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Abstract

Math word problems (MWPs) convert natu-001
ral math corpus into structured equation forms.002
Data sparsity is one of the main obstacles for003
math word understanding problem due to the004
high cost of human annotation efforts. How-005
ever, existing work mainly start from the su-006
pervised learning perspective, making the low-007
resource scenario under explored. In this paper,008
we are the first to incorporate semi-supervised009
learning (SSL) framework into MWPs. We010
propose an uncertainty-aware unlabeled data011
selection strategies, which can access to reli-012
able samples and increase the model capacity013
gradually. Besides, to improve the quality of014
pseudo equations, we incorporate two indirect015
supervision signals considering the semantic016
consistency property and grammar format con-017
straints of generated equations. Experimen-018
tal results on two benchmark MWPs datasets019
across different ratio of unlabeled data verify020
the effectiveness and generalization ability of021
our proposed method.022

1 Introduction023

Developing computer system to automatically024

solve math word problems (MWPs) dates back to025

1960s (Bobrow, 1964) and is an important task026

in natural language understanding. It maps a tex-027

tual description to a logical equation expression.028

A logical equation is machine-understandable and029

can be executed directly for a numerical answer.030

To achieve that, we need to identify the relevant031

quantities from the text and determine the correct032

operators as well as computation order among these033

numbers. One example of MWPs is shown in Fig-034

ure 1. It is required to first understand the semantic035

meanings of quantities like “spend total, dollar,036

288", and induce operators reflecting their rela-037

tions. Then the logic form should be collected and038

arranged in the mathematical rules, e.g., each valid039

equation can be parsed into a complete binary tree040

Figure 1: An example of math word problems.

with numeric on the leaf. We can use this math 041

grammar format in this paper. 042

Earlier works (Koncel-Kedziorski et al., 2016; 043

Hosseini et al., 2014; Roy and Roth, 2018) de- 044

pended upon manually-designed template annota- 045

tions to train a successful model. However, their 046

paradigm of designing and obtaining hand-crafted 047

features is difficult to generalize to larger and more 048

complex datasets. Recent researchers introduced 049

deep learning techniques for better language under- 050

standing and logic reasoning (Wang et al., 2017; 051

Xie and Sun, 2019; Liu et al., 2019). Although 052

they are able to learn more expressive represen- 053

tations with the benefit of deep neural networks, 054

the need for a large amount of supervision persists. 055

Recently, (Hong et al., 2020) proposed a learning- 056

by-fixing framework in weakly supervised setting. 057

However, they still need mathematical results as 058

a side-supervision. The collection of data anno- 059

tations for MWPs is a labor-intensive and time- 060

consuming task, as calculating math equations is 061

unfriendly for human annotators. To make it worse, 062

there are many domain knowledge and concepts 063

in MWPs which limits the effect of general knowl- 064

edge transfer algorithms in MWPs language under- 065

standing. 066
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To reduce human intervention and boost data067

