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ABSTRACT

Heterogeneous federated learning (HFL) enables clients with different compu-
tation/communication capabilities to collaboratively train their own customized
models, in which the knowledge of models is shared via clients’ predictions on
an auxiliary unlabeled dataset. However, there are two major limitations: 1)
The assumption of auxiliary datasets may be unrealistic for data-critical scenarios
such as Healthcare and Finance. 2) HFL is vulnerable to various privacy viola-
tions since the samples and predictions are completely exposed to adversaries. In
this work, we develop PrivHFL, a general and practical framework for privacy-
preserving HFL. We bypass the limitation of auxiliary datasets by designing a
simple yet effective dataset expansion method. The main insight is that expanded
data could provide good coverage of natural distributions, which is conducive to
the sharing of model knowledge. To further tackle the privacy issue, we exploit the
lightweight additive secret sharing technique to construct a series of tailored cryp-
tographic protocols for key building blocks, such as secure prediction. Our pro-
tocols implement ciphertext operations through simple vectorized computations,
which are friendly with GPUs and can be processed by highly-optimized CUDA
kernels. Extensive evaluations demonstrate that PrivHFL outperforms prior art up
to two orders of magnitude in efficiency and realizes significant accuracy gains on
top of the stand-alone method.

1 INTRODUCTION

Heterogeneous federated learning (HFL) (Li & Wang, 2019; Chang et al., 2019), as a promising
variant of federated learning (FL), enables clients equipped with different computation and commu-
nication capabilities to collaboratively train their own customized models that may differ in size, nu-
merical precision or structure (Lin et al., 2020). In particular, clients share the knowledge of models
via their predictions on auxiliary datasets, such as unlabeled problem domain datasets (Choquette-
Choo et al., 2021) and public non-problem domain datasets (Li & Wang, 2019; Lin et al., 2020).
This flexible approach facilitates customized FL-driven services in areas like Healthcare and Fi-
nance (Kairouz et al., 2019), while solving the intellectual property concerns of FL models (Atli
et al., 2020). However, HFL suffers from two major limitations: (1) The assumption of auxiliary
datasets may be unrealistic for many data-critical scenarios (Zhu et al., 2021). For example, in
Healthcare applications, task-related auxiliary datasets that contain patients’ sensitive information
are usually difficult to obtain due to current strict regulations like General Data Protection Regula-
tion. (2) Sharing predictions may still leak the privacy of local data (Papernot et al., 2017). Several
works have demonstrated that given the black-box access to a trained model, adversaries can infer
membership (Salem et al., 2019) and attribute information (Ganju et al., 2018) of the target sample,
and even can reconstruct the original training data (Yang et al., 2019). Therefore, to promote the
deployment of HFL in real-world applications, it is crucial to solve the above two problems.

To the best of our knowledge, in HFL the relaxation of the auxiliary dataset assumption has not been
explored before. Specifically, it is challenging to achieve collaborative training under heterogeneous
models when there is no an auxiliary dataset as a medium for the model knowledge transfer (Li &
Wang, 2019). On the other hand, to mitigate the above privacy risks, a natural solution is to integrate
advanced secure prediction protocols, such as CrypTFlow2 (Rathee et al., 2020), CryptGPU (Tan
et al., 2021), and HE-transformer (Boemer et al., 2019b). These schemes can protect the private in-
formation during the model knowledge transfer by utilizing homomorphic encryption (HE) (Gentry,
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2009), garbled circuit (GC) (Yao, 1986) or oblivious transfer (OT) (Naor & Pinkas, 2001) techniques
(refer to Appendix D.2 for more details). Unfortunately, such methods add huge computation and
communication overhead due to the use of heavy cryptographic primitives. For instance, Choquette-
Choo et al. (2021) recently proposed CaPC, the first private collaborative learning scheme based
on HE-transformer (Boemer et al., 2019b) supporting heterogeneous models, which can be directly
extended to HFL. As mentioned above, this work still suffers from efficiency issues, inherited from
prior secure prediction protocols. Moreover, their scheme is implemented by the interaction between
clients1, however in real-world applications, clients (e.g., mobile devices) generally cannot establish
direct communication channels with others (Bonawitz et al., 2017). Therefore, the challenge here is
how to efficiently implement secure prediction protocols in the realistic HFL setting.

In this work, to approach the above challenges, we develop PrivHFL, a general and practical frame-
work for privacy-preserving HFL. First, PrivHFL relaxes the assumption of dependence on auxil-
iary datasets and designs a simple but effective dataset expansion method only with clients’ private
datasets. To this end, we instantiate it by leveraging mixup (Zhang et al., 2018) that is originally
a regularization technique to improve generalization, and also present some exploration with other
data augmentation methods like cutout (DeVries & Taylor, 2017) and cutmix (Yun et al., 2019).
The key idea is that the expanded data could provide good coverage of natural dataset distributions
and hence could be used as an effective medium for transferring model knowledge. Second, to se-
curely and efficiently evaluate HFL, we leverage the lightweight additive secret sharing technique
(Demmler et al., 2015) to construct customized secure prediction protocols from scratch in a practi-
cal setting where there is no direct communication between clients. Our gains mainly come from the
improvement in communication and computation through the elimination of costly HE and GC pro-
tocols. Moreover, in contrast to prior works that evaluate cryptographic protocols in CPUs, PrivHFL
converts complex cryptographic operations to simple computations on large blocks of data, which
are friendly with GPUs and can be processed by highly-optimized CUDA kernels (Tan et al., 2021).
As a result, PrivHFL is suitable for the batch prediction (i.e., performing multiple predictions at the
same time) with lower amortized cost. We evaluate the designed protocol on GPUs and CPUs, and
the results show that our GPU-based protocol is up to 10× faster than its CPU analog. Our key
contributions can be summarized as follows:

• We introduce a practical HFL framework, which is independent on any auxiliary datasets
while provably providing comprehensive privacy protection.

• We design a simple yet effective dataset expansion method to promote the sharing of model
knowledge, and construct customized cryptographic protocols for secure prediction.

• Extensive experiments on SVHN, CIFAR10, Tiny ImageNet (including IID and Non-IID
settings) and various heterogeneous models demonstrate that PrivHFL outperforms prior
art up to two orders of magnitude in efficiency and realizes roughly 10% accuracy gains.

2 BACKGROUND

Before introducing PrivHFL, we first describe the heterogeneous federated learning and the threat
model, and then review the cryptographic primitives that are required to understand our work.

2.1 HETEROGENEOUS FEDERATED LEARNING

In HFL (Li & Wang, 2019; Choquette-Choo et al., 2021), the clients independently design their
own unique models, but due to the model heterogeneity, they cannot directly share model param-
eters with each other. Instead, they learn the knowledge of other models via the predictions on a
task-related auxiliary dataset, where a server routes messages between the clients since they gener-
ally cannot establish direct communication channels with others (Bonawitz et al., 2017; Bell et al.,
2020). Specifically, clients first train local models with their own private datasets. Then, each client
performs prediction on the auxiliary dataset based on the local model and sends the prediction re-
sults to the server to aggregate. Later, the server broadcasts aggregated results to clients, which will
retrain local models based on the auxiliary dataset and received predictions. The whole process is

1As shown in C.5, by carefully designing protocols, CaPC can be extended to the communication-limited
setting but at the cost of increased communication overhead.
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iterative until each local model meets the pre-defined accuracy requirement. Details can be referred
to Figure 9 and Appendix A.

2.2 THREAT MODEL

We work in an honest-but-curious adversary setting (Goldreich, 2009), where each entity (including
the clients and the server) strictly follows the specification of the designed protocol but attempts to
infer more knowledge about other clients’ private information such as model parameters and private
datasets. Moreover, to maintain the reputation and provide more services, the server does not collude
with any clients. Formally, an attacker either corrupts the server or a subset of clients but not both.
This setting is reasonable and has been widely instantiated in previous works (Phong et al., 2018;
Sun & Lyu, 2021; Choquette-Choo et al., 2021).

2.3 CRYPTOGRAPHIC PRIMITIVES

Additive secret sharing. We adopt lightweight 2-out-of-2 additive secret sharing over the ring ZL
(Demmler et al., 2015) as the cryptographic building block. We let Share(x) denote the sharing al-
gorithm that takes as input x in ZL and outputs random sampled shares [x]0, [x]1 with the constraint
x = [x]0 + [x]1 in ZL. Arithmetic operations can be implemented in the sharing form as shown in
Appendix C.4.1. The reconstruction algorithm Recon([x]0, [x]1) takes as input the two shares and
outputs x = [x]0 + [x]1 in ZL. The security of the additive secret sharing protocol guarantees that
given a share [x]0 or [x]1, the value x is perfectly hidden.

Pseudorandom generator. A Pseudorandom Generator (PRG) takes as input a uniformly random
seed and a security parameter κ, and outputs a long pseudorandom string. The security of PRG
ensures that the output is indistinguishable from the uniform distribution. In PrivHFL, PRGs enable
two parties to generate same (pseudo-) random numbers without communication. We instantiate
PRG with the technique from (Matyas, 1985) and the seed can be generated by the Diffie-Hellman
Key Agreement protocol (Diffie & Hellman, 1976). Details can be referred to Appendix C.4.2.

3 THE PRIVHFL PROTOCOL

In this section, we introduce the high-level view of PrivHFL, followed by describing in detail our
dataset expansion method and secure prediction scheme.

