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ABSTRACT

Temporal graph learning aims to extract knowledge from dynamic network data to
predict future interactions. The key question is, given a set of observed temporal
graphs, is it possible to forecast the evolution of an unobserved network within the
same domain? To answer this question, we present Temporal Graph Scaling (TGS)
dataset, a large collection of temporal graphs consisting of eighty-four ERC20
token transaction networks collected from 2017 to 2023. Next, we assess the
transferability of Temporal Graph Neural Networks (TGNNs) in temporal graph
property prediction by pre-training on up to 64 token transaction networks and
evaluating their downstream performance on twenty unseen token networks.
We observe that the neural scaling law, previously identified in NLP and com-
puter vision, also holds in temporal graph learning. Specifically, pre-training on
a larger number of networks results in enhanced downstream performance. To
the best of our knowledge, this study is the first empirical demonstration of trans-
ferability to unseen networks in temporal graph learning. Notably, on thirteen
out of twenty unseen test networks, our largest pre-trained model using zero-shot
inference can outperform fine-tuned TGNNs on each test network. We believe
that this work is a promising first step towards developing foundation models for
temporal graphs. The implementation of Temporal Graph Scaling can be accessed
at https://anonymous.4open.science/r/ScalingTGNs.

1 INTRODUCTION

Foundation models have revolutionized various fields such as natural language processing
(NLP) Bubeck et al. (2023); Brown et al. (2020); Rasul et al. (2024) and computer vision (CV) Rad-
ford et al. (2021); Awais et al. (2023) by providing robust pre-trained architectures that can be
transferred to a multitude of tasks. Foundation models aim to learn from large amounts of pre-training
data and transfer the knowledge to downstream unseen tasks. These models have been recognized for
their remarkable transfer capabilities and promising efficacy with few-shot and zero-shot learning on
novel datasets and tasks Bommasani et al. (2021); Dong et al. (2023); Rasul et al. (2024). Despite
advances in NLP and CV, foundation models in graph representation learning remain relatively
unexplored. For example, there has been some notable work on foundational models for graph neural
networks (GNNs) that demonstrate the potential of these models Mao et al. (2024); Galkin et al.
(2023); Beaini et al. (2023); Méndez-Lucio et al. (2022). However, most research has focused on
static graph learning, leaving the exploration of temporal graph neural networks largely untapped.

To effectively train foundation models, a large collection of datasets is essential. Networks within
the same domain often exhibit similar trends and statistics Jin & Zafarani (2020). These datasets
are crucial for assessing the performance of TGNNs, driving innovation, and ensuring that new
methods can be generalized across various applications. To facilitate research on foundation models
for temporal graphs, we introduce the Temporal Graph Scaling (TGS) benchmark, a comprehensive
dataset containing 84 novel temporal graphs derived from Ethereum transaction networks. TGS
provides temporal networks with up to 128K nodes and 0.5M edges, totaling 3M nodes and 19M
edges across all networks. These datasets also vary in their time duration and helps facilitate the
training of foundation models for temporal graph learning.

Quick adaptation of a foundation model to novel unseen data is crucial, especially in financial token
networks, where new datasets frequently emerge and the costs of training multiple models become
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prohibitive Shamsi et al. (2022); Zhang et al. (2023). To achieve this, we must first study how
transferrable a pre-trained temporal graph model is to unseen networks. Therefore, we propose the
first algorithm for pre-training TGNNs on multiple temporal graphs, called the TGS-train algorithm.
Models that are trained on multiple networks are then referred to as multi-network models. With
only zero-shot inference, our multi-network models achieve significant performance advantages over
models trained on individual test networks. This demonstrates the high potential of transferability of
large pre-trained models on temporal graphs. We also demonstrate that training on a larger number of
temporal graphs results in stronger downstream performance. Figure 1 shows the scaling behavior of
our multi-network model. The average performance of the multi-network model on twenty unseen
token networks increases as the number of networks used for training increases.

Our main contributions are as follows:

• Novel Collection of Temporal Networks. We release a comprehensive collection of 84 labeled
datasets derived from token transaction networks for the graph property prediction task. These
datasets provide the foundation for studying scaling behavior, transferability and multi-network
learning on temporal graphs.

• First Multi-network Training Algorithm for Temporal Graphs. To the best of our knowledge,
we propose the first training algorithm, named TGS-train, that enables TGNNs to train on multiple
networks at once.

