ICE-GRT: Instruction Context Enhancement by Generative Reinforcement
based Transformers

Anonymous ACL submission

Abstract

The emergence of Large Language Models
(LLMs) such as ChatGPT and LLaMA en-
counter limitations in domain-specific tasks,
with these models often lacking depth and ac-
curacy in specialized areas, and exhibiting a de-
crease in general capabilities when fine-tuned,
particularly analysis ability in small sized mod-
els. To address these gaps, we introduce ICE-
GRT, utilizing Reinforcement Learning from
Human Feedback (RLHF) grounded in Prox-
imal Policy Optimization (PPO), demonstrat-
ing remarkable aptitude in in-domain scenar-
ios without compromising general task perfor-
mance. Our exploration of ICE-GRT highlights
its understanding and reasoning ability to not
only generate robust answers but also to pro-
vide detailed analyses of the reasons behind the
answer. This capability marks a significant pro-
gression beyond the scope of Supervised Fine-
Tuning models. The success of ICE-GRT is
dependent on several crucial factors, including
Appropriate Data, Reward Size Scaling, KL-
Control, Advantage Normalization, etc. The
ICE-GRT model exhibits state-of-the-art per-
formance in domain-specific tasks and across
12 general Language tasks against equivalent
size and even larger size LLMs, highlighting
the effectiveness of our approach. We provide a
comprehensive analysis of the ICE-GRT, under-
scoring the significant advancements it brings
to the field of LLM.

1 Introduction

The advent of Large Language Models (LLMs)
like ChatGPT (Brown et al., 2020; OpenAl, 2023)
and LLaMA (Touvron et al., 2023a,b) has marked
a significant milestone in the field of Natural
Language Processing (NLP). These models have
gained widespread recognition for their robust gen-
eral conversational abilities, enabling fluid and co-
herent responses across a diverse range of topics.
However, there are key limitations to these models.

Firstly, a key limitation surfaces when these mod-
els encounter domain-specific tasks (Zhao et al.,
2023; Zhang et al., 2023a). In scenarios that de-
mand deep technical knowledge or specialized ex-
pertise, these models often fall short, providing
responses that lack necessary depth and accuracy.
Secondly, Supervised Fine Tune (SFT) LLMs tend
to exhibit a decrease in general capabilities (Ling
et al., 2023). This is contrary to the expectations
held for large-scale models, which are presumed
to either maintain or improve their performance in
a wide array of tasks (Pan et al., 2023a). Lastly,
the current smaller-sized LLMs, such as 13 Billion,
demonstrate a limited ability to conduct detailed
analysis on complex questions, a competency that
is significantly inferior compared to the capabilities
of models like ChatGPT, which can engage in more
comprehensive and detailed discussions.

Addressing these challenges, we introduce the
Instruction Context Enhancement by Generative
Reinforcement based Transformers (ICE-GRT),
an innovative LLM that leverages the principles
of Reinforcement Learning from Human Feed-
back (RLHF) (Brown et al., 2020) based on Prox-
imal Policy Optimization (PPO) (Schulman et al.,
2017). While ensuring that the general capabilities
of the Large Language Model (LLM) are main-
tained, ICE-GRT exhibits exceptional performance
in several domain-specific scenarios. Furthermore,
ICE-GRT demonstrates an improved ability for de-
tailed analysis, particularly in complex scenarios
where smaller-sized LLMs fall short.

We take one domain-specific task of ad moder-
ation as an example. ICE-GRT can not only de-
termine the compliance of advertisements but also
identify the specific category of violation. More-
over, it goes a step further by detailed analyzing
which elements of the ad are problematic and of-
fers constructive modification suggestions. This
is a notable advancement over both pretrained and
SFT (Chiang et al., 2023) LLM models, which are



typically limited to identifying compliance and vi-
olation categories.

When our training methodology was applied to
RLHF, we observed not just significant improve-
ments in in-domain tasks but also a surprising en-
hancement in general tasks. In a comparative anal-
ysis against models of equivalent and larger pa-
rameter size across many general tasks, our ICE-
GRT model with 13 billion parameters consistently
achieved state-of-the-art performance in 12 well-
known public LLM evaluation benchmarks.