3.1 HIGH-LEVEL VIEW OF PRIVHFL

Synthetic Pool
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Figure 1: High-level view of PrivHFL

PrivHFL follows prior HFL works (Li & Wang, 2019) and iteratively optimizes the clients’ models.
Each client in PrivHFL can play the role of the querying party and the answering party at the same
time, and without loss of generality, we denote them as PQ and PA, respectively. As shown in Figure
1, in each iteration, each PQ performs four-phase operations with other PA, i.e., local training,
query-data generation, secure querying, and re-training. In detail, clients first train the local model
on their own private datasets, which is the baseline any future improvements will be compared
with. After that, by utilizing our dataset expansion method, each PQ can generate the query data
to query other PA (C fraction of all clients) for prediction results. To protect the privacy of query
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samples, predictions and model parameters, clients adopt our secure prediction protocol and conduct
collaborative querying in the ciphertext form. To the end, each client can retrain the local model
based on the private dataset, as well as the query samples and corresponding prediction results.
Algorithm 1 in Appendix C.1 gives the detailed description of PrivHFL.

3.2 QUERY-DATA GENERATION

To relax the assumption of auxiliary datasets, we design and instantiate an effective dataset expan-
sion method, inspired by the success of mixup (Zhang et al., 2018) in improving model general-
ization and the efficiency of knowledge distillation (Wang et al., 2020). Specifically, we repurpose
mixup to construct a big synthesized pool on the small private dataset, which could provide a good
coverage of the manifold of natural samples. Given any two private samples xi and xj , we generate
multiple synthetic query samples by a convex combination with different coefficients λ as follows:

x̃i,j(λ) = λ · xi + (1− λ) · xj . (1)

Empirically, we set λ ∈ [0.1, 0.9] with an interval of 0.1 to generate more diverse synthetic images.
We also explore the influence of different λ values in Appendix B.3 and Table 5. This simple method
can exponentially expand the size of initial dataset and hence provide more candidate samples for
query. Following CaPC (Choquette-Choo et al., 2021), we use random sampling and active learning
strategies (Tong & Koller, 2001) in Appendix C.3 to select informative samples from the synthesized
pool. Note that an alternative solution is to directly use private datasets to query like knowledge
distillation (Hinton et al., 2015). We compare against this method in Section 4.

Extensions of mixup-based method. Dataset expansion based on private samples is a universal
and modular method, therefore it can be readily extended with techniques in data augmentation
literature. For example, one may replace the mixup-based dataset expansion in PrivHFL with recent
methods such as cutout (DeVries & Taylor, 2017) and cutmix (Yun et al., 2019). We present some
exploration and experiments with these extensions in Appendix B.1 and Figure 11.

3.3 SECURE QUERYING PROTOCOL

As shown in Appendix G and Figure 19, it is entirely possible to reconstruct the original image from
the mixup-synthetic samples. To further protect the privacy of query samples as well as predictions
and model parameters, we design a secure querying protocol by exploiting the lightweight additive
secret sharing technique, rather than heavy HE and GC techniques. Recall that in our querying
protocol, three entities are included, i.e., the server, PQ and PA. The challenge here is how to
efficiently implement such protocol under strict communication constraints, i.e., the communication
channels cannot be established among clients. To tackle this challenge, the key idea is to outsource
the secure querying task to the server and PA, and then design a PQ-assisted customized protocol
to accelerate the evaluation. Moreover, an important design principle is to conduct a GPU-friendly
protocol that mainly includes vectorized operations and hence is suitable for batch prediction with
better amortized costs. In the following, we decompose our scheme into three steps: query-data
sharing, secure prediction, and result aggregation.

Query-data sharing. We first construct PRG seeds in pairs for PQ, PA and the server, denoted as
SkQA, SkSA, and SkSQ, which are used to generate same random numbers without communication
(refer to Figure 18 and Appendix C.4.1). Figure 2 shows our query-data sharing protocol ΠShare, in
which PQ secret-shares the query data x to the server and PA for secure prediction. In particular,
PQ non-interactively shares [x]0 = r with PA using PRGs on the same seed SkQA. After that, PQ
computes and sends [x]1 = x− r to the server.

Server𝑷𝑷𝑄𝑄 𝑷𝑷𝐴𝐴
Query data 𝑥𝑥

𝑟𝑟 ← 𝑃𝑃𝑃𝑃𝑃𝑃(𝑆𝑆𝑆𝑆𝑄𝑄𝐴𝐴) 𝑥𝑥 − 𝑟𝑟
[𝑥𝑥]0 =𝑟𝑟[𝑥𝑥]1=𝑥𝑥 − 𝑟𝑟

𝑟𝑟 ← 𝑃𝑃𝑃𝑃𝑃𝑃(𝑆𝑆𝑆𝑆𝑄𝑄𝐴𝐴)

Figure 2: Secure query-data sharing protocol ΠShare

Secure prediction. Recently, many works achieve secure prediction protocols in client-server set-
ting (i.e., 2-party setting), such as the SOTA CrypTFlow2 (Rathee et al., 2020) or HE-Transformer
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(Boemer et al., 2019a) adopted by CaPC (Choquette-Choo et al., 2021). However, such methods
add a huge overhead due to the use of heavy cryptographic primitives, e.g., HE and GC. The most
efficient secure prediction protocol by far is CryptGPU (Tan et al., 2021) under the 3-party setting,
but it cannot be directly applied to HFL due to the inability to communicate between clients. To
achieve the efficiency of secure prediction and adapt to the communication-limited scenarios, we
design customized protocols for the linear layers and non-linear layers2 from scratch. Figure 17 in
Appendix C.2 gives a graphic depiction of end-to-end secure prediction. Below, we elaborate on the
evaluation of the linear layers, ReLU and MaxPooling.

Server𝑷𝑷𝑄𝑄 𝑷𝑷𝐴𝐴

𝑎𝑎, [𝑐𝑐]0← 𝑃𝑃𝑃𝑃𝑃𝑃(𝑆𝑆𝑆𝑆𝑄𝑄𝐴𝐴)
𝑏𝑏 ← 𝑃𝑃𝑃𝑃𝑃𝑃(𝑆𝑆𝑆𝑆𝑆𝑆𝑄𝑄) 𝜔𝜔 + 𝑎𝑎

[𝑥𝑥]1-𝑏𝑏
[𝑦𝑦]0 = 𝜔𝜔[𝑥𝑥]0+𝜔𝜔([𝑥𝑥]1−𝑏𝑏) − [𝑐𝑐]0

𝑎𝑎, [𝑐𝑐]0← 𝑃𝑃𝑃𝑃𝑃𝑃(𝑆𝑆𝑆𝑆𝑄𝑄𝐴𝐴)

[𝑐𝑐]1= 𝑎𝑎𝑏𝑏 − [𝑐𝑐]0
[𝑦𝑦]1= (𝜔𝜔 + 𝑎𝑎)𝑏𝑏-[𝑐𝑐]1

𝑏𝑏 ← 𝑃𝑃𝑃𝑃𝑃𝑃(𝑆𝑆𝑆𝑆𝑆𝑆𝑄𝑄)

Model parameter 𝜔𝜔 ,[𝑥𝑥]1 [𝑥𝑥]0

Figure 3: Secure matrix multiplication protocol ΠMatmul

(i) Linear layers. Linear layers’ evaluation follows the idea of the Beaver’s multiplication in Ap-
pendix C.4.1, but we improve the communication efficiency using PRGs. Specifically, PA and the
server compute matrix multiplication ωx, where the model parameter ω is held by PA and the input
x is secret-shared between PA and the server. Given that ωx = ω[x]0 + ω[x]1, PA can compute
ω[x]0 locally. As shown in Figure 3, we design an efficient protocol ΠMatmul for evaluating ω[x]1.
In particular, PQ first generates three random matrices a, b and [c]0 using PRGs, and computes [c]1
that satisfies [c]1 + [c]0 = a · b. Accordingly, the server can generate the same b using PRGs based
on SkSQ, and PA obtains a and [c]0 using PRGs based on SkQA. (a, b, c) is the Beaver’s triple
with the constrain c = ab to mask the inputs of PA and the server. Later, the server and PA call the
Beaver’s multiplication protocol in Appendix C.4.1 to jointly compute [y]1 and [y]0, i.e., the secret
shares of ωx. Note that the evaluation of fully-connected, convolutional, and AvgPooling layers can
be derived directly from ΠMatmul (Wagh et al., 2019; Rathee et al., 2020).

(ii) ReLU. The formula of ReLU is ReLU(x) = x · DReLU(x), where DReLU(x) = 1 − sign(x)3,
namely that it equals 1 if x ≥ 0 and 0 otherwise. Since the multiplication of x and DReLU(x)
can be implemented by the protocol ΠMatmul, we mainly focus on the evaluation of DReLU(x), i.e.,
sign(x). The insight is to convert the calculation of sign(x) to the calculation of sign(r · x) where r
is a random positive number. Based on the above observation, we design a secure DReLU protocol
ΠDReLU as shown in Figure 4. In detail, PA and the server first generate a random positive value r
using PRGs with SkSA, and compute [z] = r[x] locally. Then they send the secret-shared value [z]
to PQ. Note that since r is randomly generated, the value of r · x is also a random number in the
domain. Similar ideas are also applied to other privacy-preserving machine learning works (Wagh
et al., 2019; Shen et al., 2020). After that, PQ computes the sign of z, i.e., the sign of x. sign(z) is
shared to the server and PA based on protocol ΠShare in Figure 2.