• Neural Scaling Law on TGNNs. We explore the potential of foundation models on temporal
graphs by showing that neural scaling law also applies to temporal graphs: training TGNNs
with more temporal graphs (up to 64) offers a significant performance boost in downstream test
networks.

• Transferability Across Networks. We demonstrate that by pre-training on a large number of
temporal graphs, our multi-network model is directly transferable to 20 downstream unseen token
networks while outperforming single models trained on the test networks. This shows that it is
possible to learn an overall distribution across temporal graphs and transfer it to novel networks.

Reproducibility. Our code is available on 4open.science. The TGS datasets are publicly available on
Dropbox (during the anonymity period).

2 RELATED WORK
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Figure 1: Scaling behavior of multi-network mod-
els. The performance of multi-network trained on
2n where n ∈ [1, 6] compared to a single model that
is trained on each test dataset and a simple baseline
such as persistence forecast.

Temporal Graph Benchmarks. Numerous
graph benchmark datasets have been intro-
duced to advance research within the temporal
graph learning community. Poursafaei et al.
(2022) introduced six dynamic graph datasets
while proposing visualization techniques and
novel negative edge sampling strategies to
facilitate link prediction tasks of dynamic
graphs. Following the good practice from
OGB Hu et al. (2020), Huang et al. (2023)
introduced TGB, which provides automated
and reproducible results with a novel standard-
ized evaluation pipeline for both link and node
property prediction tasks. However, these
datasets belong to different domains, making
them unsuitable for studying the scaling laws
of neural network models trained with a large
number of datasets from the same domain. Li
et al. (2024) provide a temporal benchmark
for evaluating graph neural networks in link
prediction tasks, though their focus does not extend to training on multiple networks. Conversely, the
Live Graph Lab dataset by Zhang et al. (2023) offers a temporal dataset and benchmark, employed
for tasks like temporal node classification using TGNNs. This work aims to explore multi-network
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training and understand the transferability across temporal graphs. Therefore, we curate a collection
of temporal graphs rather than focusing on individual ones as in prior work.

Discrete Time Dynamic Graphs. A common approach in discrete time models treats each snapshot
individually and captures spatial characteristics, then adopts an RNN-based method to learn temporal
dependencies Seo et al. (2016); Sankar et al. (2019); Chen et al. (2022); Li et al. (2019); Shamsi
et al. (2024). GCRN stacks a graph CNN for feature extraction and an LSTM cell for temporal
reasoning Seo et al. (2016). Differentiating from GCRN, EvolveGCN Pareja et al. (2020) uses RNN
to control the parameters of a GCN at each snapshot. Employing two attention blocks, DySat first
generates static node embeddings at each snapshot by running a GAT style GNN, and then computes
new embeddings using a temporal self-attention block Sankar et al. (2019). In the most recent work,
GraphPulse Shamsi et al. (2024) leverages Mapper, a key tool in topological data analysis, to extract
essential information from temporal graphs. However, in all these studies, the training process of
every model was limited to a single dataset, and the effectiveness of training TGNs with diverse
networks to enhance their generalization capabilities is unexplored.

Neural Scaling Laws. Neural scaling laws characterize the relationship between model performance
and three main factors: number of parameters, size of training datasets and amount of computation
Rosenfeld et al. (2020); Kaplan et al. (2020); Abnar et al. (2022). These relationships are usually
described as a power law, which can be understood by observing learning as a movement on a smooth
data manifold Bahri et al. (2021). Bahri et al. (2021) exhibited all four scaling regimes with respect
to the number of model parameters as well as the dataset size, underscoring different mechanisms
driving improvement in loss. The authors provided valuable insights into the design and training of
mixed-model generative models by studying mixed-modal scaling laws, indicating the generality
of scaling laws across different domains and applications. Recently, Liu et al. (2024) investigated
neural scaling laws for static graphs by observing the performance of GNNs given increases in the
model’s size, defined by the number of layers and parameters, and training set size, defined by the
number of edges. To the best of our knowledge, we are the first to investigate neural scaling laws for
temporal graphs.

