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Abstract

Math word problems (MWPs) convert natu-
ral math corpus into structured equation forms.
Data sparsity is one of the main obstacles for
math word understanding problem due to the
high cost of human annotation efforts. How-
ever, existing work mainly start from the su-
pervised learning perspective, making the low-
resource scenario under explored. In this paper,
we are the first to incorporate semi-supervised
learning (SSL) framework into MWPs. We
propose an uncertainty-aware unlabeled data
selection strategies, which can access to reli-
able samples and increase the model capacity
gradually. Besides, to improve the quality of
pseudo equations, we incorporate two indirect
supervision signals considering the semantic
consistency property and grammar format con-
straints of generated equations. Experimen-
tal results on two benchmark MWPs datasets
across different ratio of unlabeled data verify
the effectiveness and generalization ability of
our proposed method.

1 Introduction

Developing computer system to automatically
solve math word problems (MWPs) dates back to
1960s (Bobrow, 1964) and is an important task
in natural language understanding. It maps a tex-
tual description to a logical equation expression.
A logical equation is machine-understandable and
can be executed directly for a numerical answer.
To achieve that, we need to identify the relevant
quantities from the text and determine the correct
operators as well as computation order among these
numbers. One example of MWPs is shown in Fig-
ure 1. It is required to first understand the semantic
meanings of quantities like “spend total, dollar,
288", and induce operators reflecting their rela-
tions. Then the logic form should be collected and
arranged in the mathematical rules, e.g., each valid
equation can be parsed into a complete binary tree

Text: Alexander Primary School spent total 288 dollar on 12 chairs.
And then 36 chairs of the same kind were bought. How much did
the school spend on all chairs?

Logic reasoning process: o

Price of each chair 288 / 12 \

v

Number of all chairs 12 + 36

£}

v

Money of all chairs 288/12*%(12+36) v
Answer: 1152

Figure 1: An example of math word problems.

with numeric on the leaf. We can use this math
grammar format in this paper.

Earlier works (Koncel-Kedziorski et al., 2016;
Hosseini et al., 2014; Roy and Roth, 2018) de-
pended upon manually-designed template annota-
tions to train a successful model. However, their
paradigm of designing and obtaining hand-crafted
features is difficult to generalize to larger and more
complex datasets. Recent researchers introduced
deep learning techniques for better language under-
standing and logic reasoning (Wang et al., 2017;
Xie and Sun, 2019; Liu et al., 2019). Although
they are able to learn more expressive represen-
tations with the benefit of deep neural networks,
the need for a large amount of supervision persists.
Recently, (Hong et al., 2020) proposed a learning-
by-fixing framework in weakly supervised setting.
However, they still need mathematical results as
a side-supervision. The collection of data anno-
tations for MWPs is a labor-intensive and time-
consuming task, as calculating math equations is
unfriendly for human annotators. To make it worse,
there are many domain knowledge and concepts
in MWPs which limits the effect of general knowl-
edge transfer algorithms in MWPs language under-
standing.



To reduce human intervention and boost data
utilization, it is vital to design a new algorithm
that can effectively utilize unlabeled math corpus.
An intuitive idea is to incorporate semi-supervised
learning (SSL) framework into MWPs. We can
first train the model on small-scale labeled data
and then apply the trained base model on unlabeled
data to generate pseudo equations. These obtained
pseudo-labeled data can augment the training data
and be utilized to retrain the MWPs model. How-
ever, there are two challenges in incorporating SSL
into MWPs:

— How to select reliable samples from unlabeled
data pools?

— How to improve the quality of obtained
pseudo equations?