Server𝑷𝑷𝑄𝑄 𝑷𝑷𝐴𝐴
[𝑥𝑥]0

[𝑧𝑧]0−𝛿𝛿[𝑧𝑧]0−𝛿𝛿 + [𝑧𝑧]1
𝛿𝛿, 𝛿𝛿′ ← 𝑃𝑃𝑃𝑃𝑃𝑃(𝑆𝑆𝑆𝑆𝑄𝑄𝐴𝐴)

𝑧𝑧 = [𝑧𝑧]0−𝛿𝛿 + [𝑧𝑧]1+𝛿𝛿 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑧𝑧) − 𝛿𝛿′

𝑟𝑟 ← 𝑃𝑃𝑃𝑃𝑃𝑃(𝑆𝑆𝑆𝑆𝑆𝑆𝐴𝐴)
[𝑧𝑧]1= 𝑟𝑟[𝑥𝑥]1

[𝑦𝑦]1= 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑧𝑧) − 𝛿𝛿′

[𝑧𝑧]0= 𝑟𝑟[𝑥𝑥]0
𝑟𝑟 ← 𝑃𝑃𝑃𝑃𝑃𝑃(𝑆𝑆𝑆𝑆𝑆𝑆𝐴𝐴)

𝛿𝛿, 𝛿𝛿′ ← 𝑃𝑃𝑃𝑃𝑃𝑃(𝑆𝑆𝑆𝑆𝑄𝑄𝐴𝐴)

[𝑦𝑦]0= 𝛿𝛿′

[𝑥𝑥]1

Figure 4: Secure DReLU protocol ΠDReLU

2Deep learning models consist of a sequence of linear layers (e.g., fully-connected layers, convolutional
layers and AvgPooling) and non-linear layers (e.g., ReLU and MaxPooling).

3The sign(x) function is the most significant bit (MSB) of the value x.
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(iii) Maxpooling. Maxpooling on m values is computed by using a tree-reduction algorithm, which
recursively partitions the input into two halves and then compares the elements of each half. Specif-
ically, clients arrange the m values into a 2-ary tree with depth log2m, and evaluate the tree in a
top-down fashion. Compared with the method in Rathee et al. (2020) that requires m − 1 commu-
nication rounds, our method achieves lower communication rounds with comparable computational
overhead. In each comparison of two secret-shared element [x] and [y], we reduce it to the eval-
uation of ReLU. We observe max([x], [y]) = ReLU([x] − [y]) + [y], and hence the computational
complexity of Maxpooling evaluation mainly comes from the evaluation of m− 1 ReLU.

Result Aggregation. After the secure prediction, the server and each answering partyP jA hold the
shares of predicted logits [xj ], j ∈ [n], which will be aggregated and then returned to PQ. As
shown in Figure 5, P jA and PQ first generate a random value rj based on PRGs. Then each P jA
computes [xj ]0 − rj and sends it to the server. The server aggregates all received values and sends∑n
j=1

(
[xj ]0 − rj + [xj ]1

)
to PQ. Thus, PQ can reconstruct the aggregated logit y =

∑n
j=1 xj and

obtains the soft label of the query data.

Server

[𝑥𝑥𝑗𝑗]1, 𝑗𝑗 ∈ [𝑛𝑛]
𝑷𝑷𝑨𝑨
𝒋𝒋 , 𝑗𝑗 ∈ [𝑛𝑛]

[𝑥𝑥𝑗𝑗]0
𝑟𝑟𝑗𝑗 ← 𝑃𝑃𝑃𝑃𝑃𝑃(𝑆𝑆𝑆𝑆𝑄𝑄𝑄𝑄)

[𝑥𝑥𝑗𝑗]0−𝑟𝑟𝑗𝑗∑𝑗𝑗=1𝑛𝑛 ([𝑥𝑥𝑗𝑗]0−𝑟𝑟𝑗𝑗 + [𝑥𝑥𝑗𝑗]1)

𝑷𝑷𝑄𝑄

𝑟𝑟𝑗𝑗 ← 𝑃𝑃𝑃𝑃𝑃𝑃(𝑆𝑆𝑆𝑆𝑄𝑄𝑄𝑄)

𝑦𝑦 = ∑𝑗𝑗=1𝑛𝑛 ([𝑥𝑥𝑗𝑗]0 − 𝑟𝑟𝑗𝑗 + 𝑥𝑥𝑗𝑗 1
)+∑𝑗𝑗=1𝑛𝑛 𝑟𝑟𝑗𝑗

𝑦𝑦 ← 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑥𝑥(𝑦𝑦)

Figure 5: Secure result aggregation protocol ΠAgg

GPU Acceleration. Our protocols mainly consists of GPU-friendly vectorized secret-sharing,
which can be processed by highly-optimized CUDA kernels. However, for multiplication opera-
tions, existing CUDA kernels are designed to operate on floating-point inputs. In PrivHFL, we
typically compute over integer values. To leverage optimized kernels for protocol acceleration,
our PrivHFL integrates the CUDALongTensor abstract in CryptGPU (Tan et al., 2021) that embeds
the integer-valued cryptographic operations into floating-point arithmetic (refer to Appendix C.6
for more details). However, CryptGPU’s protocols cannot be directly extended to PrivHFL in the
communication-limited scenario, and hence we redesign all cryptographic protocols from scratch.

Security analysis of PrivHFL. We give a formal security proof in Appendix E. Intuitively, PrivHFL
reveals zero information to PA and the server, and only reveals the final aggregated prediction to
PQ, since all intermediate values are secret-shared4. Given the above, a corrupted PA cannot learn
anything about the query data of querying parties, while the confidentiality of answering parties’
model parameters against corrupted PQ is also protected.

3.4 DISCUSSIONS

Discussions on differential privacy extension. The differential privacy (DP) guarantee can com-
plement PrivHFL. A well-designed DP mechanism can be used as a plug-and-play module to pre-
vent privacy leakage from the aggregated result. While several works have been proposed in the
deep learning domain (Papernot et al., 2017; Sun & Lyu, 2021; Choquette-Choo et al., 2021), this
is non-trivial to design a customized DP mechanism for HFL, because the privacy-utility tradeoff is
difficult to resolve. Especially, the privacy guarantee will deteriorate with the increase of corrupted
clients, unless it is mitigated by adding more DP noises at the cost of accuracy. In our setting, we
assume up to n− 1 (n is the number of clients) clients can be corrupted such that the above problem
will be escalated to the worst case. Therefore, it is an interesting and challenging work to design a
high-utility DP mechanism in the distributed scenario where multiple clients may be corrupted.

Discussions on scalability. In PrivHFL and general heterogeneous federated learning, each client
can play the role of the querying party and the answering party at the same time (Li & Wang,
2019). This will incur the overhead of O(n2) secure predictions for each iteration, where n is the
number of clients. As the size of the model or the number of clients increases, such overhead issue

4Note that the reveal in the DReLU protocol are masked intermediate values, rather than plain values.
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(especially communication overhead) will become the main bottleneck for the scalability of the
system. Currently, the system can only carry a small number of clients and medium-sized models.
Hence, we view PrivHFL as a first step in constructing privacy-preserving protocols for HFL.

4 EVALUATION

4.1 EVALUATION SETUP

Datasets and models. We evaluate PrivHFL on three image datasets (SVHN, CIFAR10 and Tiny
ImageNet). By default, we assume independent and identically distributed (IID) training data among
clients, and the Non-IID setting can be found in Appendix B.3. For SVHN and CIFAR10, following
CaPC we set the number of clients n = 50 and use VGG-7, ResNet-8 and ResNet-10 architectures
as the clients’ local models. For Tiny ImageNet, we use ResNet-14, ResNet-16, ResNet-18 architec-
tures and set n = 10. Unless otherwise stated, we only report the accuracy after one iteration, and
each model architecture is used by n/3 clients. Refer to Appendix F for more experimental setup.

Cryptographic protocol. We build PrivHFL on top of CryptGPU (Tan et al., 2021), but reimple-
ment the underlying cryptographic protocols proposed in Section 3. We set the security parameter
κ as 128. As recommended by CryptGPU, we set secret-sharing protocols over the 64-bit ring Z264 ,
and encode inputs using a fixed-point representation with 20-bit precision.
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Figure 6: The performance of PrivHFL on different query datasets: the private dataset and
the synthetic datset based on mixup. We report the average accuracy of each model architecture.

4.2 EVALUATION ON THE HETEROGENEOUS FEDERATED LEARNING

Table 1: Test accuracy of PrivHFL on different fractions of participating clients and differ-
ent numbers of query data. We also report the model accuracy trained on the local dataset (i.e.,
baseline described in Section 3.1), and the model accuracy retrained on the private data-based query.

