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ABSTRACT
This work introduces an innovative method for estimating attention levels (cognitive load) using an ensemble
of facial analysis techniques applied to webcam videos. Our method is particularly useful, among others, in
e-learning applications, so we trained, evaluated, and compared our approach on the mEBAL2 database,
a public multi-modal database acquired in an e-learning environment. mEBAL2 comprises data from 60
users who performed 8 different tasks. These tasks varied in difficulty, leading to changes in their cognitive
loads. Our approach adapts state-of-the-art facial analysis technologies to quantify the users’ cognitive load
in the form of high or low attention. Several behavioral signals and physiological processes related to the
cognitive load are used, such as eyeblink, heart rate, facial action units, and head pose, among others.
Furthermore, we conduct a study to understand which individual features obtain better results, the most
efficient combinations, explore local and global features, and how temporary time intervals affect attention
level estimation, among other aspects.We find that global facial features aremore appropriate for multimodal
systems using score-level fusion, particularly as the temporal window increases. On the other hand, local
features are more suitable for fusion through neural network training with score-level fusion approaches.
Our method outperforms existing state-of-the-art accuracies using the public mEBAL2 benchmark.

INDEX TERMS Attention estimation, behavioral analysis, cognitive load, deep learning, e-learning,
eyeblink, facial action units, head pose detection, heart rate detection, multi-modal learning.

I. INTRODUCTION

ATTENTION is defined as the ability to focus, specifi-
cally, to exert on a conscious cognitive effort regarding a

specific task or stimulus at a givenmoment [1], [2]. Therefore,
it is used as a measure of the exerted effort. The level of
attention can vary from a state of high attention, where a
person is highly concentrated and experiences high levels of
cognitive load and mental effort, to low levels, where a person
is distracted or uninterested.

Attention estimation has proven to be of great value in
important areas such as driver fatigue detection [3], [4], ad-
vertising and product design [5], mental health disorders [6],

lie detection [7], [8], human-computer interfaces [9], educa-
tion [10], etc.

Attention estimation is particularly valuable in e-learning
environments [11], [12] because it offers feedback on stu-
dents’ cognitive and emotional states during online sessions.
This is significant as attention is defined as the cognitive
effort exerted on a task [1] and plays a pivotal role in en-
suring accurate comprehension during learning. In e-learning
environments, there are challenges compared to face-to-face
education, with one of the most important being the lack
of direct contact between the teacher and the student. This
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FIGURE 1. Examples of different real students’ attention levels during an
e-learning session. (Top) High attention image sequence. (Bottom) Low
attention image sequence.

results in the teacher being unaware of the student’s study
difficulties, like high or low levels of attention. Video-based
attention estimation technologies overcome this limitation
[13], representing a valuable tool to enhance both face-to-face
and online education.

Facial gestures often provide subtle indicators of an indi-
vidual’s attention level or cognitive load. When people are in-
tensely focused or experiencing high cognitive demands, their
facial expressions can change, reflecting the strain or concen-
tration they are undergoing (see Fig. 1). Automatic attention
estimation through image processing is a challenging task
still under development. In this regard, the recent advances
in face analysis techniques based on deep learning have also
helped to improve attention estimation based on computer
vision methods. The most advanced multimodal systems for
attention estimation have reached around 80% accuracy, out-
performing the majority of existing monomodal systems [12],
[14]. Multimodal systems stand out for considering multiple
variables that affect attention in the learning process, which
allows a more global and complete perspective [15].

Taking into consideration all of the above, the main contri-
butions of the present paper are:

• We present a novel multimodal learning framework
for attention estimation through image processing. This
framework performs facial analysis to relate high and
low levels of attention with behavior and physiological
processes such as eyeblink, face gestures, and head pose,
among others.

• Our framework consists of 5 modules built on Convolu-
tional Neural Networks (CNNs) that are trained to ex-
tract facial features that potentially correlate with atten-
tion. The most relevant modules for attention estimation
and their effective combinations are identified within the
e-learning context of the mEBAL2 database.

• The results indicate that in multimodal attention estima-
tion systems using score fusion, global features provide
additional discriminating information compared to local
features. However, multimodal attention estimation sys-
tems based on score fusion with neural network training
generalize better with local features.

• Our approach outperforms the state of the art, achieving
a classification accuracy in attention level estimation of

85.92% on the mEBAL2 database.

A preliminary version of this article was presented in [12].
This article significantly improves [12] in various aspects:

• Compared to MATT [12], we now add a new module
for heart rate estimation and study its relationship with
attention estimation.

• The mEBAL2 [16] database for attention estimation is
used to train and evaluate the proposed system. In com-
parison with MATT [12] (which used the first mEBAL
version with 22 users [17]), we now use the new version,
mEBAL2, including 60 students with approximately
1800minutes of video recordings. This represents a sig-
nificant increase, with around 1140 additional minutes
of recordings in comparison to [12].

• We add new comprehensive experiments including anal-
ysis of global and local features for each facial mod-
ule. We introduce a new method of score-level fusion
through neural network training and a new architecture
based on feature selection.

• Unlike MATT [12], which utilized a one-minute time
frame, we explored three time windows of 30, 60, and
120 seconds.

• Finally, our method outperforms the method presented
in MATT [12], achieving an error reduction of 28.5% in
the mEBAL2 database.

The rest of the paper is organized as follows. Section 2 sum-
marizes works related to attention level estimation. Section 3
describes the materials and methods, including the database,
proposed technologies and features to estimate attention lev-
els. Section 4 presents the experiments and comparison with
other state-of-the-art approaches. Finally, section 5 provides
conclusions and future investigations.

II. RELATED WORK
A. BRAIN ACTIVITY MEASUREMENT
Attention estimation has been widely studied and currently
there are different methods that come along with certain
benefits and limitations [18]. Some of the most popular ones
are:

1) Electroencephalography (EEG)
The EEG records the electrical activity of the brain through
electrodes placed on the scalp. It measures neural activity by
detecting changes in the voltage fluctuations generated by
brain cells, specifically, the ones produced usually by synaptic
excitations of the dendrites of pyramidal cells in the top layer
of the brain cortex [19], [20]. The strength of the signals
primarily relies on the synchronized firing of numerous neu-
rons and fibers. Thousands or even millions of neurons are
required to capture information effectively [18]. EEG data
is recognized as one of the most efficient and unbiased ap-
proaches in estimating attention levels [21], [22], since these
signals are sensitive to mental effort, cognitive demands,
and mental states such as learning, deception, perception,
and stress. Therefore, EEG provides real-time information
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about brain activity and it’s particularly useful for capturing
quick changes in attention. EEG can be condensed to of five
different signal types that reflect different mental states and
activities. These signals are classified into different frequency
bands: δ (< 4Hz), θ (4-8Hz), α (8-13Hz), β (13-30Hz), and
γ (> 30 Hz). However, the main disadvantage of this method
is its intrusiveness, requiring precise tools to be placed on
the student’s head, which becomes impractical in e-learning
environments with thousands of students.

2) Physiological
This category associates attention with physiological re-
sponses like heart rate [23], [24], eyeblink [11], [12], [16],
[17], eye pupil size [25], [26], electrodermal activity [27],
etc. To measure these physiological signals and then correlate
themwith attention, specific sensors are used for eachmethod
that are then combined to obtain higher accuracy in attention
estimation.

