategy, the watermarked model achieved
the highest objective accuracy; however, the model showed the lowest watermark accuracy after
conducting model extraction. By contrast, the lowest confidence score strategy degrades the objective
accuracy, as it would distort the decision boundary of the watermarked model more aggressively.
Recall from Figure 1 that this extracted model imitates the more distorted decision boundary of the
watermarked model and thus has a higher chance of copying the watermark. Therefore, this strategy
helps the extracted model achieve higher watermark accuracy, which enables claiming a stronger
ownership. The results also demonstrate that there exists a trade-off between the watermark and the
performance of the original task. Above all, our method shows sufficient watermark accuracy for
ownership verification compared to the other labeling strategies, which enables that the model owners
can adopt their own labeling strategy without suffering from the performance.
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Figure 6: t-SNE visualization of the watermarked model and the surrogate models for CIFAR10.
Same colored markers indicates that the markers have the same class label. The gray shaded circle
represents the margin area of the queries.

4.6 COMPARISON OF THE MARGIN BETWEEN THE WATERMARKED AND SURROGATE MODELS

We investigate how well the margin of the queries from the trigger set transfers to the surrogate
models. We perform the steepest gradient ascent for the trigger set to characterize the margin of
each queries while varying the maximum radius (ϵ in Equation 3). The results are shown in Figure 4.
Note that the surrogate models built by distillation and extraction have not seen the queries from the
trigger set. We observe that although not all of the margins transfer to the surrogate models, some of
them do. This gives the credence for our intuition that the margin of the decision boundary transfers
to the surrogate models, even though the functionality stealing methods aim to indirectly copy the
functionality using a surrogate dataset. We conjecture that for any watermarking methods that aim to
impose strong correlations on the trigger set, our margin-based methods will also ensure that they are
transferred to the surrogate models, trained to copy the functionalities of the original models.

4.7 VISUALIZATION OF THE TRAINED MODELS

We additionally perform the visualization of the embedding space obtained with our proposed margin-
based watermarking method. We use t-SNE (Van der Maaten & Hinton, 2008) to visualize the
confidence score for each sample from the original objective and queries from the trigger set. The
results are shown in Figure 6. For clear interpretation, we shaded the margin area for queries which
achieves the successful watermarking. Since the watermarked model is trained by Equation 3, the
queries are strongly clustered together. Moreover, despite the surrogate models do not experience the
queries during the functionality stealing, the survived queries also have some margins. This result
additionally supports our claim that the margin is transferred during functionality stealing. For more
visualization, please see Section C of the appendix.

5 CONCLUSION

In this work, we proposed margin-based watermarking of deep neural networks. The margin-based
watermarking train the trigger set with a sufficient margin and achieves the robust decision boundary
of the queries. We validate the margin-based watermarking for two functionality stealing methods,
distillation and extraction. For all the cases, the margin-based watermarking outperforms the baselines
on the watermarking accuracy. Additionally, we compare the size of both trigger set and margin,
where the latter one largely affects to watermark the model. Through the quantitative and qualitative
analysis, we prove that the margin is transferred to the surrogate models by the functionality stealing
methods due to the learned strong correlation of the trigger set. Lastly, we show that our method can
use any kind of queries where the only requirement is that the set is distinguishable from the original
task. Our results suggest that there exists trade-offs between watermarking and objective accuracy,
and we aim to seek for a better method for improving both of them.
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REPRODUCIBILITY STATEMENT

We provide the source codes for our experiment of Table 2, Figure 3 and 4. We describe the
experimental settings in Section 4.2 and B.1. We would publicly release the codes after the acceptance.
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(a) Objective accuracy

(b) Watermark accuracy

Figure 7: Objective and watermark accuracy against distillation while varying α and T in Equation 7.

A SUMMARY

This appendix is constructed as follows: we provide experimental settings, the meaning of the
distillation for evaluating the watermarking method, result of the choice of the query and statistical
significance comparison in Section B, visualization of the margin-based watermarking in Section C
and additional threat models in Section D.

B ADDITIONAL ANALYSIS

B.1 EXPERIMENTAL SETTINGS

Here we produce the detailed experimental settings. We use ResNet-34 for all the watermarked model
with SGD optimizer, learning rate of 0.1, weight decay of 0.0001, learning rate decay of 0.1 for 100
and 150 epoch. The training was done for 200 epochs. For distillation and extraction, we used the
same optimizer of training the watermarked model. We use ℓ̃ in Equation 4 and 5 as KL divergence.
The hyerparameters of distillation in Equation 4 is same as Hinton et al. (2015) which is discussed at
Section B.2 in detail. When varying the number of iterations K in Algorithm 1 and Equation 3, we
also vary the maximum perturbation size ϵ, for instance, when K = 3, ϵ = 3/255. For EWE (Jia
et al., 2021) experiments, we used the authors’ source code from Jia et al. (2021).