SVHN CIFAR10 Tiny ImageNet

C = 0.6 C = 0.8 C = 1 C = 0.6 C = 0.8 C = 1 C = 0.6 C = 0.8 C = 1

Baseline 75.46 56.66 22.26

Private data 79.43 79.56 80.29 60.82 61.01 61.49 24.89 25.11 25.23

mixup data

2.5K 80.09 80.32 81.69 62.87 63.05 63.23 25.82 26.03 26.23
5.0K 83.32 83.52 83.82 63.04 63.44 63.69 26.22 26.46 26.75
7.5K 84.54 84.78 85.12 62.97 63.64 63.88 27.14 27.54 27.75
10K 84.58 84.97 85.62 63.79 63.82 64.56 27.67 28.19 28.46

Table 1 shows the detailed results on the performance improvement (i.e., accuracy gains) brought by
PrivHFL, where we randomly select synthetic data to query instead of using active learning strate-
gies. We observe that for SVHN and CIFAR10, the accuracy gain is about 10% when we use 10K
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mixup samples. However, using the private dataset-based query strategy only increases the accuracy
by about 4%. Table 1 also shows different accuracy gains as the number of mixup data increases, in
which compared with 2.5K mixup data, we obtain 4.65%, 1.33%, 3.23% increased accuracy using
10K samples on SVHN, CIFAR10 and Tiny ImageNet, respectively. This is because more synthetic
data could provide a better coverage of natural dataset distributions. Besides, with the increase of
participating fraction C, the accuracy improves slightly.Figure 6 and Figure 7 show the improve-
ment of different heterogeneous models under different iterations and different numbers of query
data. We observe that as the number of query data increases, PrivHFL consistently outperforms the
baseline for the above datasets and heterogeneous models.
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Figure 7: Test accuracy of heterogeneous models after PrivHFL as the number of query data
increases. Dashed lines represent the baseline, i.e., the test accuracy before executing PrivHFL.

Ablation study of PrivHFL. Figure 11(c) in Appendix B.1 illustrates the effectiveness of different
data expansion methods. Figure 12 and Figure 16 in Appendix B.3 further illustrate the impact of
active learning strategies and the number of private data samples on the test accuracy, respectively.
Besides, we also show the test accuracy of PrivHFL on CIFAR10 and SVHN for different degrees
of Non-IID-ness in Figure 15 in Appendix B.3.

4.3 EVALUATION ON THE CRYPTOGRAPHIC PROTOCOLS

Table 2: Runtime (sec) of the three steps in PrivHFL’s secure querying protocol. The runtime of
secure prediction represents the query time of each client on different models. CIFAR10 and SVHN
have the same time due to the same input size and model architecture.

Dataset # Queries 1. Query-data sharing 2. Secure prediction 3. Result aggregation

VGG7 ResNet8 ResNet10

CIFAR10
(SVHN)

1000 5.08 55.97 87.71 106.46 0.09
2500 7.16 133.52 206.20 256.39 0.12
5000 11.32 271.89 428.54 512.88 0.30

ResNet14 ResNet16 ResNet18

Tiny
ImageNet

1000 9.87 737.43 962.51 1075.13 0.18
2500 18.78 1778.69 2356.33 2537.49 0.32

We mainly focus on the extra overhead caused by the secure querying phase. To clearly illustrate the
efficiency of PrivHFL, unless otherwise specified, we only show the overhead of one communication
round as shown in Section 3. Recall that our secure querying protocol consists of three phases, i.e.,
query-data sharing, secure prediction, and result aggregation. As shown in Table 2, the main cost of
our framework comes from the second phase, where the evaluation of batched secure prediction is
required. Specifically, it takes 4.5 minutes to evaluate 5000 query samples securely on VGG7 and
CIFAR10. Besides, only 11.32 seconds and 0.3 seconds are spent on the query-data sharing and
result aggregation phases. More runtime is required to evaluate Tiny ImageNet because of increased
input size and model architecture.

To demonstrate the effectiveness of PrivHFL’s secure prediction protocol, we compare with CrypT-
Flow2 (Rathee et al., 2020) and CryptGPU (Tan et al., 2021). In Table 4 of Appendix B.2, we also
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Table 3: Runtime (sec) and communication cost (MB) of secure prediction for different meth-
ods on CIFAR10. CrypTFlow2 (Rathee et al., 2020) is the SOTA 2-party protocol that contains
two variants (OT-based and HE-based) and CryptGPU (Tan et al., 2021) is the SOTA 3-party GPU-
friendly protocol. We report the cost of a single prediction on three models.

Method VGG7 ResNet8 ResNet10

Time Comm. Time Comm. Time Comm.

CrypTFlow2-OT (Rathee et al., 2020) 39.22 15562.9 39.35 21261.6 55.76 28517.6
CrypTFlow2-HE (Rathee et al., 2020) 48.70 651.51 56.21 1110.39 97.46 1395.18

CryptGPU (Tan et al., 2021) 1.61 144.51 2.02 131.39 2.79 221.57

This work (CPU) 1.03 66.61 1.63 73.85 2.00 105.88
This work (GPU) 0.35 66.61 0.36 73.85 0.53 105.88

compare with CaPC (Choquette-Choo et al., 2021) that uses HE-Transformer as the building block.
Table 3 summarizes this improvement for three models over CIFAR10. We observe that, PrivHFL
achieves significant improvement on all the models in terms of runtime and communication costs.
To be specific, PrivHFL requires 105.2-112.0 × less runtime and 233.6-269.3 × less communica-
tion compared with CrypTFlow2-OT. Similarly, compared with CrypTFlow2-HE, we show a greater
advantage (i.e., 139.1-183.8×) in runtime, and a relatively small advantage (i.e., 9.7-15.0×) in com-
munication overhead. In addition, we also test the performance under the CPU architecture. Notably,
even comparing with CryptGPU, our weaker CPU setting obtains an improvement of roughly 1.5 ×
and 2 × in terms of computation and communication overheads, respectively.
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Figure 8: Runtime (sec) of batch secure prediction on CPU and GPU settings as the batch size
increases. We report the result of VGG-style and ResNet-style networks on CIFAR10.

To further understand the impact of GPU acceleration on PrivHFL, we evaluate our secure prediction
protocol under both the CPU and GPU settings with different batch size in Figure 8. We observe that
the GPU-based secure prediction is always superior to the CPU analogs. As the batch size increases,
the advantages of GPU-based protocols becomes more pronounced, e.g., the 9.5 × reduction on
ResNet8 over a batch of 64 images.

5 CONCLUSION

In this paper, we propose a practical heterogeneous federated learning framework, which is inde-
pendent on auxiliary datasets while provably guaranteeing the privacy of samples, model parameters
and predictions. Extensive experiments demonstrate that PrivHFL outperforms prior art two orders
of magnitude in efficiency and realizes about 10% accuracy gains. In the future, we will further
improve the scalability of the system and integrate with advanced differential privacy mechanisms.
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A HETEROGENEOUS FEDERATED LEARNING

In federated learning (FL), multiple clients collectively learn a single model with a fixed architecture,
in which each client maintains a local model for the private dataset, while the server maintains a
global model via aggregating the local model gradients from clients. Although successful, FL is
often restrictive in practice, since it assumes all clients sharing the same model architecture. To
tackle this problem, heterogeneous federated learning (HFL) is proposed, which enables clients to
collaboratively train their own customized models that may differ in size or structure. Due to the
heterogeneity in local models among clients, it’s not possible to collaborate via sharing gradients
like FL. As shown in Figure 9, generally, HFL uses a task-related auxiliary dataset to assist in
collaborative learning. To be specific, each client first trains the local model with individual private
dataset and then performs inference on the auxiliary dataset to obtain the prediction results, which
are sent to the server to aggregate, rather than the local model gradients. Then, the server broadcasts
the aggregated results to clients, and the clients will retrain local models based on the auxiliary
dataset and the received predictions.

Server

Local Model

Local Data

Local Model

Local Data

Local Model

Local Data

Broadcast the global model

…

Server

Local Model

Local Data

Local Model

Local Data

Local Model

Local Data
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Model prediction
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Figure 9: Comparison with federated learning and heterogeneous federated learning

B ADDITIONAL EXPERIMENTAL RESULTS

B.1 UNDERSTANDING DATASET EXPANSION

Recall that we instantiate the dataset expansion method by leveraging mixup (Zhang et al., 2018)
in Section 3.2. To explore the effectiveness of the mixup-based datset expansion method, we vi-
sualize the feature distribution of original data and synthetic samples on SVHN and CIFAR10. As
shown in Figure 11(a) and Figure 11(b), the synthetic samples cover a larger part of the feature
space and hence they should be more diverse and informative compared with original data. In other
words, it could provide a good coverage of the manifold of natural samples. Therefore, learning the
predictions from other clients on the synthetic samples can further improve the accuracy of local
models.

Note that our dataset expansion method is universal and reconfigurable, which can be extended by
leveraging other data augmentation strategies. Figure 11(c) gives the accuracy gains under various
data augmentation strategies, including random sampling from Gaussian distribution, random flip-
ping, cutmix and cutout. Cutmix (Yun et al., 2019) can be formulated as x̃i,j = M ·xi+(1−M)·xj ,
where M ∈ {0, 1}W×H is a binary mask matrix of size W × H to indicate the location of drop-
ping out and filling from the two images xi and xj . Cutout (DeVries & Taylor, 2017) augments
the dataset with partially occluded versions of original samples. Figure 10 shows the overview of
the results of these five strategies on an original image. As shown in Figure 11(c), the Gaussian
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noise-based and random flipping-based dataset expansion strategies dramatically reduce the model
accuracy. The main reason is that the two strategies do not necessarily model the problem domain
distributions and do not provide informative natural images. In contrast, the strong data augmen-
tation strategies, cutout and cutmix, are good choices for data generation in PrivHFL. Like mixup,
these two methods can construct a big synthesized pool on a small private dataset that could provide
a good coverage of the manifold of natural samples, to better distill knowledge of heterogeneous
models.