utilization, it is vital to design a new algorithm068

that can effectively utilize unlabeled math corpus.069

An intuitive idea is to incorporate semi-supervised070

learning (SSL) framework into MWPs. We can071

first train the model on small-scale labeled data072

and then apply the trained base model on unlabeled073

data to generate pseudo equations. These obtained074

pseudo-labeled data can augment the training data075

and be utilized to retrain the MWPs model. How-076

ever, there are two challenges in incorporating SSL077

into MWPs:078

− How to select reliable samples from unlabeled079

data pools?080

− How to improve the quality of obtained081

pseudo equations?082

Vanilla SSL mechanism randomly pick up un-083

labeled samples in the pseudo labeling process,084

which will inevitably introduce noise since it ig-085

nores the reliability of selected data. An intuitive086

remediation is to feed data in an easy to hard proce-087

dure and enhance the model learning capacity grad-088

ually. Recently, the so-called curriculum learning089

achieves promising results in machine translation090

(Zhou et al., 2020), emotion generation task (Shen091

and Feng, 2020) and etc. They often measure sam-092

ple difficulty from human linguistic knowledge per-093

spective, like sentence length (Zhou et al., 2020),094

rare word numbers (Shen and Feng, 2020). How-095

ever, such pre-defined data difficulty measurement096

can hardly be applied to MWPs. Intuitive criteria097

like equation length does not square well with the098

reasoning complexity of math problems, making it099

non-trivial to select reliable samples. Besides, no100

annotation supervision is available in the pseudo la-101

beling process. Wrongly generated equations will102

propagate errors to the following retraining phrase.103

Furthermore, math equation follows strict gram-104

mar structure, making it even more challenging to105

generate high-quality pseudo equations.106

To mitigate the above two problems, we pro-107

pose an Uncertainty aware Semi-supervised learn-108

ing for Math word problems (USM). We propose109

an uncertainty-based measurement for reliable data110

selection. Furthermore, we introduce two indi-111

rect supervision signals to regularize the valid-112

ity of pseudo equation. To be more specific, in-113

spired by recent advance in Bayesian deep learning114

(Bernardo and Smith, 2009; Gal and Ghahramani,115

2016) to obtain uncertainty estimation, we take the116

model uncertainty as a data selection measurement. 117

Besides, although there is no annotation for pseudo 118

equation generation procedure, we incorporate two 119

additional indirect supervised losses considering 120

MWPs semantic consistency and grammar format 121

constraints. We propose a question paraphrasing 122

task to make the math corpus and pseudo equations 123

to reconstruct initial questions. Meanwhile, we de- 124

sign an equation grammar checker to restrict the 125

the pseudo equation following their valid grammar 126

requirement. 127

Contributions The main contributions of this 128

paper are summarized as follows: 1) To the best of 129

our knowledge, we are the first to investigate the 130

semi-supervised MWPs in which unlabeled data 131

has no supervision. 2) We further use model un- 132

certainty to assess data quality and select reliable 133

pseudo-labeling data from unlabeled pools to regu- 134

larize the learning process of DNN models on the 135

MWPs. 3) To better serve unlabeled samples with 136

supervision signals, we explore to utilize a question 137

paraphrasing mechanism to ensure their semantic 138

meaning alignment and design a specific equation 139

grammar checker reward to meet their grammar 140

requirement. 4) We conduct extensive experiments 141

on Math23K and MAWPS dataset. The results 142

show the effectiveness and generalization of the 143

proposed method. 144

2 Methodology 145

In this section, we propose a systematic USM 146

framework to deal with the semi-supervised math 147

word problem. One of the typical semi-supervised 148

learning schemes is to train on the labeled data 149

first and then deploy on the unlabeled data to get 150

pseudo labels. The new synthetic data is utilized 151

as data augmentation to retrain the model. There 152

are two challenges under this setting: 1) How to se- 153

lect reliable unlabeled samples for augmentation? 154

MWPs is a reasoning task and the logic difficulty 155

is hard to be represented. 2) How to design indirect 156

supervision signals for pseudo equation generation 157

process? There are no annotations for unlabeled 158

corpus, and noise from pseudo equations could ac- 159

cumulate and even degrade the training stability 160

and efficiency. 161

USM provides a systemic solution consisting 162

two main sub-steps, uncertainty-aware data selec- 163

tion and pseudo equation enhancement. We first 164

present a brief introduction to the basic framework 165

of USM, including notations and setting. Then we 166
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Figure 2: Overview of the proposed approach. We first train on the labeled data, and apply the trained model on
unlabeled data to select reliable samples and generated pseudo equations. Then we retrain the model on augmented
data. In this paper, we propose a uncertainty-based data selection strategy and introduce two additional indirect
supervision signals for pseudo equation generation.

