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ABSTRACT

In this work, we propose a novel approach for detecting AI-generated images by leverag-
ing predictive uncertainty to mitigate misuse and associated risks. The motivation arises
from the fundamental assumption regarding the distributional discrepancy between nat-
ural and AI-generated images. The feasibility of distinguishing natural images from
AI-generated ones is grounded in the distribution discrepancy between them. Pre-
dictive uncertainty offers an effective approach for capturing distribution shifts, thereby
providing insights into detecting AI-generated images. Namely, as the distribution shift
between training and testing data increases, model performance typically degrades, often
accompanied by increased predictive uncertainty. Therefore, we propose to employ pre-
dictive uncertainty to reflect the discrepancies between AI-generated and natural images.
In this context, the challenge lies in ensuring that the model has been trained over sufficient
natural images to avoid the risk of determining the distribution of natural images as that of
generated images. We propose to leverage large-scale pre-trained models to calculate the
uncertainty as the score for detecting AI-generated images. Inspired by MC Dropout, we
perturb pre-trained models and find that the uncertainty can be captured by perturbing the
weights of pre-trained models. This leads to a simple yet effective method for detecting
AI-generated images using large-scale vision models: images that induce high uncertainty
are identified as AI-generated. Comprehensive experiments across multiple benchmarks
demonstrate the effectiveness of our method.

1 INTRODUCTION

Recent advancements in generative models have revolutionized image generation, enabling the production
of highly realistic images (Midjourney; Wukong; Rombach et al., 2022). Despite the remarkable capabilities
of these models, they pose significant challenges, particularly the rise of deepfakes and manipulated content.
The high degree of realism achievable by such technologies prompts urgent discussions about their potential
misuse, especially in sensitive domains such as politics and economics. In response to these critical concerns,
a variety of methodologies for detecting generated images have emerged. A prevalent strategy treats this
detection task as a binary classification problem, necessitating the collection of extensive datasets comprising
both natural and AI-generated images to train classifiers (Wang et al., 2020).

While existing detection methods have demonstrated notable successes, they typically encounter challenges
in generalizing to images produced by previously unseen generative models Wang et al. (2023a). One
promising avenue to enhance the robustness of detection capabilities involves constructing more extensive
training datasets by accumulating a diverse array of natural and synthetic images. However, these attempts
are often computationally intensive, requiring substantial datasets for effective binary classification. Ad-
ditionally, maintaining robust detection necessitates continually acquiring images generated by the latest
models. And when the latest generative models are not open-sourced, acquiring a large number of generated
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Figure 1: Large-scale fundamental models trained on a large number of real images are capable of distin-
guishing between real and generated images.

images to train classifiers is challenging. This highlights the urgent need for a novel framework to detect
AI-generated images without requiring AI-generated images.

A recent work (Tan et al., 2024) shows that features extracted by ViT of CLIP (Radford et al., 2021) can be
employed to separate natural and AI-generated images, motivating an effective approach to detecting images
by training a binary classifier in the feature space of CLIP. This provides a promising direction to explore
the possibility that large-scale foundational models already have the ability to capture the subtle differences
between real images and AI-generated images. This may be similar to the emergence phenomenon in large
language models (Wei et al., 2022), even if these models are not designed to distinguish between real and
generated images. This phenomenon may arise from the training data of large vision models. In particular,
since training models with AI-generated data usually leads to model collapse (Shumailov et al., 2024),
current large vision models are mainly trained over natural data, making these models biased between natural
and AI-generated data. Even though natural and AI-generated images appear extremely semantically similar
to humans, such “biased” large models can capture the difference between natural and generated images.

The distribution discrepancy in features between natural and generated images motivates us to revisit the
strategy of detecting AI-generated images. Specifically, the ability of humans to distinguish between natural
and generated images relies on the existence of the discrepancy between them. Moreover, humans are not
trained to distinguish natural and generated images. To verify this intuition, we visualize the features of
natural and generated images using a large-scale visual fundamental model (DINOv2), following previous
work (Tan et al., 2024). As shown in Figure 1, even for images sampled from the same class, there are large
distributional discrepancies in the feature space of DINOv2.

Building on this foundation, we propose to leverage predictive uncertainty as the score for distinguishing
between natural and AI-generated images. This is because predictive uncertainty offers an effective approach
for capturing distribution shifts. In particular, recent studies (Snoek et al., 2019; Schwaiger et al., 2020)
indicate that models tend to show increased uncertainty for out-of-distribution (OOD) samples. Hence, for
large vision models trained only on natural images, we can treat the natural images as in-distribution samples
and the generated images as OOD samples. The challenge comes from efficiently obtaining the uncertainty
of the model on the test samples. Classical approaches include Monte-Carlo Dropout (MC-Dropout) (Gal
& Ghahramani, 2016) and Deep Ensembles (Lakshminarayanan et al., 2017). However, in our attempts,
MC-Dropout obtains sub-optimal results (in Table 5), and it is not practical to train multiple large models

2



094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140

Under review as a conference paper at ICLR 2025

Figure 2: Natural and generated images are differently sensitive to perturbations in the model weights. When
a moderate perturbation is applied (0.1), the natural image has essentially the same features on the model
before and after the perturbation, but the generated image already shows a large difference.

independently for ensemble. Instead, we find that this uncertainty can be well captured by perturbing the
weights of the models. As shown in Figure 2, when a moderate level of perturbation is applied, the real
image has consistent features on the model before and after the perturbation, but the generated image has
large differences in features on the model before and after the perturbation.

In this paper, we propose a novel method for AI-generated image detection by weight perturbation (WePe).
Our hypothesis is that the model has greater uncertainty in predicting the OOD sample compared to the ID
sample, and that this uncertainty can be expressed through sensitivity to weight perturbations. For a large
model trained on a large number of real images, the real images can be considered ID samples, while the
generated images are considered OOD samples. Thus, the sensitivity of the samples to the weight perturba-
tion of the large model can be an important indicator to determine whether the generative models generate
the samples. Despite its simplicity, WePe achieves state-of-the-art performance on various benchmarks.

We summarize our main contributions as follows:

• We provide a new perspective to detect AI-generated images by calculating predictive uncertainty.
This is built upon an intuitive assumption that the natural and generated images differ in distribution,
making it possible to employ uncertainty to represent the distribution discrepancy.

