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ABSTRACT

Protein language (or sequence) models, like the popular ESM2, are now widely
used tools for extracting evolution-based protein representations and have achieved
significant success on core downstream biological tasks. A major open problem
is how to obtain representations that best capture both the sequence evolutionary
history and the atomic structural properties of proteins in general. We introduce
Implicit Structure Model (ISM), a sequence-only input model with structurally-
enriched representations that outperforms state-of-the-art sequence models on
several well-studied benchmarks including mutation stability assessment and struc-
ture prediction. Our key innovations are a microenvironment-based Autoencoder
for generating structure tokens and a self-supervised training objective that distills
these tokens into ESM2’s pre-trained model. Notably, we make ISM’s structure-
enriched weights easily accessible for any application using the ESM2 framework.

1 INTRODUCTION

Protein language models (pLMs) are versatile feature extractors with proven success across numerous
downstream applications (Elnaggar et al., 2021; Brandes et al., 2022; Rives et al., 2019; Lin et al.,
2022). Their accessibility has significantly democratized protein research, enabling biologists with
limited computational resources or expertise to apply advanced machine learning techniques to their
specific areas of study. The method’s success comes from its exclusive use of sequences, bypassing
costly, unreliable, or infeasible structure computations and sophisticated data-engineering pipelines.

The tradeoff is that pLMs are often lack structural context, and underperform (relative to structure-
based models) on tasks that typically require structural insight (Su et al., 2023; Yang et al., 2023;
Zhang et al., 2024; Gaujac et al., 2024; Frolova et al., 2024; Li et al., 2024). Longstanding biological
research (Anfinsen, 1973) does suggest that the amino acid sequence is solely responsible for the
folding of the structure. However, current state-of-the-art frameworks, such as AlphaFold, require
the protein’s evolutionary history as an additional input, and single-sequence frameworks, such as
ESMfold, achieve subpar structure prediction performance. Building a single-sequence model that
leads to rich structurally-informed representations remains a challenging open problem.

In this paper, we introduce Implicit Structure Model (ISM), a sequence-only protein language
model that is trained to implicitly capture structural information. Our key contribution is a novel
self-supervised pre-training objective, structure-tuning, where the sequence model learns to distill
features derived from structure-based models (see Figure 1). As a result, ISM outperforms sequence-
only models and is competitive with pLM frameworks that explicitly take the protein structure as
an additional input. On the CAMEO protein structure prediction benchmark, for example, ISM
outperforms its ESM2 counterpart with a GDT-TS score of 0.67 versus 0.64 (see Table 1). For S669
∆∆G prediction, ISM surpasses ESM2 in AUC (0.76 vs 0.72) and even outperforms specialized
models that use atomic environments (0.76 vs 0.75, see Table 2). ISM structure-tunes ESM2 and can
be quickly adopted by loading an ISM checkpoint into any pre-existing framework built on ESM2.

Sequence models trained using masked language modeling learn coarse structure features encoded
in evolutionary co-variations, but these representations do not match the performance of a structure
predictor that explicitly uses MSAs (Lin et al., 2022). This demonstrates that ESM2 representations
fail to extract all structural information present within an MSA. Rather than further extracting
structural information from evolutionary data, we enrich ESM2’s structural representation by directly

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Structure Encoder ISM

Atom Graph Amino Acid Sequence

Structure Decoder

Codebook

PRO

VAL
ALA

HIS

[id:1]

[id:2]

[id:K]

..
.

§4.1
quantize

§ 4.2
supervise

§ 3.1
unfold

§ 3.2
extract
microenv

logits

Full Protein

[id:1]

[id:2]

[id:K]

Figure 1: Implicit Structure Model (ISM) is a sequence-only protein model (right) supervised
by structure tokens derived from a structure model (left). A structure encoder takes the atoms
of a residue’s microenvironment as input and produces a structural representation. We map this
representation to a token in a codebook of structural motifs extracted via k-means clustering. The
ISM sequence model learns to predict this structure token.

distilling representations from a structure model. ISM builds on a sequence-only model pre-trained
on evolutionary data (i.e. ESM2) and is fine-tuned to predict a structure token – rather than a
masked amino acid – for every residue (see Figure 1). A residue’s structure token is derived from the
representations of a structure model (i.e., Atomic Autoencoder in Section 4.1, MutRank in Gong et al.
(2024)). This aligns with prior works which show that leveraging the interplay between multiple
modalities, such as sequence and structure, enhances model performance (Gong et al., 2024; Hayes
et al., 2024).

2 RELATED WORK

Protein Language Models take an amino acid sequence as input and produce a deep representation
for each amino acid conditioned on the entire sequence. Commonly-used models such as ProtBERT,
ProteinBERT, ESM1b and ESM2 use transformer-based architectures and are trained to maximize
wildtype accuracy (i.e., reconstruct masked amino acids) (Elnaggar et al., 2021; Brandes et al., 2022;
Rives et al., 2019; Lin et al., 2022).

One of the motivations behind ESM2 was to build a single-sequence variant of AlphaFold that did
not require the computationally expensive task of generating MSAs. The resulting model, ESMFold,
is a widely used tool but generally underperforms when compared to AlphaFold. This demonstrates
that the ESM2 does not fully capture the epistatic landscape imposed on evolution by the structure of
a protein. This has led to various sequence models with a structural modality.
Sequence Models with structure loss The ESM2-s sequence model incorporates structural infor-
mation by fine-tuning ESM2 to predict a protein’s structural fold (Zhang et al., 2024). The fold,
however, is coarse-grained information about the protein. ISM achieves superior performance by
using the more fine-grained approach of training at the residue level. More specifically, in our training
objective, each residue is tasked with predicting its corresponding local structural environment.