describe the detail of the main techniques.167

2.1 Overall framework168

Consider Dl = {(xi, yi)}Ni=1 to be a set of N la-169

beled documents (instances) with yi being the equa-170

tion for xi. Each xi consists of a sequence of word171

tokens and numerical values. The goal of math172

word problem is to map xi to a valid and correct173

equation yi. Specifically, there are various of M174

unlabeled corpus Du = {xu}Mu=1 which should be175

further leveraged in the semi-supervised setting.176

In this paper, we first train a model on labeled177

data Dl with cross entropy loss. Then we apply the178

trained teacher model on unlabeled instances Du179

to obtain synthetic labeled pairs. Specifically, we180

calculate model uncertainty for each synthetic sam-181

ples {xu, ŷu}, and select reliable samples based on182

the calculated confidence. Further more, instead of183

leveraging the synthetic labels directly, we intro-184

duce two additional indirect supervision signals to185

force the validity of the generated equations. Then,186

iterating the process by putting back the student as187

a teacher to generate new pseudo labels and train188

a new student. The three step process can iterate189

until convergence. A schematic description of the190

overall framework is shown in Figure 2.191

2.2 Uncertainty-aware Data Selection192

A straightforward selection method is to randomly193

select pseudo-labeled samples at each time step.194

It is evident that such strategy could suffer from195

the noises brought by the teacher model, espe-196

cially on difficult samples. A natural idea is to197

organize math word problems in a meaningful 198

order which illustrates increasing concepts diver- 199

sity and equation complexity, and train the model 200

in an easy-to-hard manner. Prior works access 201

task difficulty/uncertainty in sentence length (Zhou 202

et al., 2020), rare word numbers (Shen and Feng, 203

2020) and so-called curriculum learning strategies 204

achieve great success recently (Miller and Seller, 205

1985). However, it is non-trivial to define the 206

model confidence in MWPs. Corpus length does 207

not square well to logic reason ability and training 208

loss may be invalid since long simple equations 209

will accumulate large training loss. 210

To identify reliable samples, we propose to lever- 211

age model uncertainty (Gal and Ghahramani, 2016) 212

as the selection criterion for pseudo-labeled data. 213

Model Uncertainty is also known as epistemic un- 214

certainty (Hofer et al., 2002), which can be used to 215

quantify the confidence of model towards its pre- 216

diction. With an unlabeled math corpus xu, the 217

synthetic equation ŷu, the translation probability 218

under the trained teacher model can be represented 219

as: 220

p(ŷu) =

∫
θ
p(ŷu|f(xu; θ))p(θ|xu, ŷu)dθ. (1) 221

Generally, we mainly ignore model uncertainty 222

term p(θ|xu, ŷu)dθ, which reflects our confidence 223

about model parameters. While Bayesian neural 224

network aims to find the posterior distribution over 225

the model parameters p(θ|xu, ŷu). This formu- 226

lation requires us to average all possible model 227

weights which is intractable realistic practice. For 228

reasons of computational efficiency, we adopt the 229
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widely used Monte Carlo Dropout (Gal and Ghahra-230

mani, 2016) to get the equation-level uncertainty.231

Given the current unlabeled data xu, the trained232

teacher model makes its prediction ŷu via a stan-233

dard decoding process. To further estimate model234

uncertainty about current prediction, we randomly235

deactivate part of neurons and perform T pass236

of forward propagation. For every pass, we re-237

calculate translation probabilities while keeping xu238

fixed. Eventually, we obtain T samples over model239

parameters {θ̂1, θ̂2, ..., θ̂T } and the translation prob-240

abilities. Intuitively, low variance indicates that241

the model is confident about its prediction. Given242

T samples {p(ŷu|xu, θ̂t)Tt=1}, the equation-level243

translation probability can be represented as:244

E[p(ŷu|xu, θ̂)] ≈
1

T

T∑
t=1

p(ŷu|xu, θ̂t). (2)245

The variance of equation-level uncertainty can246
be represented as :247

Var[p(ŷu|xu, θ̂)] ≈
1

T

T∑
t=1

p(ŷu|xu, θ̂t)
2−E[p(ŷu|xu, θ̂)]

2,

(3)248

where Var[p(ŷu|xu, θ̂)] represents model uncer-249

tainty calculated via math corpus xu. In this paper,250

we gradually select unlabeled data which uncer-251

tainty score is less than a fine-tuned threshold β.252

2.3 Indirect Signals for Pseudo Equation253

Generation254

Besides selecting reliable unlabeled samples, we255

come to the problem of designing auxiliary super-256

vision signals to improve the quality of generated257

pseudo equation. Although there is no annotation258

for unlabeled corpus, we claim there are two spe-259

cific properties in MWPs:260

• Equations have strong correlations with the261

math corpus semantic information.262

• Equations should follow mathematical gram-263

mar format and operator precedence.264

Based on the two intuitions, we introduce question265

paraphrasing to hold semantic consistency and de-266

sign a equation grammar check reward to keep a267

valid equation logic form following its grammar268

format constraints.269

2.3.1 Question Paraphrasing.270

Paraphrasing aims to perform semantic consistency271

and try to bridge the gap between math context272

understanding and logical equations. A straight-273

forward implementation is to deploy the trained274

teacher model on unlabeled corpus xu and generate275

pseudo-labeled data ŷu. ŷu is used to reconstruct276

Figure 3: Overview of the math question paraphrasing.
To keep the semantic information of generated equa-
tions, we leverage the math corpus content and pseudo
questions to reconstruct the math question. For each
ŷu, we use its reversed quantity mapping yqm in our
experiments.