3) Behavior
In comparison with the physiological category, this category
analyzes the user’s noticeable patterns and behaviors to de-
duce attention levels. It’s based on external behavior obser-
vation that has proven to have a close relation with attention.
Some of these behaviors are head pose [14], [28]–[30], gaze
tracking [31], [32], facial expressions [33]–[35], physical
actions that happen to be related with attention (e.g., leaning
closer to the screen) [36], etc.

B. ATTENTION ESTIMATION METHODS BASED ON IMAGE
PROCESSING
Here we employ images obtained from the webcam to infer
the attention level of the users. The main advantage of this
approach is that it doesn’t require specialized sensors more
than a webcam, which makes it particularly attractive in areas
like education, where accessibility is important. Currently
there are monomodal systems like ALEBK [11] and multi-
modal ones like MATT [12]. For example, MATT combines
physiological and behavior estimations (pulse, facial analysis,
etc). Multimodal systems have proven to be more efficient in
attention estimation.

The article [37] proposed 2 monomodal methods to detect
cognitive load in car driving environments. The used database
defined 3 states of cognitive load (high, medium, and low),
which corresponded to variable difficulty activities (based on
n-back task) that drivers had to perform; and the database had
a total of 92 users. The proposed methods were based on the
eye state, starting with the first method that focused on the
eye pupil’s position estimation (using face detection, land-
mark detection, etc) with HiddenMarkovModels (HMMs) to
estimate cognitive load. The second approach was based on
Convolutional Neural Networks with 7 convolutional layers,
and the input was a temporally-stacked sequence of raw
grayscale eye region images. The HMMs approach reached
an average precision of 77.7% while the CNN got 86.1%.

The main issue was the cognitive load assumption without
validating it using specific sensors, like EEG for example.
ALEBk [11] represents a monomodal approach based on

the relation between eyeblink and cognitive activity. Several
studies have found clear evidence [11], [17], [38], [39] that
lower eyeblink rates are associated with high attention levels,
and vice versa. Based on this assumption, ALEBk [11] uses an
eyeblink detector supported by convolutional neural networks
to obtain the eyeblink frequency using RGB videos. With
this information, the system classifies between high or low
attention. The network was trained using the mEBAL [17]
database with 22 users performing tasks in an e-learning
environment. Attention ground truth was obtained with an
EEG band and the system reached a maximum accuracy (1-
EER) of 70% approximately.
The multimodal approach presented in [14] used a Kinect

One sensor to perform attention estimation. It only used be-
havior features, specifically gaze point, body posture and fa-
cial movements. The features were obtained from the signals
of the Kinect SDK. This process included normalizing and
filtering the signals using z-scores and an 11s-wide Gaussian
filter. Subsequently, a 7-feature vector was selected by com-
bining these signals. Finally, a 3-level attention classification
was made (low, medium, high) using different classifiers like
decision tree, K-nearest neighbors, Subspace K-NN, etc. This
study used a database captured in an e-learning environment
of 18 users with a length of 122minutes in total. The way how
the attention level ground truth was obtained is the main prob-
lem of this database, since it was through human observers,
which can generate a lack of reliability in the results. Obtained
results show amaximum accuracy of 75%with a considerable
variability between users.
In [13], a multimodal system is presented to estimate atten-

tion in a learning environment. This system extracted features
from the face and also head movements, like mouth features
(speaking or smiling), eye aspect ratio [40], leaning closer to
the screen, etc, to estimate attention. It’s a simple system that
uses a landmark detector to obtain the previously mentioned
features from facial landmarks. Then, statistical measures like
max, min, mean, variance, range and spectral entropy of face
and head features are used for a random forest regression
model, that predicts mean attention in a 10-second window.
The used database consisted of recorded videos (176minutes)
of 7 middle school students while they interacted with an
online tutoring system, along with EEG data. The authors
reported an average RMSE of 12.66 and indicated that both
face and head movements provided useful information for
attention estimation.
The authors of [41] proposed a multimodal attention es-

timation system for classrooms with several students to im-
prove learning. The artificial vision approach used features
like head pose, gaze direction and facial expression (facial
action units) obtained with OpenFace [42] and regression
models to estimate attention were trained with them. The
approach classified the student’s commitment level as “at-
tentive” and “non-attentive” in one-second time frames. The
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TABLE 1. mEBAL2 Database: Sensors.

Sensors Sampling Rate

EEG Band1 1 Hz
1 RGB2 camera 30 Hz
2 NIR2 cameras 30 Hz

database was obtained from university seminars with 52 stu-
dents recorded with 3 cameras, even though the automatic
approach used only 30 users. The attention level labels used
as ground truth were obtained by evaluators that observed
each student’s behavior throughout sessions. The head pose
feature got the least correlation regarding manual scores, and
the highest correlation was reached with the combination of
all 3 modules (r=0.61).
MATT [12] represents a multimodal approach that uses

a simple webcam and it’s based on different Convolutional
Neural Networkmodules that extract behavior and physiolog-
ical features (head pose, eyeblink, facial action units, etc). For
each module, a Support Vector Machine (SVM) is used as a
binary classifier to determine high or low attention levels and
at the end, all modules are combinedwith a score sum. Similar
to ALEBk [11], this approach was trained and evaluated on
mEBAL [17] database with 22 users and obtained amaximum
accuracy (1-EER) of 82% approximately.

C. MULTIMODAL MACHINE LEARNING
Multimodal systems have demonstrated great potential to
improve the performance of unimodal systems [15], [43],
due to their enhanced comprehension capabilities. By inte-
grating various data sources, these systems can leverage the
redundancy and complementarity of information to achieve
more accurate and robust results. Specifically, in attention
estimation, analyzing a single facial feature category is typ-
ically not discriminative enough to classify attention levels
[11]–[14]. In contrast, multimodal systems show superior
performance in estimating attention by integrating different
unimodal systems based on diverse facial categories, such as
eyeblinks and heart rate [12]–[14]. Various fusion strategies
have been proposed in the literature [15], [16], [43]–[47],
including feature level fusion, score level fusion, and model
level fusion. Feature level fusion involves combining data
or signals at the feature level before they are input into a
classification or regression model [15], [43], [44], [48]. Leng
et al. [44] employedDual-SourceDiscriminative PowerAnal-
ysis (DDPA) to assess the discriminative power of features
from two different information sources, based on inter-class
and intra-class variation, and subsequently fused them. Score
level fusion, on the other hand, involves combining outputs
frommultiple models to reach a final decision. Various strate-
gies are employed, including score sum, weighted sum, and
voting, among others [15], [45], [48]. Other works [16], [46],

1https://store.neurosky.com/pages/mindwave
2https://www.intelrealsense.com/wp-content/uploads/2020/06/

Intel-RealSense-D400-Series-Datasheet-June-2020.pdf

[47] have implementedmodel level fusion. Yao et al. [47] pro-
posed an extension of the conventional Vision Transformer
(ViT). This approach applied a strategy for fusing through
a structure that integrates extended visual transformers and
Cross-Modality Attention (CMA), thus incorporating modal-
ity fusion directly into the model processing stages.