Foundation Models. The foundation model is an emerging paradigm that aims to develop models
capable of generalization across different domains and tasks using the knowledge obtained from
massive data in the pre-trained stage. Recently, Rasul et al. (2024) introduced Lag-Llama, a general-
purpose foundation model for univariate probabilistic time series forecasting based on a simple
decoder-only transformer architecture that uses lags as covariates. Galkin et al. (2023) introduced
ULTRA, a foundation model for knowledge graphs, which handles complex relational data and
supports diverse downstream tasks effectively. Similarly, Beaini et al. (2023) presented Graphium,
a collection of molecule graph datasets that facilitate the development of foundation models for
molecular applications, highlighting the importance of domain-specific datasets in enhancing the
performance and generalizability of foundation models. Lastly, Xia et al. (2024) proposed OpenGraph,
an initiative towards open foundation models for graphs, emphasizing the need for transparency,
reproducibility, and community-driven advancements in graph representation learning. These works
underscore the growing recognition of the importance of foundation models and their transformative
potential across various domains, such as molecular graphs. However, foundation models for temporal
graphs remain unexplored.

3 PRELIMINARIES

Temporal Graphs are generally categorized into two types: Continous Time Dynamic Graphs (CTDGs)
and Discrete Time Dynamic Graphs (DTDGs) Kazemi et al. (2020). We focus on DTDGs because
this approach aligns well with our objective of capturing and analyzing the graph’s dynamics at
specific time intervals, such as on a weekly basis. In DTDGs, the graph’s temporal evolution is
represented in discrete time steps, simplifying the analysis and modeling of large-scale temporal
multi networks. Each time step provides a snapshot of the graph at a specific moment, facilitating
straightforward comparisons and the identification of temporal patterns.

Definition 1 (Discrete Time Dynamic Graphs). DTDGs represent the network as a sequence of graph
snapshots denoted as G = {Gt1 ,Gt2 ,Gt3 , . . . ,Gtn} where ti < tj . Each Gti = (Vti , Eti ,Xti ,Yti) is
the graph at timestamp ti, where Vti and Eti represent the set of nodes and edges, Xti denotes the
node feature matrix, and Yti represents the edge feature matrix in graph Gti . Therefore, a collection
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of discrete-time dynamic graphs is defined as D = {G1,G2, . . . ,Gm}, where m is the number of
DTDGs.

Temporal Graph Property Prediction. For the task of temporal graph property prediction, we aim
to forecast a temporal graph property within a future time interval in a DTDG. More specifically,
given a DTDG G, we consider a time duration [tδ1 , tδ2 ], where δ1 and δ2 are non-negative integers
with δ1 ≤ δ2. Then at a specific time tk, the goal is to predict the target graph property within the
specified future interval [tk+δ1 , tk+δ2 ]. Further details about our task formulation, including the
definition of our graph property prediction and example of other property prediction tasks on graphs,
are provided in Appendix Section C. .

Hyperbolic Graph Neural Networks. Hyperbolic geometry has been increasingly recognized for
its ability to achieve state-of-the-art performance in several static graph embedding tasks Yang et al.
(2021). HTGN is a recent hyperbolic work that shows strong performance in learning over dynamic
graphs in a DTDG manner. The model employs a hyperbolic graph neural network (HGNN) to learn
the topological dependencies of the nodes and a hyperbolic-gated recurrent unit (HGRU) to capture
the temporal dependencies. Temporal contextual attention (HTA) is also used To prevent recurrent
neural networks from only emphasizing the most nearby time and to ensure stability along with
generalization of the embedding. In addition, HTGN enables updating the model’s state at the test
time to incorporate new information, which makes it a good candidate for learning the scaling law of
TGNNs. In our TGS framework, we use the HTGN architecture as part of our multi-network model
because it excels in dynamic graph learning through hyperbolic geometry. Its strong performance
makes it a valuable addition to our approach. We further describe the HTGN in Appendix Section D.

4 DATASET

We utilize a dataset of temporal graphs sourced from the Ethereum blockchain Wood et al. (2014).
In this section, we will describe Ethereum, explain our data pipeline, and conclude by defining the
characteristics of the resulting dataset.

Figure 2: TGS overview. (1) Token extraction: extract-
ing the token transaction network from the Ethereum
node. (2) Discretization: creating weekly snap-
shots to form discrete time dynamic graphs. (3)
Multi-Network Model Training: TGS transaction net-
works are divided randomly into train and test sets.
We train the MNs on a collection of training networks.
Lastly, MNs are tested on 20 unseen test networks.