The “Structure-infused protein language models (SIPLM)” use a type of CLIP training to align
sequence and structural features (Peñaherrera & Koes, 2023). This technique is also coarse-grained

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

because its training objective does not operate at a residue level (we do not include SIPLM in our
tables of results due to its relatively weak performance on our benchmarks).

AlphaFold also learns structural representations from sequences (Jumper et al., 2021). However, it
requires a multiple sequence alignment as input, which is expensive to compute and often unavailable
for many practical applications. Furthermore, prior works have shown that Evoformer, the feature
extractor for AlphaFold, underperforms ESM2 on various downstream tasks that involve less structural
information (Hu et al., 2022). On these tasks, ISM still achieves comparable performance to ESM2.
Sequence models with structure inputs extend sequence models by making use of additional
structural inputs. SaProt (Su et al., 2023) and ProstT5 (Heinzinger et al., 2023) use the VQ-VAE from
FoldSeek (van Kempen et al., 2022) to extract per-residue structure tokens as additional inputs to the
protein language model. MULAN (Frolova et al., 2024) extends these works to include structural
features (torsion angles) as additional inputs to a protein language model (e.g., ESM2). Similarly,
ProSST (Li et al., 2024) also takes structural tokens as inputs. Instead of using FoldSeek tokens,
ProSST trains a Denoising Autoencoder to extract per-residue features, which are then tokenized into
a structure sequence using K-means clustering. It then applies the amino acid and structure sequence
of a protein as input to a transformer framework that makes use of a Sequence-Structure Disentangled
Attention block. Nevertheless, ProSST also requires a protein structure as input at inference time.

ISM follows a similar structure tokenization scheme as ProSST but instead uses the structure tokens
within an auxiliary loss to train additional classification heads. Thus, ISM does not require a structure
as input at inference time.
Protein Structure Autoencoders take the backbone atom coordinates as input and encode each
residue into a discrete token (Gaujac et al., 2024; Hayes et al., 2024). The sequence of discrete tokens
then reconstructs atom positions, which are supervised using coordinate losses (e.g. frame aligned
point error, histogram classification). Protein structure denoising Autoencoders take a noisy variant
of the backbone as input and then learn a latent embedding that decodes the backbone (Peñaherrera
& Koes, 2023; Li et al., 2024). Foldseek (van Kempen et al., 2022) extracts features for a residue
given its nearest neighbor. These works use the protein backbone as input. In this work, we also
train an Autoencoder but instead of reconstructing the local backbone of a protein, we reconstruct
the coordinates of all atoms within the local chemical environment surrounding a masked residue
(masked microenvironment).

3 PRELIMINARIES

Let xseq = (x1, ..., xL) be a protein sequence of L amino acids where each amino acid residue
xl ∈ {A,C, ...,Y}. The atoms defined by this sequence fold into an energetically favorable 3-
dimensional structure xstruct = {ai = (pi, ei, ci)}Ni=1 where each atom i consists of residue sequence
position pi ∈ {1, ..., L}, an element type ei ∈ {C,H,N,O,P,S,X} and coordinates ci ∈ R3. Let
αl ∈ R3 be the coordinate of the α-carbon atom for residue l.

3.1 PROTEIN SEQUENCE MODELS

A protein language models PLM takes a protein sequence xseq as input and produces a latent
representation PLM(xseq) ∈ RL×D for downstream tasks. Most models use a transformer archi-
tecture and are pre-trained via a masked language modeling (MLM) loss. During training, a subset

M ⊂ {1, ..., L} of the sequence is replaced with the [mask] token x̃i =

{
[mask] if i ∈ M
xi otherwise

with x̃seq = (x̃1, ..., x̃L). The model learns to reconstruct the masked tokens with

LMLM =
1

|M|
∑
i∈M

ℓCE(C
⊤
MLMPLM(x̃seq)i, xi), (1)

for the cross entropy loss ℓCE, indexed feature PLM(xseq)i ∈ RD at position i, and a linear classifier
CMLM that predicts the amino acid type. While the backbone PLM is used for downstream tasks,
CMLM is only used for pre-training.
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Figure 2: Atomic Autoencoder tokenizes protein microenvironments to generate structure tokens
that supervise sequence-only protein language model. The Autoencoder takes atom element types
and pairwise distances as input and reconstructs all atomic coordinates. The encoder is a graph
transformer that uses the pairwise distances to bias the attention mechanism to learn rich atomic
representations. The atomic representations are pooled to form a microenvironment embedding. The
decoder takes the atomic representation and microenvironment embedding as input and produces
coordinates for each atom. The microenvironment embedding is used to construct structural tokens
for protein language model training. See Figure 3 for architectural details.

3.2 PROTEIN STRUCTURE MODELS

A protein structure model PSM computes an atom-level feature representation from the local
geometric description of each residue. It starts from a microenvironment xl

microenv that contains all
atoms in a radius r = 8Å around the α-carbon of residue l:

xl
microenv = {(ei, ci) : ∀i ∈ {1, ..., N} such that ||ci −αl|| < r}.

