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ABSTRACT

Data races are a major cause of concurrency-related bugs and have long posed a
critical challenge in software engineering. Recent advancements in large language
models (LLMs) have inspired researchers to investigate the potential of LLMs in de-
tecting data races. However, the effectiveness of LLMs in this domain still remains
largely unexplored, primarily due to the coarse-grained program-level evaluation
methodology of existing benchmarks. This article introduces DRDBench, a novel
benchmark, together with FineEval-Race, a pioneering evaluation framework, to
assess the race detection capabilities of LLMs at the fine-grained individual data
race level. DRDBench consists of 1,003 real-world and handcrafted pthreads-based
programs, encompassing 549 data races in 226 programs, each annotated with
precise line-level race locations. Leveraging this detailed race location information,
FineEval-Race establishes fine-grained correspondences between model outputs
and ground truth at the level of individual data races, enabling a nuanced evaluation.
Based on these fine-grained correspondences, FineEval-Race further evaluates the
performance of models under three different response aggregation strategies to
investigate the boundary of model capabilities. We evaluated 25 popular open-
source LLMs on DRDBench with FineEval-Race. The evaluation results revealed
considerable variation in model performance, with DRDBench presenting a signifi-
cant challenge to many models. The top-performing reasoning and non-reasoning
models, DeepSeek-R1 and DeepSeek-V3, achieved recall of 74.41% and 54.59%,
and precision of 75.36% and 54.69%, respectively. Furthermore, we identify two
failure modes shared across models that can cause up to 92% and 98% performance
degradation on DeepSeek-R1 and DeepSeek-V3, respectively. We believe that
DRDBench and FineEval-Race, coupled with the insights and failure modes from
this evaluation, will provide crucial guidance for advancing research in this domain.

1 INTRODUCTION

Writing a bug-free concurrent program is extremely challenging, primarily due to the high non-
determinism in thread interleaving (Lu et al., 2008). Data races, defined as two unsynchronized
accesses (at least one being a write) to the same shared variable, are a fundamental cause of many
concurrency-related bugs. The software engineering community has spent decades investigating
heuristic-rule-based and search-based approaches for detecting and verifying data races (Lamport,
1978; Savage et al., 1997; Pavlogiannis, 2020; Cai et al., 2021; Xu et al., 2020; Jeong et al., 2019).
However, since the complexity of data race detection and verification is at least NP-complete (Gibbons
& Korach, 1997; Mathur et al., 2020), the future of these approaches remains uncertain. A detailed
background on this issue is provided in Appendix A.

Recently, neural networks (NNs) and large language models (LLMs) have demonstrated notable
proficiency across various tasks, prompting researchers to explore their potential for data race
detection. Several benchmarks (Liao et al., 2017; Chen et al., 2023b; TehraniJamsaz et al., 2021)
and studies (Chen et al., 2023a; Shen et al., 2025; Alsofyani & Wang, 2024; TehraniJamsaz et al.,
2021) have been proposed to evaluate NNs and LLMs in this domain. However, they employ a
coarse-grained program-level evaluation. In their evaluation, the model is instructed to output either
(1) a “Yes” or “No” label indicating the presence or absence of data races in the program, or (2)
a segment of natural language text describing the information of all data races in the program.
The model’s output is then compared to the ground truth through an exact comparison to assess
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Ground Truth

Unification (Uni@5)
Uni@5-recall = 100.00%

Uni@5-precision = 50.00%

Uni@5-f1 = 66.67%

Majority Voting (Maj@5)
Maj@5-recall  = 66.67%

Maj@5-precision = 50%

Maj@5-f1 = 57.26%

Intersection (Int@5)
Int@5-recall = 33.33%

Int@5-precision = 100.00%

Int@5-f1 = 50.12%

Response 1

Response 2

Response 3

Response 4

Response 5

LLM Response Samples

Figure 1: An example of evaluating responses aggregated from k = 5 samples via fine-grained
majority voting, intersection, and unification strategies at the level of individual data races.

its correctness. This coarse-grained program-level evaluation fails to fully capture the models’
capabilities, leaving many important aspects unexamined. For example, when a model fails to
generate a correct output, it remains unclear which specific data race contributed to the failure and
how far the model’s output diverges from the ground truth. Furthermore, existing benchmarks and
studies focus on OpenMP-based programs, leaving pthreads-based programs, which are widely used
in system-level applications like the Linux kernel, largely unexplored. We provide more background
information and a comparison between OpenMP and pthreads programs in Appendix B.