• We propose to leverage large vision models to calculate the predictive uncertainty. The intuition
is that large vision models are merely trained on natural images, making it possible to exhibit
different uncertainties about natural and generated images. We capture this uncertainty by weight
perturbation to effectively detect images (Eq. 3).

• Comprehensive experiments on multiple benchmarks demonstrate that the proposed method outper-
forms previous methods, including training-based methods, achieving state-of-the-art performance.

2 RELATED WORKS

AI-Generated images detection. Recent advancements in generative models, such as those by (Brock et al.,
2019; Ho et al., 2020), have led to the creation of highly realistic images, highlighting the urgent need for
effective algorithms to distinguish between natural and generated images. Prior research, including works
by (Frank et al., 2020; Marra et al., 2018), primarily focuses on developing specialized binary classification
neural networks to differentiate between natural and generated images. Notably, CNNspot (Wang et al.,
2020) demonstrates that a standard image classifier trained on ProGAN can generalize across various archi-
tectures when combined with specific data augmentation techniques. F3Net (Qian et al., 2020) distinguishes
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real face images from fake face images with the help of frequency statistical differences. NPR (Tan et al.,
2024) introduces the concept of neighboring pixel relationships to capture differences between natural and
generated images. Although these methods show superior performance on generators in the training set,
they often do not generalize well to unknown generators. In addition to this, training-based methods are
susceptible to small perturbations in the image. For this reason, recently, some training-free methods have
been proposed. AEROBLADE (Ricker et al., 2024) calculates the reconstruction error with the help of the
autoencoder used in latent diffusion models (Rombach et al., 2022). RIGID (He et al., 2024) finds that real
images are more robust to small noise perturbations than generated images in the representation space of
the vision foundation models and exploits this property for detection. However, these methods usually make
overly strong assumptions about natural or generated images, leading to insufficient generalization. In our
paper, we propose a training-free detection method through uncertainty analysis. Based on the widespread
phenomenon that generated images have greater uncertainty than real images on models trained with real
images, our method achieves robust detection performance.

Uncertainty estimation. Uncertainty estimation in machine learning has seen significant advancements
in recent years. (Gal & Ghahramani, 2016) introduces Monte Carlo Dropout (MC Dropout), which uses
dropout at inference to estimate uncertainty from the variance of multiple predictions. (Lakshminarayanan
et al., 2017) develops deep ensembles, demonstrating improved uncertainty estimates through training mul-
tiple model indepently with different initializations. Recent work by (Snoek et al., 2019) analyzes the cali-
bration of uncertainty in deep learning models, highlighting the importance of reliable uncertainty measures.
Additionally, (Guo et al., 2017) explore the use of temperature scaling to enhance the calibration of model
predictions. In our paper, We measure uncertainty by perturbing the model’s weights.

Random weight perturbations. Weight perturbation, i.e. adding noise to network weights, has been exten-
sively studied. Many methods (Khan et al., 2018; Wu et al., 2020) perform training regularization by adding
noise to the weights of the neural network during training to improve the generalization of the network.
Weight perturbation has also been applied in adversarial attacks to study the robustness of the network (He
et al., 2019; Garg et al., 2020). In addition to this, some works also study the sensitivity of neural network
to weights perturbation. (Cheney et al., 2017) shows that convolutional networks are surprisingly robust to
a number of internal perturbations in the higher convolutional layers but the bottom convolutional layers
are much more fragile. (Weng et al., 2020) proposes an efficient approach to compute a certified robust-
ness bound of weight perturbations. In our work, we find neural networks trained on natural images exhibit
different robustness to weight perturbations for natural and generated images. Based on this property, we
propose an efficient algorithm to distinguish between natural and generated images.

3 METHOD

3.1 MOTIVATION

Our method is built upon a foundational assumption that natural and generated images have different distri-
butions. This is a reasonable assumption; otherwise, we cannot distinguish between natural and generated
images. Fortunately, this assumption is consistent with previous work (Tan et al., 2024) and our empirical
observations, as shown in Figure 1.

Hence, for the large models trained merely on natural images, we can regard natural images as in-distribution
(ID) data while generated images as out-of-distribution (OOD) data. This distribution discrepancy can be
reflected by the widely used predictive uncertainty, since neural networks typically exhibit higher uncertainty
for OOD samples (Snoek et al., 2019; Schwaiger et al., 2020). This leads to a simple yet novel approach
to determine whether a test image is generated by AI models when we can calculate its uncertainty on a
pre-trained large vision model. In the following, we first give a complete introduction to our method WePe,
then describe on our reasons for choosing the method, and finally, we explore why WePe works.
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3.2 UNCERTAINTY DEFINITION

Classical methods of uncertainty estimation, such as Deep Ensembles and MC Dropout, can simply be
viewed as using the variance of the results of multiple predictions as an estimation of uncertainty u(x):

µ(x) =
1

n

n∑
t=1

ŷt(x), u(x) = σ2 =
1

n

n∑
t=1

(ŷt(x)− µ(x))
2
, (1)

where, ŷt denotes the t-th prediction. The multiple predictions of Deep Ensembles come from multiple
independently trained neural networks, while the multiple predictions of MC Dropout come from the use of
dropout during inference, which can be regarded as multiple prediction using neural networks with different
structures.

3.3 UNCERTAINTY CALCULATION

The predictive uncertainty is typically calculated as the variance of predictions obtained with certain pertur-
bations. In this work, we simply leverage θ as the features or parameters before perturbation. Specifically,
the predictive uncertainty u(x) can be calculated by,

u(x) =
1

n

n∑
k=1

[f(x; θk)
⊤f(x; θt)−

n∑
j=1

f(x; θj)
⊤f(x; θt)

n
]2, (2)

where n is the number of samples, f(x; θk) denotes the L2-normalized features of an input image x when
inferring with the parameter θk, and θt stands for the teacher model used in DINOv2.