III. MATERIALS AND METHODS
A. DATABASE
To carry out this study, we selected the public database
mEBAL2 [16], a Multimodal Database for EyeBlink Detec-
tion and Attention Level Estimation. It’s the first database
that we’re aware of being captured in an e-learning environ-
ment, providing information on attention levels and eyeblink
samples. mEBAL2 is a public database obtained in a real e-
learning environment using the research platform edBB [10],
[32], [49]. We used this database, which includes data from
60 students who performed various carefully designed tasks
to induce changes in cognitive load. These tasks were de-
signed to induce changes in students’ attention and evaluate
the cognitive load associated with each situation. Among
the tasks included in the acquisition protocol, the task of
committing fraud/copying was included, as previous research
demonstrated that this activity requires a higher cognitive
load [8]. Students were presented with diverse scenarios to
engage in copying responses, like using different electronic
devices (mobile phones, laptops), employing "cheat sheets,"
interacting with peers to obtain answers, and more. The
database also induced an altered state in the students, to
observe how it affected their attention during the e-learning
session. During a specific moment, students engage in phys-
ical exercise, inducing an altered state that affects their heart
rate, simulating a state of nervousness/stress. Afterward, they
resume the session.
mEBAL2 contains signals frommultiple sensors, including

face video and electroencephalogram (EEG) data. The data
was captured with the following sensors (see Table 1): An
Intel RealSense composed of 1 RGB camera and 2 NIR
cameras, along with an EEG band provided by NeuroSky. It
is worth mentioning that previous studies have also utilized
this EEG headset to gather EEG and attention signals [20],
[50], [51], as EEG measurement is considered one of the
most effective methods for attention estimation. The infor-
mation from the EEG band includes 5 EEG signals (δ, θ,
α, β, γ). Through the official NeuroSky SDK, mEBAL2
includes information regarding attention andmeditation level,
and a temporal sequence with eyeblink strength. Attention
and meditation levels are assigned values ranging from 0
to 100. We employed the attention levels acquired from the
EEG headset as ground truth to both train and evaluate our
image-based attention level estimation approach. Addition-
ally, mEBAL2 [16] provides 10550 eyeblink samples, the
largest existing public eyeblink database for research.
To summarize, mEBAL2 [16] includes data from 60 stu-

dents who participated in e-learning sessions that lasted be-
tween 15 to 30 minutes. These sessions consisted of various
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FIGURE 2. Probability Density Function of obtained attention with EEG
band from 60 students in the mEBAL2 database [16], along with our
attention levels classification (high, normal, low) with used thresholds
(τL, τH ).

activities related to mental load, visual attention, etc., such as
filling in registration forms, answering logical and multiple-
choice questions, performing visual exercises (describing im-
ages, finding differences), and more. Additionally, some of
the students took part in events related to changes in atten-
tion, such as fraud/copying, physical exercise (see [49] for a
video demonstration3). All participants gavewritten informed
consent. The study is in accordance with the Declaration of
Helsinki.

Fig. 2 shows the Probability Density Function of the atten-
tion levels of the 60 students, with an average attention level
around 50%, and the most frequent attention level being 55%.

B. FACE ANALYSIS MODULES
Our proposed DeepFace-Attention estimates attention
through the facial analysis of images captured by a webcam.
Different modules based on convolutional networks are used
to extract facial features based on behavior as well as physio-
logical signals, which have proven to estimate attention [12],
[14], [16], [52]. Fig. 4 shows our proposed system of attention
estimation. The used modules are as follows:

Face Detection Module: Our approach detects 2D facial
images using a state-of-the-art RetinaFace Detector [53]. This
robust single-stage face detector was trained using the Wider
Face dataset [54]. Once the facial position in the image is
obtained, it is used as input for the subsequent modules.

Landmark DetectionModule:We use the SAN landmark
detector [55] to acquire facial landmarks, which comprises
a 68-landmark detection system based on VGG-16 plus 2
convolutional layers trained on the 300-W dataset [56]. The
facial landmarks serve as a dual purpose in our approach.
Firstly, these landmarks are used to extract facial features
that have demonstrated relevance in attention estimation. Sec-
ondly, they are employed to locate the eye region of interest,
which subsequently serves as input to the EyeBlink module.

Through facial landmarks, we obtain features related to
attention estimation. Firstly, we focus on the eye state, specif-

3https://www.youtube.com/watch?v=JbcL2N4YcDM

ically the Eye Aspect Ratio (EAR) [40] for each eye, which
is related to the eye opening.

FIGURE 3. Feature extraction from the Landmark Detection module. On
the right eye, we show Eye Aspect Ratio (EAR) calculations. We also
display the landmarks used to extract the width and height of the nose
and head.

The EAR is calculated following the next equation:

EAR =
∥P1 −P5∥+ ∥P2 −P4∥

2 ∥P0 −P3∥
(1)

whereP0, . . .,P5 are the eye landmarks shown in Fig. 3. The
denominator is multiplied by 2 because only one distance is
calculated for horizontal eye landmarks.
We calculate the EAR parameter for each eye, so, two EAR

features are obtained per frame.
The other 4 features are related to the student’s distance

from the screen, as previous studies have shown its usefulness
in attention estimation [13]. We obtain the Width and Height
of the Head and the Nose by simply subtracting the following
landmarks:

HW = P8x − P6x (2)

HH = P9y − P7y (3)

NW = P12x − P10x (4)

NH = P13y − P11y (5)

whereP6, . . . ,P13 are the eye landmarks shown in Fig. 3.
Finally, we normalize all the values using z-score [57],

resulting in four features for each frame corresponding to the
facial feature categories of Head Size (HS) and Nose Size
(NS).

This landmark processing is in line with our previous
works, see [58], [59] for more details.

Head Pose Estimation Module: The head pose is esti-
mated using 2D facial images obtained from the facial de-
tection module. To achieve a balance between speed and pre-
cision, we used a Convolutional Neural Network (ConvNet)
based on [60]. This head pose estimator was trained with data
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FIGURE 4. Block diagram of the proposed multimodal approach for attention estimation (DeepFace-Attention). The dashed line represents the ground
truth used for training the SVMs. The two strategies used, global features (fG) and local features (fL), are shown. The feature vectors from each module are
denoted as fyx, and the score for each SVM is denoted as syx. Here, x ∈ {L,G} specifies whether the features are global or local, and y represents the
facial feature category, y ∈ {EB,HP, EAR, . . .}. Finally, sF represents the fusion of scores.

from the Pointing 04 [61] and Annotated Facial Landmarks
in the wild [62] databases. This architecture calculates the
vertical (pitch) and horizontal (yaw) angles, enabling us to
infer the 3D head pose from 2D facial images. This module
obtains the two angles that define the 3D head pose for each
frame, forming the facial feature category Head Pose (HP).

EyeBlink Detection Module: The eye state has proven
to be one of the most relevant indicators for attention esti-
mation. We use an eye state classifier on each RGB frame,
distinguishing between "open" or "closed" states, which is
commonly employed as a blink detector in frame sequences.
Our architecture is based on the approach presented in
ALEBk [11], andwe trained it from scratch using themEBAL
database [17], with RGB images only. The output values
range between 0 and 1 and the input consists of two cropped
images of the right and left eye. We apply the following
approach to obtain the region of interest: i) face detection, ii)
landmark detection, iii) face alignment using the Dlib library,
iv) data quality assessment: we use the detectors’ probabilities
to evaluate the ROI quality from which we decide to maintain
or not the alignment, or discarding the frame, and v) eye
cropping: we crop the region of each eye and resize it to
50 × 50. This module obtains a value between 0 and 1 as
a feature per frame for the facial feature category EyeBlink
(EB).