Our exploration of the ICE-GRT model has un-
covered several factors critical to its training suc-
cess. The ICE-GRT model’s training data, sourced
from our ICE-Instruct (SFT) model and enriched
with human feedback with strict evaluation criteria,
offers a diverse and comprehensive dataset, essen-
tial for its robust training. Moreover, the scaling
of the reward model is essential for accurately cap-
turing complex scenarios and aligning with human
preferences in RLHF. Additionlly, KL-Control is
key to regulating the balance between the models,
while Advantage Normalization significantly im-
proves learning stability by adjusting advantage
estimates. Additionally, we discovered that modi-
fying the Clipping Range and carefully controlling
the maximum response length during sampling are
vital for enhancing the training process. These
findings deepen our understanding of RLHF mech-
anisms and are instrumental in effectively training
the ICE-GRT model.

Moreover, we provide a detailed analysis of
the ICE-GRT model, encompassing both general
and in-domain capabilities. Through this explo-
ration, we aim to contribute a novel perspective and
methodology to the field of NLP, particularly in en-
hancing the depth and accuracy of domain-specific
task handling by large language models. We ob-
serve that the pretrain phase engages in “knowledge
learning”, where the model extensively absorbs a
diverse range of information, forming a substan-
tial foundational knowledge base. Subsequently,
in the Supervised Fine-Tuning stage, the model
engages in “knowledge mining”, where it utilizes
the learned knowledge in response to specific in-
structions. This stage is crucial for the model to
transition from passive knowledge accumulation to
active knowledge application. Finally, the RLHF
phase engages in “knowledge enhancement”, en-
hancing the model’s ability to align with human
language preferences. This stage builds upon the
vast knowledge gained in the pretrain phase and the

knowledge mining from the SFT stage, leading to
a model that not only reconstruct extensive knowl-
edge but also excels in applying it with human-
centric preference. Importantly, this phase show-
cases a significant leap in the model’s emergence
capabilities.

In our commitment to fostering collaborative
research and innovation, we will make ICE-
GRT publicly available on HuggingFace. This
open-source initiative is aimed at empowering re-
searchers globally to further investigate and expand
upon our findings with ICE-GRT. By democratiz-
ing access to this advanced model, we hope to
inspire and facilitate worldwide exploration and
progress in language model research. This paper
unveils just a fraction of ChatGPT’s capabilities,
and our choice of the acronym "ICE" for ICE-GRT
is purposeful. It represents our aspiration to accel-
erate the “ice-breaking’ process in LL.M research,
symbolizing our desire to inspire researchers to ex-
plore and uncover the vast potential of ICE-GRT
across an array of tasks and paving the way for new
discoveries and advancements in the field.

2 Related Works
2.1 Instruction-Tuning for LLM

Recent advancements in Large Language Model
(LLM) development have increasingly focused on
instruction-tuning (Chiang et al., 2023), a tech-
nique that is gaining significant traction particu-
larly within the realms of Question Answering
(QA) and different domains (Zhao et al., 2023;
Pan et al., 2023b; Qiu et al., 2020). Key re-
search in this area includes works such as AL-
PACA (Taori et al., 2023), Vicuna (Chiang et al.,
2023), and (Zhang et al., 2023b), which explores
the balance between diveristy and accuracy in large
language model. Furthermore, studies like (Sun
et al., 2023) delve into principles of effective QA
strategies, while (Zhou et al., 2023) present LIMA,
an innovative model for language interaction. In
the sphere of conversational interfaces, significant
contributions include the development of OpenAs-
sistant by (Kopf et al., 2023; Chiang et al., 2023).

2.2 Reinforcement Learning from Human
Feedback (RLHF)

Alongside the development of LL.Ms, Reinforce-
ment Learning from Human Feedback has emerged
as an important approach to improve LLMs (Brown
et al., 2020; Touvron et al., 2023b). RLHF involves
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Figure 1: ICE-GRT Model Architecture.
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training models not just on static datasets but also
incorporating human feedback to guide the learn-
ing process. This method has been particularly
useful in aligning knowledge learning and mining
with human feedback. For instance, models like
OpenAlT’s InstructGPT have utilized RLHF to tailor
responses based on human preferences, leading to
more accurate outputs (Stiennon et al., 2020).