To gain deeper insights about the LLMs’ race detection capabilities, this article proposes decomposing
the model outputs at the level of individual data races and assessing the correctness of each reported
data race independently. This fine-grained decomposition enables the measurement of completeness
(the proportion of ground truth data races detected by the LLM), soundness (the proportion of correct
data races within the LLM’s outputs), and the trade-off between these two factors. It can offer a
more comprehensive understanding of the LLMs’ capabilities in data race detection.

Recently, response aggregation techniques, such as self-consistency (Wang et al., 2023; Chen et al.,
2024; Wu et al., 2025) and best-of-N (Irvine et al., 2023; Munkhbat et al., 2025; Puri et al., 2025;
Parmar et al., 2025), have gained significant attention. They have been proven to be an effective
method for improving the performance of LLMs without additional training. Inspired by these
achievements, we further investigate the effectiveness of three fine-grained response aggregation
strategies in improving the LLMs’ race detection capabilities. These aggregation strategies are
majority voting, intersection, and unification applied to individual data races reported across multiple
LLM responses, which are illustrated in Figure 1. We assess the aggregated model responses for
investigating the boundary of model capabilities. This investigation sheds light on the reliability and
robustness of LLMs in detecting individual data races, offering deeper insights into their capabilities.

To facilitate the above evaluations, we propose a new benchmark, DRDBench, consisting of 1,003
pthreads-based concurrent C programs, among which 226 programs contain 549 precisely annotated
data races, and the other 777 programs contain no data races. Based on it, we further introduce a
novel evaluation framework, FineEval-Race, which (1) rigorously examines the outputs of LLMs
to establish correspondences between model outputs and individual ground truth data races for a
fine-grained evaluation, and (2) evaluates responses aggregated via three fine-grained strategies to
assess the capability boundaries of LLMs in data race detection. We applied DRDBench and FineEval-
Race to 25 popular open-source LLMs, including 11 reasoning and 14 non-reasoning models. The
evaluation results revealed several key findings. Furthermore, by analyzing common failure cases, we
identified two failure modes that can cause significant LLM performance degradation.

In summary, our contributions are as follows: (1) We are the first to assess the race detection
capabilities of LLMs at the granularity of individual data races. Besides, we are the first to evaluate
LLMs in detecting data races on pthreads-based concurrent programs. (2) We introduce DRDBench1,
a new benchmark consisting of 1,003 pthreads-based C programs and 549 data races with precise
location annotations, and FineEval-Race, a novel evaluation framework, for offering a fine-grained
evaluation of LLMs’ capabilities in data race detection. (3) We conduct comprehensive evaluations
on 25 popular open-source LLMs, providing an assessment of the current state of mainstream open-
source LLMs in data race detection. (4) Our experimental results uncover valuable insights and
failure modes that can guide future research in this domain.

1https://anonymous.4open.science/r/DRDBench-DE0E
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2 RELATED WORK

Benchmarks for data race detection. The SV-Benchmarks (Jain et al., 2025), a famous bench-
mark that collects various verification tasks used in the annual SV-COMP competition, includes a
NoDataRace subtrack for evaluating software verifiers’ capability to detect data races on pthreads-
based programs. Dataracebench (Liao et al., 2017), a commonly used benchmark in data race
detection studies (Chen et al., 2023a; Alsofyani & Wang, 2024; TehraniJamsaz et al., 2021; Lin
& Liao, 2021; Lin et al., 2018; 2019; Shi et al., 2021), contains 208 OpenMP-based programs for
race detection evaluation. Several data race datasets may also be used as benchmarks, including the
one constructed by removing synchronization primitives from race-free programs (TehraniJamsaz
et al., 2021) and the one obtained by collecting OpenMP-based programs from GitHub (Shen et al.,
2025). These benchmarks and datasets only provide basic “Yes” or “No” labels for indicating whether
the program contains data races. Such coarse-grained labeling is insufficient for our fine-grained
evaluation. As far as we know, the Dataracebench-ML benchmark (Chen et al., 2023a;b), which is
an extension of Dataracebench (Liao et al., 2017) by adding race location annotations, is the only
benchmark that takes the race location information into evaluation consideration. However, it still
treats the data race detection as a program-level binary classification task, as it regards the detection
as successful only when the locations of all races are correctly predicted. Additionally, its small data
size (only 102 data races) and simplicity (programs with only 11 to 154 lines of code) may not reflect
the real-world scenarios, which can limit the effectiveness of its evaluation results.