Gaussian Noise Random Flipping CutoutCutmix Mixup

Figure 10: Overview of the results of Gussian noise, random flipping, cutmix, cutout, and
mixup data augmentation strategies.

B.2 EXPERIMENTAL RESULTS FOR SECURE PREDICTION

In the model querying phase, we leverage the GPU parallelism to process private querying on a
batch of images, which effectively amortize the cost of private inference. In Table 4, we compare our
GPU-friendly method on MNIST using the three model architectures (CryptoNets (Gilad-Bachrach
et al., 2016), CryptoNets-ReLU (Gilad-Bachrach et al., 2016) and MLP (Boemer et al., 2019b))
with HE-Transformer, which also achieves batch-axis packing for private inference. Note that CaPC
(Choquette-Choo et al., 2021) also adopt HE-Transformer as the building block. We can observe that
PrivHFL is up to three orders of magnitude faster than HE-Transformer on the CryptoNets-ReLU
and MLP models. The main reason is the efficiency of the protocol and the parallelism supported
by the GPU. However, when evaluating CryptoNets that replaces ReLU activations with squared
approximation, the improvement from PrivHFL will gradually decrease as the batch size increases,
because the HE-based method does not require communication during the entire evaluation pro-
cess. Note that approximations result in significant accuracy losses and degrades user experience,
especially when evaluating modern large-scale models.

B.3 EXPERIMENTAL RESULTS FOR HETEROGENEOUS FEDERATED LEARNING

Impact of different active learning strategies. Figure 12 depicts the impact of different active
learning strategies, in which even random sampling can drastically improve the model accuracy by

(a) Feature distribution on SVHN. (b) Feature distribution on CI-
FAR10.
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Figure 11: Understanding the importance of dataset expansion on improving model perfor-
mance. In (a) and (b), the bright colored points indicate the position of the original training data in
the feature space, and the light blue points indicate the distribution of the expanded points based on
mixup in the feature space. In (c), the left and right dashed lines are the baseline test accuracy on
CIFAR10 and SVHN, respectively.

14



Under review as a conference paper at ICLR 2022

Table 4: Runtime (sec) of secure prediction for HE-Transformer and our PrivHFL on MNIST
as the batch size increases. He-Transformer is the 2-party secure prediction protocol used in CaPC
(Choquette-Choo et al., 2021).

Model BS=128 BS=256 BS=512 BS=1024 BS=2048

Ours HE-T Ours HE-T Ours HE-T Ours HE-T Ours HE-T

CNet1 0.07 17.75 0.14 17.56 0.25 17.62 0.49 17.77 0.99 17.67
CNet2 0.07 48.83 0.15 70.14 0.26 112.42 0.51 201.42 1.01 369.51
MLP 0.05 65.01 0.06 86.37 0.10 129.81 0.16 216.61 0.29 391.13
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Figure 12: Using PrivHFL with active learning strategies to improve model accracy on SVHN
and CIFAR10 datasets. Dashed line represents the baseline accuracy of models, and the histogram
represents the accuracy of the model after PrivHFL based on different active learning strategies.

4.46%-9.66% and 6.57%-7.22% on SVHN and CIFAR10 datasets. Nonetheless, we can also achieve
additional benefits leveraging active learning, such as 1.44% gains on SVHN with the entropy sam-
pling and 0.8 % gains on CIFAR10 with the margin sampling.

Impact of the Non-IID-ness degree. We use the Dirichlet distribution Dir(α) as in Lin et al. (2020)
to simulate disjoint Non-IID training data. Figure 14 visualizes the distributions of Non-IID samples
among clients with different Dir(α) on CIFAR10 dataset, where the number of clients n = 20. The
value of α controls the degree of Non-IID-ness, in which a smaller α indicates higher degree of
Non-IID-ness. When α = 100, the distribution closes to uniform sampling. When α = 0.5,
the distribution of samples of each class among clients is extremely uneven. Figure 15 shows the
test accuracy of PrivHFL on SVHN and CIFAR10 for different degrees of Non-IID-ness. We can
observe that the higher the degree of Non-IID-ness, the lower the accuracy of the model. However,
in this case, the mixup-based data expansion method can still significantly improve the performance
of models.

Impact of the private data volume. Figure 16 illustrates the impact of private data volume on the
test accuracy. We can observe that as the private data volume increases, the performance of models
is on the rise. The main reason is that the model can learn more knowledge from more private
training data, and it can also generate more mixup synthetic samples to query, so as to promote the
sharing of model knowledge.

Impact of the normalization operation. As described in Figure 5, we directly aggregate the pre-
dicted logits instead of the normalized values. There are two major reasons: i) The normalization
operation in the secure computation will introduce extra communication and computation overheads,
since it contains costly multiplication and division operations (Knott et al., 2021). ii) The diverse
logits of the heterogeneous models may contain informative content and hence facilitate model ac-
curacy. This phenomenon is particularly prominent on complex datasets. As shown in Figure 13,
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Table 5: Impact of the coefficient λ in mixup on CIFAR10.
mixup λ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Accuracy 61.93 61.82 61.42 61.37 61.38 61.35 61.80 61.53 61.73

VGG7 ResNet8 ResNet10
60

65

70

75

80

85

90

95
Ac

cu
ra

cy
 (%

)

W/o normalization
With normalization

(a) SVHN

VGG7 ResNet8 ResNet10
50

55

60

65

70

Ac
cu

ra
cy

 (%
)

W/o normalization
With normalization

(b) CIFAR10

Figure 13: Impact of the normalization operation on the accuracy of heterogeneous models
on SVHN and CIFAR10 datasets. Dashed line represents the average accuracy of heterogeneous
models when only private data is used for query.

the model accuracy on CIFAR10 without normalization is about 5% higher than that with normal-
ization. On SVHN, the influence of normalization is negligible, since this classification task is
relatively simple.

Impact of the coefficient λ in mixup. Table 5 shows the impact of different mixup coefficients
λ on the model accuracy over CIFAR10. For each result, we only use one coefficient to generate
synthetic images. We can observe that in different coefficient values, the model accuracy remains
almost unchanged, and hence the coefficient of mixup has a negligible effect on the accuracy of the
heterogeneous models in PrivHFL. Therefore, we set λ ∈ [0.1, 0.9] with an interval of 0.1 in our
experiments to generate more diverse synthetic images.

C MISSING DETAILS ON PRIVHFL

C.1 ALGORITHMIC DESCRIPTION

Algorithm 1 gives the detailed description of the PrivHFL framework. In PrivHFL, each client first
trains the local model Mj to convergence on the private dataset. Later, clients improve the perfor-
mance of local models based on the knowledge of others via the predictions on the synthetic dataset.
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Figure 14: Visualization of Non-IID-ness among clients with different Dirichlet distribution α
values on CIFAR10 dataset. The size of scattered points indicates the number of training samples
for a class available to that client.
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Figure 15: The test accuracy of PrivHFL on SVHN and CIFAR10 with different degrees of
Non-IID-ness. The number of clients n = 20.
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Figure 16: Impact of different amounts of private data on the accuracy of models on SVHN
and CIFAR10. The number of clients n = 50, and the number of private data samples for each
client ranges from 200 to 1000.
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Therefore, they need to first construct a big unlabeled data pool based on the small number of pri-
vate data, and then actively choose a subset from the pool as the query data in each iteration. Next,
they perform the secure querying protocol based on the query data, and obtains the final predictions,
which will be used to retrain the local model. Query-data generation and secure querying process
(refer to Section 3 for more details) will iterate iter times until the model Mj achieves pre-defined
performance.

Algorithm 1 The PrivHFL framework.
Input: Each client Pj , j ∈ [n], holds a private dataset Dj and a customized local model Mj . iter

denotes the number of training iterations, where in HFL an iteration means that all clients have
completed one knowledge transfer. B denotes the number of the query dataset and C denotes
the set of selected answering parties in current query phase.

Output: Trained models Mj , j ∈ [n].
1: for each j ∈ [n] do
2: Pj locally trains the local modelMj onDj using the stochastic gradient descent optimization.
3: end for
4: for each iter do
5: for each querying party P jQ, j ∈ [n] do
6: P jQ generates an unlabeled synthetic poolDjpool with its own private datasetDj by utilizing

the dataset expansion method in Section 3.2.
7: P jQ applies the active learning methods in Section C.3 to select the query dataset {xb}b∈[B]

from Djpool.
8: for each answering party P iA, i ∈ C do
9: P jQ secret-shares {[xb]}b∈[B] with P iA and the server, based on the protocol ΠShare.