B.2 DISTILLATION FOR EVALUATING THE WATERMARKING METHOD

The purpose of distillation is to distill the knowledge from high-performing teacher model to the
small student model, which may underperform because of its low capacity. Thus the distillation can
be seen as the functionality copying mechanism, which can selectively transfer the knowledge from
the teacher model to the student model. Various distillation method can be exist such as data-free
distillation (Lopes et al., 2017), but we used the knowledge distillation which fully utilizes the source
dataset, the sample and its corresponding label. The distillation used in our experiment cannot be
performed by the adversary since there needs an assumption that the adversary should hold the source
dataset for the watermarked model, and under this assumption, the adversary need not to steal the
functionality of the watermarked model. Nevertheless, evaluating the watermarking method against
distillation is still meaningful. We introduce the reason and additional experiments of distillation in
this section.
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The watermarking methods by using trigger set mainly focus on the response or predictoin of the
model, where the response should be distinguishable with the common models so that the victim can
verify whether the suspicious model steals the watermarked model or not. Thus the sample-label
assignment rule of the trigger set should be orthogonal to that of the original task. In order to eliminate
the watermark, we can steal the functionality by using the source dataset of the watermarked model
to produce the response of the query as same as the common models. We empirically show how to
achieve the aforementioned statement by using the distillation.

The training objective of distillation which used in our experiment is given by,

min
θ̂

E(x,y)∼D

[
(1− α) ·CE

(
σ(zs), y

)
+ 2αT 2 ·KL

(
σ(zs/T ), σ(zt/T )

)]
, (7)

where σ is the softmax function, zs, zt indicates the logit of the student and teacher model and α
and T are hyperparameters. We used α = 0.7 and T = 20 to evaluate the watermarking in Table 2
which also used in Hinton et al. (2015). Intuitively, increasing the ratio of the cross-entropy term in
Equation 7 can produce the model which may more similar with the model without any watermraking.
To verify this, we perform the distillation for our watermarking method while varying α and T . The
results are shown in Figure 7.

Mixup
Images

automobile,
airplane

bird,
horse

frog,
truck cat, truck ship, truck

Target
Label ship cat bird deer frog

Figure 8: The examples of the Mixup query with two Mixup
components for a trigger set.

Since the temperature T controls both
the logit and the ratio between cross-
entropy and KL divergence, using
the lower temperature T = 1 dimin-
ishes more watermark than the case
of T = 20. Also, the low α suppress
the knowledge transfer from the water-
marked model to the surrogate model,
the watermark accuracy drops while
decreasing α. Even though is no tar-
geted elimination method for water-
mark, however, the distillation is still
effective for erasing the watermark. In conclusion, the distillation used in our experiment can be used
for one benchmark to evaluate the watermarking method.

B.3 THE EFFECT OF THE CHOICE OF THE TRIGGER SET

Table 3: Comparison of the number of Mixup
queries.

# of Mixup 2 5

Watermarked
Model

Obj. Acc. 0.7928 0.4480
Wat. Acc. 1.0000 1.0000

Distillation Obj. Acc. 0.9030 0.8976
Wat. Acc. 0.4200 0.1000

Extraction
(CIFAR10)

Obj. Acc. 0.8006 0.4440
Wat. Acc. 0.6700 0.8300

Extraction
(CIFAR100)

Obj. Acc. 0.7524 0.3966
Wat. Acc. 0.8900 0.8500

As we have demonstrated before, our method
does not have any constraints on the choice of
the trigger set, except that they should not be
contained in the training set D. In the previous
experiments, we choose the samples randomly
and assign random labels to them, that are differ-
ent from their ground truth labels. Further, we
perform the experiments of the Mixup (Zhang
et al., 2017) queries, where one Mixup query is
average of the Mixup components and the corre-
sponding label is randomly selected except the
true label of the Mixup components, see Figure
8. We set the number of Mixup query of 100 and the number of Mixup components of 2 and 5. Since
one Mixup query contains multiple correlation of the Mixup components, the false correlation of the
trigger set might be stronger than of our previous settings.

Even with the stronger false correlation with the original objective, the result in Table 3 shows
the Mixup query can be used for watermarking. However, when increasing the number of Mixup
components for each query, the performance of the original objective decreases due to the stronger
false correlation of the trigger set. The experiment shows that the margin-based watermarking can
be used for any given query, but the method with strong false correlation cannot guarantee the
performance on the original objective.
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Table 4: p-value for watermarked model and its surrogate models. The results show that our method
can show superior statistical significance than of the previous methods.

