
Zero-Shot Object Manipulation with Semantic 3D Image Augmentation
for Perceiver-Actor

Abstract— Recent advances in robot learning have shown
promise in achieving multitask control and generalisation to
novel scenarios—a feat previously difficult to achieve with hand-
engineered solutions. However, these results are not as grandiose
as those achieved by large models trained on internet-scale data;
robot learning is still crucially limited by the bottleneck of real-
world data collection. To breach this gap, we propose a data
augmentation framework that utilises several large pretrained
models to generate additional data from a limited set of human
demonstrations. By combining pretrained image segmentation,
image inpainting and depth estimation models, we can create
new scenarios that are not seen in the dataset, but that are
still consistent with the task setup. We demonstrate zero-shot
capacity on a real robot, by training an agent on our augmented
dataset to successfully manipulate objects that did not exist in
the original collected data.

I. INTRODUCTION

The observed trend in machine learning research is that
with more compute and data, generalisation and better per-
formance follow [1]. For example, there have been recent
advances in joint vision-language understanding by scaling
models on large datasets [2], [3], [4], [5]. While this trend
hasn’t dominated the field of robot learning, recent stud-
ies [6], [7] have shown similar performance gains can be
achieved by scaling compute and data.

However, one downside of this approach—the reliance on
large amounts of data—is a serious bottleneck for robotics.
Unlike vision or language data, collecting data for robot
learning is costly. And while the widely-used metric of data-
efficiency does account for this somewhat, in robotics we
also need to consider time-efficiency (in data collection) [8].
For example, RT-1 used 130,000 human teleoperated demon-
strations, collected over the course of 17 months, with a fleet
of 13 robots [6]. Even if significant generalisation required
a single order of magnitude increase in data collection, this
would be infeasible in any reasonable timeline.

However, large models pretrained on various modalities
can be used to bootstrap robot learning. For example, the
CLIP text-vision model [5] was combined with existing
heuristic designs for robotics to create general controllers
for manipulation [9], [10]. In another vein, works such as
GenAug [11], CACTI [12] and ROSIE [13] have utilised
similar large vision-language models, but for data augmen-
tation. This line of work uses pretrained models to generate
new scenes, alleviating the cost of collecting data.

Another line of work in robot learning has investigated
using 3D representations for learning, which confers a useful
inductive bias for spatial awareness [10], [14], [15]. These
models can be very data-efficient, learning better policies

Fig. 1: Our 3D image data augmentation pipeline. Given an
RGBD image from the real dataset (top), we first segment
objects of interest (e.g., the target object, distractor objects,
the goals, and the robot arm itself; middle-left), inpaint novel
objects using the segmentation masks, composing objects in
order as necessary (bottom-left), perform depth estimation on
the new image, and then stitch this together with the original
depth information (bottom-right) by using the segmentation
mask to overwrite the inpainted novel objects depth, and
other objects unmodified (including robot arm, table).

with a magnitude less data than their 2D counterparts.
However, the aforementioned data augmentation pipelines
only augment 2D image data [12], [13], [11]. In this work, we
extend data augmention to 3D data by combining pretrained
vision and vision-language models (Fig. 1). In particular, we
make use of pretrained image segmentation [16], [17], image
inpainting [3] and depth estimation [18] models, which we
show can be used on real robotics data without requiring
further fine-tuning. We test our data augmentation pipeline
on a real robot controlled with Perceiver-Actor (PerAct)
[10], a recent language-conditioned imitation learning model
that uses voxel representations. We show that our pipeline
improves performance on both tasks seen in the data, as well
as tasks only seen in the synthetic, augmented data.



Fig. 2: Given a segmentation mask of an object, we can either change its appearance, or completely replace it with a
different object. The text above each inpainted image denotes the segmentation and inpainting prompts, where we can use
a composition of prompts.

II. BACKGROUND

In this work we use PerAct [10], a language-conditioned
imitation learning model that takes voxels, robot propriocep-
tion values, and text that specifies the task to be executed, and
outputs the desired gripper pose, gripper open/close status,
and motion planner mode. This output fed in to a motion
planner, which after execution queries the model for the next
pose, in an open loop. The voxel inputs are constructed by
taking RGBD images from a camera with known extrinsic
parameters, forming a point cloud, and then creating a voxel
grid from these with respect to the robot base.

The core of PerAct is the Perceiver IO architecture [19],
which is used to mitigate the large memory requirement of
processing voxels. All of its parameters are trained from
scratch, apart from the language encoder, which uses a
pretrained CLIP model [5]. PerAct is trained to predict
the next action in a sequence of collected data, similar
to behavioural cloning [20]. One key modification is that
instead of predicting the next action at every step of the
sequence, it instead predicts the next key action available in
the episode, reducing the credit assignment problem[15].