Data race detection with neural networks. With the advancements of neural networks (NNs)
and large language models (LLMs) in various software engineering and coding tasks, researchers
have begun exploring their potential for data race detection. The researchers have investigated
the effectiveness of convolutional neural networks (CNNs) (TehraniJamsaz et al., 2021), prompt
engineering and fine-tuning techniques (Chen et al., 2023a), and a parameter-efficient few-shot
fine-tuning method (Shen et al., 2025) for classifying race and race-free programs. However, these
studies focused on coarse-grained program-level evaluations, i.e., whether a program contains data
races or not. They overlooked the evaluation of models in detecting individual data races. We believe
FineEval-Race fills this gap and will guide future research in the field.

LLM reasoning and response aggregation. Recently, reasoning with LLMs has become a prominent
research focus. Reasoning LLMs, such as OpenAI-o1 (OpenAI, 2024b), DeepSeek-R1 (DeepSeek-AI,
2025), and Qwen-3 (Team, 2025a), have shown strong performance across a wide range of tasks.
Response aggregation techniques, including self-consistency (Wang et al., 2023; Chen et al., 2024;
Wu et al., 2025) and Best-of-N (Irvine et al., 2023; Munkhbat et al., 2025; Puri et al., 2025; Parmar
et al., 2025), also demonstrate effectiveness in further improving model performance on reasoning
tasks. Since data race detection involves reasoning about code concurrency, we particularly investigate
the race detection capability of reasoning models. Besides, we also evaluate the impact of applying
response aggregation strategies on LLMs. This is for assessing the boundary of the models’ data race
reasoning capabilities.

Evaluating NNs and LLMs for code execution comprehension. Several recent studies have
investigated the capabilities of NNs and LLMs in understanding code executions. Most related works
focus on output prediction (Bieber et al., 2020; 2022; Liu et al., 2023; Ding et al., 2024b), while some
others examine the intermediate results (Ding et al., 2024a). Benchmarks such as HumanEval (Chen
et al., 2021), MBPP (Austin et al., 2021), CRUXEval (Gu et al., 2024), and LiveCodeBench (Jain et al.,
2024) have been proposed for this purpose. Data race detection involves understanding the causal
order relationships between the concurrent operations within the code. Therefore, DRDBench and
FineEval-Race may offer a unique perspective for evaluating models’ code execution comprehension.

3 THE CONSTRUCTION OF DRDBENCH

DRDBench consists of 1,003 pthread-based programs from the NoDataRace subtrack of the SV-
Benchmarks (Jain et al., 2025), including 226 programs that feature 549 data races and 777 programs
that are free of data races. The programs are sourced from Linux drivers and various real-world
projects, including Goblint, C-DAC, Deagle, DIVINE, and CProver. The program sizes range from 14
to 624 lines of code, with each program containing between 0 to 30 data races. We provide additional
statistics of these programs and illustrate two examples in Appendix C. For each data race, two types
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#include <stdio.h> 

#include "dependency.h" 

 

Phase 1: User-Defined Header Inlining

dependency.h dependency.c

replace

Phase 2: Code Comment Removal

void ring_enqueue( Ring *r, long x ) { 

    while ( (r->writer + 1) % SIZE == r->reader ); // full; need 

to wait 

    r->q[ r->writer ] = x; 

    r->writer = (r->writer + 1) % SIZE; 

} 

 

void ring_enqueue( Ring *r, long x ) { 

    while ( (r->writer + 1) % SIZE == r->reader );  

    r->q[ r->writer ] = x; 

    r->writer = (r->writer + 1) % SIZE; 