10: P iA, P jQ and the server jointly perform the secure querying protocol in Section 3.3.
11: P iA secret-shares the predictions {[yib]}b∈[B] to PQ and the server.
12: end for
13: P jQ computes {yb}b∈[B] with yb =

∑
i∈C y

i
b via performing the secure result aggregation

protocol ΠAgg with the server.
14: P jQ retrains its local model based on the query dataset {xb, yb}b∈[B] and private datasetDj .
15: end for
16: end for

C.2 GRAPHIC DEPICTION OF END-TO-END SECURE PREDICTION

Figure 17 gives a graphic depiction to illustrate the end-to-end secure prediction implemented across
all the layers, where the inputs are secret-shares of image x, i.e., [x]0 and [x]1 (as shown in Figure
20). The inputs first pass through a convolutional layer that mainly contains matrix multiplication
operations ω1·x (ω1 is the parameter of this layer) and can be implemented by the protocol ΠMatmul in
Figure 3. The outputs of this layer are in the secret sharing form, i.e., [y1]0 and [y1]1 obtained by PA
and the server, respectively. For the ReLU layer, recall that ReLU(y1) = y1 ·DReLU(y1). Therefore,
the protocol ΠDReLU in Figure 4 is executed first to obtain DReLU(y1)’s shares [DReLU(y1)]0 and
[DReLU(y1)]1. Then, PA and the server invoke an instance of the protocol ΠMatmul, and obtain
[y2]0 and [y2]1, respectively. The outputs of ΠDReLU are the inputs of the subsequent MaxPooling
layer. As described in Section 3.3 (iii), MaxPooling on n values can be converted into n− 1 ReLU
operations. Therefore, the output of this layer is also in the secret sharing form. When the inference
goes to the final fully-connected layer with inputs [yn−1]0 and [yn−1]1 owned by PA and the server,
respectively, the protocol ΠMatmul is executed. In the end, PA and the server obtain the secret-shares
of the predicted logit, i.e., [logit]0 and [logit]1, respectively.

C.3 ACTIVE LEARNING STRATEGIES

In order to choose query data that most likely contribute to improve the performance of local mod-
els, inspired by CaPC (Choquette-Choo et al., 2021), active learning is adopted. To be specific,
active learning allows local models to actively choose the data from which they learn, which con-
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Figure 17: The whole private inference implemented across all the layers. Orange boxes rep-
resent linear layers (including convolutional/fully-connected/AvgPooling layers), and blue boxes
represent non-linear layers (including ReLU/MaxPooling layers).

tains various pool sampling strategies to estimate the informativeness and diversity of unlabeled
samplings. These strategies can be classified into two categories. One important class is that of
uncertainty-based approaches, which try to find hard samples using heuristics like highest entropy,
such as margin sampling and entropy sampling. There are recent optimization-based methods, such
as greedy-k-center sampling to obtain a diverse subset of hard samples.

Definition 1 (Margin Sampling (Scheffer et al., 2001)). Margin sampling assumes that the most
informative samples are those which fall within this margin of decision boundary. Formally, given
an unlabeled dataset D, it can be represented as:

x̂ = arg min
x∈D

{
min
ω
|f (x, ω)|

}
(2)

where f (x, ω) represents the distance of the data sample x from the hyperplane for class ω.

Definition 2 (Entropy Sampling (Shannon, 2001)). Using entropy as an uncertainty measure as
follows:

x̂ = arg max
x∈D

−
∑
i

Pθ (yi | x) logPθ (yi | x) (3)

where Pθ(y | x) is the conditional label distribution of the model, yi ranges over all possible labels.

Definition 3 (Greedy-k-center Sampling (Sener & Savarese, 2018)). Solving the k-center problem,
i.e., choosing b center points such that the largest distance between a data point and its nearest center
is minimized. Formally, this goal is defined as:

min
s1:|s1|≤b

max
i

min
j∈s1∪s0

∆ (xi,xj) (4)

where s1 is new chosen center points, s0 is the current training set.

Besides, to better balance uncertainty and diversity, we introduce informative-and-diverse sampling
called ICD, which chooses query data based on informative and diverse criteria using margin and
cluster-based sampling methods. It will return highest uncertainty lowest margin points while main-
taining same distribution over clusters as entire dataset.

C.4 MORE BACKGROUND ON CRYPTOGRAPHY

C.4.1 SECRET SHARING AND MULTIPLICATION TRIPLES

As shown in Section 2.3, in PrivHFL, we utilize additive secret sharing to protect the privacy of sen-
sitive information. Assume there are two secret-shared values [x] and [y] that owned by two parties,
addition and subtraction operations ([z] = [x]±[y]) can be done locally without any communication,
which is realized as [z]i = [x]i ± [y]i mod 264 by each party Pi, i ∈ {0, 1}.

z = xy = ([x]0 + [x]1)([y]0 + [y]1) =

P0︷ ︸︸ ︷
[x]0[y]0 +

P1︷ ︸︸ ︷
[x]1[y]1 +[x]0[y]1 + [x]1[y]0

(5)
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Multiplying two secrets, i.e., [z] = [x] · [y], however, is evaluated by using Beaver Multiplication
Triple (Demmler et al., 2015). The triple refers to (a, b, c) with the constraint c = ab, which can
be generated using cryptographic techniques (Demmler et al., 2015) or a trusted dealer (Riazi et al.,
2018). To be specific, as shown in Eq.5, [x]i[y]i can be computed by party Pi locally, but [x]i[y]1−i
evaluated as follows. Taking [x]0[y]1 as an example, we suppose P0 and P1 already hold the triples
(a, [c]0) and (b, [c]1), respectively. P0 first sends [x]0 + a (mod 264) to P1, while P1 sends [y]1− b
(mod 264) to P0. Then P0 computes one share of [x]0[y]1 as [x]0([y]1−b)−[c]0 (mod 264), and P0

computes another as ([x]0 + a)[y]1 − [c]1 (mod 264), locally. In this way, both parties can achieve
secure multiplication operation, and the outputs are still in the form of secret sharing.

C.4.2 DIFFIE-HELLMAN KEY AGREEMENT PROTOCOL

In order to allow two parties to agree the same secret key on an insecure channel, the Diffie-Hellman
Key Agreement (DH) protocol (Diffie & Hellman, 1976) was proposed. In PrivHFL, the DH pro-
tocol is used to generate the consistent PRG seeds between clients, which consists of the following
three steps:

• DH.param(k)→ (G, g, q,H) generates a group G of prime order q, along with a generator
g, and a hash function H .

• DH.gen(G, g, q,H) → (xi, g
xi) randomly samples xi ∈ Zq as the secret key and let gxi

as the public key.

• DH.agree(xi, g
xj , H)→ si,j outputs the seed si,j = H((gxj )xi).

In the DH protocol, correctness requires that for any key pairs (xi, g
xi) and (xj , g

xj ) gen-
erated by two paries Pi and Pj using DH.gen under the same parameters (G, g, q,H),
DH.agree(xi, g

xj , H) = DH.agree(xj , g
xi , H). Besides, in the honest-but-curious adversary set-

ting, security requires that for any adversary who steals gxi and gxj (but neither of the corresponding
xi and xj), the agreed secret si,j derived from those keys is indistinguishable from a uniformly ran-
dom value (Abdalla et al., 2001).

Seed generation between clients without directly communication. The communication improve-
ment of our PrivHFL is largely derived from the application of PRGs. These allow any two clients
to jointly generate same (pseudo-) random values that are used in MPC protocols without commu-
nication. It is trivial to construct PRG seeds SkSA (between PA and the server) and SkSQ (between
PQ and the server). For instance, the server first generates SkSA and SkSQ, and then sends them
to PA and PQ, respectively. However, this is challenging for constructing SkQA, given that direct
communication channels can not be constructed between clients. To tackle this issue, we generate
seed SkQA using the DH protocol (Diffie & Hellman, 1976), a classic algorithm for exchanging
secret keys securely. Specifically, we first call the above DH.gen algorithm, and communicate the
resulting public keys of two clients via the server as an intermediary. After that, the same seed is
locally generated by the two clients via the DH.agree algorithm. We show the protocol ΠSeed in
Figure 18 and its security follows from the security of the DH protocol (Abdalla et al., 2001).
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Figure 18: Secure PRG seed generation protocol ΠSeed
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C.5 EXTENDING CAPC TO COMMUNICATION-LIMITED SETTINGS

By carefully designing protocols, CaPC (Choquette-Choo et al., 2021) can also be extended to a
setting where there is no direct communication between clients. However, as analyzed below, such
extension comes at the cost of increased communication overhead. Therefore, our PrivHFL has
greater advantages compared to the following modified protocols.

Recall that HE-Transformer (Boemer et al., 2019b;a) provides two secure prediction schemes, i.e., a
pure HE-based scheme and a hybrid scheme combining HE and GC. Given that the HE-Transformer
framework is employed in CaPC, we design two customized protocols for HE-Transformer to
achieve such communication requirement. Although it is trivial to extend CaPC equipped with the
HE-based scheme to the above communication-limited settings, it has two key problems: 1) activa-
tion functions need to be approximated as low-degree polynomials, which leads to serious accuracy
loss; 2) due to the inherent high computational complexity, HE-based secure prediction is difficult
to extend to large-scale models. For completeness, we briefly describe the extension procedure. PQ
first encrypts the query samples and asks the server to pass them to PA. After that, PA evaluates se-
cure prediction non-interactively in the ciphertext environment. Finally, PA sends encrypted masked
predictions (due to privacy-preserving aggregation in CaPC) back to PQ via the server acting as a
intermediary. As mentioned above, the HE-based method is impractical and below, we elaborate on
the extension of CaPC that uses the hybrid scheme as a building block. In CaPC, secure predictions
are executed between PQ and PA. To tackle the communication limitation, we can employ secure
predictions between the server and PA. We discuss the modified algorithms of the linear layer and
the non-linear layer separately. In the linear layer, 1) PQ encrypts query samples with HE and sends
the ciphertext to PA through the server5. 2) PA evaluates linear layers locally, such as convolution
and full-connected layers, and returns the encrypted masked results to PQ through the server. 3)
PQ decrypts to obtain the masked results and sends it to the server. As a result, the results of linear
layers are shared between the server and PA. For the non-linear layer, given that the server and PA
hold shares of the linear layer’s results, the two parties (rather than PA and PQ in CaPC) call the GC
protocol to evaluate the nonlinear layer function.