III. METHOD

Augmenting PerAct’s training data requires adjusting the
vision and depth information from collected data to construct
novel scenarios, as well as changing the text prompt to
match the augmentation. We do so by chaining together
pretrained models with different purposes, creating different
scene representations whilst preserving relevant task-specific
information, such as the location of the robot and the
predicted action.

Our pipeline first starts with using a text-conditioned
image segmentation model [16], [17]. We use text prompts
to specify parts of the RGB image we want to segment:
the workspace, the object we wish to manipulate, non-target
objects, goal markers, and finally the robot arm itself. With
these segmentation masks available, we then prompt an im-
age inpainting model [3] with a new object/texture, together
with the mask corresponding to the part of image we want
to inpaint, repeating this process for each part, and finally
composing these together, in order. Finally, we run a depth
estimation model [18] on the composed inpainted image,
and replace the parts of the depth image that inpainting has
modified. The entire process can be seen in Fig. 1.

Since each of the models in the pipeline are independent,
they can be interchanged as needed. We tried several pre-
trained text-conditioned image segmentation models [16], as
well as the Segment Anything Model (SAM) [17]. As the
pretrained SAM models are not text-conditioned, we used the
largest model to propose segmentation masks for the entire
image, and then used CLIP’s image and text encoders [5]
to match extracted objects to text queries. Given multiple
masks, we used the Hungarian method to assign masks
to our specified set of image segmentation labels. In our
experiments we used both CLIPSeg [16] and SAM, as they
each produced better masks for different tasks.

One of the strengths of the image segmentation + inpaint-
ing pipeline is the ability to change many aspects of the input
(Fig. 2). Not only is it possible to change the objects that
are manipulated, conferring “zero-shot” capabilities, but it is
also possible to change the workspace, which can make the
agent more robust to visual changes. We note that we keep
the initial random seed of the inpainting model fixed across a
trajectory, as it improves consistency of the inpainted objects.

The final part of our pipeline, depth estimation, does
produce a consistent depth image, but it is often slightly
misaligned with the original depth image. We correct for this
by transforming the average estimated depth of the inpainted
area to match the average real depth of the inpainted area.
Finally, we re-paint parts of the image we do not wish to
change as needed. This is task- and inpaint-dependent, but,
for example, for most tasks we wish to keep the robot arm
unaltered in the image.

IV. EXPERIMENTS

For our experiments we use a Franka Panda robot with its
standard gripper, with an Intel D435i camera with resolution
720, 1280 to capture RGBD images. To integrate each
modality we use ROS [21] and the MoveIt package [22]
for motion planning, with the default RRT-Connect [23]
set to Cartesian path planning. Demos were collected by
specifying gripper positions for the motion planner with an
handheld controller. The camera extrinsics parameters were
calibrated using ArUco markers [24] and the default hand-
eye calibration package from MoveIt.

All 3D information was processed with the robot in the
center. Each sensory input was synchronised and sampled
to 30Hz, and the data is collected under motion execution



and paused during human deciding the next end-effector goal
position.

The original PerAct [10] model uses an heuristic algorithm
to compute key points from the dataset, and uses the action
from that data point as the learning target. This heuristic
is ill-suited in the real-world data collection setting, when
there’s noise inherent in every sensor input. Instead, we
record key points while collecting the data with the handheld
controller. The keypoints are recorded after each execution,
and when we open/close the gripper. Comparing the key-
points generated this way to the heuristic algorithm, we could
observe that the heuristic algorithm miss-classified certain
data points as keypoints, compared to the hand-collected key
points.

Due to hardware limitations for training PerAct, we
changed some of the hyperparameters. We chose voxel grid
size of 603, with hidden size of 512, a latent size of 512
due to hardware limitation. The original PerAct uses 1003

[10] voxel grid size, but in the ablation, 643 had a close
performance. To compensate for the noisy sensory input
inherent in the real-world application, we added two further
regularisation methods to improve PerAct’s performance.
Dropout on the point clouds at a rate of 30%, and additive
noise on the robot joint positions (∼ N (0, 0.1)) were added.

The task mimics that of the RLBench[25] push box to
goal.

The environment for the collected data is as shown in the
top left of Fig. 1: the robot is placed in front of a tabletop
with 4 coloured markers and objects placed on the table.
The goal of the task is to push a specified target object, to
a given target goal marker, e.g., “push the black can to the
green marker”. We conduct training and evaluation in the
following setup: “black can”, a “empty bottle” and a “white
cup” are placed, and demonstration is collected for target
object “black can”. We then augment this training dataset, by
augmenting the “black can” to a “coca cola can”, including
its depth. We then evaluate two models, one trained with the
original data only, and one with the additional augmented
data.