Facial Expression Module: This module is based on the
work by Zhang et al. [65], who created a new architecture
based on the subtraction of two embeddings to extract a
disentangled feature space where the facial expression em-
bedding was compacted, and the user’s identity was ignored.
The two branches are two FaceNet-Inception architectures

pretrained with VGGFace2, where the first branch is fixed
to preserve the identity information and the second branch is
retrained with Google Facial Expression Comparison (FEC)
dataset [66] to improve the facial expression features. The
model follows the same experimental protocol proposed
in [65] using the triplet loss function to obtain the disentan-
gled facial expression space. The result is 16 features per
frame for the facial feature category of Facial Expression
(Exp).
Heart Rate Detection Module:We employ the DeepPhys

model to estimate the human heart rate using remote photo-
plethysmography (rPPG) based on the facial video sequences.
This model is based on the Convolutional Attention Network
created by Chen and McDuff in [67] and implemented by
Hernandez-Ortega et al. in [68], where the DeepPhys archi-
tecture was trained on the COHFACE database [69]. The
model comprises two parallel Convolutional Neuronal Net-
works branches that extract temporal and spatial information
from videos: (i) Motion branch designed to realize a short-
time video analysis to detect pixel changes over the scene,
and (ii) Appearance branch designed to create attentionmasks
based on the subject’s appearance to help the motion model.
This module outputs fH ∈ R1×Wl , which corresponds to a
heart-rate estimation every second of the timewindow at hand
(of size Wl seconds).

C. FEATURE EXTRACTION APPROACHES: LOCAL VS
GLOBAL
Considering that the analysis of long temporal sequences
increases the complexity of classification algorithms based
directly on the time sequences, here we study to what extent

6 VOLUME 11, 2023
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TABLE 2. Features extracted from the face analysis modules for our proposed system. Wl is the time window size (in seconds) analyzed to extract global
or local features.

Modules Feature Categories Local Feature Vectors Global Feature Vectors

Landmark

EAR

HS

NS

fEAR
L ∈ R2×Wl

fHS
L ∈ R2×Wl

fNS
L ∈ R2×Wl

fEAR
G ∈ R2×28

fHS
G ∈ R2×28

fNS
G ∈ R2×28

Head Pose HP fHP
L ∈ R2×Wl fHP

G ∈ R2×28

EyeBlink EB fEB
L ∈ R1×Wl fEB

G ∈ R1×28

Facial Expression Exp fExp
L ∈ R16×Wl fExp

G ∈ R16×28

Heart Rate H fHL ∈ R1×Wl fHG ∈ R1×28

TABLE 3. Description of the gk
n (k = 1, . . . , 28) global features of the global vector gn extracted from each time series used in this work. Adapted from

[63], [64].

# Feature Description # Feature Description
g1n Total positive velocity

∑
(v>0) g2n Total negative velocity

∑
(v<0)

g3n (1st maximum location in x) g4n (2nd maximum location in x)
g5n (3rd maximum location in x) g6n (average velocity ṽ)/ |v|max
g7n (average velocity ṽ)/vmax g8n (RMS velocity vRMS)/ |v|max
g9n (RMS centripetal acceleration acRMS )/ |a|max g10n (RMS tangential acceleration atRMS )/ |a|max

g11n (RMS acceleration aRMS)/ |a|max g12n (average abs. centripetal acceleration ˜|ac|)/ |a|max
g13n standard deviation of velocity σv g14n standard deviation of acceleration σa

g15n average abs. jerk |̃j| g16n average jerk j̃
g17n maximum abs. jerk |j|max g18n maximum jerk jmax

g19n RMS jerk jRMS g20n (time of |j|max)

g21n (time of j̃max) g22n Total sign changes of v
g23n (

∑
(v>0) |v|)/(

∑
(v<0) |v|) g24n (

∑
(v>0))/(

∑
(v<0))

g25n xmax − xmin g26n ṽ/(xmax − xmin)

g27n (Total of local maximum in x) g28n (average acceleration ˜|a|)

are useful and efficient global features that integrate the in-
formation across time. To integrate the temporal information
from the video sequences, we have adapted the global features
proposed in [63], [70].

The face analysismodules presented in the previous section
are used to extract local and global features (see Table 2). We
then apply two different feature processing approaches for the
extraction of local and global relationships.

First, to characterize the local relations we use the method
presented in MATT [12]. The features obtained from each
module, denoted as fx,y, where x ∈ {1, . . . ,N} represents the
specific feature and y represents the facial feature category
y ∈ {EB,HP,EAR, . . .}, are used to obtain local feature
vectors. For each facial feature category, a local feature vector
is generated, capturing the changes in the facial attributes
for high and low attention, as follows: i) the facial analysis
module’s features fx,y are averaged for each second of video,
generating f̄x,y, and ii) for each facial feature category, a local
feature vector f yL ∈ RN×Wl is obtained by concatenating the
1s averages f̄x,y across the time window of size Wl (30, 60,
or 120 seconds), making N ×Wl the dimension of the vector,
where N is the number of features per second. These local
feature vectors are used to estimate the attention level every
second.

Second, the characterization of global relationships pro-

posed in this work (one of the novelties here in DeepFace-
Attention with respect to MATT [12]) involves extracting
statistical features from the outputs of the face analysis mod-
ules, which have previously demonstrated their effectiveness
in other classification tasks [63], [70]. For each facial feature
category, a global feature vector fyG is extracted from a se-
quence of features f yL ∈ RN×Wl , whereWl is the time window
size (in seconds) and N is the number of features per second.
This sequence f yL is formed as before in the local representa-
tion by concatenating the 1s averages f̄x,y. The global feature
vector fyG for each feature category y ∈ {EB,HP,EAR, . . .}
is now defined as a set gn ∈ R28 with n ∈ {1, 2, . . . ,N}
where N is the number of features per second as described in
Table 3.

D. ATTENTION LEVEL ESTIMATION BASED ON FACIAL
FEATURES
Based on the facial features presented in previous sections,
we propose a binary classifier to estimate periods of high or
low attention.

The attention levels in the mEBAL2 dataset range from 0
to 100; however, for our study, we performed binary classi-
fication (high, low). Additionally, the attention levels vary
for each student. To address these aspects, we followed the
protocol proposed by ALEBk and MATT [11], [12], where
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FIGURE 5. Block diagram using an approach of selection and fusion of global features for attention estimation. The dashed line represents the ground
truth used for training the SVM. The global feature vector is denoted as fyG , where y represents the facial feature category, y ∈ {EB,HP, EAR, . . .}. fSG
represents the vector of selected global features. Finally, the score obtained from the SVM is denoted as sG.

two thresholds were defined for high and low attention pe-
riods segmentation: high attention (attention higher than a
threshold τH ) and low attention (attention lower than a thresh-
old τL). In our case, the thresholds were obtained through
the probability density function (PDF) of the attention levels
from the 60 students (see Fig. 2). Specifically, we considered
low attention as the values below the 10th percentile (τL) and
high attention as the values above the 90th percentile (τH ),
as these percentiles have been shown in previous works to be
separable in high and low attention.