3 Model

In this section, we briefly introduce a SFT model
we have trained, named ICE-Instruct, designed to
improve the domain-specific knowledge mining ca-
pabilities of pre-trained LLMs. Following this, we
will give a detailed description of our process for
training the reward model, which we have termed
ICE-Reward. Finally, we will comprehensively
introduce the entire training process of ICE-GRT,
including some important training strategies.

3.1 ICE-Instruct

The ICE-Instruct model built upon the Vicuna
model (Chiang et al., 2023). By blending in-
domain and general-purpose data during fine-
tuning, it excels in both specialized tasks and
broader tasks. This approach not only maintains
its vast linguistic capacities but also enhances its
expertise in specific domains. Importantly, this sets
a solid foundation for RLHF models. All subse-
quent actor and critic models are initialized using
ICE-Instruct as backbone. In essence, ICE-Instruct
determines the lower-bound capabilities of ICE-
GRT, ensuring a strong and reliable baseline for
further advancements. To maximize the model’s
applicability in contextual interactions, we have
converted all collected data into Question-Answer
pairs. Each data point adheres to a prompt for-

mat that begins with “Below is an instruction that
describes a task. Write a response that appropri-
ately completes the request. ### USER: <INPUT>
ASSISTANT: <OUTPUT> ”, ensuring consistency
and relevance in contexts.

3.2 ICE-Reward

Response Generation and Sampling: Initially,
for each prompt in the RLHF training dataset,
we generate five responses. These responses are
uniquely produced by our ICE-Instruct model. By
sampling from the model’s output distribution, we
ensure a diverse range of generated answers , cap-
turing various aspects of potential responses.
Human Annotation and Ranking: The gener-
ated responses are then subjected to human annota-
tion. Annotators rank these responses according to
predefined criteria detailed in section 4.3. Specif-
ically, we labeled 20,000 sets of rankings, each
set containing five responses. From the ranked re-
sponses, we extract the top two and the bottom two
responses for each prompt. These are then paired
to form training data. The pairs consist of a “better’
response and a “worse” response, as determined
by the human annotation. This pairing strategy is
instrumental in teaching the model the differences
between high-quality and low-quality responses.
Training Reward Model: The objective of train-
ing reward model is to develop a model capable
of accurately differentiating between high and low-
quality responses. Let R(s, a) be the reward func-
tion, where s represents the input prompt and a
the generated response. Our goal is to optimize
R so that it aligns with human judgments. The
training data consists of pairs (a;, a;) where a; is
a higher-ranked response compared to a; for the
same prompt. We use a pairwise ranking loss func-
tion, defined as:

’

L(a;, aj) = max(0, margin—R(s, a;)+R(s, a;)).

This loss function encourages the model to assign
a higher score to a; than a;.

The trained reward model, therefore, learns to
assign higher scores to more relevant and contextu-
ally appropriate responses, as per human rankings.
This model forms a most critical part of our system,
ensuring high-quality, context-aware responses.

3.3 ICE-GRT

In this section, we provide a comprehensive
overview of each component involved in ICE-GRT,



leverages the principles of RLHF (Brown et al.,
2020) based on PPO (Schulman et al., 2017), along
with their respective mathematical formulations.
Figure 1 shows the whole training process.

Actor Model: The Actor model, represented as
T, (@]$), maps states s to actions a. It is respon-
sible for generating actor logits, which are scores
assigned to each potential action.

Reference Model: The Reference model, denoted
as mg, . (als), serves as a pre-trained benchmark for
evaluating behavior. It provides a baseline against
which the Actor model’s outputs are compared
throughout the training process.

Reward Model: The Reward model, expressed
as R(s,a), assigns a reward score based on the
quality of the generated sequence, evaluating both
the action a and the state s.

Critic Model: The Critic model, Vj_, (s), estimates
the value of being in a specific state s, thereby pro-
ducing critic values that guide the learning process.

3.3.1 Generalized Advantage Estimation
(GAE) Calculation in ICE-GRT

The advantage function, A(s, a), assesses the rela-
tive benefit of executing a specific action in contrast
to the average action in a given state. The formula
for calculating the Advantage is:

A(s,a) = E(R(s,a) + YVa,,(s") — Va..(5)) (1)

where 7 represents the discount factor, s’ is the
subsequent state following the current state s, and
Vo (s) is the value function estimated by the Critic
model with weights 0.