However, we cannot access the teacher model θt, making it challenging to calculate the uncertainty. More-
over, even if it is available, introducing two models for calculation leads to low computation efficiency.
Fortunately, we can calculate an upper bound of u(x). This can be formalized by,

u(x) ≤ 1

n

n∑
k=1

∥∥∥∥∥∥f(x; θk)− 1

n

n∑
j

f(x; θj)

∥∥∥∥∥∥
2

∥f(x; θt)∥2 = 2− 2

n

n∑
k=1

f(x; θk)
⊤f(x; θ), (3)

where θ denotes the parameter before injecting perturbation, and we leverage an unbiased assumption that
the expectation Eθjf(x; θj) approaches the feature f(x; θ) extracted by the non-perturbed parameter θ.
Eq. 3 provides a simple approach to calculate the uncertainty without needing a teacher model used in the
training phase of DINOv2. The insight of Eq. 3 is intuitive. Specifically, if an image x causes a high feature
similarity between the original and perturbed parameter, the image leads to a low uncertainty and is more
likely to be a natural image.

3.4 AN OVERVIEW OF WEPE

As discussed above, the proposed WePe is based on a large model pre-trained on a large number of natural
images. In this work, we chose DINOv2 (Oquab et al., 2024), a large model trained with contrastive learning
on image data. In order to capture the uncertainty of the model on the test images, we extract image features
using the original model and the model after adding noise to the parameters respectively. The similarity
between the pre-perturbation and post-perturbation feature vectors is quantified using a suitable distance
metric, such as cosine similarity. Images exhibiting high similarity are classified as real, while those with
low similarity are identified as generated. This method not only capitalizes on the characteristics of the
DINOv2 model but also provides a robust framework for distinguishing between real and generated images
based on their feature stability under model perturbation.

5



235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281

Under review as a conference paper at ICLR 2025

3.5 DISCUSSIONS

Why choose DINOv2? In addition to DINOv2, CLIP is a commonly used model. However, our experiments
show that CLIP performs sub-optimally compared to DINOv2 (see Table 4). We believe this difference
stems from their training strategies. Unlike DINOv2, CLIP is a multimodal model that combines image
and textual features from captions for contrastive learning, which may lead it to focus on broader semantic
features rather than fine details. In contrast, DINOv2 emphasizes contrastive learning solely on images,
allowing it to better capture subtle differences between natural and generated images. Therefore, we use
DINOv2 in our experiments.

Why choose weight perturbation? Common methods for measuring uncertainty include MC Dropout
and Deep Ensembles. MC Dropout involves keeping dropout active during testing and performing multiple
forward passes on the inputs to generate outputs with different network structures. The variability among
these outputs serves as an estimate of the model’s uncertainty regarding the input data. However, since
DINOv2 does not utilize dropout during training, MC Dropout may not yield optimal results (see Table 5).
Deep Ensembles, on the other hand, trains multiple networks independently and uses the differences in
their outputs on test samples to assess uncertainty. However, training multiple DINOv2-level models is
impractical. Therefore, in our study, we choose to perturb the model parameters and assess the differences
in outputs from the original and perturbed models to estimate uncertainty for the test images.

Why does weight perturbation work? Incorporating weight perturbations during testing can effectively
simulate Bayesian inference, thereby capturing the inherent uncertainty in neural networks. From a Bayesian
perspective, the weights of a neural network are not fixed but rather distributions reflecting the range of
plausible values given the data. By introducing noise into the network weights at test time, we mimic the
process of drawing samples from a posterior distribution over weights, a core concept in Bayesian inference.
This technique enables the model to generate diverse predictions, reflecting its uncertainty, particularly when
encountering out-of-distribution samples. This approach is akin to Bayesian neural networks, where weight
uncertainty is explicitly modeled. For example, (Blundell et al., 2015) proposed using variational methods
to approximate weight distributions in Bayesian neural networks, allowing for uncertainty quantification
through weight perturbations. Similarly, (Gal & Ghahramani, 2016) demonstrated that introducing dropout
at test time serves as a Bayesian approximation, with the added noise acting as a proxy for weight sampling,
thus allowing for reliable uncertainty estimation. In this paper, we capture uncertainty by adding noise
directly to the model parameters to distinguish between natural and generated images. However, trying
to theoretically analyze the different sensitivities of natural and generated images to model weights in the
representation space of a large model is a difficult task. Therefore, we only draw this conclusion through
various empirical observations in this paper, and do not directly prove this theoretically. The theoretical
proof will be left to our future work.

4 EXPERIMENTS

4.1 EXPERIMENT SETUP

Datasets. Following previous work (He et al., 2024), we evaluate the performance of WePe on Ima-
geNet (Deng et al., 2009), LSUN-BEDROOM (Yu et al., 2015) and GenImage (Zhu et al., 2023). For
ImageNet and LSUN-BEDROOM, the generated images are provided by (Stein et al., 2023). For Ima-
geNet, the generative models include ADM (Dhariwal & Nichol, 2021), ADM-G, LDM (Rombach et al.,
2022), DiT-XL2 (Peebles & Xie, 2023), BigGAN (Brock et al., 2019), GigaGAN (Kang et al., 2023),
StyleGAN (Karras et al., 2019), RQ-Transformer (Lee et al., 2022), and MaskGIT (Chang et al., 2022).
For LSUN-BEDROOM,the generative models include ADM, DDPM (Ho et al., 2020), iDDPM (Nichol
& Dhariwal, 2021), Diffusion Projected GAN (Wang et al., 2023b), Projected GAN (Wang et al., 2023b),
StyleGAN (Karras et al., 2019) and Unleasing Transformer (Bond-Taylor et al., 2022). GenImage primar-
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ily employs the Diffusion model for image generation. The fake images are generated by Stable Diffusion
V1.4 (Rombach et al., 2022), Stable Diffusion V1.5 (Rombach et al., 2022), GLIDE, VQDM (Gu et al.,
2022), Wukong (Wukong), BigGAN, ADM, and Midjourney (Midjourney). It contains 1,331,167 real and
1,350,000 generated images.

Evaluation metrics. Following RIGID, we mainly use the following metrics: (1) the average precision
(AP), (2) the area under the receiver operating characteristic curve (AUROC). On GenImage, since the
dataset is too large and re-implementing all baselines is time-consuming, we obtain the results directly from
the corresponding papers and report the classification accuracy (ACC).