Ethereum and ERC20 Token Net-
works. We create our transaction
network data by first installing an
Ethereum node and accessing the
P2P network by using the Ethereum
client Geth (https://github.
com/ethereum/go-ethereum).
Then, we use Etherum-ETL(https:
//github.com/blockchain-etl/
ethereum-etl) to parse all ERC20
tokens and extract asset transactions. We
extracted more than sixty thousand ERC20
tokens from the entire history of the
Ethereum blockchain. However, during the
lifespans of most token networks, there are
interim periods without any transactions.
Additionally, a significant number of
tokens live for only a short time span. To
avoid training data quality challenges,
we use 84 token networks with at least
one transaction every day during their
lifespan and are large enough to be used
as a benchmark dataset for multi-network
model training.

Temporal Networks. Each token network represents a distinct temporal graph, reflecting the time-
stamped nature of its transactions. In these networks, nodes (addresses), edges (transactions), and
edge weights (transaction values) evolve over time, capturing the dynamic behavior of the network.
Additionally, these networks differ in their start dates and durations, introducing further variation
in their evolution. While each token network operates independently with its own set of investors,
they exhibit common patterns and behaviors characteristic of transaction networks. These similarities
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Figure 3: Network statistics of TGS networks: (a) Novelty score, (b) number of days, (c) number of
nodes, and (d) number of edges.

allow the model to learn and generalize from these patterns across different networks. Collecting
temporal graphs from different ERC20 token networks allows for comparative analysis, uncovering
in-common patterns and unique behaviors. This strengthens the model’s ability to generalize and
improves its robustness.

Figure 2 illustrates the TGS overview from dataset extraction to the multi-network (MN) model
training step.

Dataset Statistics. Our TGS dataset is a collection of 84 ERC20 token networks derived from
Ethereum from 2017 to 2023. Each token network is represented as a dynamic graph, in which each
address and transaction between addresses are a node and directed edge, respectively. The biggest
TGS token network contains 128, 159 unique addresses and 554, 705 transactions, while the smallest
token network has 1, 454 nodes. TGS contains a diversity of dynamic graphs in terms of nodes, edges
and timestamps, which are shown in Figure 3. Details on statistics are given in Appendix A. The
figure shows that most networks have more than 10k nodes and over 100k edges. The lifespan of TGS
networks varies from 107 days to 6 years, and there exists at least one transaction each day. Figure 3.a
shows the novelty scores, i.e., the average ratio of unseen edges in each timestamp, introduced by
Poursafaei et al. (2022). Figure 3 shows that most of the 84 networks have novelty scores greater than
0.3, indicating that each day sees a considerable proportion of new edges in these token networks. We
adopt a 70− 15− 15 split of train-test-validation for each token network and calculate the surprise
score Poursafaei et al. (2022), which indicates the number of edges that appear only in the test data.
As Table 4 shows, the token networks have quite high surprise values with an average of 0.82. We
also provide the node, edge and length distribution for train and test sets separately in Figure 6.
Overall, train set datasets mostly have more nodes than those in the test set, while the number of
edges and days are in the same range for both. A detailed overview of the characteristics of the TGS
datasets is presented in Appendix A.

5 METHODOLOGY

We use Temporal Graph Neural Networks (TGNNs) as the multi-network model architecture. We
choose the state-of-the-art Hyperbolic Temporal Graph Network (HTGN) Yang et al. (2021) as an
example architecture for experiments. This section explains our choice and details our training
algorithm on multiple networks.

5.1 MULTI-NETWORK TRAINING ON TEMPORAL GRAPHS

Existing temporal graph learning models typically train on a single temporal graph, limiting their
ability to capture similar behaviors and generalize across different networks Rossi et al. (2020); Yang
et al. (2021). We introduce TGS-train, the pioneering algorithm designed to train across multiple
temporal graphs by modifying a state-of-the-art single network training model with two crucial

5
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Algorithm 1: TGS-train: Multi-Network Training for Temporal Graphs

Input: A Temporal Graph Dataset D = {G1,G2, . . . ,Gm}, where Gi = {Gi
t1 ,G

i
t2 , . . . ,G

i
tn}

m = Number of networks in training, TGNN and Decoder
for each epoch do

Shuffled (D) // IID training
for each network Gi ∈ D do

Initialize historical embeddings (reset) // context switching
for each training snapshot Gi

tj ∈ Gi do
Hti = TGNN(Gi

tj )

ŷti = Decoder(Htj )
L = Loss(yti , ŷtj )
Backpropagation
Update historical embeddings with Htj

Evaluate on the validation snapshots of Gi

Average validation results across all datasets to select the best model
Save the best model for inference

steps: shuffling and resets. These steps, as we describe below, render the algorithm network-agnostic,
capable of learning from various temporal graphs to generalize effectively to unseen networks.