Vanilla SSL mechanism randomly pick up un-
labeled samples in the pseudo labeling process,
which will inevitably introduce noise since it ig-
nores the reliability of selected data. An intuitive
remediation is to feed data in an easy to hard proce-
dure and enhance the model learning capacity grad-
ually. Recently, the so-called curriculum learning
achieves promising results in machine translation
(Zhou et al., 2020), emotion generation task (Shen
and Feng, 2020) and etc. They often measure sam-
ple difficulty from human linguistic knowledge per-
spective, like sentence length (Zhou et al., 2020),
rare word numbers (Shen and Feng, 2020). How-
ever, such pre-defined data difficulty measurement
can hardly be applied to MWPs. Intuitive criteria
like equation length does not square well with the
reasoning complexity of math problems, making it
non-trivial to select reliable samples. Besides, no
annotation supervision is available in the pseudo la-
beling process. Wrongly generated equations will
propagate errors to the following retraining phrase.
Furthermore, math equation follows strict gram-
mar structure, making it even more challenging to
generate high-quality pseudo equations.

To mitigate the above two problems, we pro-
pose an Uncertainty aware Semi-supervised learn-
ing for Math word problems (USM). We propose
an uncertainty-based measurement for reliable data
selection. Furthermore, we introduce two indi-
rect supervision signals to regularize the valid-
ity of pseudo equation. To be more specific, in-
spired by recent advance in Bayesian deep learning
(Bernardo and Smith, 2009; Gal and Ghahramani,
2016) to obtain uncertainty estimation, we take the

model uncertainty as a data selection measurement.
Besides, although there is no annotation for pseudo
equation generation procedure, we incorporate two
additional indirect supervised losses considering
MWPs semantic consistency and grammar format
constraints. We propose a question paraphrasing
task to make the math corpus and pseudo equations
to reconstruct initial questions. Meanwhile, we de-
sign an equation grammar checker to restrict the
the pseudo equation following their valid grammar
requirement.

Contributions The main contributions of this
paper are summarized as follows: 1) To the best of
our knowledge, we are the first to investigate the
semi-supervised MWPs in which unlabeled data
has no supervision. 2) We further use model un-
certainty to assess data quality and select reliable
pseudo-labeling data from unlabeled pools to regu-
larize the learning process of DNN models on the
MWPs. 3) To better serve unlabeled samples with
supervision signals, we explore to utilize a question
paraphrasing mechanism to ensure their semantic
meaning alignment and design a specific equation
grammar checker reward to meet their grammar
requirement. 4) We conduct extensive experiments
on Math23K and MAWPS dataset. The results
show the effectiveness and generalization of the
proposed method.

2 Methodology

In this section, we propose a systematic USM
framework to deal with the semi-supervised math
word problem. One of the typical semi-supervised
learning schemes is to train on the labeled data
first and then deploy on the unlabeled data to get
pseudo labels. The new synthetic data is utilized
as data augmentation to retrain the model. There
are two challenges under this setting: 1) How to se-
lect reliable unlabeled samples for augmentation?
MWPs is a reasoning task and the logic difficulty
is hard to be represented. 2) How to design indirect
supervision signals for pseudo equation generation
process? There are no annotations for unlabeled
corpus, and noise from pseudo equations could ac-
cumulate and even degrade the training stability
and efficiency.

USM provides a systemic solution consisting
two main sub-steps, uncertainty-aware data selec-
tion and pseudo equation enhancement. We first
present a brief introduction to the basic framework
of USM, including notations and setting. Then we
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Figure 2: Overview of the proposed approach. We first train on the labeled data, and apply the trained model on
unlabeled data to select reliable samples and generated pseudo equations. Then we retrain the model on augmented
data. In this paper, we propose a uncertainty-based data selection strategy and introduce two additional indirect

supervision signals for pseudo equation generation.

describe the detail of the main techniques.

2.1 Opverall framework

Consider D; = {(x,v;)}Y, to be a set of N la-
beled documents (instances) with y; being the equa-
tion for x;. Each x; consists of a sequence of word
tokens and numerical values. The goal of math
word problem is to map x; to a valid and correct
equation y;. Specifically, there are various of M
unlabeled corpus Dy, = {z,,}*, which should be
further leveraged in the semi-supervised setting.