} 

Before removing comments

After removing comments

Phase 3: Code Formatting

for (int i = 0; i < threads_total; i++) {pthread_create(&tids[i], 

NULL, &thread, &datas[i]);} 

for (int i = 0; i < threads_total; i++) {pthread_join(tids[i], 

NULL);} 

Before formatting

for (int i = 0; i < threads_total; i++) { 

  pthread_create(&tids[i], NULL, &thread, &datas[i]);  

} 

for (int i = 0; i < threads_total; i++) { 

  pthread_join(tids[i], NULL); 

} 

After formatting

Data Preprocessing

Fine-Grained Race Location Annotation

Openai-o3-mini

GPT-4o

Deagle
(Champion of SV-COMP)

Annotator #1

Annotator #2

Annotator #3

Meta-reviewer #1

Meta-reviewer #2

Conclusion#2#1LinesVariable

NNN[5, 20]i

Discuss → NNY[5, 24]i

NNN[5, 27]i

NNN[20, 24]i

YYY[10, 27]j

Discuss → NYN[10, 31]j

NNN[27, 31]j

01 

02 

03 

04 

05 

06 

07 

08 

09 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

int i, j; 

pthread_mutex_t mutex1, mutex2; 

void* thread1(){ 

    pthread_mutex_lock(&mutex1); 

    i++; 

    pthread_mutex_unlock(&mutex1); 

    return 0; 

} 

void inc_j(){ 

    j++; 

} 

void* thread2(){ 

    pthread_mutex_lock(&mutex1); 

    inc_j(); 

    pthread_mutex_unlock(&mutex1); 

    return 0; 

} 

int main(){ 

    pthread_t t1, t2; 

    i++; 

    pthread_create(&t1, NULL, thread1, NULL); 

    pthread_create(&t2, NULL, thread2, NULL); 

    pthread_mutex_lock(&mutex1); 

    i++; 

    pthread_mutex_unlock(&mutex1); 

    pthread_mutex_lock(&mutex2); 

    j++; 

    pthread_mutex_unlock(&mutex2); 

    pthread_join(t2, NULL); 

    pthread_join(t1, NULL); 

    assert(i == 3 && j == 2);  

    return 0; 

} 

 

Phase 4: Race Annotation Phase 5: Meta Reviewing

Final Annotation:

[{“shared_variable”: “j”, “lines”: [10, 27]}]

Figure 2: The pipeline of DRDBench construction.

of annotations are provided: (1) the name of the shared variable, and (2) the line numbers of the two
involved memory accesses. An example annotation is shown at the lower right corner of Figure 2.

The programs in the NoDataRace subtrack of the SV-Benchmarks are originally labeled with either
a “Yes” or “No” flag indicating whether the program is free of data races. To construct DRDBench,
we manually annotate the locations of the data races for the programs that are labeled “No”, i.e., those
containing data races. The “Yes” (race-free) programs require no race annotation. We directly add
them to the DRDBench after preprocessing. The pipeline of the benchmark construction is organized
into five distinct phases, as shown in Figure 2. We detail each phase as below.

(1) User-defined header inlining. To simplify the evaluation steps, we first convert multi-file C
programs into single-file ones by replacing #include macros of user-defined headers with their
corresponding content. The #include macros for system headers are left unchanged because LLMs
should have learnt system headers during the pre-training. In Appendix D, we demonstrate that this
conversion introduces very little influence on model performance; thus, this simplification is feasible.

(2) Code comment removal. Code comments, which are not relevant to the model’s task of detecting
data races, may introduce unnecessary noise. To ensure that LLMs focus solely on the code during
data race detection, we remove all comments from the source code during data preprocessing.

(3) Code formatting. To facilitate fine-grained race location annotation, we apply formatting
operations to the code, ensuring uniform indentation, spacing, and line breaks. The primary goal of
this phase is to guarantee that each code line contains at most one statement, making line numbers
sufficient for precisely annotating the data races. To achieve this, we use the clang-format tool
and apply the microsoft style to all the programs within DRDBench.