Algorithm 1 shows TGS-train in detail. As the first step, we load a list of m temporal graphs
D = {G1,G2, . . . ,Gm}, where each temporal graph Gi is represented as a sequence of snapshot
{Gi

t1 ,G
i
t2 , . . . ,G

i
tn}. For each epoch, we shuffle the orders of the list of datasets D to preserve the

Independent and Identically Distributed (IID) assumption of neural network training.

IID training. To preserve the IID assumption in neural network training, we include a shuffling
step at each epoch. The randomized ordering of networks during training at each epoch is important
because it helps prevent the model from learning spurious correlations that could arise if the data
were presented in a fixed order. By shuffling the datasets, we promote randomness in the training
process, which contributes to more robust and generalizable model performance. Sequentially, for
each dataset Gi, we first initialize the historical embeddings, then train the model end to end (i.e.,
encoder-decoder) on each dataset Gi in a similar manner of training a single model, and evaluate the
performance on the corresponding validation set of dataset Gi. After training on m datasets from D,
we compute the average validation results across these datasets. This average is used to select the
best model, which is then saved for inference. Early stopping is applied if needed.

Context switching. Many TGNNs store and utilize node embeddings from previous timestamps at
later timestamps; we refer to those embeddings as historical embeddings Yang et al. (2021); Chen
et al. (2022); Pareja et al. (2020). Resetting historical embeddings at the beginning of each epoch
is a key step in training a temporal model across multiple networks for several reasons. First, it
helps prevent the model from carrying over biases or assumptions from one network to another,
ensuring that it can adapt effectively to the unique characteristics of each network. Starting with fresh
historical embeddings at the beginning of each epoch enables the models to learn the most relevant
and up-to-date information from the current network, improving performance and generalization
across different networks. Additionally, resetting historical embeddings can help mitigate the issue of
catastrophic forgetting, where the model may gradually lose information about previous networks as
it learns new ones.

Time complexity analysis. The TGS-train algorithm has the same complexity as training the single
model across all the training networks. Specifically, the time complexity for HTGN using the TGS-
train algorithm is O(m · (Nmaxdd

′ + d′|Emax|)) where m is the number of training networks, Nmax

is set to the maximum number of nodes of networks in the training set, d and d′ are the dimensions of
the input and output features while |Emax| is the maximum number of edges in a snapshot.

Inference on an unseen network. To evaluate the transferability of each multi-network model, we
test the model on unseen datasets. To obtain testing data, we divide TGS into two disjoint sets, where
one set is used for training obtained by randomly selecting 64 token networks, and the remaining

6
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20 token networks are used to evaluate the performance. We begin by loading all the weights of
multi-network models, including the pre-trained encoder and decoder parameters, while initializing
fresh historical embeddings. Then, we perform a single forward pass over the train and validation
split to adapt the historical embeddings specific to the testing dataset.

6 EXPERIMENTS

Weekly forecasts are common in the financial context for facilitating financial decisions Kim et al.
(2021). Similarly, for the temporal graph property prediction task (defined in Section 3), we set
δ1 = 3 and δ2 = 10, thus predicting the graph property over weekly snapshots. Experimentally, we
use the network growth property (defined by edge counts) from Shamsi et al. (2024) as the prediction
target.

6.1 PREDICTION BASELINES

Persistence forecast. For our basic baseline model, we employ a naive setting similar to deterministic
heuristics techniques, persistence forecast Salcedo-Sanz et al. (2022), for label prediction. In this
approach, we use data from the previous and current weeks to predict the next week’s property. If
we observe an increasing trend in the number of transactions in the current week compared to the
previous week, we predict a similar increasing trend for the following week. This simple model is
based on the assumption that trends in transaction networks can persist over time.