A common backbone for protein structure models is a Graph Transformer G (Ying et al., 2021). The
graph transformer G(xl

microenv) embeds each atom’s element type ei in a sequence e = {e1 . . . en},
where n is the size of the micro-environment. In attention updates, the graph transformer adds an
attention bias Bl

ij = ∥ci − cj∥ based on the pairwise distance between atoms i and j. This attention
bias Bl is the only structural information given to the transformer. The graph transformer then
produces a set of output features {zl

1 . . . z
l
n} = G(xl

microenv), one per input atom ei. The graph
transformer is commonly trained on the end-task using a supervised learning objective (Ying et al.,
2021). In this work, we use the Graph Transformer directly to train a structure model on atomic
reconstructions of proteins in our pre-training dataset.

In MutComputeX-GT, Diaz et al. (2024) apply the Graph Transformer architecture to unsuper-
vised pre-training using masked language modeling. They define a masked microenvironment
xl

masked-microenv that contains all atoms of other residues pi ̸= l

xl
masked-microenv = {(ei, ci) : ∀i ∈ {1, ..., N} such that pi ̸= l and ||ci −αl|| < r},

and pool all atom level features into a single residue level embedding zl = 1
n

∑
i z

l
i for

{zl
1 . . . z

l
n} = G(xl

masked-microenv). They then use a masked language modeling objective to predict
the masked out amino acid type:

Ll
AA = ℓCE(C

⊤
AAz

l, xl). (2)

MutRank adds a self-supervised training objective to learn the evolutionary mutational landscape
from the local structure (Gong et al., 2024) . More specifically, it learns an evolutionary score derived
from the protein’s multiple sequence alignment.
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4 METHOD

ISM is a sequence model that takes as input only an amino acid sequence xseq but is trained to
implicitly capture structural information. We start by training an Atomic Autoencoder, based on
Graph Transformer, on protein structures. The autoencoder is trained with a geometric reconstruction
loss and the MutComputeX-GT objective. We then cluster the resultant features into K structure
tokens {1, ...,K}. We use the sequence s = (s1, ..., sL) of structure tokens sl ∈ {1, ...,K} as an
additional supervisory signal for the sequence-only Implicit Structure Model (ISM).

4.1 ATOMIC AUTOENCODER

The Atomic Autoencoder uses an encoder-decoder architecture with a Graph Transformer encoder
and a plain transformer decoder. The encoder takes the masked microenvironment xl

microenv as input
and produces atomic representations {zl

1 . . . z
l
n}. The decoder takes atomic representations in and

produces features {f l
1 . . .f

l
n} which linearly project to atomic coordinates {ci : ∀(ei, ci) ∈ xl

microenv}
(See Figure 2). This might seem like a trivial task, after all the inputs xl

microenv contain the regression
targets. However, since the Graph Transformer only uses relative positions, and only in an attention
bias Bl, the prediction tasks are quite difficult and require reasoning about the local structure of the
micro-environment.

To obtain a residue-level feature representation, we average the atom-level features of the Graph
Transformer zl = 1

n

∑
i z

l
i following Diaz et al. (2024). To train this representation, we add zl

into all atomic representations prior to the decoder. Mathematically, the transformer decoder takes
{zl

1 + zl . . . zl
n + zl} as input. We also found that adding this zl directly to the decoder architecture

improves training stability. See Section A for full architecture.
Training objective. One major challenge in training microenvironment Autoencoders is that microen-
vironments lack robust protein backbone coordinate frames that underpin full protein models (Jumper
et al., 2021; Hayes et al., 2024; Dauparas et al., 2022). We empirically observe that vanilla MSE
loss Ll

MSE = 1
n

∑
i ∥ĉli − cli∥ does not take the coordinate frame into account and overestimates

the loss. Instead, we optimize the minimal MSE loss under the optimal coordinate frame. More
specifically, we compute the rotation and translation (Rl,T l) that minimize the MSE loss using
Kabsch algorithm (Kabsch, 1976; Umeyama, 1991) and rotate the ground truth coordinates before
applying the MSE loss. Formally,

Ll
MSE-aligned =

1

n

∑
i

∥ĉli − (Rlcli + T l)∥.

During training, we observe that naive optimization of the MSE-aligned loss results in convergence to
a local optimum where all predicted coordinates lie on a 2-dimensional plane. Following AlphaFold
(Jumper et al., 2021), we addressed the issue using distogram loss. Here, we use ESM3’s distogram
head by first computing f l

ij = Waf
l
i − W l

bz
l
j , where Wa,Wb are linear adapters. We apply a

binned distance loss

Ll
disto =

1

n2

∑
i,j

ℓCE(C
T
distoz

l
ij , d

bin,l
ij ).

where Cdisto is a linear classifier that predicts the distance bin dbin,l
ij between atoms i and j.

During the first stage of training, we train with the distogram and masked modeling losses, Ll
dist+Ll

AA.
During the second stage, we include Ll

MSE-aligned.