the corpus information xu. However, there is a 277

semantic drop in the ŷu → xu reconstruction direc- 278

tion. First, it is an ill-posed problem to predict math 279

corpus from equations since the same equation can 280

correspond to various of math corpus. Besides, the 281

logical equation itself contains no semantic infor- 282

mation, let alone reconstruct it. Facing with this 283

difficulty, we observe that each equation usually 284

has a strong correlation with the question while not 285

with the corpus content, as we mentioned in Fig.1. 286

Motivated by this, we split each unlabeled math 287

corpus xu to math content xcu and math question 288

xqu. We first deploy the trained model on unlabeled 289

corpus xu to obtain the pseudo equation ŷu. Then 290

we leverage the math content xcu and the pseudo 291

labeled equation ŷ to reconstruct the math question 292

xqu. This implementation would mitigate the one- 293

to-many problem since it enhances the correlation 294

between generated equations and corresponding 295

questions. And the incorporating of math content 296

avoids the loss of semantic information at the most 297

extent. We can exploit the attention-based Encoder- 298

Decoder architecture to build this model. Figure 3 299

illustrates the question paraphrasing process. 300

Given the concatenation xu of math content 301

word xcu and reversed quantity mapping yqm (we 302

will explain later), each word is mapped to a fixed 303

dimensional vector by a word embedding function 304

ϕ(·) and then fed into a bidirectional LSTM (Huang 305

et al., 2015). The hidden vectors can be recursively 306

calculated at each time step: 307

←−
hi = fLSTM (ϕ(xi),

←−
h i−1), i = 1, 2, ..., |x|

−→
hi = fLSTM (ϕ(xi),

−→
h i−1), i = 1, 2, ..., |x|

hi = [
←−
hi;
−→
hi],

(4) 308

where hi denotes the hidden states, |x| is the num- 309

ber of input tokens, [; ] denotes the vector concate- 310
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nation and fLSTM is the LSTM function. Decoder311

is an unidirectional LSTM with attention mecha-312

nism. The hidden state at t-th time st is calculated313

by si = fLSTM (ϕ(yi−1),
←−s i−1) with initializa-314

tion s0 =
←−
h1. The attention weight for the current315

step t of the decoder, with the i-th step in the en-316

coder is cauculated by at = ati =
exp(ut

i)∑|x|
i=1 exp(u

t
j)

and317

318
ut
i = vT tanh (W1hi +W2si + ba)