Next, we analyze the efficiency of the modified hybrid protocols. For the computational cost, the
modified secure prediction protocol is exactly the same as that of CaPC, and thus we mainly focus on
the communication cost. In the linear layer, the modified protocol adds the communication overhead
of a ciphertext (two ciphertexts for the input layer) and a plaintext of the result of the linear layer.
For the non-linear layer, the communication overhead is not increased, but the overhead between PA
and PQ is transferred to the server and PA. In summary, although CaPC can be extended to scenarios
with limited communication, they sacrifice the efficiency of secure predictions. Therefore, PrivHFL
shows better adaptability and efficiency in scenarios where there is no direct communication between
clients.

C.6 GPU ACCELERATION

Existing general-purpose platforms on the GPUs such as NVIDIA’s CUDA are designed to operate
on floating-point inputs (Tan et al., 2021). On the contrary, the shares in our protocol is embedded
in the ring Z264 . Thus, we need to convert the ring operations into 64-bit floating point operations
to obtain GPU support. Specifically, a 64-bit floating-point number has 1 bit sign, 11 bits exponent,
and 52 bits precision, which can exactly represent all integers in the interval

[
−252, 252

]
. Therefore,

the multiplication E · F can be correctly computed and recovered over the integers if and only if
E,F ∈ Z ∩

[
−226, 226

]
. Based on this observation, we decompose each input E and F in Z264

into 4 blocks, and the values in each block are represented by a 16-bit value. Thus, the integer
multiplication is converted to 16 (exactly, 10) floating-point operations. Specifically, E is rewritten
as E0 + 216E1 + 232E2 + 248E3, and F = F0 + 216F1 + 232F2 + 248F3. The multiplication can
be represented as follows:

E · F = (E0 + 216E1 + 232E2 + 248E3) · (F0 + 216F1 + 232F2 + 248F3)

= E0F0 + 216E1F0 + 232E2F0 + 248E3F0 + 216F1E0 + 232F1E1 + 248F1E2

+ 232F2E0 + 248F2E1 + 248F3E0

(6)

5To be more precise, this step is for the input layer. In the hidden layer, one of the input shares of the linear
layer should be encrypted by the server and sent to PA.

21



Under review as a conference paper at ICLR 2022

After that, computing E · F from the pairwise products requires element-wise additions and scalar
multiplications, which can be executed by optimized CUDA kernels on 64-bit integer values.

D RELATED WORK

Table 6: Comparison with prior works on properties necessary for federated learning

Framework Privacy Usability Efficiency

Data
Privacy

Model
Privacy

Model
Heterogeneity

w/o Dataset
Dependency

GPU
Compatibility

Protocol
Efficiency

Bonawitz et al. (2017) 3 7 7 3 7 3

Bell et al. (2020) 3 7 7 3 7 3

Sav et al. (2021) 3 3 7 3 7 7

Jayaraman & Wang (2018) 3 7 7 3 7 3

Li & Wang (2019) 7 3 3 7 3 -
Choquette-Choo et al. (2021) 3 3 3 7 7 7

Lin et al. (2020) 7 7 3 7 3 -
Sun & Lyu (2021) 7 3 3 7 3 3

Diao et al. (2021) 7 7 3 3 3 -
This work 3 3 3 3 3 3

D.1 HETEROGENEOUS FEDERATED LEARNING

Federated learning achieves collaboration among clients via sharing model gradients. While suc-
cessful, it still faces many challenges, among which, of particular importance is the heterogeneity
that appear in all aspects of the learning process. This consists of system heterogeneity (Diao et al.,
2021), model heterogeneity (Li & Wang, 2019) and statistical heterogeneity (Zhu et al., 2021).
Statistical heterogeneity means that clients’ data from real-world comes from distinct distributions
(i.e., Non-IID data), which may induce deflected local optimum. Solving the statistical heterogene-
ity has been extensively studied, such as Dinh et al. (2020); Zhu et al. (2021); Yurochkin et al.
(2019); Fallah et al. (2020); Yoon et al. (2021)6, and is out-of-the-scope of this work. However,
our PrivHFL may help alleviate the statistical heterogeneity due to customized model design and
knowledge distillation-based aggregation rule.

Our work mainly focuses on model heterogeneity that has been explored in recent works (Li &
Wang, 2019; Lin et al., 2020; Choquette-Choo et al., 2021), while the issue of system heterogeneous
is alleviated through the resource-customized model architecture design. In particular, Li & Wang
(2019) proposed the first federated learning framework FedMD supporting heterogeneous models by
combining transfer learning and knowledge distillation techniques. They first used a public dataset
to pre-train the model and transferred to the task of private dataset. After that, to exchange the
knowledge, each client used the public data and the aggregated predictions from others as carrier
for knowledge distillation. To further improve test accuracy, Lin et al. (Lin et al., 2020) proposed
FedDF, similar to FedMD, which also used model distillation technique for knowledge sharing. The
difference is that they first performed FedAvg on clients’ local models and integrated knowledge
distillation on the aggregated model. The dependence on model averaging leads to limited model
heterogeneity. Besides, Diao et al. (Diao et al., 2021) focused on heterogeneous clients equipped
with different computation and communication capabilities. In their framework, each client only
updated a subset of global model parameters through varying the width of hidden channels, which
reduces the computation and communication complexity of local models. However, this approach
only learns a single global model, rather than unique models designed by clients. Moreover, the
above three methods rarely consider the issue of privacy leakage from the prediction results.

The privacy protection techniques (i.e., secure aggregation) have been studied in federated learning
(Bonawitz et al., 2017; Bell et al., 2020; Sav et al., 2021; Jayaraman & Wang, 2018). However,
these techniques can not be directly extended to privacy-preserving HFL. More recently, Sun & Lyu

6This work also uses mixup in federated learning, but aims to address the challenge of non-iid data.
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(2021) proposed a noise-free differential privacy solution for heterogeneous federated learning to
guarantee each client’s privacy. However, as shown in Jayaraman & Evans (2019), there is a huge
gap between the upper bounds on privacy loss analyzed by advanced mechanisms and the effective
privacy loss. Thus, differentially private mechanisms offer undesirable utility-privacy trade-offs.
To further formally guarantee the privacy, Choquette-Choo et al. (2021) leveraged secure multi-
party computation (MPC), homomorphic encryption (HE) and privately aggregated teacher models
techniques to realize confidential and private collaborative learning. Specifically, clients learn from
each other collaboratively utilizing a secure inference strategy based on MPC and HE protocols
and a private aggregation method. As noted in the Introduction, CaPC’s use of heavy cryptography
leads to significant efficiency and communication overheads. Besides, existing methods require an
auxiliary dataset to implement heterogeneous federated learning. However, data collection could
be unrealistic in many real-world scenarios due to various reasons, such as privacy concerns and
rare classes. Therefore, our work is dedicated to solving two key challenges. The first is to relax
the assumption of relying on public datasets, and the second is to design an efficient cryptographic
protocol for knowledge transfer during the model aggregation.

D.2 PRIVATE NEURAL NETWORK PREDICTION

Neural networks present a challenge to cryptographic protocols due to their unique structure and ex-
ploitative combination of linear computations and non-linear activation functions. In real scenarios,
model inference can be viewed as a two-party computation case, where one party with private data
wants to obtain prediction results from the other party who owns the model. During the whole pro-
cess, the cryptographic protocols, typically HE and MPC, are applied to ensure the confidentiality
of the private data and model.

Existing works (Boemer et al., 2019b; Gilad-Bachrach et al., 2016; Brutzkus et al., 2019) support
pure HE protocols for secure predictions. Typically, nGraph-HE (Boemer et al., 2019b;a) allows
linear computations using CKKS homomorphic encryption scheme. However, since a solution
that builds upon HE protocols should be restricted to compute low degree polynomials, the non-
polynomial activation functions, such as MaxPooling and ReLU, are forced to be evaluated in the
clear by the party who owns private query data. This leaks the feature maps, from which adversaries
may deduce the model weights. To solve this problem, Gilad-Bachrach et al. (2016) and Chen et al.
(2019) use low-degree polynomial approximation to estimate non-linear functions. Unfortunately, it
will affect the accuracy of predictions, while leading to huge computation overhead.

On the other hand, server libraries (Mohassel & Zhang, 2017; Knott et al., 2021; Wagh et al., 2019;
Shen et al., 2020) employ primarily MPC technology in secure predictions, which provides support
for linear and non-linear activations through the use of oblivious transfer (OT), garbled circuit (GC)
and secret sharing. For example, CryptTen (Knott et al., 2021) performs linear operations based on
n-out-of-n additive secret sharing over the ring, Z264 . However, it uses boolean secret sharing for
the non-linear operations, which will result in a higher communication round. CrpytGPU (Tan et al.,
2021) builds on CrypTen, working in a 3-party setting using replicated secret shares. Although
the scalability is poor, it introduces an interface to losslessly embed cryptographic operations over
secret-shared values in a discrete somain into floating-point operations, which can implement the
whole inference process on the GPU.