We evaluate both models on the original setting, with the
same objects. Then, we replace the target object with the
unseen object, same prompt used for the data augmentation.

Both when collecting training data and evaluating the
agent, the objects are randomly placed on the table such that
the target object are not occluded, and not in the collision
path with other objects to a given goal marker. Each setting
were tested 20 times, 5 per target marker.

TABLE I: Success rate (%) of each experiment. Original
target object is a PET bottle shaped, black (coffee) can. The
novel target is a cola (red) can. Distractor object was kept
the same (Empty plastic bottle and a white cup)

Peract with Data Augmentation
Original target object 75% 80%
Novel target object (zeroshot) 25 % 75 %

The result of the experiment is shown in table I. The model
trained with the additional augmented data outperforms the
original model in the zero-shot setting indicating that the
additional augmented data does improve the models capacity,
without lowering the performance on the original task.

During the experiment we noticed difference in behaviour
between the two models. When the model trained only on
the original data was evaluated with the novel object, it
often directly moved the arm to the goal, ignoring the target
object all together. The model trained with the additional
data sometimes did go towards the distractor object (empty
bottle) but to a position compensated for the height difference
between the objects. Both models did struggle to push the
target object to the goal when the target objects initial
position was close to the goal, but not on top of it.

V. DISCUSSION

In this work, we set out to find out if 3D data augmen-
tation, achieved via pretrained vision-language and RGB/D
vision models could be applied to the robot learning setting,
and furthermore if this could be used to achieve zero-shot
transfer to scenarios unseen in the original training data.
From our preliminary experiments, we can observe that data
augmentation does slightly improve the models performance
and also allows the model to adapt to tasks with unseen
objects. The model struggled to identify a proper position
when the target object was close to the goal, which could be
caused by the smaller voxel size of 603 we decided to use
for PerAct. While we show the capacity to inpaint more than
the target object in figure 2, we couldn’t test this capacity
due to office constraints (no other table with different shape
and colour available).

Because each component in our pipeline is independent,
this type of data augmentation can utilise future advancement
in large, pretrained models. However, we have to note that
the pipeline is sensitive to the quality of the segmentation
model. In our setup, the target object (bottle shaped coffee
aluminium can) was a region specific object, and some
segmentation models had trouble identifying the object.

To our surprise, the used segmentation models was good at
identifying the robot arm. Since the camera position creates
heavy occlusion of the target object during manipulation, the
robust detection of the robot arm was utilised not just for
task-consistency, but for preventing the depth estimate and
inpaint of the target object to mistakenly modify unwanted
regions. Therefore guaranteeing that the data augmentation
won’t create unrealistic situations, but sometimes create
augmentation that doesn’t differ too much from the original.

REFERENCES

[1] R. Sutton, “The bitter lesson,” Incomplete Ideas (blog), vol. 13, no. 1,
2019.

[2] A. Ramesh, P. Dhariwal, A. Nichol, C. Chu, and M. Chen, “Hierarchi-
cal text-conditional image generation with clip latents,” arXiv preprint
arXiv:2204.06125, 2022.

[3] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer,
“High-resolution image synthesis with latent diffusion models,” in
Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), June 2022, pp. 10 684–10 695.



[4] C. Saharia, W. Chan, S. Saxena, L. Li, J. Whang, E. L. Denton,
K. Ghasemipour, R. Gontijo Lopes, B. Karagol Ayan, T. Salimans,
et al., “Photorealistic text-to-image diffusion models with deep lan-
guage understanding,” Advances in Neural Information Processing
Systems, vol. 35, pp. 36 479–36 494, 2022.

[5] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal,
G. Sastry, A. Askell, P. Mishkin, J. Clark, et al., “Learning transferable
visual models from natural language supervision,” in International
conference on machine learning. PMLR, 2021, pp. 8748–8763.

[6] A. Brohan, N. Brown, J. Carbajal, Y. Chebotar, J. Dabis, C. Finn,
K. Gopalakrishnan, K. Hausman, A. Herzog, J. Hsu, J. Ibarz, B. Ichter,
A. Irpan, T. Jackson, S. Jesmonth, N. Joshi, R. Julian, D. Kalash-
nikov, Y. Kuang, I. Leal, K.-H. Lee, S. Levine, Y. Lu, U. Malla,
D. Manjunath, I. Mordatch, O. Nachum, C. Parada, J. Peralta, E. Perez,
K. Pertsch, J. Quiambao, K. Rao, M. Ryoo, G. Salazar, P. Sanketi,
K. Sayed, J. Singh, S. Sontakke, A. Stone, C. Tan, H. Tran, V. Van-
houcke, S. Vega, Q. Vuong, F. Xia, T. Xiao, P. Xu, S. Xu, T. Yu,
and B. Zitkovich, “Rt-1: Robotics transformer for real-world control
at scale,” in arXiv preprint arXiv:2212.06817, 2022.