ct =

|x|∑
i=1

atihi

Pgen = softmax(W0[st; ct] + b0),

(5)319

where W1, W2, v, ba are trainable parameters.320

W0 and b0 mapping the concatenation of hidden321

state to the output vocabulary size. In the end, we322

apply cross-entropy loss to reconstruct the math323

questions:324

Lrec = −
M∑
i=1

xqui
ṗgen(x̂

q
ui
|x̂qui−1

, [xcu; ŷqm]). (6)325

Here we explain the implementation of reversed326

quantity mapping ŷqm. Quantity itself has no se-327

mantic meaning, and will be ignored if we only use328

numerical representation. Hence, we reversely map329

every possible equation numeric to its correspond-330

ing noun phrase before question generation. Since331

each numeric quantity may have multiple aliases in332

the real world, e.g. 2 can corresponds to 2 hour and333

can also associated with 2 kilometers. We parse334

the initial text and consider the nouns related with335

the numeric quantity in the dependency trees as the336

quantity expression. We also map each operator “+,337

-, *, /" as “add, subtract, times, divide". Finally, the338

mapped equation ŷqm is concatenated with math339

content xcu and are fed into encoder as input xu.340

2.3.2 Equation grammar checker341

Besides enforcing semantic consistency loss to342

pseudo equations, we further consider equation343

grammar constraints and introduce additional indi-344

rect supervision signals. (Wang et al., 2017) is the345

first to claim that wrong equations will be gener-346

ated if we ignore it structure constraints, i.e., ‘3++8’347

or ‘(677+’. Inspired by this, its following works348

(Wang et al., 2018, 2019; Liu et al., 2019) aim at349

incorporating such structure prior information into350

model architecture design. Here we share a similar351

idea but for pseudo equation quality enhancement.352

Specifically, we check the equation format validity353

with the following loss: 354

Lgra(ŷ) = grammar_error_indicator(ŷ). (7) 355

For each valid pseudo equation, we assume it 356

should follow four requirements: 1) if last to- 357

ken are in {+,−, ∗, /}, next token will not be in 358

{+,−, ∗, /, )}; 2) if last token is a numeric, next 359

token will not in {}; 3) if last token is a {(}, next 360

token will not in {(, ),+,−, ∗, /, )}; 4) if last to- 361

ken is in {)}, last token will not in {(, )}. The 362

above indicator returns 1 when y has no error at 363

the grammar format levels, and returns 0 otherwise. 364

Since feedback reward is non-differentiable here, 365

reinforcement learning algorithm (Kaelbling et al., 366

1996) based on policy gradient (Silver et al., 2014) 367

is applied for optimization: 368

∇θE(R) =∇θ

∑
k

P (ŷk|x; θ)Rk

=
∑
k

P (y
′
k|x; θ)Rk∇θ log(P (ŷk|x; θ))

≃
∑
k

Rk log(P (ŷk|x; θ)).

(8) 369

For each selected unlabeled sample, we generated 370

K possible pseudo equations ŷ1, ŷ2,...,ŷK , where 371

K is the number of beam size, and Rk is given by 372

Rk = αLrec+(1−α)Lgra. The pseudo algorithm 373

of our framework is shown in Alg.1 in appendix. 374

3 Experiment 375

Dataset We evaluate our method on the widely 376

used Math23K (Wang et al., 2017) and MAWPS 377

dataset (Koncel-Kedziorski et al., 2015). We set up 378

an experiment to evaluate semi-supervised MWPs 379

with a varying amount of labelled training data 380

(25%, 50%, 75%), with the rest being unlabeled. 381

Baselines We compare our approach with exten- 382

sive of representative baselines: (1) DNS (Wang 383

et al., 2017): A vanilla Seq2Seq with bidirectional 384

Long Short Memory model. (2) Math-EN (Wang 385

et al., 2018): An ensemble model based on BiL- 386

STM and transformer with equation normalization 387

(EN). (3) S-aligned (Chiang and Chen, 2018): Neu- 388

ral symbolic based model which utilizes the stack 389

to generate associated equations. (4) Group-ATT 390

(Li et al., 2019): A variant of transformer based on 391

group attention. (5) GTS (Xie and Sun, 2019): A 392

goal driven seq2tree based model. (6) Graph2Tree 393

(Zhang et al., 2020): An extension of GTS with 394

graph-transformer encoder. Our proposed frame- 395

work is model-agnostic, we conduct experiments 396
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Table 1: Equation accuracy and answer accuracy over all baselines on Math23K dataset.

Method 0.25 0.5 0.75 1
E-acc A-acc E-acc A-acc E-acc A-acc E-acc A-acc

Supervised

S-Aligned 41.17 47.32 49.79 55.21 57.74 61.93 61.43 65.8
Group-ATT 43.45 48.67 52.09 57.15 60.42 65.58 63.98 69.2
Graph2tree 50.41 58.79 57.21 67.97 62.68 72.77 63.82 75.38

DNS 41.03 43.83 48.07 54.74 55.53 61.32 59.34 66.15
GTS 49.22 56.12 57.32 66.75 59.69 70.68 64.59 74.32

BERT 54.30 62.15 61.14 72.37 67.33 78.71 70.94 81.80

Semi-supervised
DNS-USM 44.69 48.91 52.14 56.90 58.20 63.65 - -
GTS-USM 52.57 59.75 60.14 70.91 61.03 72.58 - -

BERT-USM 57.68 66.29 63.15 74.27 68.99 80.04 - -

Table 2: Equation accuracy and answer accuracy over all baselines on MAWPS dataset.