Generating Structure Tokens. Given a protein structure xstruct, we start by generating the masked
microenvironment for all residues, namely {x1

microenv . . .x
L
microenv} where L is the number of amino

acids in the protein. We feed each masked microenvironment into our Graph Transformer encoder to
extract a residue-level feature representation at each position, {z1 . . . zL}. We quantize zl for every
residue in the protein using K-means (Lloyd, 1982) to generate a structure sequence s = (s1, ..., sL).
In addition to our autoencoder, we also extract features {z1′ . . . zL′} from EvoRank (Gong et al.,
2024) and generate a second structure sequence s′ = (s′1, ..., s

′
L), both of which are used to fine-tune

the protein sequence model. Both models are trained on a smaller dataset of experimental structures
and run on a large dataset of AlphaFold structures.
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4.2 STRUCTURE-TUNING THE PROTEIN SEQUENCE MODEL

We initialize a sequence-only protein language model trained using masked language modeling, i.e.
ESM2, and continue fine-tuning it to predict the structure tokens. We call this training structure-
tuning and the resulting final model Implicit Structure Model. In contrast to ProtBert and ESM2,
which predict residues at masked positions, we find that predicting structure tokens at all positions
better distills structural representations. We append a linear classifier Cstruct to the output of the pLM
backbone to predict the structural token. The structure prediction loss function is

LStruct =
1

L

L∑
i=1

ℓCE(C
⊤
structPLM(x̃seq)i, si),

where x̃seq is the amino acid sequence with masked residues, PLM is the pLM backbone,
PLM(x̃seq)i is the representation for residue i, and si is the structure token at residue i.

We perform structure-tuning on 6M protein sequences and their corresponding AlphaFold or ex-
perimental structure (Ahdritz et al., 2022). Our structure tokens not only capture rich structural
motifs but also help us identify and discard microenvironments of poor structural quality. More
specifically, we find that residues in poorly folded regions within an AlphaFold structure (i.e. low
pLDDT score, lack of secondary and tertiary structure) tend to collapse to a specific structure token
s∗ (visualized as [struct id 17]in Figure 5). Thus, we do not supervise the sequence model
with microenvironments assigned the s∗ token. Our revised structure-tuning loss is

LStruct =
1

|S|
∑
i∈S

ℓCE(C
⊤
structPLM(x̃seq)i, si),

where S = {i : i ∈ [1, L] and si ̸= s∗}.

The final training objective for structure-tuning is the sum of structure token and amino acid cross-
entropy losses (see Section 3.1), namely L = LStruct + LMLM.

5 RESULTS

5.1 IMPLEMENTATION DETAILS

Microenvironment autoencoder. Our autoencoder is a Graph Transformer encoder with 4 layers
and a vanilla Transformer decoder with 2 layers. Our autoencoder training dataset contains 30,000
proteins from the Protein Data Bank(PDB). We train both stages for 5 epochs with a learning rate of
1e-3. See Table 8a for a list of hyperparameters.
Distillation Dataset. Once our model is fully trained, we extract microenvironment features for 7M
proteins from Uniclust30 with AlphaFold structures (Mirdita et al., 2017), along with the training set
of 30K PDB proteins. We apply K-means only to the PDB subset. The number of clusters, K = 64, is
chosen using the elbow method. Additionally, we extract microenvironment features from MutRank
and extract K = 512 centroids from the PDB proteins (see Section 3.2).
Structure-tuning. We structure-tune the 650 M parameter ESM2 for 20 epochs using a cosine
learning rate schedule with 4 warmup epochs. We use a batch size of 48 proteins cropped to a
maximum sequence length of 512 amino acids. We use AdamW optimizer with a learning rate of
1× 10−4 and weight decay of 5× 10−3. Training takes 26 wall-clock hours on 32 GH200 GPUs.
See Table 8b for a complete list of hyperparameters.

5.2 COMPARISONS ON STRUCTURE TASKS

In Table 1, we evaluate the structure-enriched representation of ISM against established methods
on several structure-based downstream tasks, including structure, contact, secondary structure, and
binding residue prediction. For structure prediction, we initialize from pre-trained SoloSeq (Ahdritz
et al., 2022), replace the backbone with a frozen ISM and tune the folding head. For other downstream
tasks, we freeze the backbone and train a linear head. Dataset descriptions are listed in Section D.
We report the performance of a fine-tuned ESM which follows the same training regimen as ISM,
but uses only cross entropy loss on the masked amino acid. We report results for models trained on
Uniclust30 alone and Uniclust30+PDB.
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Table 1: Comparisons on structural benchmarks. We freeze all model backbones to assess the
learned representation. ISM is structure-tuned on structural tokens obtained from the AlphaFold
structures of Uniclust30 while ISM† undergoes additional structure-tuning with structure tokens
obtained from PDB structures. SaProt∗ takes the protein structure as input. The ISM framework
generates structure-enriched representations using the architecture of ESM2.

Structure Prediction (CAMEO) Contact SS Binding
Method GDT-TS GDT-HA LDDT Short Med Long Acc F1 MCC

Evolutionary pLM
ESM2 (Lin et al., 2022) 0.64 0.47 0.82 0.45 0.45 0.35 0.86 0.31 0.34
ESM2 (fine-tuned) 0.64 0.47 0.82 0.45 0.45 0.35 0.86 0.32 0.34

Structural pLM
ESM2-S (Zhang et al., 2024) 0.61 0.43 0.79 0.46 0.47 0.36 0.85 0.32 0.35
SaProt∗ (Su et al., 2023) - - - 0.57 0.53 0.48 0.86 0.36 0.38
ISM (Ours) 0.67 0.50 0.83 0.61 0.60 0.49 0.89 0.35 0.37
ISM † (Ours) 0.67 0.50 0.84 0.62 0.60 0.48 0.89 0.37 0.38

Table 2: System-level Comparisons on S669 Single Mutation Thermodynamic Stability pre-
diction. We report regression and classification metrics. Our fine-tuning training set, cDNA117K,
consists of mini-proteins that have at most 30% sequence similarity with those in S669. Top block
shows comparisons with literature methods. Middle block shows structure and sequence-based
approaches also fine-tuned on cDNA117k. UR50: UniRef-50 used in ESM2 pretraining, PDB:
Protein data bank, UC30: Uniclust30. rs: Spearman correlation coefficient.