The attention levels from the EEG band are provided every
second (1Hz). However, our approach focuses on longer tem-
poral windows to gather enough behavioral and physiological
features that can effectively classify attention. Specifically,
here we study three different sliding windows of 30s, 60s,
and 120s. This means that attention was estimated every
second, based on the characteristics extracted from the frame
sequence within the time window of size Wl seconds.
We then calculated the band attention level per window

(reducing the impact of possible errors and obtaining a more
accurate value of the captured attention by the band) and
assigned a high or low label. After obtaining the labels, we
analyzed the video sessions using all modules. For each facial
feature category, we generated two vectors of both local and
global features for the applied windows.

We trained two Support Vector Machine (SVM) binary
classifiers for each facial feature category, one using local and
other using global features as described in Section III-C (see
Fig. 4).

All SVMs were trained with a linear kernel, employing
a squared L2 penalty with a regularization hyper-parameter

C ranging from 1e−8 to 1e2 with steps in powers of 10.
Additionally, a tolerance of 1e−3 is set for the stopping crite-
rion. It is important to mention that this work also evaluated
the performance of RBF kernel SVM and Random Forest.
However, the differences in the performance of the three
proposed algorithms were marginal. For greater clarity, the
paper only presents the results of the linear SVM classifiers.
To obtain the multimodal approach, we applied score level

fusion with different combinations of the monomodal at-
tention level estimation classifiers, therefore, we sorted out
our systems into unimodal and multimodal attention level
estimation. The training process works as follows:
Unimodal attention level estimation. i) Each frame

is processed through the 5 facial analysis modules de-
scribed in section III-B. ii) Output features fx,y are aver-
aged for each second of video f̄x,y. iii) A vector f yL for
local and fyG for global features are obtained for the time
window at hand. The extraction process follows the steps
described in the previous section III-C. Finally, we have
the following vectors {fEB

L , fEAR
L , fNS

L , fHS
L , fHP

L , fHL , fExp
L }

and {fEB
G , fEAR

G , fHS
G , fNS

G , fHP
G , fHG , fExp

G }. iv) Two SVMs
for each facial feature category are trained to classify be-
tween high and low attention, one using local features
f yL and the other using global features fyG as input. The
scores for local features are denoted as syL, which include
{sEB

L , sEAR
L , sNS

L , sHS
L , sHP

L , sHL , s
Exp
L } and for global features

as syG, which include {sEB
G , sEAR

G , sNS
G , sHS

G , sHP
G , sHG, s

Exp
G }.

Multimodal attention level estimation. The proposed
multimodal systems involve combining unimodal facial anal-
ysis systems based on either local or global features. The
scores from previously trained unimodal facial analysis are
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FIGURE 6. Probability density distributions of the confidence scores obtained by our attention estimation systems for the best approach in each of the
three time windows considered (from left to right: 30s, 60s, and 120s) using local features. In order to simplify the performance analysis/comparison, our
experimental discussion is focused on binary classification into low/high attention using the score threshold that maximizes classification accuracy.

combined using different strategies: i) a score sum strategy
and ii) training a simple neural network with two hidden
layers. The architecture consists of dense layers with ReLU
activation. The first hidden layer has 16 units and processes
the input, which includes 7 scores, each corresponding to the
output from the SVM binary classifiers for individual facial
feature categories. This is followed by another dense layer
with 8 units, and an output layer with one unit (sigmoid activa-
tion). A dropout of 0.5 is employed. For both fusion strategies,
the process was carried out individually for local features syL
and for global features syG, obtaining two combined scores sFL
or sFG. Finally, these scores were compared with a threshold τ
to determine the attention level (high or low).

We also propose another multimodal system for global
features, based on feature selection and fusion using a
single SVM classifier (see Fig. 5). The protocol is the
same as previously explained; however, instead of train-
ing an SVM for each facial feature category, we perform
a feature selection and fusion inspired by the work of
Leng et al. [44]. We merged global features into a vector
{fEB

G , fEAR
G , fHS

G , fNS
G , fHP

G , fHG , fExp
G } and calculate the Dis-

crimination Power (DP), which is a measure based on the
inter-class and intra-class variation DP =

σ2
inter

σ2
intra

. Finally, we
select the features that are in the top 90th percentile of DP.
This new vector fSG is used as input to train a single SVM to
classify between high and low attention.

IV. EXPERIMENTS AND RESULTS
A. EXPERIMENTAL PROTOCOL
We follow the protocol proposed in ALEBK [11] to classify
between high and low attention levels, as detailed in the
previous section III-D. In total, we obtain 10376, 8309, and
5605 periods for timewindowsWl of 30, 60, and 120 seconds,
respectively, from all 60 students in the database. The samples
are evenly distributed between low and high attention levels.

We employ the leave-one-out cross-validation protocol,
where one user is left out for testing, and the remaining ones
are used for training and this process is repeated with all
users. The decision threshold is chosen at the point where the
classification accuracy is maximized.

TABLE 4. Attention estimation Accuracy (Acc in %) using the mEBAL2
database for the proposed unimodal approaches with local features. We
set the value of τL at 10% and τH at 90%. The values highlighted in black
indicate the best module for each time window (30s, 60s, 120s)

Module Wl : 30 Seconds Wl : 60 Seconds Wl : 120 Seconds
Acc Acc Acc

Landmark (EAR) 68.52 69.84 75.54
EyeBlink (EB) 70.54 73.91 79.16
Expression (Exp) 76.66 77.28 79.11
Head Pose (HP) 57.21 60.61 65.23
Landmark (HS) 61.66 62.78 65.94
Landmark (NS) 62.33 62.20 57.22
Heart Rate (H) 50.03 50.02 54.83
Wl : Window length (in seconds).

B. UNIMODAL EXPERIMENTS
We initially divided the experiments into local and global
features.

1) Local Features
Table 4 displays the results for each facial analysis module in
terms of attention estimation Accuracy (Acc in%) for all time
windows (30s, 60s, 120s). Fig. 6 shows the probability density
distributions of the scores obtained for the bestmethod in each
window.
The results show that the EyeBlink (EB) and Facial Ex-

pression (Exp) modules achieve the highest accuracy with
better separability between distributions for all time frames.
We noticed that in the 30s and 60s windows, the Exp module
performs the best with an accuracy of 76.66% and 77.28%,
respectively. However, in the 120s window, the EB module
shows a slight improvement over Exp, achieving an accuracy
of 79.16%. The third module (feature category) with the
best results is the EAR feature category, which reinforces
previous findings on the importance of the eye state and facial
expressions in attention estimation [11], [17], [38], [39].
The worst results are obtained from the Heart Rate (H)

module. This suggests that, the variations in Heart Rate do
not present a high correlation with attention levels in this
database.
The Head Pose (HP) module has the second worst result

for 30s and 60s windows; however, even though it is not a
clear attention estimation indicator, it shows that there is a
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FIGURE 7. Probability density distributions of the confidence scores obtained by our attention estimation systems for the best approach in each of the
three time windows considered (from left to right: 30s, 60s, and 120s) using global features. In order to simplify the performance analysis/comparison,
our experimental discussion is focused on binary classification into low/high attention using the score threshold that maximizes classification accuracy.

relationship with attention levels, making it potentially useful
for multimodal approaches. Additionally, it is observed that
as the time window increases, the results improve, reaching
an accuracy of 65.23%. This makes sense, as a larger window
allows capturing more significant patterns and trends in the
student’s behavior andmitigates possible errors from the pose
detection module.