Method 0.25 0.5 0.75 1
E-acc A-acc E-acc A-acc E-acc A-acc E-acc A-acc

Supervised

S-Aligned 41.17 53.76 65.45 66.23 69.10 69.61 72.73 73.51
Group-ATT 53.24 55.58 67.71 68.57 72.99 73.77 76.10 76.62
Graph2tree 61.45 62.76 76.82 77.08 79.16 80.21 83.07 83.33

DNS 52.73 53.25 66.94 67.71 72.21 72.92 76.62 77.14
GTS 60.41 61.97 75.26 76.04 78.90 79.17 81.25 82.29

BERT 66.41 67.18 77.14 77.60 81.18 81.18 83.63 84.11

Semi-Supervised
DNS-USM 57.14 57.92 69.61 70.39 74.29 75.00 - -
GTS-USM 64.84 65.89 77.34 78.38 81.25 81.51 - -

BERT-USM 69.87 70.38 78.70 79.48 82.81 83.85 - -

on the top of three general model architecture:397

DNA, GTS and BERT (Devlin et al., 2018).398

Implement Details Word embedding dimension399

is set to 128 in our experiments. The dimension400

of hidden state for all the other layers are set to401

512. Batch size and dropout rates are set to 64 and402

0.5. Also, we use a beam size of 5 in beam search.403

Our model are trained with 80 epoches for GTS404

and BERT model, and trained with 200 epoches for405

DNS model on the two dataset. We use Adam opti-406

mizer (Kingma and Ba, 2015) with initial learning407

rate 0.001. For the uncertainty-aware data selec-408

tion procedure, we set the number of forwarding409

times as 16. Besides, we set the uncertainty selec-410

tion threshold as the mean uncertainty over whole411

dataset times 0.2. For the indirect signal enhance-412

ment part, we set the trade-off value of α as 0.5.413

3.1 Overall Results414

We perform USM baselines on Math23K and415

MAWPS dataset separately. The experiments re-416

sults are shown in Table 1 and Table 2 separately.417

Since baseline models are mainly designed for su-418

pervised learning, so we apply their model on the419

splitting labeled data. We further select three dis-420

tinctive methods DNS, GTS and BERT and apply421

them with our USM framework. As shown in Ta-422

ble 2 and Table 3, our proposed USM method con-423

sistently outperforms all the baselines for all the424

datasets w.r.t. different ratio of labeled data. For 425

example, GTS achieves 57.32% equation accuracy 426

with 50% labeled data, and the result can increase 427

to 60.14% when applying on GTS-USM model. 428

We ascribe the reason to that the various of selected 429

pseudo-labeling math corpus enhance the model 430

capacity in a data-driven way, and pseudo-labeling 431

samples provide additional signals to regularize the 432

math equation generation process. Different from 433

previous works which design more complex model 434

architecture or annotate more label data with high 435

human annotation cost, leveraging unlabeled cor- 436

pus effectively can also boost the performance of 437

math equation generation. 438

Besides, our proposed method is both general 439

and effective. It can be easily incorporated into 440

various model architectures, like seq2seq model 441

(DNS), graph2tree model (GTS) and current widely 442

used BERT model. Meanwhile, it achieves consis- 443

tency promising results on these model architecture. 444

Compared with DNS, GTS and BERT model, our 445

proposed USM framework achieve relative 4%, 3% 446

and 2% improvements with 50% labeled samples 447

on math23K dataset. The promising results demon- 448

strates the generalization ability and effectiveness 449

of our proposed semi-supervised framework. 450

In addition, USM achieves promising results 451

than all baselines, especially in low-resource sce- 452

narios. It is promising that BERT-USM achieves 453
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3.46% improvements over BERT model with 25%454