Method EWE (Jia et al., 2021) Maini et al. (2021) Li et al. (2022) Ours

p-value
(CIFAR10)

Wat. Model 10−8 10−4 10−7 10−13

Distill. 10−8 10−4 10−7 10−8

Extract. 10−8 10−3 10−3 10−8

Table 5: In-distribution analysis by using energy-based OOD detection. The energy of the success
queries are even lower than of the samples from the original objective. This means that the queries of
the trigger set is probable to be treated as the in-distribution samples.

Energy CIFAR10 Acc. Energy of D Success queries in Dq Failed queries in Dq

Wat. Model 0.8414 -7.7472 -15.1316 N/A
Distill. 0.9200 -7.8103 -7.2842 -6.9181

Extract. (same) 0.8662 -7.2169 -7.3657 -6.2308
Extract. (diff) 0.8010 -6.7147 -8.0391 -6.1190

B.4 STATISTICAL SIGNIFICANCE COMPARISON

We provide the comparison of the statistical significance by measuring the p-value of the watermarked
model against the model without watermarking. The results are shown in Table 4. As shown in Table 4,
our method builds the model which is clearly differentiable with the model without watermarking.

B.5 IN-DISTRIBUTION ANALYSIS

To prevent one scenario that the adversary reject the queries to reject the ownership verification
process, we analyze the additional quantity: in-distribution analysis. Suppose one watermarking
method achieves the reasonable performance for ownership verification. However, if the adversary
can reject the querying process beforehand, the method cannot be applied to verify the ownership.
One simple rejection procedure for the adversary is to confirm whether the given query is the in-
distribution sample for the surrogate model or not. We analyze if the surrogate models from the
watermarked model confirms the query as the in-distribution sample or not.

To check the query which is in-distribution sample or not, we use the energy-based out-of-distribution
detection method (Liu et al., 2020). In a nutshell, the lower energy indicates that the sample is
probable to the in-distribution sample and the other is not. The results are shown in Table 5. The
results shows that the energy of the success queries in Dq have the lower energy than of the samples
from original objective D. Thus, the queries would be considered as the in-distribution samples and
the adversary cannot reject the queries by OOD sample rejection procedure.

C T-SNE VISUALIZATION

We provide the additional t-SNE visualization in Figure 9 with perplexity of 10 where the figure does
not represent the margin area. In Figure 9, we perform t-SNE for two different perplexities with 5 (on
the top of the figures) and 10 (on the bottom of the figures).

D ADDITIONAL THREAT MODEL

Since we discuss about the adversary with the functionality stealing attacks, distillation and extraction,
we additionally evaluate our method on the other attacks.

D.1 PRUNING

Pruning the deep neural networks is to obtain the small neural network which has similar performance
of the original model. Since pruning neglects sort of parameters, the watermarking can also be
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Figure 9: t-SNE visualization of the watermarked model and the surrogate models for CIFAR10 (top)
and SVHN (bottom).

neglected and can decrease the watermark accuracy (Liu et al., 2018). To investigate the effect of
the pruning, we prune the extracted model where the pruning is done for less activated neurons.
Figure 10 shows the objective accuracy and the watermark accuracy with respect to the pruning ratio.
The results show that the pruning cannot effectively diminish the watermark, and when the pruning
becomes effective, the performance for the original task largely drops even the stolen model cannot
be applicable. The results show that our margin-based watermarking is still effective against pruning
attacks.

D.2 EXTRACTION WITH MARGIN

Our margin-based watermarking gives margin to the trigger set solely, so we observe the new type of
extraction, the extraction with a margin which is given by,

min
θ̂

E(x̃,ỹ)∼D̃

[
ℓ̃
(
ĥθ̂(x̃+ δ̃), hθ(x̃+ δ̃)

)]
, δ̃ = arg max

∥δ∥≤ϵ
ℓ̃(hθ(x̃+ δ), hθ(x̃)). (8)

The stolen model with the extraction of Equation 8 can achieve more similar decision boundary
because the existence of δ makes extraction to experience more various input images and its cor-
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Figure 10: Results against pruning attack. Even
with pruning, the stolen model still maintain the
watermark accuracy. When the watermark accu-
racy largely drops, the objective accuracy also
largely drops.

Table 6: Results of Equation 8. Since the extrac-
tion covers various types of perturbation δ, the
stolen model captures the decision boundary of
watermarked model more precisely, and finally
achieves superior watermark accuracy.

Method Ours

Watermarked
Model

Obj. Acc. 0.8947 ± 0.0066
Wat. Acc. 1.0000 ± 0.0000

Extraction
(margin)

Obj. Acc. 0.8494 ± 0.0048
Wat. Acc. 0.9833 ± 0.0058

responding predictions. Table 6 shows the results, and surprisingly the stolen model achieves near
perfect watermark accuracy. This also supports our claim, that the functionality stealing attack
imitates the decision boundary of watermarked model, and more precise functionality stealing can
copy most of the watermark.
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