Baselines. Following RIGID, we take both training-free methods and training methods as baselines. For
training-free methods, we take RIGID (He et al., 2024) and AEROBLADE (Ricker et al., 2024) as base-
lines. For training methods, we take DIRE (Wang et al., 2023a), CNNspot (Wang et al., 2020), Ojha (Ojha
et al., 2023) and NPR (Tan et al., 2024) as baselines. Besides, on GenImage, we also report the result of
Frank (Frank et al., 2020), Durall (Durall et al., 2020), Patchfor (Chai et al., 2020), F3Net (Qian et al.,
2020), SelfBland (Shiohara & Yamasaki, 2022), GANDetection (Mandelli et al., 2022), LGrad (Tan et al.,
2023), ResNet-50 (He et al., 2016), DeiT-S (Touvron et al., 2021), Swin-T (Liu et al., 2021), Spec (Zhang
et al., 2019), GramNet (Liu et al., 2020). For these baselines, we get the results directly in the corresponding
papers without reimplementing them.

Experiment details. To balance detection performance and efficiency, we use DINOv2 ViT-L/14. We report
the average results under five different random seeds and report the variance in Figure 8. In our experiments
we find that perturbing the high layers may lead to a large corruption in the features of the real images,
resulting in sub-optimal results. Therefore, We do not perturb the high-level parameters. In DINOv2 ViT-
L/14, the model has 24 transformer blocks, and we only perturb the parameters of the first 19 blocks with
Gaussian perturbations of zero mean. The variance of the added Gaussian noise is proportional to the mean
value of the parameters in each block, with the ratio set to 0.1. Ablation experiments show that our method
is robust to the blocks chosen for perturbation and the level of noise.

4.2 RESULTS

Comparison with other baselines. We conduct full comparative experiments on the three benchmarks
mentioned. As shown in Table 1, 2 and 3, WePe achieves the best detection performance on ImageNet,
LSUN-BEDROOM and GenImage without the need for training. It is worth noting that on the large-scale
GenImage benchmark, the training-based method, despite having perfect performance on the generators used
during training, performs poorly on many generators not seen during training. This illustrates the extreme
dependence of the performance of training-based methods on the diversity of the training set. In contrast,
our method does not require training, performs well on a wide variety of generators, and outperforms the
SOTA training method by 3.36% on average. On generators that have not been seen during training, such
as VQDM, many training methods exhibit random prediction results, whereas WePe achieves superior de-
tection performance. To further illustrate the effectiveness of our method, we count the difference in feature
similarity between real and fake images on the pre- and post-perturbation models. As shown in Figure 3,
the small perturbation of the model has less effect on the real images than on generated images, resulting in
higher feature similarity before and after the perturbation. The discrepancy effectively distinguishes the real
image from the generated image.

4.3 ABLATION STUDY

In this section, we perform ablation experiments. Unless otherwise stated, experiments are conducted on
ImageNet benchmark.
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(a) (b) (c)

Figure 3: Comparison of cosine similarity between original and transformed images. The generated images
are from: (a) ADM, (b) BigGAN, and (c) DDPM.

Table 1: AI-generated image detection performance on ImageNet. Values are percentages. Bold numbers
are superior results and the underlined italicized values are the second-best performance. A higher value

indicates better performance.
Models

ADM ADMG LDM DiT BigGAN GigaGAN StyleGAN XL RQ-Transformer Mask GIT Average
Methods

AUROC AP AUROC AP AUROC AP AUROC AP AUROC AP AUROC AP AUROC AP AUROC AP AUROC AP AUROC AP

Training Methods
CNNspot 62.25 63.13 63.28 62.27 63.16 64.81 62.85 61.16 85.71 84.93 74.85 71.45 68.41 68.67 61.83 62.91 60.98 61.69 67.04 66.78
Ojha 83.37 82.95 79.60 78.15 80.35 79.71 82.93 81.72 93.07 92.77 87.45 84.88 85.36 83.15 85.19 84.22 90.82 90.71 85.35 84.25
DIRE 51.82 50.29 53.14 52.96 52.83 51.84 54.67 55.10 51.62 50.83 50.70 50.27 50.95 51.36 55.95 54.83 52.58 52.10 52.70 52.18
NPR 85.68 80.86 84.34 79.79 91.98 86.96 86.15 81.26 89.73 84.46 82.21 78.20 84.13 78.73 80.21 73.21 89.61 84.15 86.00 80.84

Training-free Methods
AEROBLADA 55.61 54.26 61.57 56.58 62.67 60.93 85.88 87.71 44.36 45.66 47.39 48.14 47.28 48.54 67.05 67.69 48.05 48.75 57.87 57.85
RIGID 87.16 85.08 80.09 77.07 72.43 69.30 70.40 65.94 90.08 89.26 86.39 84.11 86.32 85.44 90.06 88.74 89.30 89.25 83.58 81.58
WePe 89.79 87.32 83.20 78.80 78.47 73.50 77.13 71.21 94.24 93.64 92.15 90.29 93.86 92.86 93.50 91.47 89.55 86.25 87.99 85.04

Robustness to Perturbations. Robustness to various perturbations is a critical metric for detecting gen-
erated images. In real-world scenarios, images frequently undergo perturbations that can impact detection
performance. Following RIGID, we assess the robustness of detectors against three types of perturbations:
JPEG compression (with quality parameter q)), Gaussian blur (with standard deviation σ), and Gaussian
noise (with standard deviation σ). As illustrated in Figure 6, training-free methods generally exhibit superior
robustness compared to training-based methods, with our method achieving the best overall performance.

The impact of the degree of perturbation. As shown in Figure 4, we explore the effect of the degree of
perturbation on the performance of WePe. It can be seen that WePe is quite robust to the level of perturbation
noise. It is only when the noise is very large or very small that it leads to a degradation in performance. When
the noise level is small, the features obtained before and after the model perturbation are extremely similar,
while when the noise level is very large, the features obtained before and after the model perturbation are
extremely dissimilar, and these two cases will result in the inability to effectively differentiate between real
and generated images.

Selecting which layers’ parameters to perturb? As shown in Figure 5, we explore the choice of which
layers’ parameters to perturb would achieve good performance. The horizontal coordinates in the graph
indicate that the first k blocks are perturbed, not the kth block. The experimental results exhibit that our
method obtains good performance when the parameters of the first 9 to the first 20 blocks are chosen to
be perturbed. This demonstrates the robustness of our method. In practice, we can select the layers to be
perturbed by a small set of real and generated images. And when the generated images are not available, we
can also use the probe to determine which layers are perturbed using only the real image. We describe our
method in Appendix A.15.