Many other works focus on hybrid protocols, in which they combines the advantages of HE and
MPC to improve prediction efficiency (Juvekar et al., 2018; Mishra et al., 2020; Rathee et al., 2020).
CrypTFlow2 (Rathee et al., 2020) points out that currently, it was not clear whether HE-based linear
operations would provide the best latency. Therefore, the authors implement two class of protocols,
HE-based and OT-based, for linear operations. For non-linear layers, they also design efficient
protocols based on OT. It turns out that in a WAN setting, HE-based inference is always faster and
in a LAN setting OT and HE are incomparable. HE-transformer employs nGraph-HE for evaluation
of linear operations, and ABY framework (Demmler et al., 2015) for GC to evaluate non-linear
functions. Since non-linear operations cannot be parallelized between query data, GC is inefficient,
especially for large networks with thousands of parameters. In contrast, our PrivHFL avoids the use
of heavy cryptographic tools, and only employs additive secret sharing to achieve high efficiency,
confidentiality and practicability.
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E SECURITY ANALYSIS

Our security proof follows the standard ideal-world/real-world paradigm (Canetti, 2001): in real-
world, three parties interact according to the protocol specification, and in ideal-world, they have
access to a ideal functionality. When a protocol invokes another sub-protocol, we use F-hybrid
model for security proof by replacing the sub-protocol with the corresponding functionality. Note
that our proof works in the FPRG-hybrid model where FPRG represents the ideal functionality cor-
responding to the protocol PRG. The executions in both worlds are coordinated by the environment
Env, who chooses the inputs to parties and plays the role of a distinguisher between the real and
ideal executions. We will show that the real-world distribution is computationally indistinguishable
to the ideal-world distribution.

Theorem 1. ΠShare securely realizes the functionality FShare in the FPRG-hybrid model.

Proof. Note that PQ and PA receive no messages in the protocol, and hence the sharing protocol
is trivially secure against corruption of PQ and PA. Next, the only message that the server receives
is the value [x]1. However, [x]1 = x − r, where given the security of PRG, r is a random value
unknown to the server. Thus, the distribution of [x]1 is uniformly random from the server’s view
and the information learned by the server can be perfectly simulated.

�

Theorem 2. ΠMatmul securely realizes the functionality FMatmul in the FPRG-hybrid model.

Proof. Note that PQ receives no messages in the protocol, and hence the sharing protocol is trivially
secure against corruption of PQ. The only message that PA receives is the value [x]1 − b. However,
given the security of PRG, b is a random value unknown to PA. Thus, the distribution of [x]1 − b
is uniformly random from PA’s view and the information learned by PA can be perfectly simulated.
Next, during the protocol, the server learns [c]1 and w + a. However, the distribution of [c]1 and
w + a is uniformly random from the server’s view, since given the security of PRG, a and [c]1 are
random values unknown to the server. Thus, the information learned by the server can be perfectly
simulated.

�

Theorem 3. ΠDReLU securely realizes the functionality FDReLU in the FPRG-hybrid model.

Proof. Note that PA receives no messages in the protocol, and hence the sharing protocol is trivially
secure against corruption of PA. Next, the messages that the server receives are [z]0−δ and sign(z)−
δ′. However, given the security of PRG, δ and δ′ are random values unknown to the server. Thus,
the distribution of [z]0 − δ and sign(z) − δ′ is uniformly random from the server’s view and the
information learned by the server can be perfectly simulated. Then, the message that PQ learns is
z = rx, where r is a random number in the ring. Thus, the distribution of z is uniformly random
from the server’s view.

�

Theorem 4. ΠReLU securely realizes the functionality FReLU in the (FMatmul, FDReLU)-hybrid model.

Proof. Note that as shown in Figure 4, ΠReLU consists of ΠDReLU and ΠMatmul. Therefore, the ReLU
protocol is trivially secure in the (FMatmul, FDReLU)-hybrid model.

�

Theorem 5. ΠMaxPool securely realizes the functionality FMaxPool in the FReLU-hybrid model.

Proof. Note that as shown in Figure 4, ΠMaxPool consists of ΠReLU. Therefore, the MaxPool protocol
is trivially secure in the FReLU-hybrid model.

�

Theorem 6. ΠAgg securely realizes the functionality FAgg in the FPRG-hybrid model.

Proof. Note that PA receives no messages in the protocol, and hence the aggregation protocol is
trivially secure against corruption of PA. Next, the only message that the server receives is the value
[xj ]0 − rj . However, given the security of PRG, rj is a random value unknown to the server. Thus,
the distribution of [xj ]0−rj is uniformly random from the server’s view and the information learned
by the server can be perfectly simulated. After the aggregation, PQ only learns the aggregated result
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Table 7: Experiment setting of different datasets during local model training.
Loss Function Learning Rate Batch Size Epoch Number of Private Data

SVHN cross-entropy 0.5 256 250 1465
CIFAR10 cross-entropy 0.1 64 500 1000

Tiny ImageNet cross-entropy 0.01 64 500 10000

∑
j∈[n] xj , but is unknown to a single xj . Therefore, the aggregation protocol is secure assuming

the aggregation result will not reveal privacy.
�

F ADDITIONAL EXPERIMENTAL SETUP

Datasets. We evaluate PrivHFL on the following standard datasets for image classification:

• SVHN. SVHN is a real-world image dataset obtained from house numbers in Google Street
View images. Each sample is 32×32 RGB image. We use 73257 digits for training and
26032 digits for testing.

• CIFAR10. CIFAR-10 consists of 60,000 32×32 RGB images in 10 classes. There are
50,000 training images and 10,000 test images.

• Tiny ImageNet. Tiny ImageNet contains 100,000 images of 200 classes (500 for each
class) downsized to 64×64 colored images. Each class has 500 training images, 50 valida-
tion images and 50 test images.

Model architecture. We use VGG-7, ResNet-8 and ResNet-10 for SVHN and CIFAR10 datasets.
VGG-7 contains 6 convolutional layers, followed by a fully-connected layer, where ReLU is ap-
plied as the activation function and MaxPooling is used for downsampling, giving 7 layers in total.
ResNet-8 we use follows the same architecture in CaPC, which consists of a convolutional layer, 2
residual blocks with 4 convolutional layers, followed by a fully-connected layer. Compared with the
original architecture, the last block is excluded and neurons of the last layer is increased. ResNet-10
begins with a convolutional layer, followed by 4 residual blocks with 2 convolutional layers in each
block, and one final fully-connected layer, thus there are 10 functional layers overall. Besides, we
use ResNet-14, ResNet-16 and ResNet-18 (He et al., 2016) for Tiny ImageNet.

Training procedure. Utilizing the private data, each client first trains the local model from scratch
using SGD optimizer, where the detail training setting is shown in Table 7. Next, the clients run the
PrivHFL protocol to generate query-response pairs, which will be used to retrain the local model.
When retraining the models, they use Adam optimizer for 50 epochs with learning rate of 2e-3
decayed by a factor of 0.1 on 25 epochs, where the batch size is 256 on SVHN, and 64 on CIFAR10
and Tiny ImageNet.

G VISUALIZATION OF MIXUP AND SECRET-SHARING SAMPLES

The mixup-synthetic data expansion method of PrivHFL is only to expand private data locally to
generate a large data pool, which cannot provide any privacy guarantee. Figure 19 shows the mixup
images synthesized from the same pair of real images with different mixup coefficients λ. As shown
in the figure, when λ = 1, the mixup image will be identical to the real sample. Even if λ =
0.7, 0.5, 0.2, the original images can still be visually recognized.

To further protect the PQ’s privacy, the mixup images are secret-shared between the server and PA,
rather than being disclosed directly to them. As shown in Figure 20, the secret-shared images look
like two random noises, since in secret sharing each share is randomly sampled from the ring Z264 .
To be specific, for a mixup image x, the server owns x1, in which each element is randomly sampled
from the ring Z264 . Meanwhile, the answering party PA owns a random x0 with x0 = x−x1 ∈ Z264 .
Besides, note that in our secure querying protocol, the intermediate values always maintain such
secret sharing invariant, so that neither party can steal any private information about real datasets,
local models and prediction results from the knowledge they obtain.
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𝟏𝟏 − 𝝀𝝀 = 𝟎𝟎

𝝀𝝀 = 𝟎𝟎.𝟕𝟕

𝟏𝟏 − 𝝀𝝀 = 𝟎𝟎.𝟑𝟑

𝝀𝝀 = 𝟎𝟎.𝟓𝟓

𝟏𝟏 − 𝝀𝝀 = 𝟎𝟎.𝟓𝟓

𝝀𝝀 = 𝟏𝟏 𝝀𝝀 = 𝟎𝟎.𝟐𝟐

𝟏𝟏 − 𝝀𝝀 = 𝟎𝟎.𝟖𝟖

Figure 19: Different mixup-synthetic images from the same pair of the natural images by vary-
ing the mixup coefficient λ.

Server 𝑷𝑷𝑨𝑨

𝑥𝑥 𝑥𝑥1 ∈ ℤ264 𝑥𝑥0 = 𝑥𝑥 − 𝑥𝑥1 ∈ ℤ264

𝑷𝑷𝑸𝑸

Figure 20: An example of secret sharing on the mixup image. x, x1 and x0 are pixel matrices,
owned by the querying party PQ, the server, and the answering party PA, respectively.
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