In this paper, we first train a model on labeled
data D; with cross entropy loss. Then we apply the
trained teacher model on unlabeled instances D,,
to obtain synthetic labeled pairs. Specifically, we
calculate model uncertainty for each synthetic sam-
ples {xy, U }, and select reliable samples based on
the calculated confidence. Further more, instead of
leveraging the synthetic labels directly, we intro-
duce two additional indirect supervision signals to
force the validity of the generated equations. Then,
iterating the process by putting back the student as
a teacher to generate new pseudo labels and train
a new student. The three step process can iterate
until convergence. A schematic description of the
overall framework is shown in Figure 2.

2.2 Uncertainty-aware Data Selection

A straightforward selection method is to randomly
select pseudo-labeled samples at each time step.
It is evident that such strategy could suffer from
the noises brought by the teacher model, espe-
cially on difficult samples. A natural idea is to

organize math word problems in a meaningful
order which illustrates increasing concepts diver-
sity and equation complexity, and train the model
in an easy-to-hard manner. Prior works access
task difficulty/uncertainty in sentence length (Zhou
et al., 2020), rare word numbers (Shen and Feng,
2020) and so-called curriculum learning strategies
achieve great success recently (Miller and Seller,
1985). However, it is non-trivial to define the
model confidence in MWPs. Corpus length does
not square well to logic reason ability and training
loss may be invalid since long simple equations
will accumulate large training loss.

To identify reliable samples, we propose to lever-
age model uncertainty (Gal and Ghahramani, 2016)
as the selection criterion for pseudo-labeled data.
Model Uncertainty is also known as epistemic un-
certainty (Hofer et al., 2002), which can be used to
quantify the confidence of model towards its pre-
diction. With an unlabeled math corpus z,, the
synthetic equation ¢,,, the translation probability
under the trained teacher model can be represented
as:

p(i) = /9 Pl £ 0)p(O)z, 50)d0. (1)

Generally, we mainly ignore model uncertainty
term p(6|x.,, 3, )df, which reflects our confidence
about model parameters. While Bayesian neural
network aims to find the posterior distribution over
the model parameters p(0|x,,9,). This formu-
lation requires us to average all possible model
weights which is intractable realistic practice. For
reasons of computational efficiency, we adopt the



widely used Monte Carlo Dropout (Gal and Ghahra-
mani, 2016) to get the equation-level uncertainty.
Given the current unlabeled data x,,, the trained
teacher model makes its prediction ¢, via a stan-
dard decoding process. To further estimate model
uncertainty about current prediction, we randomly
deactivate part of neurons and perform 7' pass
of forward propagation. For every pass, we re-
calculate translation probabilities while keeping z,,
fixed. Eventually, we obtain T" samples over model
parameters {él, Oy, ..., éT} and the translation prob-
abilities. Intuitively, low variance indicates that
the model is confident about its prediction. Given
T samples {p(§u|Ty, 0;)1_;}, the equation-level
translation probability can be represented as:

E[p(gu|xu’ A ~ *Zp yu‘xuy‘gt ()

The variance of equatlon level uncertainty can
be represented as :

Var[p(iju |, 0) Z )2 —E[p(fula, )],

3)

where Var[p(f, |2, 0)] represents model uncer-

tainty calculated via math corpus x,,. In this paper,

we gradually select unlabeled data which uncer-
tainty score is less than a fine-tuned threshold 3.

yu|xu7 ei

2.3 Indirect Signals for Pseudo Equation
Generation

Besides selecting reliable unlabeled samples, we
come to the problem of designing auxiliary super-
vision signals to improve the quality of generated
pseudo equation. Although there is no annotation
for unlabeled corpus, we claim there are two spe-
cific properties in MWPs:

* Equations have strong correlations with the

math corpus semantic information.

* Equations should follow mathematical gram-
mar format and operator precedence.
Based on the two intuitions, we introduce question
paraphrasing to hold semantic consistency and de-
sign a equation grammar check reward to keep a
valid equation logic form following its grammar
format constraints.