Generalized Advantage Estimation (GAE), en-
hances the estimation of the advantage function in
RL (Schulman et al., 2015). GAE blends multi-
step return methods with value function estimates
to mitigate variance while preserving a reasonable
bias. The essence of GAE is the employment of a
weighted sum of n-step Temporal Difference (TD)
residuals:

5ft = E(R™(s,a) + Vg (s) = Vi, (s) @)

Here, 0;! represents the TD residual at time t. Fur-
ther, the GAE advantage function is calcuated as:
Acag(s,a) = Y720 (vA)'67, . where A € (0,1).

3.3.2 Actor Model Learning

The Actor Model is updated using the Proximal Pol-
icy Optimization objective (Schulman et al., 2017),

the process is calculated as follows:

| Tow(als) ym,
L(eact) = min (ﬂgom (a‘s) AGAéd (57 a)7

. ( o, (als) o
1 act 1 o 1 A old
o (ﬂ-euld (als)’ &1+ 6) oAt (5 a)) )
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where Agg‘]f: (s, a) is the advantage function calcu-
lated using the old policy mg,,,, € € (0, 1) is a hy-
perparameter. This term ensures that the evolving
Actor policy remains not only stable in its updates
but also aligned or divergent as desired from the
old model.

3.3.3 Policy Optimization and Training

In the final stage, the PPO algorithm optimizes
the Actor model’s policy based on the calculated
advantages, the KL-divergence, and the updated
Actor model. The policy is iteratively updated to
maximize the expected rewards, with the aim of
aligning the Actor model’s behavior more closely
with established benchmarks while also ensuring
effective and efficient learning.

3.3.4 Important Training Strategies

ICE-GRT Training Data: Our ICE-GRT’s train-
ing data originates from ICE-Instruct model and
careful human feedback annotation. This data is
not just a collection of responses but is intricately
designed to encompass a wide range of scenarios.
Each prompt within the ICE-Instruct model is re-
sponded to with a set of diverse answers, gener-
ated by sampling from the model’s output distri-
bution. This method ensures a comprehensive and
varied dataset, essential for robust model training.
The responses are further refined through a metic-
ulous human annotation process, where experts
rank them based on predefined criteria. This rig-
orous approach ensures the model is trained on
high-quality, human-verified data, which is crucial
for the model’s ability to understand and apply com-
plex information. More details and experimental
comparsions are described in Section 5.2.1.

Reward size Scaling: In ICE-GRT, the scaling of
the reward model is a critical factor in determining
the overall effectiveness and efficiency of training.
A larger reward model, denoted as Ry (s, a), where
1) represents the model parameters, is significant
for several reasons. Firstly, larger reward model
can better capture complex environments and ac-
tions, essential in RLHF where the reward signal



must accurately reflect human preferences and de-
tailed task requirements. Secondly, larger scale
of reward size aids in generalizing across diverse
prompts. This is vital for consistent performance
in various scenarios, especially in ICE-GRT.
KL-Control (Schulman et al., 2017) is a crucial
mechanism in PPO, especially when training with
human feedback. A key aspect of KL.-Control in
this context is the regulation of divergence between
the Actor and the Reference models. The KL di-
vergence between these two models is monitored
and controlled to ensure that the policy evolution
adheres closely to the human feedback. Moreover,
ICE-GRT training includes a clipping mechanism
to avoid large, potentially destabilizing updates in
the value function. This ensures that changes in
the value function are moderate and accurately re-
flect real improvements as assessed by the Critic.
Furthermore, as an additional measure, KL Reward
adjustment helps keep the actor model on the de-
sired path as defined by human feedback. This
aligns actor model updates more closely with hu-
man preferences.
Advantage Normalization enhances learning sta-
bility and efficiency in PPO-based RLHF. It ad-
justs the advantage estimates, making them more
consistent and less variable. This is particularly
beneficial in RLHF, where human feedback can in-
troduce unpredictable variations. Normalizing the
advantage helps the model to focus on the most rel-
evant learning signals, leading to faster and more
stable convergence. The formula for Advantage
Normalization is shown as follows:

Ao — AP’ — paro 7

O ATo

where 121?9 represents the normalized advantage at
time ¢, A7? is the original advantage at time ¢, p1 47
is the mean of the advantage, o 47¢ is the standard
deviation of the advantage.