[7] Y. Jiang, A. Gupta, Z. Zhang, G. Wang, Y. Dou, Y. Chen, L. Fei-Fei,
A. Anandkumar, Y. Zhu, and L. Fan, “Vima: General robot manip-
ulation with multimodal prompts,” arXiv preprint arXiv:2210.03094,
2022.

[8] E. Johns, “Back to reality for imitation learning,” in Proceedings of
the 5th Conference on Robot Learning, ser. Proceedings of Machine
Learning Research, A. Faust, D. Hsu, and G. Neumann, Eds., vol.
164. PMLR, 08–11 Nov 2022, pp. 1764–1768. [Online]. Available:
https://proceedings.mlr.press/v164/johns22a.html

[9] M. Shridhar, L. Manuelli, and D. Fox, “CLIPort: What and where
pathways for robotic manipulation,” in CoRL, 2022, pp. 894–906.

[10] ——, “Perceiver-Actor: A multi-task transformer for robotic manipu-
lation,” in CoRL, 2023, pp. 785–799.

[11] Z. Chen, S. Kiami, A. Gupta, and V. Kumar, “Genaug: Retargeting
behaviors to unseen situations via generative augmentation,” arXiv
preprint arXiv:2302.06671, 2023.

[12] Z. Mandi, H. Bharadhwaj, V. Moens, S. Song, A. Rajeswaran, and
V. Kumar, “Cacti: A framework for scalable multi-task multi-scene

visual imitation learning,” arXiv preprint arXiv:2212.05711, 2022.
[13] T. Yu, T. Xiao, A. Stone, J. Tompson, A. Brohan, S. Wang, J. Singh,

C. Tan, D. M, J. Peralta, B. Ichter, K. Hausman, and F. Xia,
“Scaling robot learning with semantically imagined experience,” in
arXiv preprint arXiv:2302.11550, 2023.

[14] S. James, K. Wada, T. Laidlow, and A. J. Davison, “Coarse-to-
fine q-attention: Efficient learning for visual robotic manipulation
via discretisation,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2022, pp. 13 739–13 748.

[15] S. James and A. J. Davison, “Q-attention: Enabling efficient learning
for vision-based robotic manipulation,” IEEE Robotics and Automation
Letters, vol. 7, no. 2, pp. 1612–1619, 2022.

[16] T. Lüddecke and A. Ecker, “Image segmentation using text and image
prompts,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), June 2022, pp. 7086–7096.

[17] A. Kirillov, E. Mintun, N. Ravi, H. Mao, C. Rolland, L. Gustafson,
T. Xiao, S. Whitehead, A. C. Berg, W.-Y. Lo, P. Dollár, and R. Gir-
shick, “Segment anything,” arXiv:2304.02643, 2023.

[18] D. Kim, W. Ga, P. Ahn, D. Joo, S. Chun, and J. Kim, “Global-local
path networks for monocular depth estimation with vertical cutdepth,”
arXiv preprint arXiv:2201.07436, 2022.

[19] A. Jaegle, S. Borgeaud, J.-B. Alayrac, C. Doersch, C. Ionescu,
D. Ding, S. Koppula, D. Zoran, A. Brock, E. Shelhamer, et al.,
“Perceiver IO: A general architecture for structured inputs & outputs,”
arXiv:2107.14795, 2021.

[20] D. A. Pomerleau, “Alvinn: An autonomous land vehicle in a neural
network,” Advances in neural information processing systems, vol. 1,
1988.

[21] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, A. Y. Ng, et al., “Ros: an open-source robot operating
system,” in ICRA Workshop on Open Source Software, vol. 3, no. 3.2,
2009, p. 5.

[22] S. Chitta, I. Sucan, and S. Cousins, “Moveit!” IEEE Robotics &
Automation Magazine, vol. 19, no. 1, pp. 18–19, 2012.

[23] J. J. Kuffner and S. M. LaValle, “Rrt-connect: An efficient approach
to single-query path planning,” in ICRA, vol. 2, 2000, pp. 995–1001.

[24] S. Garrido-Jurado, R. Muñoz-Salinas, F. J. Madrid-Cuevas, and M. J.



Marín-Jiménez, “Automatic generation and detection of highly reliable
fiducial markers under occlusion,” Pattern Recognition, vol. 47, no. 6,
pp. 2280–2292, 2014.

[25] S. James, Z. Ma, D. Rovick Arrojo, and A. J. Davison, “Rlbench: The
robot learning benchmark & learning environment,” IEEE Robotics
and Automation Letters, 2020.