2.3.1 Question Paraphrasing.

Paraphrasing aims to perform semantic consistency
and try to bridge the gap between math context
understanding and logical equations. A straight-
forward implementation is to deploy the trained
teacher model on unlabeled corpus x,, and generate
pseudo-labeled data ¢,,. ¢, is used to reconstruct

Math corpus question

x q
u . Math corpus content
y c
Xu
=4
xu Pseudo equation

e.g., 288/12+(12+36
Reconstructed question

Figure 3: Overview of the math question paraphrasing.
To keep the semantic information of generated equa-
tions, we leverage the math corpus content and pseudo
questions to reconstruct the math question. For each
Ju» We use its reversed quantity mapping Y., in our
experiments.

the corpus information x,,. However, there is a
semantic drop in the j,, — x,, reconstruction direc-
tion. First, it is an ill-posed problem to predict math
corpus from equations since the same equation can
correspond to various of math corpus. Besides, the
logical equation itself contains no semantic infor-
mation, let alone reconstruct it. Facing with this
difficulty, we observe that each equation usually
has a strong correlation with the question while not
with the corpus content, as we mentioned in Fig.1.

Motivated by this, we split each unlabeled math
corpus z,, to math content z¢, and math question
x?. We first deploy the trained model on unlabeled
corpus x,, to obtain the pseudo equation g,,. Then
we leverage the math content x§, and the pseudo
labeled equation g to reconstruct the math question
x?. This implementation would mitigate the one-
to-many problem since it enhances the correlation
between generated equations and corresponding
questions. And the incorporating of math content
avoids the loss of semantic information at the most
extent. We can exploit the attention-based Encoder-
Decoder architecture to build this model. Figure 3
illustrates the question paraphrasing process.

Given the concatenation x, of math content
word zj, and reversed quantity mapping ygm, (we
will explain later), each word is mapped to a fixed
dimensional vector by a word embedding function
¢(+) and then fed into a bidirectional LSTM (Huang
et al., 2015). The hidden vectors can be recursively
calculated at each time step:

?7 Frsrar(6(z:), hiy), i=1,2, .., |z|
fLSTM(¢( )7ﬁi—1)7 1= 1727"'?|$|

where h; denotes the hidden states, |z| is the num-
ber of input tokens, [; ] denotes the vector concate-




nation and f7g7s is the LSTM function. Decoder
is an unidirectional LSTM with attention mecha-
nism. The hidden state at ¢-th time s; is calculated
by si = frsrar(d(yi—1), S ;1) with initializa-
tion sg = hy. The attention weight for the current
step t of the decoder, with the i-th step in the en-
t exp(ut)
Tl eap(ut)
uf = vT tanh (Wih; + Was; + bg)

||

Ct = Z afhz (5)
=1

Pyen = softmaz(Wo[se; ct] + bo),

coder is cauculated by a; = a and

where W1, Wa, v, b, are trainable parameters.
Wy and by mapping the concatenation of hidden
state to the output vocabulary size. In the end, we
apply cross-entropy loss to reconstruct the math
questions:

M
L = =" 2l poen(3 |38, |, [25: Ggm]). (6)
=1

Here we explain the implementation of reversed
quantity mapping . Quantity itself has no se-
mantic meaning, and will be ignored if we only use
numerical representation. Hence, we reversely map
every possible equation numeric to its correspond-
ing noun phrase before question generation. Since
each numeric quantity may have multiple aliases in
the real world, e.g. 2 can corresponds to 2 hour and
can also associated with 2 kilometers. We parse
the initial text and consider the nouns related with
the numeric quantity in the dependency trees as the
quantity expression. We also map each operator “+,
-, *, /" as “add, subtract, times, divide". Finally, the
mapped equation ., is concatenated with math
content ¢, and are fed into encoder as input z,,.