Method PreTrain Data rs AUC MCC RMSE↓

FoldX (Schymkowitz et al., 2005) N/A 0.27 0.62 0.14 2.35
PROSTATA (Umerenkov et al., 2022) UR-50 0.50 0.73 0.28 1.44

Stability Oracle (Diaz et al., 2024) PDB 0.53 0.75 0.34 1.44
MutateEverything (ESM) (Ouyang-Zhang et al., 2024) UR-50 0.47 0.72 0.31 1.48
MutateEverything (AF) (Ouyang-Zhang et al., 2024) PDB 0.56 0.76 0.35 1.38
SaProt (Su et al., 2023) UR50,UC30 0.49 0.71 0.25 1.47
ESM3 (Hayes et al., 2024) UR70,PDB,MGnify,JGI,OAS,AFDB,ESMAtlas 0.46 0.70 0.26 1.49

ESM (ft) UR-50,PDB+UC30 0.49 0.72 0.25 1.47
ISM (MutRank only) UR50,PDB+UC30 0.51 0.74 0.33 1.45
ISM (MutRank×2) UR50,PDB+UC30 0.50 0.73 0.32 1.45
ISM UR50,UC30 0.49 0.73 0.33 1.47
ISM UR50,PDB 0.52 0.74 0.30 1.45
ISM (Ours) UR50,PDB+UC30 0.53 0.76 0.40 1.44

Our model outperforms all sequence-only and structural sequence models on all structure-based
benchmarks. Notably, on structure prediction ISM outperforms ESM2 by 5% on the GDT-TS metric:
0.67 vs 0.64. On binding residue prediction F1 metric, ISM performs similarly with SaProt’s 0.36,
achieving 0.35 when trained on Uniclust30 and 0.37 when trained on Uniclust30+PDB. We note
that SaProt explicitly requires the structure as input to achieve 0.36 while ISM is sequence only.
Overall, the structure-enriched representations of ISM improve performance on various structure-
based downstream tasks compared to sequence-only pLMs and structural pLMs.

5.3 COMPARISONS ON MUTATION STABILITY EFFECT

We evaluate how effectively ISM predicts the impact of mutations on a protein’s thermodynamic
stability (∆∆G). Table 2 shows ISM performance against existing work on the S669 single mutations
dataset (Pancotti et al., 2022). We fine-tune on the cDNA117K dataset from Diaz et al. (2024), a
subset of the cDNA display proteolysis dataset (Tsuboyama et al., 2023) where all proteins have
at most 30% sequence similarity to those in S669. ISM outperforms all existing models that take a
single sequence as input, achieving a Spearman correlation of 0.53 compared to ESM’s 0.49, and an
AUC of 0.76 compared to ESM’s 0.72. Additionally, ISM matches the performance of state-of-the-art
models while only using the amino acid sequence input, achieving an AUC of 0.76, while Mutate
Everything and Stability Oracle achieve AUCs of 0.76 and 0.75, respectively. ISM also runs 20×
faster on a protein of 300 amino acids. Note that Stability Oracle (Diaz et al., 2024) takes the atomic
microenvironment as input and Mutate Everything-AF (Ouyang-Zhang et al., 2024) takes a multiple
sequence alignment as input.
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Table 3: System-level Comparisons to prior work on various functional benchmarks. Our
method is fine-tuned for all benchmarks except HumanPPI, in which we freeze the backbone and
perform linear probing. ∗ indicates the best checkpoint taken during training.

Method Thermostability HumanPPI Metal Bind EC GO DeepLoc
MF BP CC Subcell. Binary

Spearman ρ Acc Acc Fmax Fmax Fmax Fmax Acc Acc

ESM1b 0.71 0.82 0.74 0.87 0.66 0.45 0.47 0.80 0.92
MIF-ST 0.69 0.76 0.75 0.81 0.63 0.38 0.32 0.79 0.92
ESM2∗ 0.70 0.88 0.74 0.87 0.67 0.49 0.51 0.85 0.94
SaProt∗ 0.72 0.88 0.79 0.88 0.65 0.49 0.51 0.85 0.93

ISM ∗ 0.71 0.89 0.75 0.88 0.67 0.47 0.52 0.84 0.93

We conducted an ablation study on the datasets used for structure-tuning and were surprised to find
that training on the smaller PDB dataset enhances downstream ∆∆G performance more than training
on the larger Uniclust30 dataset. Specifically, ISM achieves a Spearman correlation of 0.49 when
trained on UniClust30, compared to 0.52 when trained on PDB. Even though the supervision signal
during structure-tuning is derived solely from the atomic coordinates in the structure and not ∆∆G
labels, we suspect the PDB dataset has some overlap with the structures in the S669 dataset, resulting
in performance similar to that of structure-input models. Overall, on the S669 ∆∆G test set, ISM is
competitive and even outperforms SOTA structure-based methods and AlphaFold’s representations, a
feat sequence-only pLMs have yet to achieve.