The previous modules show an improvement in the ac-
curacy metric when the time window is extended, with an
average improvement of around 6.18%. This demonstrates
that increasing the amount of features and context allows
a better classification. The feature categories based on the
eye state are particularly relevant, specifically the EB and
EAR, where we observe an accuracy improvement of 8.62%
and 7.02% respectively. This makes sense because eyeblinks
are less frequent in e-learning environments compared to
standard behavior [71], [72]. For this reason, a larger window
allows the detection of moments with few eyeblinks (high
attention) or periods with a higher eyeblink frequency (low
attention).

Similar to HP, head-to-camera indicators like Head and
Nose Size, HS and NS respectively, are not strongly cor-
related to attention. Unlike previous modules, these feature
categories do not always perform better in the 120-second
window. This makes sense because during e-learning ses-
sions, students can make fast movements to get closer to the
screen, fixing their visual attention on a specific point on the
screen, indicating strong concentration.

Fig. 6 shows that, in most cases, high attention levels are
easier to recognize than the low ones. Low levels tend to have
a more spread density distribution, making their classification
more challenging. This makes sense in the context of the
monitoring carried out in mEBAL2 [16], where students are
typically focused with moments of high attention during short
time tasks.

2) Global Features
We conducted the same experiments as in the previous section
with the global features to understand if they are more ef-
fective in the SVM-based classification and how they impact

TABLE 5. Attention estimation Accuracy (Acc in %) using the mEBAL2
database for the proposed unimodal approaches with global features. We
set the value of τL at 10% and τH at 90%. The values highlighted in black
indicate the best module for each time window (30s, 60s, 120s)

Module Wl : 30 Seconds Wl : 60 Seconds Wl : 120 Seconds
Acc Acc Acc

Landmark (EAR) 75.94 75.87 75.99
EyeBlink (EB) 73.03 74.41 80.64
Expression (Exp) 73.05 74.46 78.39
Head Pose (HP) 63.62 59.78 59.52
Landmark (HS) 64.12 62.09 53.79
Landmark (NS) 63.07 62.17 56.32
Heart Rate (H) 52.35 55.84 59.86
Wl : Window length (in seconds).

each module. This analysis aims to assess whether the global
features can provide additional discriminating information to
improve the accuracy of attention estimation compared to the
local features.
Table 5 shows the results for each module in different time

windows (30s, 60s, 120s). Similar to the previous case, the
probability density distributions of the scores for the best
method in each window are shown in Fig. 7.
The EAR feature category achieves the best results in the

30s and 60s windows, achieving a maximum accuracy of
75.94% and 75.87%, respectively. We can observe significant
improvements in the results of this module in comparison to
local features, achieving an accuracy improvement of 7.42%
and 6.03%, respectively. Once again, the top three feature
categories with the best results are EAR, EB, and Exp.
In the case of the EB module, we can see improvements in

all three windows, but a notable difference in the 120-second
window. The accuracy in this case reaches 80.64%, which is
the highest obtained value.
The Exp module shows a decrease in accuracy results

compared to the local features in all three windows, with
differences of 3.61% for the 30s window, 2.82% for the 60s
window, and 0.72% for the 120s window, noticing an error
reduction as the window size increases.

The Heart Rate module remains an unreliable indicator for
attention estimation, as its classification is almost random in
the considered time windows. The other features categories,
user distance and head pose, exhibit similar behavior, show-
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TABLE 6. Accuracy results (Acc in %) for attention estimation in multimodal systems based on local features, showing the best combinations for score
sum fusion. The first row provides the best unimodal module for the selected time window. The last row displays the results achieved by score fusion via
neural network. The values highlighted in black indicate the best feature categories and the fusion strategy with the best accuracy for each time window
(30s, 60s, 120s)

Wl : 30 Seconds
Feature Categories Acc
Exp 76.66
EB, Exp 77.25
EB, Exp, HS 73.95
Exp, EAR, HP, HS 73.00
EB, Exp, EAR, HP, HS 73.18
EB, Exp, EAR, HP, H, HS 70.46
All Modules 68.67
Neural Network Fusion 84.25

Wl : 60 Seconds
Feature Categories Acc
Exp 77.28
EB, Exp 77.65
EB, Exp, HP 75.92
EB, Exp, EAR, HP 76.48
EB, Exp, EAR, HP, HS 75.11
EB, Exp, EAR, HP, HS, NS 72.10
All Modules 70.01
Neural Network Fusion 85.87

Wl : 120 Seconds
Feature Categories Acc
EB 79.16
EB, Exp 80.52
EB, Exp, HP 80.32
EB, Exp, EAR, H 79.95
EB, Exp, EAR, HP, H 78.18
EB, Exp, EAR, HP, H, HS 76.88
All Modules 76.25
Neural Network Fusion 85.92

Wl : Window length (in seconds).

ing slight improvements in the first window and deterioration
in the subsequent ones when compared to local features. By
themselves do not serve as a clear indicator for attention
estimation. However, as we will see later, the information
provided by these features categories might be valuable in
multimodal systems.

Results show that our best unimodal models improve their
performance as the temporal window increases up to 120
seconds. The same trend is observed with local features,
highlighting the importance of considering a longer time
period to capture significant patterns and trends in the stu-
dents’ behavior. This finding supports the notion that certain
discriminating features may become clearer and more effec-
tive in attention estimation when analyzing a larger temporal
context. By expanding the window, we allow the modules to
detect and utilize more relevant information for classification,
resulting in an enhanced ability to distinguish between high
and low attention levels with greater accuracy. As we can
see, some modules were significantly improved using global
features, such as EAR feature category. Additionally, the size
of the temporal windows has a notable impact on the results.
Global features achieve the highest accuracy value of 80.64%
for the EB module.

Figure 7 also shows that detecting low attention levels can
be more challenging than detecting higher ones, because the
low attention score distribution is more spread than the high
attention one. Although this difference is not as clear in global
features as it is in local ones, it is particularly evident in the
120s window.

C. MULTIMODAL EXPERIMENTS
1) Local Features
Table 6 displays the results from the best combinations of
unimodal for the score sum strategy and the score fusion
results using a neural network.

The best results in the 30s window for score sum are
achieved combining the EB+Exp modules, with an accuracy
of 77.25%. Compared to the Exp module, which is the best
unimodal module, there is a slight improvement of 0.60%.

We observe that the combination with other modules worsens
the results compared to the Exp module. However, the score
fusion using a neural network achieves the best performance
with 84.25%, marking a significant improvement over the
EB+Exp module combination by 7%, demonstrating the po-
tential of neural networks for score fusion [43].

The same pattern occurs in the 60s window, making the
EB+Exp combination the best for score sum, showing a
slight improvement over the Exp module alone. The other
combinations result in a worse performance. Once again, in
the 60s window, the Neural Network Fusion (NNF) achieves
the best results, even surpassing those in the 30s window.
NNF outperforms both the unimodal system, with a signifi-
cant improvement of 8.59%, and the top-performing EB+Exp
combination by 8.22%.