2.3.2 Equation grammar checker

Besides enforcing semantic consistency loss to
pseudo equations, we further consider equation
grammar constraints and introduce additional indi-
rect supervision signals. (Wang et al., 2017) is the
first to claim that wrong equations will be gener-
ated if we ignore it structure constraints, i.e., ‘3++8’
or ‘(677+’. Inspired by this, its following works
(Wang et al., 2018, 2019; Liu et al., 2019) aim at
incorporating such structure prior information into
model architecture design. Here we share a similar
idea but for pseudo equation quality enhancement.
Specifically, we check the equation format validity

with the following loss:
L£97(g) = grammar_error_indicator(g).  (7)

For each valid pseudo equation, we assume it
should follow four requirements: 1) if last to-
ken are in {+, —, *, /}, next token will not be in
{+,—,%,/,)}; 2) if last token is a numeric, next
token will not in {}; 3) if last token is a {(}, next
token will not in {(,),+, —,*, /,)}; 4) if last to-
ken is in {)}, last token will not in {(,)}. The
above indicator returns 1 when y has no error at
the grammar format levels, and returns O otherwise.
Since feedback reward is non-differentiable here,
reinforcement learning algorithm (Kaelbling et al.,
1996) based on policy gradient (Silver et al., 2014)
is applied for optimization:

VeE(R) =V Y P(jkla;0) Ry,
k

= P(y|z;0)Rp Vo log(P(gx|;0))

k
~ 3" Ry log(P(ji|a: 0)).
k
3

For each selected unlabeled sample, we generated
K possible pseudo equations 41, o,...,J i, Where
K is the number of beam size, and Ry, is given by
Ry = aL"“+ (1 —a)L97. The pseudo algorithm
of our framework is shown in Alg.1 in appendix.

3 Experiment

Dataset We evaluate our method on the widely
used Math23K (Wang et al., 2017) and MAWPS
dataset (Koncel-Kedziorski et al., 2015). We set up
an experiment to evaluate semi-supervised MWPs
with a varying amount of labelled training data
(25%, 50%, 75%), with the rest being unlabeled.

Baselines We compare our approach with exten-
sive of representative baselines: (1) DNS (Wang
et al., 2017): A vanilla Seq2Seq with bidirectional
Long Short Memory model. (2) Math-EN (Wang
et al., 2018): An ensemble model based on BiL-
STM and transformer with equation normalization
(EN). (3) S-aligned (Chiang and Chen, 2018): Neu-
ral symbolic based model which utilizes the stack
to generate associated equations. (4) Group-ATT
(Li et al., 2019): A variant of transformer based on
group attention. (5) GTS (Xie and Sun, 2019): A
goal driven seq2tree based model. (6) Graph2Tree
(Zhang et al., 2020): An extension of GTS with
graph-transformer encoder. Our proposed frame-
work is model-agnostic, we conduct experiments



Table 1: Equation accuracy and answer accuracy over all baselines on Math23K dataset.

0.25 0.5 0.75 1
Method E-acc A-acc E-acc A-acc E-acc A-acc E-acc A-acc
S-Aligned 41.17 4732 49.79 5521 5774 6193 6143 65.8
Group-ATT | 4345 48.67 52.09 57.15 6042 6558 6398 69.2
Supervised Graph2tree | 5041 58.79 57.21 6797 62.68 72777 63.82 7538
; DNS 41.03 43.83 48.07 54774 5553 6132 5934 66.15
GTS 4922 56.12 5732 66.75 59.69 70.68 64.59 74.32
BERT 5430 62.15 61.14 7237 6733 7871 7094 81.80
DNS-USM | 44.69 4891 52.14 5690 58.20 63.65 - -
Semi-supervised | GTS-USM | 52.57 59.75 60.14 7091 61.03 72.58 - -
BERT-USM | 57.68 66.29 63.15 7427 6899 80.04 - -

Table 2: Equation accuracy and answer accuracy over all baselines on MAWPS dataset.