5.4 COMPARISONS ON A DIVERSE SET OF FUNCTIONAL PHENOTYPES

In Table 3, we evaluate ISM on the PEER (Xu et al., 2022) and FLIP (Dallago et al., 2021) benchmarks,
which encompass tasks that benefit from structural representations (e.g., thermostability), evolutionary
representations (e.g., biological process), or both (e.g., EC). We fine-tune ESM2 and ISM on all
benchmarks, except HumanPPI, for which we perform linear probing to prevent overfitting. We
observed that longer training leads to overfitting, therefore, we evaluate various training checkpoints
and report the highest performance for ESM2, SaProt, and ISM. Metrics of ESM1b (Rives et al.,
2019) and MIF-ST (Yang et al., 2023) are sourced from SaProt (Su et al., 2023).

We observe that while ISM performance remains competitive with ESM2 and other pLMs on func-
tionally diverse tasks and does not stand out. For example, for predicting gene ontology - molecular
function, both ISM and ESM2 achieve 67% accuracy while SaProt achieves 65%. This finding
aligns with prior work (Hu et al., 2022), which demonstrates that ESM2 outperforms Evoformer,
the feature extractor for AlphaFold, on some functional tasks. It seems that for these functional
tasks, the evolutionary signal from masked amino acid modeling is sufficient and does not necessarily
benefit from structurally-enriched representations. Nonetheless, these experiments demonstrate that
the structure-enriched representations of ISM do not corrupt ESM2’s evolutionary representation on
various function-based downstream tasks while enhancing their understanding of structure.

6 ANALYSIS

6.1 ABLATIONS

We ablate key design decisions and report long-range Precision at L for contact prediction, accuracy
for secondary structure prediction, F1 for binding residue prediction, and Spearman correlation for
mutation stability effect prediction in Table 4. We also report the validation accuracy, indicating how
often the ISM variant correctly predicts the structure token derived from the atomic autoencoder.
Structure Tokens. In Table 4a, we distill from various structure models from the literature. We
compare against a variant using MutRank and MutCompute structure models. Since Atomic Autoen-
coder uses the loss Ll

AA from MutCompute, this variant effectively removes the autoencoder from
structure-tuning. Our model outperforms MutRank and MutCompute, indicating that the autoencoder
provides important structural information.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 4: ISM ablation experiments. Default Settings are marked in grey. See Section 6.1. ss:
Secondary Structure prediction, mc: MutCompute, mr: MutRank, ae: Autoencoder

(a) Other Structure Tokens
tokenizer contact ss bind
foldseek 0.42 0.88 0.32
esm3 0.18 0.85 0.11
mc+mr 0.45 0.88 0.36
ae+mr 0.48 0.89 0.37

(b) Our Structure Tokens
tokenizer contact ss bind
ae 0.38 0.88 0.35
mr 0.46 0.88 0.34
mr × 2 0.52 0.88 0.36
ae+mr 0.49 0.89 0.35

(c) Number of clusters
K contact ss bind
32 0.27 0.84 0.33
64 0.48 0.89 0.37
128 0.42 0.85 0.37

(d) Pre-training Crop length
crop val acc contact
32 0.27 0.27
128 0.36 0.42
512 0.40 0.48

(e) Label Type
label contact rs (∆∆G)
features 0.36 0.49
tokens 0.46 0.51

(f) Initialization
init val acc contact
random 0.36 0.10
esm2 0.40 0.48

We found that using ESM3’s VQVAE (Hayes et al., 2024) structure tokens for structure-tuning does
not produce robust structural representations. In long-range P@L contact prediction and the binding
residue tasks, the F1 metrics are 0.18 and 0.11 compared to 0.48 and 0.37 for ISM, respectively.
We observe that the accuracy of ESM3 VQ-VAE structure token prediction on a held-out validation
accuracy on UniClust30 is around 8% (Autoencoder accuracy is ∼40% and MutRank accuracy is
∼47%). We suspect that the large vocabulary of ESM3 VQ-VAE (4096 structure tokens) results in
redundant and overlapping tokens that are difficult to discern and complicate loss optimization.

We also evaluate the performance of our sequence model using FoldSeek VQ-VAE structure tokens
for structure-tuning (van Kempen et al., 2022). We train on a larger subset of UniClust30 obtained
from SaProt (Su et al., 2023), using the same number of iterations as ISM. The model achieves a
long-range contact P@L of 0.42 and a binding residue F1 score of 0.32, which are improvements
over ESM3 VQ-VAE structure tokens and surpasses the ESM2 baseline (F1 scores of 0.35 and
0.31, respectively). However, representations learned from FoldSeek’s VQ-VAE structure tokens lag
behind ISM (0.48 and 0.37). Thus, the structure tokens from our Autoencoder and MutRank produce
better structure representations, their combination being the most effective (see Table 4b).
Training parameters. We evaluate how much the maximum length of a sequence during structure-
tuning affects the structure accuracy and downstream performance in Table 4d. We find that when
the crop length is dropped to 128 and 32 amino acids, the contact long-range P@L drops from
0.48 to 0.42 and 0.27 respectively. This shows that training with longer sequences is essential for
learning long-range contacts. Additionally, we evaluate the effectiveness of clustering MutRank
representations into tokens in Table 4e (excluding the Autoencoder supervision). Our model variant
uses a linear head to predict features and is trained using cosine distance to MutRank representations.
Direct feature prediction achieves 0.36 P@L, while cluster ID prediction reaches 0.46 P@L on
long-range contact prediction. Clustering potentially removes superfluous high-frequency noise.
Evolutionary Pre-Training. We evaluate the significance of MLM as a pre-training stage before
structure tuning in Table 4f by initializing with random weights. This approach resulted in decreased
accuracy of structure tokens from 40% to 36%. On downstream contact prediction, training from
scratch drops long-range P@L from 0.48 to 0.1. This highlights the value of structure-tuning ESM2
evolutionary representations over training from scratch.