(4) Race annotation. To facilitate a fine-grained evaluation of LLMs’ race detection capabilities,
we manually identify and annotate each data race within the programs. This annotation includes
two key pieces of information: the name of the race-related variable and the line numbers of the
two involved memory accesses. To reduce the burden on human annotators and improve the quality
of the annotations, we leverage three tools: OpenAI-o3-mini (OpenAI, 2025), a leading reasoning
LLM, GPT-4o (OpenAI, 2024a), a leading non-reasoning LLM, and Deagle2, a software verifier, the
champion of NoDataRace subtrack at the SV-COMP competition for the past four years. Each tool
is paired with a human annotator. We first utilize the tools to analyze the program and generate tool

2https://github.com/Misasasa/Deagle
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annotations. We then instruct the human annotators to review the outputs from the tools to gain an
in-depth understanding of the potential data races of the program. After that, we let each human
annotator independently submit human annotations, which can be different from the corresponding
tool annotations. Once all the tool and human annotations are completed, we merge the annotations
from the tools and human annotators for further refinement. This collaborative process ensures that
both automated insights and human expertise contribute to producing high-quality annotations.

(5) Meta reviewing. To ensure better quality control, we introduce a meta-reviewing phase aimed at
refining the annotations obtained in the previous phase. In this phase, two senior researchers with
over five years of experience in data race detection serve as meta-reviewers. Their primary task is to
assess the correctness of the annotations. We first instruct each meta-reviewer to evaluate every race
annotation and determine its correctness independently. If both reviewers agree on a race annotation,
it is accepted. If both disagree, it is rejected. If their opinions differ, we let them discuss to reach a
consensus. Only annotations that both reviewers agree upon are accepted as the final ground truth.
An example of this process is illustrated in Figure 2, where the meta-reviewers initially identify three
annotations that could potentially be correct. Their opinions differ on two of them. After a thorough
discussion, two annotations are rejected, and only one is accepted. This collaborative review process
helps resolve discrepancies and ensures high-quality race annotation.

4 FINEEVAL-RACE EVALUATION METHODOLOGIES

We propose a novel fine-grained evaluation framework, FineEval-Race, to evaluate the capabilities
of LLMs in data race detection tasks. To begin, we use a carefully crafted zero-shot prompt to
instruct the LLMs to conduct the data race detection and output detailed location information for
each identified data race. Due to space limitations, we present the complete prompt in Appendix E.
The prompt is structured into 5 sections, including:

(1) Role and task definition: This section clearly defines the role and task for the model, specifying
that the LLM’s goal is to detect data races in the given program.

(2) Domain-specific knowledge introduction: This section provides necessary definitions on data
races, synchronization primitives, and related concepts to ensure the LLM understands the domain. In
Appendix F, we demonstrate that this context is necessary for LLMs to conduct correct race detection;
removing this content will lead to significant performance degradation.

(3) Step-by-step description of the detection procedure: This section guides the LLM with a
step-by-step race detection procedure description, encouraging chain-of-thought reasoning.

(4) Output format instructions: This section instructs the model to present its answer in JSON
format. Each identified race is represented by three fields, shared variable for the variable
name, and lineA and lineB for the line numbers of the two corresponding memory accesses,
respectively. We particularly instruct the model to output an empty JSON object if it feels that the
program contains no data race. We utilize this to evaluate the hallucination of models on race-free
programs.

(5) Source code of the program: The actual code to be analyzed for data race detection, with a line
number prepended at the head of each code line to enhance the model’s location accuracy.

We parse the output JSON to capture every identified data race. We then examine the data races based
on line numbers. The variable name field is excluded from the examination. This is because variable
aliasing and array indexing can result in the same object having different names. Consequently,
examination based on the variable name can potentially cause underestimation of model performance.
However, we still retain variable names in both annotations and model outputs for clarity and
reasoning insights. A data race report in the model output is considered a match with a ground truth
data race if their line numbers are identical, regardless of the order. A data race report is true positive
if it matches a ground truth data race, and it is false positive if no such ground truth data race exists.
A ground truth data race is false negative if no data race report matches it.

Based on the above definitions, we propose several metrics to evaluate the race detection capabilities
of LLMs. We utilize the programs that contain data races to conduct a fine-grained evaluation of
LLMs’ race detection capabilities. We additionally utilize the race-free programs to evaluate the
hallucination of LLMs, i.e, whether an LLM reports data races on a race-free program.