0.25 0.5 0.75 1
Method E-acc A-acc E-acc A-acc E-acc A-acc E-acc A-acc
S-Aligned 41.17 5376 6545 6623 69.10 69.61 72.73 73.51
Group-ATT | 53.24 5558 67.71 6857 7299 7377 76.10 76.62
Supervised Graph2tree | 6145 62.76 76.82 77.08 79.16 80.21 83.07 83.33
DNS 5273 5325 6694 6771 7221 7292 76.62 77.14
GTS 6041 6197 7526 76.04 7890 79.17 81.25 82.29
BERT 6641 67.18 77.14 77.60 81.18 81.18 83.63 84.11
DNS-USM | 57.14 5792 69.61 70.39 7429 75.00 - -
Semi-Supervised | GTS-USM | 64.84 65.89 7734 7838 8125 81.51 - -
BERT-USM | 69.87 70.38 78.70 79.48 82.81 83.85 - -

on the top of three general model architecture:
DNA, GTS and BERT (Devlin et al., 2018).
Implement Details Word embedding dimension
is set to 128 in our experiments. The dimension
of hidden state for all the other layers are set to
512. Batch size and dropout rates are set to 64 and
0.5. Also, we use a beam size of 5 in beam search.
Our model are trained with 80 epoches for GTS
and BERT model, and trained with 200 epoches for
DNS model on the two dataset. We use Adam opti-
mizer (Kingma and Ba, 2015) with initial learning
rate 0.001. For the uncertainty-aware data selec-
tion procedure, we set the number of forwarding
times as 16. Besides, we set the uncertainty selec-
tion threshold as the mean uncertainty over whole
dataset times 0.2. For the indirect signal enhance-
ment part, we set the trade-off value of « as 0.5.

3.1 Overall Results

We perform USM baselines on Math23K and
MAWPS dataset separately. The experiments re-
sults are shown in Table 1 and Table 2 separately.
Since baseline models are mainly designed for su-
pervised learning, so we apply their model on the
splitting labeled data. We further select three dis-
tinctive methods DNS, GTS and BERT and apply
them with our USM framework. As shown in Ta-
ble 2 and Table 3, our proposed USM method con-
sistently outperforms all the baselines for all the

datasets w.r.t. different ratio of labeled data. For
example, GTS achieves 57.32% equation accuracy
with 50% labeled data, and the result can increase
to 60.14% when applying on GTS-USM model.
We ascribe the reason to that the various of selected
pseudo-labeling math corpus enhance the model
capacity in a data-driven way, and pseudo-labeling
samples provide additional signals to regularize the
math equation generation process. Different from
previous works which design more complex model
architecture or annotate more label data with high
human annotation cost, leveraging unlabeled cor-
pus effectively can also boost the performance of
math equation generation.

Besides, our proposed method is both general
and effective. It can be easily incorporated into
various model architectures, like seq2seq model
(DNS), graph2tree model (GTS) and current widely
used BERT model. Meanwhile, it achieves consis-
tency promising results on these model architecture.
Compared with DNS, GTS and BERT model, our
proposed USM framework achieve relative 4%, 3%
and 2% improvements with 50% labeled samples
on math23K dataset. The promising results demon-
strates the generalization ability and effectiveness
of our proposed semi-supervised framework.

In addition, USM achieves promising results
than all baselines, especially in low-resource sce-
narios. It is promising that BERT-USM achieves



3.46% improvements over BERT model with 25%
labeled data in MAWPS dataset. Especially, GTS-
USM obtain 77.34% equation accuracy on 50%
labeled data which is approximating to 78.90% of
GTS model achieves with 75% labeled data. The
satisfactory results demonstrates the viability of
our proposed semi-supervised learning framework.

3.2 Ablation Study

To better understand the performance contributed
by each proposed component, we perform a series
of ablation tests by removing components one by
one. We first investigate different unlabeled sample
selection strategies. Then we discuss the effec-
tiveness of two indirect signals. The results are
demonstrated in Table and Table respectively.

3.2.1 Effects of Data Selection.

To show the influence of different selection strate-
gies, we investigate the following methods on DNS-
USM and GTS-USM model:
e USM: Uncertainty-aware semi-supervised
Learning framework for MWPs (ours).

e CSM: Curriculum based framework for
MWPs. We select sample from a easy to hard
way, and assume the quantity number in each
math corpus as a measurement of difficulty
level.