The effect of models. In our experiments, we mainly used DINOv2 ViT-L/14 to extract features. We
further explore the effect of using other models of DINOv2, including ViT-S/14, ViT-B/14, and ViT-g/14. In
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Table 2: AI-generated image detection performance on LSUN-BEDROOM.
Models

ADM DDPM iDDPM Diffusion GAN Projected GAN StyleGAN Unleashing Transformer Average
Methods

AUROC AP AUROC AP AUROC AP AUROC AP AUROC AP AUROC AP AUROC AP AUROC AP

CNNspot 64.83 64.24 79.04 80.58 76.95 76.28 88.45 87.19 90.80 89.94 95.17 94.94 93.42 93.11 84.09 83.75
Ojha 71.26 70.95 79.26 78.27 74.80 73.46 84.56 82.91 82.00 78.42 81.22 78.08 83.58 83.48 79.53 77.94
DIRE 57.19 56.85 61.91 61.35 59.82 58.29 53.18 53.48 55.35 54.93 57.66 56.90 67.92 68.33 59.00 58.59
NPR 75.43 72.60 91.42 90.89 89.49 88.25 76.17 74.19 75.07 74.59 68.82 63.53 84.39 83.67 80.11 78.25

AEROBLADA 57.05 58.37 61.57 61.49 59.82 61.06 47.12 48.25 45.98 46.15 45.63 47.06 59.71 57.34 53.85 54.25
RIGID 71.90 72.29 88.31 88.55 84.02 84.80 91.42 91.90 92.12 92.54 77.29 74.96 91.37 91.39 85.20 85.20
WePe 73.85 70.21 88.84 87.14 86.23 83.82 94.16 93.52 95.34 95.18 83.50 80.66 94.18 93.45 88.01 86.28

Table 3: AI-generated image detection performance on GenImage. Except for WePe and RIGID, all methods
require training on SD V1.4. The results of the baseline method are all from GenImage

Models

Methods Midjourney SD V1.5 ADM GLIDE Wukong VQDM BigGAN Average
ResNet-50 54.90 99.70 53.50 61.90 98.20 56.60 52.00 68.11
DeiT-S 55.60 99.80 49.80 58.10 98.90 56.90 53.50 67.51
Swin-T 62.10 99.80 49.80 67.60 99.10 62.30 57.60 71.19
CNNspot 52.80 95.90 50.10 39.80 78.60 53.40 46.80 58.63
Spec 52.00 99.20 49.70 49.80 94.80 55.60 49.80 64.41
F3Net 50.10 99.90 49.90 50.00 99.90 49.90 49.90 64.22
GramNet 54.20 99.10 50.30 54.60 98.90 50.80 51.70 65.66
DIRE 60.20 99.80 50.90 55.00 99.20 50.10 50.20 66.49
Ojha 73.20 84.00 55.20 76.90 75.60 56.90 80.30 71.73
LaRE 66.40 87.10 66.70 81.30 85.50 84.40 74.00 77.91

RIGID 81.54 68.72 72.35 84.15 68.57 78.98 93.02 78.19
WePe 79.17 75.57 76.07 79.20 79.00 90.60 89.27 81.27

addition to this, we conduct experiments on the CLIP:ViT-L/14. As shown in Table 4, the performance on
CLIP is not as good as on DINOv2. We hypothesize that the difference comes from the training approach of
these models. CLIP learns features using image captions as supervision, which may make the features more
focused on semantic information, whereas DINOv2 learns features only from images, which makes it more
focused on the images themselves, and thus better able to capture subtle differences in real and generated
images. When using DINOv2, our methods performs poorly when the capacity of the model is small. This
may be due to the fact that larger models can better capture the differences between real and fake images. In
our main experiments, to balance detection efficiency and detection performance, we use DINOv2 ViT-L/14.

The effect of perturbation type. In our experiments, we perturb the model parameters by adding Gaussian
noise. We further explore other ways of perturbation, such as adding uniform noise or Laplace noise to the
weight. In addition to this, we also explore the effect of MC Dropout, i.e., using dropout during inference.
As shown in Table 5, all three weight perturbation methods achieve good performance, and outperform MC
Dropout.

Table 4: The effect of models.
model AUROC AP

DINOv2: ViT-S/14 72.83 71.63
DINOv2: ViT-B/14 81.82 80.64
DINOv2: ViT-L/14 87.99 85.04
DINOv2: ViT-g/14 84.92 81.83

CLIP: ViT-L/14 77.89 77.90

Table 5: The effect of type of perturbation.
noise AUROC AP

Gaussian noise 87.99 85.04
Uniform noise 89.06 86.32
Laplace noise 87.13 84.22
MC Dropout 81.63 79.71
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Figure 4: Performance varies with
variance

Figure 5: The effects of disturbed blocks.

(a) (b) (c)

Figure 6: Illustration of detection performance varying with perturbation intensity under different degrada-
tion mechanisms, (a): JPEG compression, (b): Gaussian blur, and (c): Gaussian noise.

5 LIMITATION

The proposed weight perturbation provides a simple and effective method for detecting generated images,
yet we have not theoretically justified the widespread use of the method due to the inclusion of a variety of
strong prior assumptions, such as the assumption about treating generated samples as OOD data. Therefore,
our future work will focus on establishing the theoretical foundations of our method.

6 CONCLUSION

In this work, to effectively address the challenges of detecting AI-generated images, we propose a novel
approach that leverages predictive uncertainty as a key metric. Our findings reveal that by analyzing the dis-
crepancies in distribution between natural and AI-generated images, we can significantly enhance detection
performance. The use of large-scale pre-trained models allows for accurate computation of predictive un-
certainty, enabling us to identify images with high uncertainty as likely AI-generated. Our method achieves
robust detection performance in a simple untrained manner. Overall, our approach demonstrates a promis-
ing direction for improving AI-generated image detection and mitigating potential risks associated with their
misuse. Future work could delve deeper into refining the predictive models and exploring additional features
that could further enhance detection accuracy.

10



470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516

Under review as a conference paper at ICLR 2025

ETHIC STATEMENT

According to the Code of Ethics, our work does not raise any ethical concerns, as there are no human
subjects, private datasets, harmful insights, or research integrity issues. Our work does not raise any ethical
concerns. In particular, our work focuses on detecting AI-generated images to avoid the potential risk
induced by the development of generative models.