labeled data in MAWPS dataset. Especially, GTS-455

USM obtain 77.34% equation accuracy on 50%456

labeled data which is approximating to 78.90% of457

GTS model achieves with 75% labeled data. The458

satisfactory results demonstrates the viability of459

our proposed semi-supervised learning framework.460

3.2 Ablation Study461

To better understand the performance contributed462

by each proposed component, we perform a series463

of ablation tests by removing components one by464

one. We first investigate different unlabeled sample465

selection strategies. Then we discuss the effec-466

tiveness of two indirect signals. The results are467

demonstrated in Table and Table respectively.468

3.2.1 Effects of Data Selection.469

To show the influence of different selection strate-470

gies, we investigate the following methods on DNS-471

USM and GTS-USM model:472

• USM: Uncertainty-aware semi-supervised473

Learning framework for MWPs (ours).474

• CSM: Curriculum based framework for475

MWPs. We select sample from a easy to hard476

way, and assume the quantity number in each477

math corpus as a measurement of difficulty478

level.479

• RSM: Random-based framework for MWPs.480

We randomly select unlabeled samples and481

augment them with labeled samples.482

Experimental results are demonstrated in Table483

3. For space limitation, we only show labeled data484

with 25% and 50% ratio on Math23K dataset. It485

is clear that USM based model achieves the best486

performance than other baselines on the top of both487

DNS and GTS models. Interesting, we observe488

that random selection strategies obtains the lowest489

performance in all the scenarios. In our experiment,490

we also try other settings, e.g, increasing label data491

ratio to 75% and change batch size windows. How-492

ever, we find the accuracy of RSM always lower493

than other strategies. We think the reason is that494

random selection strategies will incorporate some495

difficult samples, hence pseudo labels will serve as496

a noise, which further makes the logic reasoning497

process harder.498

Compared with CSM and USM, it is clear that499

USM always performs better. As we claimed be-500

fore, quantity length only partially demonstrates501

the complexity of math word problem, this straight-502

forward measurement will can not reflect the au-503

Table 3: Effect of different data selection strategies on
Math23K dataset.

Method 0.25 0.5
E-acc A-acc E-acc A-acc

DNS-RSM 37.68 40.19 46.29 49.46
DNS-CSM 38.54 41.37 46.97 51.03
DNS-USM 44.69 48.91 52.14 56.90
GTS-RSM 45.81 52.74 53.64 62.08
GTS-CSM 46.92 54.85 54.97 64.02
GTS-USM 52.57 59.75 60.14 70.91

Table 4: Effects of each indirect supervision signals.

Method 0.25 0.5
E-acc A-acc E-acc A-acc

DNS-USM 44.69 48.91 52.14 56.90
DNS-USM-w/o-QG 42.15 46.33 50.07 54.01
DNS-USM-w/o-GC 43.01 47.92 51.22 55.81
GTS-USM 52.57 59.75 60.14 70.91
GTS-USM-w/o-QG 50.04 57.07 58.92 68.78
GTS-USM-w/o-GC 51.76 58.90 59.23 69.00

thentic difficulty level for MWPs. This verifies 504

our intuition that difficulty measurement is essen- 505

tial for semi-supervised MWPs task. Meanwhile, 506

USM provides a quantitive assessment. The se- 507

lected unlabeled data is high-quality and MWPs 508

can benefit from data augmentation in this way. 509

3.2.2 Effects of Model Component. 510

In this section, we discuss the effectiveness of each 511

indirect supervisions. Specifically, we perform the 512

following methods on DNS-USM and GTS-USM 513

models: 514

• USM-w/o-QG: USM without Question 515

Generation loss. 516

• USM-w/o-GC: USM without Grammar 517

Checker loss. 518

Experimental results are shown in Table 4. We find 519

that the proposed framework with both question 520

generation loss and grammar checker loss outper- 521

forms best in the semi-supervised setting, on both 522

the DNS and GTS model. We assume the reason to 523

be that they are complementary to each other. Ques- 524

tion Paraphrasing preserves semantic consistency 525

information and make the equation logic reasoning 526

understandable. Grammar checker loss enforces 527

the format vadility of pseudo equations. 528

Besides, we observe that question paraphrasing 529

contributes more than grammar checker. We as- 530

sume there are three reasons: 1) The reward for 531

grammar format checker is too sparse. The binary 532

reward does not emphasize which pseudo equation 533

7



Table 5: Effects of each indirect supervision signals.

Context: Car A and car B are going in opposite
directions from cities C and D.Car A
was travelling at an average speed of
75.5 km/h while car B was travelling
at an average speed of 65.5 km/h. 4.5
hours later, the two cars met.

equation: (75.5+65.5)*4.5
question: what is the distance between the two

cities?
para-
phrasing

what is the distance between city c
and d?