Single-network models. We use four models from literature including HTGN Yang et al. (2021),
GCLSTM Chen et al. (2022), EvolveGCN Pareja et al. (2020) and GraphPulse Shamsi et al. (2024)
as our baseline single models. We further explain each model in Appendix Section B. We adopt the
standard training process for these models over a single dataset and make predictions for the same
dataset. We adopt a 70% − 15% − 15% split ratio for the train, validation, and test, respectively,
for each token network, and during each epoch, the training model processes all snapshots in
chronological order. We train every single model for a minimum of 100 and a maximum of 250
epochs with a learning rate set to 15× 10−4. We apply early stopping based on the AUC results on
the validation set, with patience and tolerance set to 20 and 5× 10−2, respectively. Specifically, in
HTGN training, the node embeddings are reset at the end of every epoch. To address graph-level
tasks, we add an extra graph pooling layer as the final layer. This layer, implemented as a Multi-Layer
Perceptron (MLP), takes the mean of all node embeddings, concatenating with four snapshot features
at the graph level (including the mean of in-degree, the weight of in-degree, out-degree, and weight
of out-degree) and then outputs binary classification prediction. We use Binary Cross-Entropy Loss
for performance measurement and Adam Kingma & Ba (2015) as the optimization algorithm. It is
important to note that the graph pooling layer, performance measurement, and optimization algorithm
are also shared by the multi-network model training setup.

6.2 MULTI-NETWORK MODEL TRAINING SETUP
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Figure 4: Time per epoch for training
multi-network models.

While following a similar training approach as in the single
model training, we make specific adjustments for the multi-
network model training. We set the number of epochs to
300 with a learning rate of 10−4 and a train-validation-test
chronological split ratio same as single models. Early stop-
ping is applied based on the validation loss with a tolerance
of 5 × 10−2 and the patience is set to 30. The best model
is selected based on the validation AUC and used to predict
the unseen test dataset. We train six multi-network models,
each with a different number of networks corresponding to
2n datasets, where n ∈ [1, 6]. We name each multi-network
model based on the number of datasets used in training; for example, MN-16 is trained with 16
datasets. For graph property prediction tasks on multi-network, we ran all experiments on NVIDIA
Quadro RTX 8000 (48G memory) with 4 standard CPU nodes (either Milan Zen 3 2.8 GHz and
768GB of memory each or Rome Zen 2, 2.5GHz and 256GB of memory each). We repeated each
experiment three times and reported the average and standard deviation of different runs. Empirically
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Figure 5: Test AUC of multi-network models trained on 4, 16 and 64 networks and evaluated on
unseen test datasets. We compare the performance with persistence forecast, and HTGN models
trained and tested on each dataset.

we observe that the TGS-training time scales linearly to the number of networks as seen in Figure 4
where we report the time per epoch for each multi-network model.

6.3 RESULTS

Table 1: Rank-based prediction
performance results over different
models.

Model Top rank ↑ Avg. rank ↓ Win ratio ↑
Persist. forecast 0 7.9 0.00
Single model 3 4.35 -
MN-2 0 6.15 0.25
MN-4 2 4.35 0.45
MN-8 1 4.45 0.45
MN-16 1 3.45 0.65
MN-32 2 3.20 0.70
MN-64 11 2.15 0.80

Multi-network vs. single-network models. We present the
performance of our multi-network models trained with datasets
of varying sizes and zero-shot inference tested on 20 unseen
test datasets. We compare our results with five baseline mod-
els: Persistence Forecast, GCLSTM, EvolveGCN, HTGN, and
GraphPulse, as explained in Section 6.1. For visual clarity, Fig-
ure 5 shows the AUC on test data results for MN-4, MN-16 and
MN-64 only as well as persistence forecasting and HTGN sin-
gle model. We show the performance of all six multi-network
models in Appendix Figure 7. Overall, an upward trend is
observed in most datasets from multi-network models 2 to 64,
such as in BAG, MIR and BEPRO datasets, highlighting the power of larger multi-network models in
temporal graph learning. In Figure 5, the MN-64 yields the best AUC in 16 out of 20 test datasets.
This result is significant because the multi-network models outperform the single models specif-
ically trained on these datasets. We detail the prediction performance of the models in Table
2, where we present the AUC values for both single-trained baselines and multi-network models,
specifically MN-32 and MN-64, across various datasets. We also report the Top Rank, Average Rank,
and Win Ratio for each model. The Top Rank indicates the number of datasets where a method ranks
first. To calculate the Average Rank, we assign an AUC-based rank (ranging from 1 to 8) to every
model across the 20 test datasets and compute the average. The Win Ratio represents the proportion
of datasets where a model outperforms a single model.