REPRODUCIBILITY STATEMENT

To highlight the efforts that have been made to ensure reproducibility, we summarize materials facilitating
reproducible results:

• Theoretical results. Our work mainly focuses on the empirical investigation without explicit the-
atrical results.

• Datasets. All involved datasets are publicly available. To facilitate reproducible results, we provide
details in Sec 4 and Appendix A.16.

• Open Source. We will release our code once the paper is accepted. If reviewers request, we will
include an anonymized link to the code in our response.
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A APPENDIX

A.1 NOTE ON THE REVISION

Our papers receive constructive comments from reviewers ANn9, fpAT, Ks83 and JnK7. We have revised
the paper based on these comments. These comments have greatly improved our work. We would like to
express our gratitude to them.

A.2 CONCERNS ABOUT MODELS BEING CONTAMINATED BY GENERATED IMAGES

With the proliferation of generated images, future large-scale models could become contaminated by such
data, making it increasingly difficult to distinguish between natural and generated images. One potential
solution is to employ machine unlearning (Yao et al., 2023) techniques to detect and address generated
images. Machine unlearning focuses on removing the influence of specific data from pre-trained models,
primarily due to privacy concerns. In this context, when generative images are incorporated into the training
process of large-scale models, we can utilize machine unlearning techniques to eliminate the effects of these
images on pre-trained models. This approach would help ensure that the features of natural and generated
images remain distinct and separable.

A.3 DISCUSSION ON DISTRIBUTION DISCREPANCY

In this paper, the core assumption we make is that there is data distribution discrepancy between natural and
generated images. This assumption is valid for current generative models and has been confirmed by many
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Figure 7: Feature distribution discrepancy between the generated and natural images on DINOv2 and CLIP.
• and • represent the feature of natural images and AI-generated images on the corresponding models.

works (Corvi et al., 2023; Tan et al., 2024; Ricker et al., 2024). This assumption is also the foundation of
many generative image detection methods (we cannot distinguish between images that are indistinguishable).

Secondly, we observe that this discrepancy in data distribution can be captured by the representation space of
a vision model pre-trained on a large number of natural images, i.e., there is feature distribution discrepancy
between the generated and natural images, as shown in Figure 7. However, this remains an observation, and
we have not found theoretical proof despite reviewing the literature. We only observe a similar phenomenon
in UnivFD (Ojha et al., 2023), where the feature distribution discrepancy is observed in the representation
space of CLIP:ViT-L/14.

That said, we can confirm the existence of feature distribution discrepancy of generated and natural images
based on an important metric for evaluating generative models, the FID score. The FID score measures the
feature distribution discrepancy between natural and generated images on the Inception network (Szegedy
et al., 2015). When the FID score is 0, it indicates that the two distributions do not differ. However, even
on these simple networks such as Inception v3, advanced generative models like ADM still achieve an FID
score of 11.84, not to mention that on powerful models such as DINOv2, we observe significant feature
distribution discrepancy.

A.4 MEASURING FEATURE DISTRIBUTION DISCREPANCY WITH FID SCORES

We further use the ”FID” score to measure the difference in feature distribution between natural and gen-
erated images. To avoid the effects of categories, we compute the FID scores using the DINOv2 model
on the LSUN-BEDROOM benchmark. For each category of images, we randomly select 5000 images for
calculation. In addition to calculating the FID scores between natural images and generated images, we
also calculate the FID scores between natural images and natural images. As shown in Table 6, the FID
scores between natural images and generated images are significantly higher than the FID scores between
natural images and natural images. Moreover, there is a clear positive correlation between the detection
performance of WePe and the FID score. This result fully explains the existence of feature distribution dis-
crepancy between natural and generated images on DINOv2, and demonstrates that WePe can effectively
detect the feature distribution discrepancy.
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Table 6: Measuring feature distribution discrepancy with FID scores.
Models Natural ADM StyleGAN iDDPM DDPM Diffusion GAN Unleashing Transformer Projected GAN

FID score 1.09 18.25 52.31 59.94 80.44 116.06 130.00 132.75
AUROC 50.00 73.85 83.50 86.23 88.84 94.16 94.18 95.34

A.5 COMPARISON WITH GRADIENT CUFF

Gradient Cuff (Hu et al., 2024) focuses on detecting jailbreak attacks in Large Language Models (LLMs). It
finds that the landscape of the refusal loss is more precipitous for malicious queries than for benign queries.
And then it uses stochastic gradient estimation to estimate gradient and use the gradient norm as the decision
score. Thus, we can also leverage this interesting work to identify the distribution discrepancy for detection.
We use the similar way to estimate gradient as the decision score. As shown in Table 7, we surprisingly find
that this method even surpasses WePe. This suggests that it is also possible to distinguish between natural
and generated images by estimating the gradient.

A.6 WEPE ON LARGE MULTI-MODAL MODELS

In addition to CLIP, we further test the performance of WePe on BLIP (Li et al., 2022). As shown in Table 8,
the performance of WePe is unsatisfactory on these multimodal models, which may be due to the fact that
the image features of the multimodal models are more focused on semantic information, in line with our
discussions.

A.7 PERFORMANCE ON ADVERSARIAL EXAMPLES

We further test WePe on adversarial examples. We simply add Gaussian noise (with different standard
deviation σ) to the test samples to simulate the adversarial examples. We test three cases: adding noise
on the natural image, adding noise on the generated image and adding noise on all images. As shown in
Table 9, when noise is injected, the feature similarity between the clean model and the noisy model for the
noisy image decreases, which leads to a change in the detection performance. To mitigate this effect, we
can perform detection by perturbing the model multiple times and using the average similarity. The effect of
noise is successfully mitigated by ensemble as shown in Table 10.

Table 7: Comparison with Gradient Cuff.
Method AUROC AP

WePe 87.99 85.04
WePe + Gradient Cuff 89.36 90.62

Table 8: WePe on large multi-modal
models.