5
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On programs that contain data races, we first use the pass rate metric pass@k (Kulal et al., 2019) to
assess the overall correctness of the model’s data race detection. A program is considered solved
if at least one model output sample achieves (1) all identified data races are true positive, and (2)
no ground truth data race is false negative. The pass@k metric calculates the proportion of solved
programs under the k-sampling setting, as shown below:

Pass@k =
The number of programs that contain data races solved in k output samples

The number of programs that contain data races
(1)

For fine-grained evaluation, we further utilize the recall, precision, and f1 metrics to evaluate the
completeness, soundness, and trade-off of model performance at the level of individual data race:

Recall =
The number of true positive data races
The number of ground truth data races

(2)

Precision =
The number of true positive data races

The number of identified data races (on programs that contain data races)
(3)

F1 =
2× Recall× Precision

Recall+ Precision
(4)

To evaluate the hallucination of LLMs, i.e., detecting a data race on a race-free program, we propose
using the false positive rate metric (FPR), which is defined to be the proportion of race-free programs
on which the LLM reports at least one data race. The definition of FPR is shown below:

FPR =
The number of race-free programs on which the LLM reports at least one data race

The number of race-free programs
(5)

To further investigate the capability boundaries of LLMs, we additionally measure the recall,
precision, f1, and FPR scores for responses aggregated from k model output samples via three
aggregation strategies: majority voting (Maj@k), intersection (Int@k), and unification (Uni@k).
These strategies aggregate model outputs at the individual data race level. The majority voting
strategy selects data races that appear in at least ⌈k

2 ⌉ model output samples. The intersection strategy
selects those present in all k samples. The unification strategy includes ones that appear in at least
one of k samples. An example of these aggregation strategies is shown in Figure 1.

Based on these designs, we propose a synthetic score, denoted as S, for each evaluated model. This
score provides an intuitive overall ranking of the models’ race detection capabilities. For each
model, we calculate the pass@k scores at k = 1 (using greedy decoding) and k = 5. Additionally,
we compute the recall, precision, F1, and FPR scores with greedy decoding, along with
Maj@5, Int@5, and Uni@5. This results in a total of 18 unique evaluation scores. We rank all
evaluated LLMs according to each evaluation metric independently. The S score for a model D is
then calculated as the sum of its rankings across all metrics. Finally, we rank the LLMs in ascending
order of the S score, where a lower S score indicates better overall race detection capability.

In the multi-sampling process, we use the corresponding default settings of the hyperparameters
temperature, top k, and top p as recommended by each model, which are detailed in Appendix G.
Our evaluation requires the LLMs to generate a parsable JSON object as the output. If the LLMs do
not produce a valid JSON object, we retry with the same prompt. If they still fail to generate a valid
JSON object after 10 attempts, we switch to the following settings: temperature = 1.0, top p = 1.0,
and top k = -1. We then continue the sampling until a parsable JSON object is obtained.

5 EXPERIMENT AND ANALYSIS

In experiments, we evaluate the performance of 25 popular open-source LLMs. We choose not to
evaluate the closed-source commercial LLMs due to their extremely high financial cost, which is
discussed in Appendix H. The evaluated open-source LLMs include DeepSeek-R1 (671B) (DeepSeek-
AI, 2025), DeepSeek-V3 (671B) (DeepSeek-AI, 2024), R1’s distilled versions on Qwen 2.5 (1.5B,
7B, 32B) (DeepSeek-AI, 2025; Yang et al., 2024), R1’s distilled versions on LLama 3.1 (8B, 70B)
(DeepSeek-AI, 2025; Grattafiori et al., 2024), Qwen QwQ (32B) (Team, 2025b), Qwen 3 (1.7B, 8B,
32B, 30B-A3B, both thinking and non-thinking modes) (Team, 2025a), Qwen 2.5 (1.5B, 7B, 32B,
72B) (Yang et al., 2024), Qwen 2.5 Coder (1.5B, 7B, 32B) (Hui et al., 2024), and Llama 3.1 (8B,
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Table 1: Evaluation results of 25 popular open-source LLMs on DRDBench (Part 1 of 2).