7 CONCLUSIONS

We introduce a novel pre-training stage for protein language models to learn enhanced structural
representations. We supervise the protein language model with structure tokens extracted from
structure models. ISM’s structural representations improve performance across a variety of structural
benchmarks including structure, contact, secondary structure, and binding prediction. ISM is a
one-line code replacement in any framework built using ESM2.
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A ATOMIC AUTOENCODER ARCHITECTURE DETAILS

In Figure 3, we visualize the details of our atomic autoencoder architecture. We use a GraphTrans-
former encoder and a vanilla transformer decoder.

Attention
w/Pair Bias

MLP

Attention

MLP

MatMul

Q K V

Add

SoftMax

MatMul

B
Atoms Distances

Pool
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Figure 3: Atomic Autoencoder Architecture Details. The Autoencoder takes atom element types
and pairwise distances as input and reconstructs all atomic coordinates. The encoder is a graph
transformer that uses the pairwise distances to bias the attention mechanism to learn rich atomic
representations. The atomic representations are pooled to form a microenvironment embedding. The
decoder takes the atomic representation and microenvironment embedding as input and produces
coordinates for each atom. The microenvironment embedding is used to construct structural tokens
for protein language model training.

B ATOMIC AUTOENCODER DATASET

We downloaded a list of proteins from the PDB via PISCES (https://dunbrack.fccc.edu/pisces/) on
October 23rd, 2023. We use the 95% sequence similarity split with 37,907 protein chains. We keep
all proteins resolved by X-ray crystallography with resolution better than 3Å with no residue breaks
and sequence length between 40 and 10,000. After our data pipeline and additional filtering, we
ended up with 35,985 proteins in our PDB training set.

C RUNTIME

We compare our runtime against SaProt (Su et al., 2023) on three proteins with 91, 355, and 689
amino acids. We use ColabFold (Mirdita et al., 2022) to obtain an AlphaFold structure and use
FoldSeek (van Kempen et al., 2022) to tokenize the structure. The transformer forward pass is
performed on an A40 GPU. On average, Colabfold took 418 seconds while Foldseek and transformer
forward pass took 43 and 28 milliseconds. By far, Colabfold structure prediction dominates the
runtime. Even with structures, the SaProt runtime is about 2.4× slower than the ISM pipeline.
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D STRUCTURAL BENCHMARK DETAILS

D.1 STRUCTURE PREDICTION

We train on proteins in the PDB and evaluate on the CAMEO dataset. We freeze ISM and train a
folding trunk for 10 epochs using a cosine learning rate schedule with 2 warmup epochs. We use
a batch size of 128 proteins. We use LION optimizer with a learning rate of 1× 10−4 and weight
decay of 0.01.

We additionally include comparisons to SoloSeq and AlphaFold below.

Table 5: System-level Comparisons to prior work on CAMEO structure prediction.

Method GDT-TS GDT-HA LDDT

SoloSeq 0.61 0.43 0.79
with ESM2 0.64 0.47 0.82
with ISM 0.67 0.50 0.83
AlphaFold2 0.75 - 0.89

D.2 CONTACT PREDICTION

We follow the experimental setting as in SaProt (Su et al., 2023), which uses the contact prediction
benchmark proposed by Rao et al. (2019); Xu et al. (2022). In the main paper, we report precision at
L (P@L) for long-range contacts at least 24 amino acids away. In Table 6, we thoroughly evaluate
precision at L, L/2, L/5 on short, medium, and long-range intervals of [6,12], [12,24],[24,∞] amino
acids respectively.

Table 6: System-level Comparisons to prior work on contact prediction.

Short Range Medium Range Long Range
Method P@L P@L/2 P@L/5 P@L P@L/2 P@L/5 P@L P@L/2 P@L/5

ESM-2 0.45 0.45 0.50 0.45 0.45 0.54 0.35 0.42 0.52
ESM-2S 0.46 0.46 0.50 0.46 0.47 0.54 0.36 0.43 0.52
SaProt† 0.57 0.57 0.64 0.53 0.55 0.66 0.48 0.60 0.74
ISM (Ours) 0.62 0.62 0.67 0.60 0.61 0.68 0.49 0.57 0.69
ISM † (Ours) 0.62 0.62 0.68 0.60 0.60 0.68 0.48 0.56 0.67

D.3 SECONDARY STRUCTURE

We use the secondary structure prediction benchmark from Xu et al. (2022) in which secondary
structures are labeled as either coil, strand, or helix. The maximum sequence similarity between a
protein in the training and test set is 25%. We evaluate the model’s accuracy.

We freeze ISM and train a linear classifier for 10 epochs using a cosine learning rate schedule with 2
warmup epochs. We use a batch size of 32 proteins. We use AdamW optimizer with a learning rate
of 1× 10−4 and weight decay of 0.5.