* RSM: Random-based framework for MWPs.
We randomly select unlabeled samples and
augment them with labeled samples.

Experimental results are demonstrated in Table
3. For space limitation, we only show labeled data
with 25% and 50% ratio on Math23K dataset. It
is clear that USM based model achieves the best
performance than other baselines on the top of both
DNS and GTS models. Interesting, we observe
that random selection strategies obtains the lowest
performance in all the scenarios. In our experiment,
we also try other settings, e.g, increasing label data
ratio to 75% and change batch size windows. How-
ever, we find the accuracy of RSM always lower
than other strategies. We think the reason is that
random selection strategies will incorporate some
difficult samples, hence pseudo labels will serve as
a noise, which further makes the logic reasoning
process harder.

Compared with CSM and USM, it is clear that
USM always performs better. As we claimed be-
fore, quantity length only partially demonstrates
the complexity of math word problem, this straight-
forward measurement will can not reflect the au-

Table 3: Effect of different data selection strategies on
Math23K dataset.

0.25 0.5

Method E-acc A-acc E-acc A-acc
DNS-RSM | 37.68 40.19 4629 49.46
DNS-CSM | 38.54 41.37 46.97 51.03
DNS-USM | 44.69 4891 52.14 56.90
GTS-RSM | 4581 5274 53.64 62.08
GTS-CSM | 4692 54.85 5497 64.02
GTS-USM | 52.57 59.75 60.14 7091

Table 4: Effects of each indirect supervision signals.

0.25 0.5

Method E-acc A-acc E-acc A-acc
DNS-USM 44.69 4891 52.14 56.90
DNS-USM-w/0-QG | 42.15 46.33 50.07 54.01
DNS-USM-w/o-GC | 43.01 47.92 51.22 5581
GTS-USM 52.57 59.75 60.14 70091
GTS-USM-w/0-QG | 50.04 57.07 58.92 68.78
GTS-USM-w/o-GC | 51.76  58.90 59.23 69.00

thentic difficulty level for MWPs. This verifies
our intuition that difficulty measurement is essen-
tial for semi-supervised MWPs task. Meanwhile,
USM provides a quantitive assessment. The se-
lected unlabeled data is high-quality and MWPs
can benefit from data augmentation in this way.

3.2.2 Effects of Model Component.

In this section, we discuss the effectiveness of each
indirect supervisions. Specifically, we perform the
following methods on DNS-USM and GTS-USM
models:
e USM-w/0-QG: USM without Question
Generation loss.

* USM-w/o-GC: USM without Grammar
Checker loss.

Experimental results are shown in Table 4. We find
that the proposed framework with both question
generation loss and grammar checker loss outper-
forms best in the semi-supervised setting, on both
the DNS and GTS model. We assume the reason to
be that they are complementary to each other. Ques-
tion Paraphrasing preserves semantic consistency
information and make the equation logic reasoning
understandable. Grammar checker loss enforces
the format vadility of pseudo equations.

Besides, we observe that question paraphrasing
contributes more than grammar checker. We as-
sume there are three reasons: 1) The reward for
grammar format checker is too sparse. The binary
reward does not emphasize which pseudo equation



Table 5: Effects of each indirect supervision signals.

Context: | Car A and car B are going in opposite
directions from cities C and D.Car A
was travelling at an average speed of
75.5 km/h while car B was travelling
at an average speed of 65.5 km/h. 4.5
hours later, the two cars met.

equation: | (75.5+65.5)*4.5

question: | what is the distance between the two
cities?

para- what is the distance between city c

phrasing and d?