Context: There are 5 people in Xiaofang’s fam-
ily. They consume 15.6 tons water
and each tons cost 2 dollar.

equation: 15.6*2/5
question: What is the average water charge

each one?
para-
phrasing

what is the bill each person?

token is invalid. 2) For GTS with a tree decoder,534

grammar checker loss only contributes a little since535

most of generated equations will follow a complete536

binary tree structure. It is obvious that grammar537

checker loss contributes more in DNS (seq2seq)538

model. 3) It is essential to enhance semantic mean-539

ing of each equation token. A similar observation is540

verified in (Zhang et al., 2020). From this study, we541

postulate that math problem in MWPs can provide542

some ‘goal information’ for equation generation.543

This verifies our intuition that equation generation544

has a high correspondence with problem descrip-545

tion. This observation motivates an interesting di-546

rection on how to infer the logic equation from547

the relationship between both context and problem548

description.549

3.3 Case Study550

Here, we perform a case study on analyzing the551

generated questions in question paraphrasing stage.552

Table 5 represents the corresponding results sam-553

pled from the Math23k dataset. Each equation is554

the pseudo equation and model need to paraphrase555

the corresponding question. In the first example,556

the model learns three key words: ‘distance’, ‘be-557

tween’, ‘city c and city d’. It is obvious that the558

model not only reconstructs the initial question559

meanings but also emphasize some key words. In560

the second example, the paraphrasing questions is561

shorter than gold questions, however it learn substi-562

tution word for initial words, e.g., ‘each person’.563

4 Related Works 564

Math word problem, which combines knowledge 565

understanding and logic reasoning, is a typical ex- 566

ample in natural language understanding and has 567

attracted researchers interests since 1960s (Bobrow, 568

1964). Due to labor-intensive involvements, earlier 569

works mainly study on small datasets. These works 570

are mainly grouped into statistical machine learn- 571

ing based (Koncel-Kedziorski et al., 2016; Hosseini 572

et al., 2014) and semantic parsing based (Liguda 573

and Pfeiffer, 2012) pipelines. 574

With the advance of deep learning, recent re- 575

searchers utilized neural networks to solve this 576

problem. One direction is to leverage the gram- 577

mar structure of equations and ensure the grammar 578

validity of equations. (Wang et al., 2017) was the 579

first to incorporate vanilla seq2seq into MWPs, and 580

its successive works designed a tree-based decoder 581

either in an explicit (Xie and Sun, 2019; Liu et al., 582

2019) or implicit (Wang et al., 2019; Chiang and 583

Chen, 2018) manner. Another direction is to en- 584

rich knowledge understanding from external source 585

data. (Wu et al., 2020) proposed a knowledge- 586

aware sequence-to-tree Network and the graphs are 587

retrieved from external knowledge bases. However, 588

since math equation is well-structured and lie with 589

logical reasoning, these works are fully supervised. 590

Recently, (Hong et al., 2020) proposed a learning- 591

by-fixing framework which does not need math 592

equation as supervisions, while gold-standard math 593

answers are inevitable in their setting. Different 594

from previous methods, our proposed method re- 595

quired no annotations (math equations or answers) 596

for unlabeled data. 597

5 Conclusion 598

In this paper, we proposed an uncertainty aware 599

semi-supervised framework on MWPs, which en- 600

ables us to fully utilize unlabeled data. We lever- 601

aged model uncertainty to select reliable unlabeled 602

data. Further, we introduced two additional indirect 603

supervision signals to provide high-quality pseudo 604

labeled samples. In addition, the experimental re- 605

sults on both Math23K and MAWPS dataset ver- 606

ified the effectiveness and generalization of our 607

proposed framework. In the future, we will explore 608

how to dynamically select reliable unlabeled data 609

on MWPs. And it will be also interesting to de- 610

sign more informative reward signals to make the 611

training stage more efficient. 612
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A Appendix734

The pseudo algorithm of our USM framework.

Algorithm 1 The pseudo algorithm of our USM
framework
Require: labeled data Dl, unlabeled data Du.

1: Train a base model on label data Dl;
2: while not converge: do
3: Apply trained base model on unlabeled data

pools;
4: Estimate uncertainty VAR(xu) for unlabeled

data;
5: Calculate Var(Du) via Eq.3 and β =

mean(Var(Du).
6: if β > 0.08 then

β = β - 0.01
7: end if
8: if VAR(xu) ≤β then
9: Add current data into augmented pools.

10: end if
retrain the model on augmented data pools.
Optimize labeled data with cross entropy
loss and optimize selected data with Eq.8.

11: end while
735
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