In the 120s window the best unimodal system is EB, which
is slightly surpassed by three different fusions: EB+Exp,
EB+Exp+HP, and EB+Exp+EAR+H. The best maximum ac-
curacy is achieved by EB+Exp with 80.52% for score sum.
Once again, NNF outperforms the score sum, achieving an
accuracy of 85.92%. This demonstrates that increasing the
temporal window improves the system combination accuracy,
as expected because a broader temporal context facilitates the
integration of longer and more complex temporal patterns in
the data, resulting in better discrimination. Furthermore, these
results show that score-level fusion with neural networks
is more effective than score sum for local features in the
mEBAL2 database.

The EB and Exp unimodal modules are the most effective
in attention estimation, appearing in all combinations that im-
proved results. Additionally, the best values are consistently
obtained in the 120s window, having the most potential for
improvement due to the wider amount of information. This
highlights the challenge of attention estimation through im-
age processing, requiring longer windows to capture relevant
behavioral and physiological processes.
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TABLE 7. Accuracy results (Acc in %) for attention estimation in multimodal systems based on global features, showing the best combinations for score
sum fusion. The first row provides the best unimodal module for the selected time window. The last row displays the results achieved by score fusion via
neural network. The values highlighted in black indicate the best feature categories and the fusion strategy with the best accuracy for each time window
(30s, 60s, 120s)

Wl : 30 Seconds
Feature Categories Acc
EAR 75.94
EAR, Exp 76.77
EB, EAR, HS 77.11
EB, Exp, EAR, HP 77.35
EB, Exp, EAR, HP, HS 77.39
EB, Exp, EAR, HP, HS, H 77.31
All Modules 76.73
Neural Network Fusion 79.26

Wl : 60 Seconds
Feature Categories Acc
EAR 75.87
EB, EAR 79.17
EB, EAR, NS 78.90
EB, Exp, EAR, NS 79.01
EB, Exp, EAR, HP, NS 79.23
EB, Exp, EAR, HP, H, NS 78.32
All Modules 77.05
Neural Network Fusion 79.17

Wl : 120 Seconds
Feature Categories Acc
EB 80.64
EB, Exp 83.34
EB, Exp, EAR 80.95
EB, Exp, EAR, NS 79.80
EB, Exp, EAR, H, NS 77.23
EB, Exp, EAR, H, HS, NS 76.16
All Modules 73.10
Neural Network Fusion 74.01

Wl : Window length (in seconds).

FIGURE 8. Receiver Operating Characteristic curve (ROC) obtained for the
most accurate multimodal approach using global features (this occurs in
the 120s window), shown with a blue line and for each of the monomodal
systems that are part of this combination.

2) Global Features

Table 7 presents the results of the best combinations with
global features for score sum and neural network fusion.
Fig. 8 shows the ROC curve for the best multimodal system,
along with the results of the individual monomodal systems
that compose it.

With global features, more effective combinations are
achieved for score sum and lower performances are ob-
tained for NNF. In the 30s window, the best unimodal re-
sult is 75.94%, and all combinations shown in the table
(combining with the EAR feature category) outperform it,
including the combination of all modules. The best one is
EB+Exp+EAR+HP+HS with 77.39%, representing an aver-

age improvement of 1.65% in accuracy. Furthermore, this
combination slightly outperforms (0.14%) the best result with
local features, which was EB+Exp in the 30s window. How-
ever, EB+Exp requires only two modules, making it faster
and more practical. NNF achieves better performance than
the best combination by score sum, with a slight improvement
of 1.87%. However, its performance is inferior to the results
obtained for local features in all windows.

In the 60s window, we observe a similar pattern for the
score sum. The unimodal EAR feature category achieves an
accuracy of 75.87% and all the combinations outperform it
when combined with the same feature category. The best
combination is EB+Exp+EAR+HP+NS, similar to the pre-
vious one, with an accuracy of 79.23%. This combination
shows a significant improvement of 3.36% in accuracy. This
highlights that the user distance and pose feature categories
contain valuable information in multimodal systems, espe-
cially in short-duration windows. Furthermore, the best com-
bination of global features surpasses the results of the best
combination with local features, EB+Exp, by 1.58% in accu-
racy, demonstrating a considerable improvement. However,
for NNF, the results are similar to those in the 30swindow. For
the first time, this method is inferior to the best combination
for score sum, though almost equal. Once again, the results
obtained by NNF for global features are inferior to those
achieved with local features.

For the 120s window, we found out that the combination
of EB+Exp significantly outperformed the best unimodal ap-
proach, which was EB. On the other hand, EB+Exp achieves
83.34% resulting in a remarkable improvement of 2.7% in
accuracy. Furthermore, global features also surpass the best
combination with local features for score sum by 2.82%,
showing that global features continue to achieve a better com-
bination of modules, especially in the 120s window where
the best results are obtained. Additionally, in this window,
the best combinations for both local and global features are
EB+Exp, indicating that, under similar conditions, the most
effective system is achieved with global features. Addition-
ally, this also highlights the importance of facial units and
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EyeBlink in attention estimation. NNF achieves its lowest
performance with an accuracy of 74.01%, which is 9.33%
lower than the best combination of EB+Exp. It has been
observed that score fusion using global features has worse
generalization compared to local features

Figure 8 presents the ROC curve for the unimodal and mul-
timodal approaches based on global features and 120s win-
dow (best approaches). The curve shows significant improve-
ment when combining Facial Expressions and EyeBlink.

3) Global Features: Selection and Feature Level Fusion

TABLE 8. Best results of accuracy for global features in unimodal system,
score level fusion, and feature level fusion with the best accuracy for each
time window (30s, 60s, 120s)

Wl : 30s Wl : 60s Wl : 120s
Methods Acc Acc Acc
Unimodal System 75.94 75.87 80.64
Score Level Fusion 79.26 79.23 83.34
Feature Level Fusion 76.48 77.79 81.48

Fig. 5 shows the proposed architecture for feature selection
and fusion (for more details, see Section III-D). Table 8
presents the best results achieved for unimodal systems, score
level fusion, and feature level fusion using global features.

The results show that the proposed architecture for fea-
ture selection and fusion outperforms unimodal systems in
all windows. However, it produces inferior results compared
to the top-performing multimodal systems achieved through
score fusion. However, our feature level fusion architecture
only utilizes 10% of the global features (reducing from 728
features to 73) and uses only an SVM to obtain a direct score
without the need to train a neural network, which requires
more careful optimization. This demonstrates that the results
of this architecture are highly competitive.

D. EXPERIMENTS: COMPARISON WITH EXISTING
APPROACHES
We now compare ourselves with three recent state-of-the-art
approaches: Peng [13], ALEBk [11], andMATT [12]. ALEBk
and MATT were previously trained and evaluated on the first
version of mEBAL [17]. To perform the comparison here, we
train again all the methods on mEBAL2 with 60 users under
identical conditions, using the same attention classification
percentile, and employing the leave-one-out cross-validation
protocol. Table 9 presents a benchmark with the best results
obtained in attention estimation on the mEBAL2 dataset [16]
by different state-of-the-art approaches, compared to our pro-
posal here: DeepFace-Attention.