4 Experimental Details

Our training process utilized the power of 64 A100
GPUs, employing a multi-node, multi-GPU strat-
egy to conduct ICE-GRT. Our models were trained
and stored using the bf16 precision format. The
learning rates were finely selected, with the actor
learning rate set at be — 6 and the critic learning
rate at be — 7. We maintained a clipping range
of 0.2. The discount factor v was kept constant
at 0.95, ensuring optimal balance in our training.

We are excited to announce the upcoming release
and open-sourcing of our ICE-GRT 13B model on
Hugging Face, specifically tailored for scientific
research purposes.

4.1 Data Collection

For our training corpus, we have crafted a novel
mix of datasets. This includes a selection from
publicly available resources, complemented by in-
domain data. We have removed all the sensitive
information, including usernames, email addresses,
and personal details, to uphold the data privacy and
security. In essence, the dataset we have prepared
for reward model and RLHF model is diverse and
multi-faceted, covering a range of domains. It in-
cludes data relevant to public and domain-specific
question-answering scenarios, as well as tasks in-
volving multilingual data alignment. We generated
5 distinct responses for every prompt in our data
collection, utilizing our ICE-Instruct model. This
process involves sampling from the model’s output
distribution, which guarantees a varied spectrum
of answers. To optimally train our reward model,
the data labelers carefully conducted manual label-
ing of the rankings for the 5 distinct responses on
20,000 prompts. To enhance the human-annotation
accuracy and reduce subjectivity among labelers,
each prompt was independently evaluated by three
labelers, establishing a thorough and reliable vali-
dation processverification process.

4.2 General Task Evaluation

Our evaluation of ICE-GRT using the GPT-Fathom
framework (Zheng et al., 2023) focused on public
general tasks. The objective was to benchmark ICE-
GRT’s performance against existing models and to
understand its position in the landscape of current
LLMs. We employed 12 benchmarks, which span
across various capability categories such as lan-
guage understanding, reasoning, etc. These bench-
marks were carefully chosen to test a wide range of
abilities, from basic language processing to com-
plex problem-solving and decision-making tasks.
In our evaluation, we maintained alignment with
the settings used in GPT-Fathom to ensure a fair
and accurate comparison. This involved employ-
ing similar input formats, evaluation metrics, and
environmental conditions.

4.3 Manual Annotation-Based Evaluation

Our study incorporates a rigorous evaluation crite-
ria, with a special emphasis on manual annotation



Model MMLU AGIEval BBH AGIEval-ZH ARC-E ARC-C HellaSWAG ‘Winogrande RACE-M RACE-H GSMSK Math
5-shot few-shot 3-shot few-shot 1-shot 1-shot 1-shot 1-shot 1-shot 1-shot 8-shot 4-shot
LLaMA 7B 24.66% 20.05% 33.48% 23.68% 30.01% 26.71% 24.58% 50.36% 26.74% 29.19% 13.80% 0.36%
Llama2 7B 40.91% 25.97% 38.21% 26.21% 62.37% 48.46% 25.39% 50.36% 45.75% 39.54% 17.51% 0.08%
Vicuna 7B 38.49% 22.71% 37.26% 27.00% 69.74% 46.33% 17.37% 49.80% 50.21% 46.83% 21.68% 0.96%
ICE-Instruct 7B 26.30% 15.95% 39.00% 31.14% 67.63% 45.31% 3.10% 36.07% 53.55% 52.09% 35.48% 0.82%
LLaMA 13B 38.42% 26.78% 38.28% 25.51% 67.63% 49.23% 28.90% 47.51% 52.23% 48.51% 18.42% 0.42%
Llama2 13B 49.57% 34.85% 45.89% 32.93% 76.52% 55.63% 37.17% 52.17% 57.73% 55.09% 28.66% 0.44%
Vicuna 13B 35.84% 28.68% 39.27% 30.33% 60.23% 40.96% 0.03% 5.84% 59.19% 60.69% 24.56% 0.66%
ICE-Instruct 13B 50.08% 24.51% 48.09% 34.15% 85.19% 66.89% 19.30% 47.99% 72.14% 56.52% 47.08% 1.02%
ICE-GRT 13B 55.33% 34.92% 49.78% 34.23% 87.58% 70.99% 39.37% 53.04% 75.91% 71.64% 51.48% 0.92%