Model AUROC AP

DINOv2 87.99 85.04
CLIP 77.89 77.90
BLIP 68.25 64.68

A.8 CONCERNS ABOUT HARD SAMPLES

WePe relies on the model being pre-trained on a large dataset of natural images. Given the abundance of
natural images, it is possible WePe may misclassify other natural images that are out-of-distribution, as AI-
generated images, leading to false-negative errors. Thus, we follow previous work to leverage AUROC as
the main metric the evaluate different methods. This is because AUROC is a pivotal metric for reflecting the
false-positive and false-negative costs. The hard (natural) samples play a crucial role in detecting generated
images. We will explore how to leverage hard samples to promote the detection performance in our future
work.
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Table 9: Performance on adversarial examples.
Case AUROC AP

Clean images 87.99 85.04
Noisy natural images, σ = 0.05 81.79 78.99
Noisy natural images, σ = 0.1 76.16 73.16

Noisy natural images, σ = 0.15 69.53 66.83
Noisy generated images, σ = 0.05 88.03 85.82
Noisy generated images, σ = 0.1 88.77 87.14
Noisy generated images, σ = 0.15 90.25 88.99

Noisy natural and generated images, σ = 0.05 84.94 81.98
Noisy natural and generated images, σ = 0.1 81.46 78.25

Noisy natural and generated images, σ = 0.15 78.19 75.32

Table 10: Mitigating the effects of image noise
through ensemble.

Case AUROC AP
Clean images 87.99 85.04

Noisy natural images, σ = 0.05, n = 1 81.79 78.99
Noisy natural images, σ = 0.05, n = 5 85.30 82.59
Noisy natural images, σ = 0.1, n = 1 76.16 73.16
Noisy natural images, σ = 0.1, n = 5 81.36 78.39
Noisy natural images, σ = 0.15, n = 1 69.53 66.83
Noisy natural images, σ = 0.15, n = 5 75.16 72.58

A.9 BOOSTING PERFORMANCE ON CLIP

As mentioned above, WePe does not perform satisfactorily on vision language models such as CLIP. Since
CLIP needs to unite image features and text features, the image features need to be projected into the union
space, which results in the projected image features being more focused on semantic information. For
this reason, we can improve the performance of WePe on CLIP by using the features before projection for
detection, as shown in Table 11.

Table 11: Boosting performance on CLIP.
Model AUROC AP

DINOv2 87.99 85.04
CLIP 77.89 77.90

CLIP without projection matrix 84.82 84.20

Table 12: Comparison of detection times.

Method Time (s)

AEROBLADE 17.6
RIGID 3.7
WePe 4.5

A.10 COMPARISON OF DETECTION TIMES.

Table 13: Evading detection of RIGID by adding noise to the gener-
ated image.

Model AUROC AP

RIGID 83.58 81.58
WePe 87.99 85.04

RIGID with noisy generated images 18.69 34.51
WePe with noisy generated images 88.77 87.14

Our method use a perturbed pre-
trained model that is fixed during
inferring all test samples. Thus, our
method can be processed within
two forward passes. This is equal
to the cost of RIGID that requires
two forward passes for clean and
noisy images. However, RIGID
can concatenate clean and noisy
images in a mini batch and obtain
detection results by with a single
forward pass. AEROBLADE re-

quires only one forward pass, but it needs to compute the reconstruction error of the image. This takes
a long time to reconstruct at the pixel level. Besides, AEROBLADE needs to use a neural network to com-
pute the LPIPS score, leading to computational complexity. As shown in Table 12, we compare the time
required to detect 100 images under the same conditions. Since AEROBLADE needs to calculate the image
reconstruction error, it has the lowest detection efficiency. RIGID can obtain detection results in a single
forward pass by concatenating clean and noisy images, whereas WePe requires two forward passes, which
results in WePe’s detection efficiency being inferior to RIGID’s. However, WePe can be parallelized across
two devices to obtain the detection results in a single forward pass.
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A.11 COMPARISON WITH RIGID

The main differences between WePe and RIGID are as follows:

• The approach proposed by RIGID stems only from the phenomenon it observed: namely, that
natural and generated images show different sensitivities to noise in the representation space of
DINOv2. Instead, WePe explicitly proposes that there is distribution discrepancy between natural
and generated images, and utilizes the difference in uncertainty to expose distribution discrepancy
between natural and generated images.

• RIGID utilizes the difference in sensitivity to noise between natural image and generated image
for detection. Although the generated image is more sensitive, it is easy to think of a way to avoid
detection, i.e., the user adds noise to the generated image and then submits it for detection.
This approach easily removes the sensitivity of the generated image to noise. As shown in Table 13,
after adding noise to a generated image, RIGID determines the noisy generated image as natural
images. This is a fatal flaw of RIGID. However, WePe is not affected by this. WePe exposes the
difference in distribution between the test image and the natural image through weight perturba-
tion. Adding noise to the generated image further increases this difference, leading to even better
detection performance.

A.12 NOTE ON THE UNBIASED ASSUMPTION

In section 3.3, we make an assumption that the expected extracted feature by noised models is unbiased for
that by the original model. We think this assumption is reasonable. Thanks to the over-parameterization
of modern neural networks and advanced optimization algorithms (e.g., AdamW), it is a well-established
fact that trained neural networks are usually smooth in the parameter space and show robustness to small
weight perturbation (Novak et al., 2018). And this robustness is used in many applications, such as quan-
tization (Gholami et al., 2022) and pruning (Liu et al., 2019). And in Figure 2, we also clearly show this
robustness: when adding tiny noise to the model weights, the features remain almost unchanged.

A.13 SOFTWARE AND HARDWARE

We use python 3.8.16 and Pytorch 1.12.1, and seveal NVIDIA GeForce RTX-3090 GPU and NVIDIA
GeForce RTX-4090 GPU.

A.14 WEPE WITH MULTIPLE PERTURBATION

Figure 8: WePe with multiple
perturbations.

In our experiments, taking into account the detection efficiency, we
perturb the model only once, and then calculate the feature simi-
larity of the test samples on the clean and perturbed models. We
further experiment with multiple perturbations and use the mean of
the feature similarity of the test samples on the clean model and
all the perturbed models as the criterion for determining whether or
not the image is generated by the generative models. As shown in
Figure 8,

A.15 USING NATURAL
IMAGES ONLY TO SELECT WHICH LAYERS TO PERTURB

In our experiments, we use a small set of natural images and gener-
ated images to pick the parameters that need to be perturbed. When

19



893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939

Under review as a conference paper at ICLR 2025

Table 14: Effect of perturbation position on natural images. We perturb each block individually, observe the
similarity of features on the model of the natural image before and after the perturbation and rank these

blocks.
block 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

similarity(%) 99.40 97.66 98.83 99.00 98.80 98.70 99.37 94.73 92.87 98.44 97.07 98.00 93.46 96.24 94.80 93.85 92.40 87.60 71.50 76.00 80.27 75.93 34.81 47.90
rank 1 9 4 3 5 6 2 13 16 7 10 8 15 11 12 14 17 18 22 20 19 21 24 23

Table 15: AI-generated image detection performance on ImageNet. We select the top-k blocks with the
highest similarity for perturbation based on the sorting results.