The approach proposed in Peng [13] is a multimodal sys-
tem based on global features of head posture and movements
of the eyes, head, and mouth (see Section II-B for more
information). This approach was based on a random forest
model to estimate attention in 10s windows. We adapted this
model to predict high and low attention in 30s, 60s, and 120s
windows. The results obtained are inferior compared to the

TABLE 9. Comparison with the state of the art. Attention level estimation
results on the mEBAL2 dataset [16] including 60 students. Our best
approach is compared with Peng [13], ALEBk [11] and MATT [12]. The
same training and evaluation protocol is employed for all methods
following our experimental protocol. * We have adapted the method
Peng [13] for classifying between high and low attention levels. This
method was designed to work with global features extracted from the
head pose module and the facial landmark module. **We have adapted
the methods proposed in [11] and [12] incorporating the global and local
features proposed in this work. The results obtained for the 120s time
frame are shown, which exhibited the highest accuracy for the
best-performing approaches.

Local Features Global Features
Methods Acc Acc
Peng [13]* – 66.28
ALEBk** [11] 79.16 80.64
MATT** [12] 80.32 74.43
Proposed: DeepFace-Attention 85.92 83.34

methods ALEBk [11], MATT [12], and our method. Regard-
ing global features, our method improves the performance by
17.06% over Peng [13] and by 19.64% over our best method
based on local features.
ALEBk [11] is a monomodal system that estimates atten-

tion based on the eyeblink rate per minute. An enhanced
version of that system was used, incorporating an SVM for
high and low attention classification, using local and global
features, obtained from the eyeblink detector, rather than
simply applying a blink rate per minute threshold. While
ALEBk achieved an accuracy of 74% for the first version
of mEBAL, the improved version obtains 79.16% when ap-
plied to mEBAL2 with 60 users. Furthermore, the results
of employing global features have been also evaluated over
ALEBk, achieving an accuracy of 80.64%.
MATT [12] presented unimodal and multimodal ap-

proaches to classify between high and low attention levels.
Its best-performing approach was the multimodal one, which
combined EyeBlink, Head Pose, and Facial Expression, using
local features. This method achieved an accuracy of 80.32%
with local features and 74.43% with global features. Better
results are obtained with local features compared to the global
ones, in contrast to the outcomes achieved by ALEBk.
As seen on Table 9, our approach outperforms previous

approaches. Our best multimodal approach is EB+Exp score
sum combination for global features and NNF for local fea-
tures. The best results are achieved with local features, sur-
passing the latest version of ALEBk by 6.8%, resulting in a
relative reduction in error rates of 32.4%. Regarding the best
version of MATT, corresponding to the use of local features,
an improvement of 5.6% in accuracy is obtained, leading to a
relative reduction in error rates of 28.5%. Our global feature
system based on score sum also outperforms state-of-the-art
proposals using global features with a relative reduction in
error rates of 14% for ALEBk and 34.8% for MATT.
Furthermore, our multimodal system based on score sum

requires only two modules (EB+Exp), while the MATT ap-
proach requires three (EB+Exp+HP), resulting in reduced
time and resource usage.
Table 10 presents the results of the average inference speed
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TABLE 10. Comparative Inference Times for Attention Estimation using an
Intel Core i5-7600 CPU, RAM 32GB of RAM, and a NVIDIA GTX 1080 GPU
with 8GB of VRAM. This table includes inference times of the facial
analysis modules and a comparison with state-of-the-art methods. Our
best approach is compared with Peng [13], ALEBk [11], and MATT [12].

Modules Inference speed (ms)

Face Detection 29.76
EyeBlink 15.94
Landmark 41.45
Head Pose 101.57
Expression 14.59
Heart Rate 5.15

Methods Inference speed (ms)

Peng [13] 172
ALEBk [11] 86
MATT [12] 202
Proposed (Global Features) 100
Proposed (Local Features) 208

for each processed frame by different facial modules using
an Intel Core i5-7600 CPU, 32GB of RAM, and a NVIDIA
GTX 1080 GPU with 8GB of VRAM, providing a compu-
tational comparison of the various modules. It also presents
the inference times per processed frame for our methods and
the state-of-the-art methods: Peng [13], ALEBk [11], and
MATT [12]. The Head Pose module is the slowest, followed
by the landmarkmodule. Although the EyeBlinkmodule only
takes 15.94 ms, using the landmark module is necessary to
identify the eye region, thus the total time of 57 ms. As we
can see in Table 10, the slowest methods are the systems
that utilize the Head Pose, such as Peng [13], MATT [12],
and our local features NNF method. The fastest method is
ALEBk [11], which only uses the eyeblink and landmark
modules.

Note that our objective in this research was not to en-
hance the system’s speed but rather to evaluate whether deep
learning-based facial analysis modules can accurately deter-
mine high or low attention levels. For future work, resource-
optimized modules can be used to reach real-time operation
if needed.

V. CONCLUSION
We have presented various approaches to estimate high or low
attention levels, applied to a realistic e-learning environment
of 60 students. State-of-the-art technologies were used, based
on deep learning, to perform facial analysis of behavioral
features and physiological processes related to attention [12],
[14], [16]. To understand which features are more efficient
in attention estimation, we designed unimodal systems based
on SVM classification using the following information: eye-
blink, heart rate, facial expressions, head pose, and head dis-
tance. We also have investigated the impact of local features
and well-known global features on accuracy. Additionally, we

examined the effects of temporal windows on attention esti-
mation, with three different options: 30, 60, and 120 seconds.
We proposed multimodal systems for attention estimation,
demonstrating their ability to enhance existing methods for
attention estimation.
Some interesting findings are as follows: eye state features

(EAR, EyeBlink) and facial expressions are the most useful
with a clear correlation with attention. We also observed
that the best attention estimation systems improved as the
time window size increases. Head pose and distance features
were not clear indicators of attention; however, in multimodal
systems, they provided relevant information for classifica-
tion. The results of the Heart Rate module, both unimodal
and combined, showed that it is not a reliable indicator of
attention. Global features were more effective for multimodal
systems based on score sum, obtaining the best combination
with Eyeblink and Facial Expressions with an accuracy of
83.34%. The best results in this study were achieved with
local features using score level fusion through neural network
training with an accuracy of 85.92%. We also analyzed an ar-
chitecture based on the selection and fusion of global features,
outperforming unimodal systems with slightly less accuracy
than our full score fusion, but only necessitating 10% of the
features.
Our best approach, called DeepFace-Attention, have

outperformed three state-of-the-art methods: Peng [13],
ALEBk [11], and MATT [12]; achieving a significant relative
improvement in error reduction of approximately 50.6% for
Peng [13], 32.4% for ALEBk (an enhanced version of the
system proposed in [11]), and 28.5% for MATT.
In the future, we will explore the combination of local and

global features during the training process. Moreover, we aim
to analyze how attention estimation can be affected when
students perform different types of tasks. Additionally, we
will explore alternative indicators that have shown a direct
relation with attention levels, such as eye pupil size [25],
[26], gaze tracking [31], [73], keystroking [74]–[76], among
others. Predicting the level of attention within a continuous
range is a more challenging task than predicting high or low
attention levels, and it is also planned for future work.
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