[ LLaMA 30B [ 50.38% [ 3487% [ 49.70% | 30.68% [ 8241% [ 60.67% | 31.31% [ 51.30% [ 6518% [ 6418% | 3510% | 0.58% |

| Llama2-70B | 6472% | 4399% | 6522% | 3952% | 9343% | 7961% | 6845% | 69.69% | 87.60% | 8513% | 56.56% | 3.72% |

Table 1: Evaluating Benchmark Performance of Large Language Models in General Language Tasks.

for assessing the capabilities of LLMs, particularly
in different applications. The criteria evaluates re-
sponses in 8 essential categories, utilizing a scoring
mechanism that prioritizes the most crucial aspects.
Clarity: Responses should be straightforward and
precise, ensuring easy comprehension through spe-
cific, appropriate language.
Accuracy: The responses are expected to align
closely with verified facts, as assessed by manual
annotators. Actual fact can be validated.
Completeness: Evaluated for covering all aspects
of the inquiry, providing comprehensive details for
informed decision-making.
Safety: Focuses on ensuring no personal data is
mishandled, with manual checks for data privacy.
Courtesy: Responses should be politically correct.
e.g., gender identity, ethnic groups, etc.
Comfortableness: Responses must maintain a po-
lite and respectful tone, containing inclusive vocab-
ulary and reflect diversity at all times..
Conciseness: Emphasizes brevity in responses,
without compromising on clarity or accuracy.
Context: Response must be related to the topic and
relevant to the question.

Table 2 shows the weight and score of each cate-
gories to evaluate these criteria accurately, ensuring
responses quality and relevance.

Evaluation Positive Neutral Negative Weights
Clarity 5 2 0 6
Accuracy 5 2 0 6
Completeness 5 2 0 6
Safety 5 2 0 3
Courtesy 5 2 0 3
Comfortableness 5 2 0 3
Conciseness 5 2 0 1
Context 5 2 0 1

Table 2: Manual Annotation-Based Evaluation Criteria.

5 Results and Analysis
5.1 Results

Benckmarks Scores on General Tasks: Our anal-
ysis focuses on the performance of ICE-GRT 13B,

as compared to other models in similar and higher
capacity categories. As is shown in Table 1, our
ICE-GRT 13B model demonstrates significant im-
provements over the LLaMa, Llama 2, Vicuna
13B and LLaMa 30B in both its pretrained and
SFT across various general benchmarks, such as
MMLU (Hendrycks et al., 2021), AGIEval (Zhong
et al., 2023), BBH (Srivastava et al., 2022),
ARC (Xu et al., 2023), HellaSWAG (Zellers et al.,
2019), RACE (Lai et al., 2017), etc. It shows re-
markable advancements in general language un-
derstanding and reasoning tasks, indicating en-
hanced comprehension and reasoning capabilities.
Remarkably, the ICE-GRT 13B model has signif-
icantly narrowed the gap with the much larger
Llama2 70B pretrain model. This comparison un-
derscores the effectiveness of the ICE-GRT, com-
pensating for smaller model size with more gener-
alization capabilities. The success of the ICE-GRT
models suggests that the methodology, which likely
includes components of human feedback and align-
ment, contributes significantly to the models’ abil-
ity to understand and respond to complex prompts,
a factor that is not solely dependent on model size.

Human-Annotated Scores on In-Domain Task:
In the in-domain evaluation presented in Table
3, ICE-GRT distinctly outperforms Llama2 SFT
13B and ICE-Instruct 13B across several critical
dimensions. Notably, ICE-GRT achieves the high-
est scores in clarity (98.1%), accuracy (97.0%),
and completeness (92.9%), underscoring its excep-
tional ability to deliver precise, comprehensive, and
understandable responses. While it scores slightly
lower in safety and comfort compared to its coun-
terparts, it still maintains a high standard in these
areas. The overall score of 95.5% for ICE-GRT is a
testament to its superior performance, significantly
surpassing Llama2 SFT 13B (86.3%) and ICE-
Instruct 13B (87.3%). This robust performance
across multiple metrics confirms the introductory
claims about ICE-GRT’s capabilities, particularly
in handling domain-specific tasks with a level of



depth and precision not seen in current models.