Overall, MN-64 exhibits the best generalization performance, achieving the highest AUC in 6 datasets
and second-best in 7 datasets among 20 test datasets in a zero-shot setting. Moreover, Appendix
Table 7 indicates that the MN-64 also achieves superior performance in 43 datasets and equivalent
performance in 2 datasets among 64 token networks in the training sets compared to the performance
of single models. This demonstrates the strong generalizability and transferability of our MN-64
model. While GraphPulse achieves the highest top rank of 8, it relies on trained inference, unlike our
multi-network models, which are based on zero-shot inference. Notably, training GraphPulse on each
dataset is computationally expensive, while inference testing of our pre-trained MN-64 on all datasets
takes only a few minutes. This makes the performance of MN-64, a zero-shot inference model, even
more remarkable. Furthermore, despite trained models like HTGN or GCLSTM performing well
on certain datasets, our MN-64 model consistently achieves competitive rankings across all datasets.
We examine the data selection for different multi-network models and as shown in Section F the
performance gain is due to the number of datasets in training and not the bias in data selection.

Effect of scaling. In Table 1, we further compare the models by reporting the top rank, average
rank, and win ratio for different configurations of the multi-network models. We observe a notable
improvement in performance as the number of training networks increases. For instance, the average
rank improves from 6.15 for MN-2 to 2.15 for MN-64, which signifies a roughly 50% performance
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Table 2: AUC scores of multi-network models, single models, and persistence forecasts on test sets
across three seeds, including comparisons with state-of-the-art models EvolveGCN, GC-LSTM and
GraphPulse. The best performance is shown in bold, and the second best is underlined.

Dataset
Method Trained Inference Zero-Shot Inference

Per. Fore. HTGN GCLSTM EvolveGCN GraphPulse MN-32 MN-64

WOJAK 0.378 0.479 ± 0.005 0.484 ± 0.000 0.505 ± 0.023 0.467 ± 0.030 0.534 ± 0.017 0.524 ± 0.027

DOGE2.0 0.250 0.590 ± 0.059 0.538 ± 0.000 0.551 ± 0.022 0.384 ± 0.180 0.551 ± 0.022 0.538 ± 0.038

EVERMOON 0.241 0.512 ± 0.023 0.562 ± 0.179 0.451 ± 0.046 0.519 ± 0.130 0.543 ± 0.075 0.517 ± 0.039

QOM 0.334 0.633 ± 0.017 0.612 ± 0.001 0.618 ± 0.002 0.775 ± 0.011 0.669 ± 0.034 0.647 ± 0.019

SDEX 0.423 0.762 ± 0.034 0.720 ± 0.002 0.733 ± 0.028 0.436 ± 0.030 0.536 ± 0.042 0.614 ± 0.020

ETH2x-FLI 0.355 0.610 ± 0.059 0.670 ± 0.009 0.688 ± 0.010 0.666 ± 0.047 0.715 ± 0.032 0.729 ± 0.015
BEPRO 0.393 0.655 ± 0.038 0.632 ± 0.019 0.610 ± 0.012 0.783 ± 0.003 0.776 ± 0.008 0.782 ± 0.003

XCN 0.592 0.668 ± 0.099 0.306 ± 0.092 0.512 ± 0.067 0.821 ± 0.004 0.848 ± 0.000 0.851 ± 0.043
BAG 0.792 0.673 ± 0.227 0.196 ± 0.179 0.329 ± 0.040 0.934 ± 0.020 0.898 ± 0.075 0.931 ± 0.028

TRAC 0.400 0.712 ± 0.071 0.748 ± 0.000 0.748 ± 0.000 0.767 ± 0.001 0.770 ± 0.007 0.785 ± 0.008
DERC 0.353 0.683 ± 0.013 0.703 ± 0.022 0.669 ± 0.009 0.769 ± 0.040 0.756 ± 0.045 0.798 ± 0.027
Metis 0.423 0.715 ± 0.122 0.646 ± 0.023 0.688 ± 0.027 0.812 ± 0.011 0.753 ± 0.005 0.760 ± 0.025