D.4 BINDING RESIDUES

We use the binding residues benchmark extracted from BioLip (Yang et al., 2012) prepared in the
bindEmbed21 method (Littmann et al., 2021). It involves binary classification of whether a residue is
within < 2.5Å of a metal ion, nucleic acid, and/or a ligand (Littmann et al., 2021). We freeze ISM
and train a linear classifier for 10 epochs using a cosine learning rate schedule with 2 warmup epochs.
We use a batch size of 32 proteins. We use AdamW optimizer with a learning rate of 3× 10−4 and
weight decay of 0.5. Full results are available in Table 7.
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Table 7: System-level Comparisons to prior work on binding residue prediction.

Test Independent
Method F1 MCC AUC F1 MCC AUC

ESM 0.31 0.34 0.84 0.28 0.28 0.82
ESM-2S 0.32 0.35 0.84 0.28 0.28 0.83
SaProt † 0.36 0.38 0.87 0.35 0.33 0.87
ISM (Ours) 0.35 0.37 0.86 0.33 0.31 0.85
ISM † (Ours) 0.37 0.38 0.86 0.34 0.32 0.85

E TRAINING DETAILS

Table 8 lists the hyperparameters for training Automatic Autoencoder (Section 4.1) and structure-
tuning the PLM (Section 4.2). In Table 9, we present the hyperparameters for fine-tuning on different
downstream benchmarks in Section D.

Table 8: Hyperparameters for training. Here we show the hyperparameters used to train the
autoencoder (left) and ISM (right).

(a) Atomic Autoencoder Training

Hyperparameter Stage 1 Stage 2
optimization
total batch size 2048 2048
optimizer AdamW AdamW
learning rate 1e-3 1e-3
weight decay 1e-5 1e-5
epochs 5 5
warmup epochs 1 1
clip max norm 1.0 1.0
layers 4 4
number of GPUs 8 8
max atoms 512 512
max atom dist 8.0 8.0
λAA 1.0 1.0
λDistogram 1.0 1.0
λMSE-aligned 0 1.0
λDistances 0 1.0

(b) Protein Language Model Structure Tuning

Hyperparameter Structure-tuning
optimization
total batch size 1536
optimizer AdamW
learning rate 1e-4
weight decay 5e-3
epochs 20
warmup epochs 4
clip max norm 5.0
layers 33
number of GPUs 32
mask ratio 15%
crop length 512
λMLM 1.0
λstruct1 1.0
λstruct2 1.0

Table 9: Hyperparameters for structure-tuning on different benchmarks. ⋆: we find that training
converges and terminates training early.

Hyperparameter Structure Contact Secondary Structure Binding Residues
total batch size 128 16 16 32
optimizer LION AdamW AdamW AdamW
learning rate 1e-4 0.01 3e-4 1e-4
weight decay 5e-3 0.01 0.5 0.5
epochs 20 30 10 10
warmup epochs 4 - 2 2
clip max norm 5.0 - 5.0 5.0
freeze backbone True True True True
number of GPU 32 8 4 8
runtime 20hr 40m⋆ 35m 5m
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F QUALITATIVE ANALYSIS ON THE CLUSTERING RESULTS.

We qualitatively evaluate the quality of our clusters both on the experimental structures in PDB and
the AlphaFold structures in Uniclust30. First, we measured how many unique token IDs occurred in
each protein in Figure 4a. We observed that over 20% of the proteins contained the same token ID for
every residue in the sequence. We then measured the number of times each token appeared in the
entire Uniclust30 dataset and found that one token appeared over 20% in total (see Figure 4b). This
turns out to be token [17] in Figure 5 which contains disordered regions with little or no secondary
or tertiary structures. Interestingly, the microenvironments in PDB with token [17] do contain more
sparse environments. This motivated us to remove training on the special token s∗ =[17].

We also looked at a few tokens in Figure 5 that either occurred the most/least and report our intuition
below. Note that while our intuition can offer some rationale about the clusters, the model may
capture relevant microenvironment features that are difficult for humans to interpret.

• [id:3]: In PDB proteins, this cluster captures semi-solvent exposed microenvironments
with masked alanines. In Alphafold proteins, the cluster still contains semi-solvent exposed
microenvironments, but not necessarily with a masked alanine. This is the least frequently
seen structure token in Uniclust30.

• [id:14]: In PDB proteins, this cluster captures solvent-exposed microenvironments with
masked glycines. In Alphafold proteins, they correspond to surface exposed with often
masked glycines, but also the first amino acid or one in an unfolded loop. Both PDB and
Alphafold microenvironments lack structural context. This is the second most frequently
seen structure token in Uniclust30. It is the most frequently seen token ID in PDB.

• [id:17] In PDB proteins, this cluster contains surface-exposed residues. In Alphafold
proteins, this cluster corresponds to unwound proteins without any secondary or tertiary
interactions. This is the most frequent structure token in Uniclust30 and the second least
frequent structure token in PDB.

• [id:25]: In PDB proteins, this cluster contains a lot of cysteine in disulfide bridges. In
Alphafold proteins, they correspond to glycine. This is the least frequently seen structure
token in PDB.
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Figure 4: Measuring the diversity of tokens in both PDB and Uniclust30.
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Figure 5: Cluster Visualizations of clusters 3, 14, 17, 25. Left two columns are from the PDB, right
two columns are from protein sequences UC-30, folded via AlphaFold.
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