Llama?2 sft ICE-Instruct ICE-GRT
Clarity 95.9% 88.5% 98.1%
Accuracy 77.4% 84.44% 97.0%
Completeness 64.8% 71.11% 92.9%
Safety 96.6% 100% 92.2%
Courtesy 100% 95.9% 100%
Comfortable 96.6% 98.1% 92.22%
Conciseness 95.1% 93.33% 91.8%
Context 98.8% 94.0% 98.1%
Overall Score 86.3% 87.3% 95.5%

Table 3: Evaluating human-assessed scores for in-
domain Large Language Models.

5.2 Detailed Analysis

5.2.1 The importance of ICE-GRT Training
Data

In the training of the ICE-GRT, we employed two
distinct datasets for RLHF. The first dataset was
uniquely produced by our ICE-Instruct model. For
each prompt, five diverse responses were generated
by sampling from the model outputs. These re-
sponses were then subjected to human annotation,
where annotators ranked them according to prede-
fined criteria. The second dataset originated from
the GPT-4-LLM (Peng et al., 2023). It included
ranked responses from GPT-4 and GPT-3.5, with
the rankings automatically assessed by GPT-4.

Our findings reveal a significant performance dis-
parity between models trained with these datasets,
although we found that the reward score trends
were similar during the ICE-GRT training shown
in Figure 2a. The ICE-GRT model, trained with
our human-annotated dataset, demonstrated supe-
rior performance across general tasks and domain-
specific tasks. As shown in Figure 2b, on the Nat-
ural Question task, the ICE-GRT model outper-
formed ICE-Instruct by 4%. This gap increased to
approximately 9.79% on the Web Questions and
17.17% on the LAMBADA benchmark. However,
when we employed the GPT-4-LLM Dataset on
ICE-GRT, we observe that the results were very
close to those of ICE-Instruct, with only a 0.89%
increase in the Natural Questions.

A key aspect of ICE-GRT’s success is its fo-
cus on ‘knowledge enhancement”. This process
builds upon the “knowledge mining” during the
ICE-Instruct, enabling the model to better align
with human language preferences. This approach
guarantees consistency and relevance in training
data, which is crucial for the model to effectively
build upon and evolve its existing knowledge. Ex-
ternal data sources, despite their potential diversity,

could not perfectly align with the model’s knowl-
edge structure. The use of data generated by ICE-
Instruct ensures a natural and effective enhance-
ment of knowledge, as observed in ICE-GRT.
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Figure 2: The influence of different training data.

5.2.2 Powerful ICE-GRT on General Task

ICE-GRT model exhibits exceptional strength in
tasks that are grounded in language understanding
and reasoning. For instance, as shown in Figure 3a
and Figure 3c, ICE-GRT 13B demonstrates a robust
ability in RACE, ARC, BBH, and GSM8K. Our
model has achieved state-of-the-art performance in
these tasks among models of the same size.

Moreover, the ICE-GRT 13B model shows great
performance in areas such as "marketing" and
"college-biology", as depicted in Figure 3b. Re-
markably, the ICE-GRT 13B model surpasses the
Llama 2 70B in several AGIEval benchmarks, most
notably in tasks requiring language understanding
and reasoning, such as "gaokao-chinese" as seen
Figure 3d. This outperformance stems from ICE-
GRT knowledge enhanced contextual understand-
ing and generative capabilities.

arc-c

(a) Language understanding
and Reasoning Tasks.

(b) MMLU Task Score Com-
parsion.

gaokao-biolog/

\k -chinese
’
/ —

salient_translation_error_detection

LLama 78

(c) BBH Task Performance. (d) AGIEval-ZH Task.

Figure 3: Score Comparsions between different LLMs.



Question ICE-Insturct 13B

ICE-Insturct 33B

ICE-GRT 13B

"this is a 100% natural prod-
uct for all females and all
ages" what ad policy does the
above text violate?

None, just make sure you're
not lying about it.

ages.