Context: | There are 5 people in Xiaofang’s fam-
ily. They consume 15.6 tons water
and each tons cost 2 dollar.

equation: | 15.6*2/5

question: | What is the average water charge
each one?

para- what is the bill each person?

phrasing

token is invalid. 2) For GTS with a tree decoder,
grammar checker loss only contributes a little since
most of generated equations will follow a complete
binary tree structure. It is obvious that grammar
checker loss contributes more in DNS (seq2seq)
model. 3) It is essential to enhance semantic mean-
ing of each equation token. A similar observation is
verified in (Zhang et al., 2020). From this study, we
postulate that math problem in MWPs can provide
some ‘goal information’ for equation generation.
This verifies our intuition that equation generation
has a high correspondence with problem descrip-
tion. This observation motivates an interesting di-
rection on how to infer the logic equation from
the relationship between both context and problem
description.

3.3 Case Study

Here, we perform a case study on analyzing the
generated questions in question paraphrasing stage.
Table 5 represents the corresponding results sam-
pled from the Math23k dataset. Each equation is
the pseudo equation and model need to paraphrase
the corresponding question. In the first example,
the model learns three key words: ‘distance’, ‘be-
tween’, ‘city c and city d’. It is obvious that the
model not only reconstructs the initial question
meanings but also emphasize some key words. In
the second example, the paraphrasing questions is
shorter than gold questions, however it learn substi-
tution word for initial words, e.g., ‘each person’.

4 Related Works

Math word problem, which combines knowledge
understanding and logic reasoning, is a typical ex-
ample in natural language understanding and has
attracted researchers interests since 1960s (Bobrow,
1964). Due to labor-intensive involvements, earlier
works mainly study on small datasets. These works
are mainly grouped into statistical machine learn-
ing based (Koncel-Kedziorski et al., 2016; Hosseini
et al., 2014) and semantic parsing based (Liguda
and Pfeiffer, 2012) pipelines.

With the advance of deep learning, recent re-
searchers utilized neural networks to solve this
problem. One direction is to leverage the gram-
mar structure of equations and ensure the grammar
validity of equations. (Wang et al., 2017) was the
first to incorporate vanilla seq2seq into MWPs, and
its successive works designed a tree-based decoder
either in an explicit (Xie and Sun, 2019; Liu et al.,
2019) or implicit (Wang et al., 2019; Chiang and
Chen, 2018) manner. Another direction is to en-
rich knowledge understanding from external source
data. (Wu et al., 2020) proposed a knowledge-
aware sequence-to-tree Network and the graphs are
retrieved from external knowledge bases. However,
since math equation is well-structured and lie with
logical reasoning, these works are fully supervised.
Recently, (Hong et al., 2020) proposed a learning-
by-fixing framework which does not need math
equation as supervisions, while gold-standard math
answers are inevitable in their setting. Different
from previous methods, our proposed method re-
quired no annotations (math equations or answers)
for unlabeled data.

5 Conclusion

In this paper, we proposed an uncertainty aware
semi-supervised framework on MWPs, which en-
ables us to fully utilize unlabeled data. We lever-
aged model uncertainty to select reliable unlabeled
data. Further, we introduced two additional indirect
supervision signals to provide high-quality pseudo
labeled samples. In addition, the experimental re-
sults on both Math23K and MAWPS dataset ver-
ified the effectiveness and generalization of our
proposed framework. In the future, we will explore
how to dynamically select reliable unlabeled data
on MWPs. And it will be also interesting to de-
sign more informative reward signals to make the
training stage more efficient.
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A Appendix

The pseudo algorithm of our USM framework.

Algorithm 1 The pseudo algorithm of our USM
framework
Require: labeled data Dy, unlabeled data D,,.
1: Train a base model on label data D;;
2: while not converge: do
3:  Apply trained base model on unlabeled data
pools;
4:  Estimate uncertainty VAR(x,,) for unlabeled
data;
5:  Calculate Var(D,) via Eq.3 and g =
mean(Var(D,,).
6: if 5> 0.08 then
B=p-0.01
end if
if VAR(z,) <[ then
: Add current data into augmented pools.
10:  end if
retrain the model on augmented data pools.
Optimize labeled data with cross entropy
loss and optimize selected data with Eq.8.
11: end while
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