REPv2 0.321 0.760 ± 0.012 0.725 ± 0.014 0.709 ± 0.002 0.830 ± 0.001 0.773 ± 0.013 0.789 ± 0.020

DINO 0.431 0.730 ± 0.195 0.874 ± 0.028 0.868 ± 0.029 0.801 ± 0.020 0.764 ± 0.048 0.779 ± 0.113

HOICHI 0.374 0.807 ± 0.047 0.857 ± 0.000 0.856 ± 0.001 0.714 ± 0.010 0.731 ± 0.029 0.765 ± 0.018

MUTE 0.536 0.649 ± 0.015 0.593 ± 0.030 0.617 ± 0.010 0.779 ± 0.004 0.657 ± 0.035 0.673 ± 0.013

GLM 0.427 0.830 ± 0.029 0.451 ± 0.003 0.501 ± 0.033 0.769 ± 0.018 0.826 ± 0.035 0.831 ± 0.024
MIR 0.327 0.750 ± 0.005 0.768 ± 0.026 0.745 ± 0.015 0.689 ± 0.097 0.809 ± 0.022 0.836 ± 0.016
stkAAVE 0.426 0.702 ± 0.042 0.368 ± 0.011 0.397 ± 0.022 0.743 ± 0.006 0.696 ± 0.027 0.709 ± 0.022

ADX 0.362 0.769 ± 0.018 0.723 ± 0.002 0.718 ± 0.004 0.784 ± 0.002 0.671 ± 0.015 0.679 ± 0.024

Top rank ↑ 0 2 3 0 8 1 6

Avg. rank ↓ 6.20 3.85 4.30 4.45 3.00 3.05 2.04

enhancement when scaling from two networks to sixty-four. The improvement in the win ratio is
also substantial, with MN-64 achieving the highest win ratio of 0.80, outperforming the other models
in most datasets. This indicates that increasing the number of networks in multi-network models
significantly enhances their robustness and predictive power, particularly when compared to single
models and smaller multi-network configurations.

Table 3: Ablation study results (AUC) demonstrating the impact
of various training strategies on model performance.

Model MN-4 ↑ MN-8 ↑ MN-16 ↑ MN-32 ↑ MN-64 ↑
Base Model 0.667 ± 0.111 0.676 ± 0.099 0.704 ± 0.115 0.714 ± 0.107 0.727 ± 0.114

w/o IID training 0.647 ± 0.113 0.643 ± 0.117 0.690 ± 0.105 0.709 ± 0.093 0.710 ± 0.123

w/o Context Switching 0.667 ± 0.120 0.608 ± 0.102 0.693 ± 0.099 0.713 ± 0.126 0.664 ± 0.113

Ablation Study We conducted
an ablation study for the TGS-
train algorithm to assess the ef-
fects of resetting memory (con-
text switching) and shuffling
data (IID training). Models are
trained same as multi-network
model training setup and tested on the 20 unseen test dataset. The average results are presented
in Table 3. Training different multi-network models without resetting memory revealed that per-
sistent memory across epochs negatively impacts generalization, emphasizing the importance of
reset mechanisms to reduce overfitting. Additionally, we explored the necessity of shuffling data by
fixing the order of training networks. The observed performance decline indicated that incorporating
randomness is vital for improving the model’s robustness and generalizability.

7 CONCLUSION

In this work, we seek to address the question: given a collection of observed temporal graphs, can
we predict the evolution of an unseen network within the same domain? We find that it is indeed
possible to learn from temporal networks in the same domain and forecast future trends for unseen
networks. First, we collected and released a collection of 84 temporal networks for the temporal
graph property prediction task. These datasets serve as the foundation for studying neural scaling laws
and foundation models on temporal graphs. Next, to learn from a large number of temporal graphs,
we present TGS-train, the first algorithm for training TGNNs across multiple temporal networks.
Experimentally, we show that the neural scaling law also applies to temporal graphs; in particular,
the more training networks are used, the better the model performance on unseen test networks. In
addition, our trained multi-network models can outperform single models trained on individual test
networks. Our empirical observations show the high potential of training foundational models on
temporal graphs. We believe our TGS method will pave the way for advancements in temporal graph
foundation models, providing valuable resources that the community can utilize.
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