Models
ADM ADMG LDM DiT BigGAN GigaGAN StyleGAN XL RQ-Transformer Mask GIT Average

Methods
AUROC AP AUROC AP AUROC AP AUROC AP AUROC AP AUROC AP AUROC AP AUROC AP AUROC AP AUROC AP

Training Methods
CNNspot 62.25 63.13 63.28 62.27 63.16 64.81 62.85 61.16 85.71 84.93 74.85 71.45 68.41 68.67 61.83 62.91 60.98 61.69 67.04 66.78
Ojha 83.37 82.95 79.60 78.15 80.35 79.71 82.93 81.72 93.07 92.77 87.45 84.88 85.36 83.15 85.19 84.22 90.82 90.71 85.35 84.25
DIRE 51.82 50.29 53.14 52.96 52.83 51.84 54.67 55.10 51.62 50.83 50.70 50.27 50.95 51.36 55.95 54.83 52.58 52.10 52.70 52.18
NPR 85.68 80.86 84.34 79.79 91.98 86.96 86.15 81.26 89.73 84.46 82.21 78.20 84.13 78.73 80.21 73.21 89.61 84.15 86.00 80.84

Training-free Methods
AEROBLADA 55.61 54.26 61.57 56.58 62.67 60.93 85.88 87.71 44.36 45.66 47.39 48.14 47.28 48.54 67.05 67.69 48.05 48.75 57.87 57.85
RIGID 87.16 85.08 80.09 77.07 72.43 69.30 70.40 65.94 90.08 89.26 86.39 84.11 86.32 85.44 90.06 88.74 89.30 89.25 83.58 81.58

WePe top-8 89.25 86.53 82.66 78.08 79.29 73.88 78.53 72.48 93.90 92.61 92.07 89.65 93.06 91.26 92.68 89.84 89.85 86.91 87.92 84.59
WePe top-10 89.57 86.67 82.62 79.33 78.95 74.42 77.15 72.29 92.65 91.36 91.91 90.60 93.77 92.71 93.17 91.76 88.42 86.46 87.58 85.07
WePe top-12 89.23 87.86 84.38 81.19 78.63 74.13 75.33 70.50 94.29 93.81 92.53 91.71 94.64 94.32 93.15 92.15 89.90 88.22 88.01 85.99
WePe top-14 89.69 87.57 82.60 79.24 79.69 76.06 76.74 71.26 93.05 92.30 92.45 91.23 94.71 94.78 94.96 94.22 89.44 88.14 88.15 86.09
WePe top-16 90.58 89.40 84.80 82.08 80.28 76.54 76.57 72.88 92.81 92.55 92.11 91.10 92.89 92.72 93.05 92.26 91.46 90.60 88.28 86.68
WePe top-18 90.02 87.83 83.39 80.58 79.12 74.64 76.18 71.12 91.82 91.36 92.26 91.71 93.77 93.39 93.68 92.89 89.12 87.57 87.71 85.68

all the generated images are not available, we can also use only the
real images to select the layers that need to be perturbed. Specifi-
cally, we first perturb each block alone and calculate the similarity
of the features on the model of the natural image before and after
the perturbation, as shown in Table 14. We then sort the similarity and select the blocks with the highest
similarity for perturbation. As shown in Table 15, selecting the parameters to be perturbed in this way also
achieves good performance and has strong robustness.

A.16 DETAILS OF DATASETS

IMAGENET. The real images and generated images can be obtained at https://github.com/
layer6ai-labs/dgm-eval. The images are provided by (Stein et al., 2023). The generative model in-
cludes: ADM, ADMG, BigGAN, DiT-XL-2, GigaGAN, LDM, StyleGAN-XL, RQ-Transformer and Mask-
GIT. The resolution of real images and generated images are 256 × 256. We crop the image randomly to
224× 224 resolution.

LSUN-BEDROOM. The real images and generated images can be obtained at https://github.com/
layer6ai-labs/dgm-eval. The images are provided by (Stein et al., 2023). The generative model
includes: ADM, DDPM, iDDPM, StyleGAN, Diffusion-Projected GAN, Projected GAN and Unleashing
Transformers. The resolution of real images and generated images are 256 × 256. We crop the image
randomly to 224× 224 resolution.

GenImagThe real images and generated images can be obtained at https://github.com/
GenImage-Dataset/GenImage. The images are provided by (Zhu et al., 2023). The generative model
includes: Midjourney, SD V1.4, SD V1.5, ADM, GLIDE, Wukong, VQDM and BigGAN. The real images
come from ImageNet, and different images have different resolutions. Following (Stein et al., 2023), we
resize the image to 256 × 256 resolution and adjust its format to keep the same with the generated images,
then we randomly crop it to 224 × 224 resolution to extract features. For the generated images, we report
our processing in detail as follows:
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• Midjourney. The resolution of images generated by Midjourney is 1024× 1024, and we randomly
crop them to 224× 224 resolution.

• SD V1.4. The resolution of images generated by SD V1.4 is 512 × 512, and we randomly crop
them to 224× 224 resolution.

• SD V1.5. The resolution of images generated by SD V1.5 is 512 × 512, and we randomly crop
them to 224× 224 resolution.

• ADM. The resolution of images generated by SD V1.5 is 256 × 256, and we randomly crop them
to 224× 224 resolution.

• GLIDE. The resolution of images generated by SD V1.5 is 256× 256, and we randomly crop them
to 224× 224 resolution.

• Wukong. The resolution of images generated by SD V1.5 is 512 × 512, and we randomly crop
them to 224× 224 resolution.

• VQDM. The resolution of images generated by SD V1.5 is 256× 256, and we randomly crop them
to 224× 224 resolution.

• BigGAN. The resolution of images generated by SD V1.5 is 128× 128, and we fill them with zero
pixels to 224× 224 resolution.
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