The advertisement text may vi-
olate exaggerated claims pol-
icy. Overstates the product’s
effectiveness by claiming it is
suitable for all females and all

The above text may violate exaggerated claims policy if the product
is marketed as ''100% natural' without providing sufficient evidence
or scientific backing for the claim. Making an exaggerated or unsup-
ported claim about a product’s naturalness could mislead consumers
and potentially violate advertising regulations. To avoid violating this
policy, advertisers should provide clear evidence to support any
claims about a product’s naturalness or provide a more nuanced
description of its ingredients and production methods. Additionally,
advertisers should ensure that their claims are not overstated or mislead-
ing, and that they are consistent with any applicable laws and regulations
governing product labeling and marketing.

Rewrite "this is a 100% natu-
ral product for all females and This product is suitable for all
all ages" to an ad without any women and all age groups.

violations ders.

Experience the pure and nat-
ural goodness of this product,
suitable for all ages and gen-

Introducing our natural product designed for all females and ages. Our
carefully crafted formulation is free of harmful chemicals and artifi-
cial additives, ensuring that you can use it with confidence. Whether
you’re looking for a daily skincare routine or specialized care for a spe-
cific concern, our product is a safe and effective choice for all skin types.
Experience the benefits of natural ingredients and nourishing care
with our product. Suitable for all ages and skin types, our product is a
safe and gentle choice for daily skincare.

Table 4: Comparative Case Study in the Domain-Specific Moderation Task.

5.2.3 The effectiveness of Advantage Norm

The integration of Advantage Normalization and
Reward Size Scaling significantly enhances ICE-
GRT. These strategies contribute to improved
training efficiency and better model performance,
demonstrating their importance in the context of
RLHE. Applying Advantage Normalization, which
stabilizes learning by normalizing advantage es-
timates, led to improvement in Natural Question
benchmark over ICE-GRT baseline. As shown in
Figure 4,this strategy is crucial for enhancing the
model’s sensitivity to the subtleties of human feed-
back, leading to more effective learning outcomes.

score

1 2 3 4 5 6
epochs

—e— ICE-GRT ICE-GRT + Adv Norm

Figure 4: Comparative Analysis of ICE-GRT and ICE-
GRT Advantage Normalization on the Natural Ques-
tion (NQ) Benchmark. The x-axis represents different
epochs, while the y-axis shows the NQ scores.

5.3 Case Study on Domain-Specific Task

We provide a comparative analysis of the responses
generated by different models, specifically ICE-
Instruct 13B, 33B, and ICE-GRT 13B, revealing
varying levels of sensitivity and creativity in ad-
dressing advertising policy adherence and rewrit-
ing for compliance. As is shown in Table 5, while
ICE-Instruct 13B takes a more direct and less cau-
tious approach, ICE-Instruct 33B and ICE-GRT
13B demonstrate a progressive increase in policy

awareness and creative compliance.

ICE-GRT, in particular, shows a comprehensive
understanding of advertising regulations and the im-
portance of substantiated claims, reflecting its ad-
vanced capability in nuanced and responsible com-
munication. In the first case, ICE-GRT displayed
the highest sensitivity to policy adherence, high-
lighting the risk of violating exaggerated claims
policy, especially if the product is marketed as
"100% natural" without adequate evidence. It em-
phasizes the need for evidence-based advertising
and compliance with regulations. In the second
case, ICE-GRT Provided the most detailed and cau-
tious rewrite, ensuring compliance with advertising
policies. It focuses on natural ingredients, absence
of harmful chemicals, and suitability for all females
and ages, while avoiding exaggerated claims.

6 Conclusion

ICE-GRT model represents a significant leap for-
ward in the realm of LLMs, particularly in enhanc-
ing domain-specific performance. Leveraging the
principles of Reinforcement Learning from Human
Feedback, ICE-GRT demonstrates exceptional ca-
pabilities in both general and in-domain tasks, out-
performing standard models in accuracy and depth.
Moreover, our model have strong ability to gen-
erate detailed analyses of the reasons behind the
answer. Our research uncovers several aspects of
RLHF, providing insights into effective training
methodologies and highlighting the importance of
factors like Appropriate Data, Reward Size Scaling,
KL-Control, etc. ICE-GRT’s training phases, in-
cluding knowledge learning, mining, and enhance-
ment, contribute to its advanced abilities in aligning
with human preferences. We hope that ICE-GRT
will accelerate the “ice-breaking” process in LLM
research, encouraging further exploration.
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