Model S Pass@1 Pass@5 Greedy decoding Maj@5
Recall Precision F1 FPR Recall Precision

DeepSeek-R1-671B #1 47 #1 68.14% #1 80.97% #1 75.23% #2 75.36% #1 75.30% #4 13.13% #1 77.23% #6 79.70%
Qwen-QwQ-32B #1 47 #2 60.62% #2 77.43% #2 65.03% #1 77.61% #2 70.76% #2 12.61% #2 59.02% #1 88.28%
Qwen3-Thinking-32B #3 75 #5 46.90% #5 62.39% #5 48.82% #3 73.22% #3 58.58% #3 12.74% #4 49.18% #3 86.82%
R1-Distill-Llama-70B #4 102 #4 48.23% #3 73.89% #6 48.63% #6 68.46% #4 56.87% #9 20.59% #5 46.27% #5 82.47%
Qwen3-Thinking-30B-A3B #5 127 #6 43.81% #6 61.50% #7 45.17% #5 69.47% #6 54.75% #7 19.05% #6 40.98% #8 78.95%
R1-Distill-Qwen2.5-32B #6 132 #7 40.71% #7 59.29% #8 38.43% #4 72.01% #7 50.12% #10 23.04% #7 36.07% #2 86.84%
DeepSeek-V3-671B #7 142 #3 50.88% #4 68.14% #4 55.19% #9 54.69% #5 54.94% #15 49.81% #3 51.91% #12 71.43%
Qwen2.5-72B #8 161 #10 28.32% #11 40.27% #10 33.70% #8 56.23% #9 42.14% #6 15.93% #12 22.59% #7 78.98%
Qwen3-Thinking-8B #9 174 #8 29.65% #9 45.13% #9 35.70% #7 57.48% #8 44.04% #14 37.84% #9 28.96% #10 75.71%
Qwen2.5-Coder-32B #10 179 #11 27.88% #8 47.79% #13 28.60% #10 50.81% #11 36.60% #11 27.93% #11 23.68% #4 84.97%
Qwen3-Nothinking-32B #11 219 #15 19.03% #16 26.11% #14 27.50% #18 18.11% #14 21.84% #5 13.77% #14 19.49% #19 48.86%
Qwen2.5-32B #12 228 #16 17.70% #13 34.96% #11 30.05% #12 40.05% #12 34.34% #12 29.73% #13 22.04% #11 72.89%
Llama-70B #13 231 #9 29.20% #10 42.92% #3 55.37% #16 28.73% #10 37.83% #19 80.82% #7 36.07% #17 52.66%
R1-Distill-Llama-8B #14 259 #13 20.35% #12 38.94% #16 19.85% #11 42.75% #13 27.11% #16 58.69% #15 15.85% #13 69.60%
Qwen3-Thinking-1.7B #15 287 #20 7.96% #20 19.47% #20 6.74% #14 36.27% #19 11.37% #13 31.02% #19 4.55% #14 65.79%
Qwen3-Nothinking-1.7B #15 287 #22 3.10% #21 10.62% #22 2.73% #13 38.46% #22 5.10% #1 3.22% #21 1.64% #18 50.00%
Qwen3-Nothinking-30B-A3B #17 297 #17 16.81% #18 20.35% #12 29.51% #21 12.97% #17 18.02% #21 84.43% #10 26.96% #22 23.79%
Qwen3-Nothinking-8B #18 301 #21 3.98% #23 4.87% #21 2.91% #15 34.78% #21 5.38% #8 20.08% #21 1.64% #21 37.50%
R1-Distill-Qwen2.5-7B #19 313 #19 8.85% #18 20.35% #19 6.92% #20 17.19% #20 9.87% #18 59.85% #20 3.46% #9 76.00%
Llama-8B #20 328 #12 23.89% #14 27.43% #15 21.86% #19 17.67% #15 19.54% #25 100.00% #17 10.38% #16 55.34%
Qwen2.5-Coder-7B #20 328 #14 19.47% #15 26.99% #18 13.84% #17 26.21% #16 18.12% #22 85.20% #18 5.83% #15 60.38%
Qwen2.5-7B #22 333 #17 16.81% #17 22.57% #17 14.39% #22 11.97% #18 13.07% #23 92.41% #16 12.93% #20 45.81%
R1-Distill-Qwen2.5-1.5B #23 392 #24 0.88% #25 1.33% #25 0.36% #24 1.15% #25 0.55% #17 59.72% #25 0.00% #25 0.00%
Qwen2.5-1.5B #24 414 #24 0.88% #24 2.21% #24 0.73% #25 0.93% #24 0.82% #20 82.63% #23 0.18% #24 14.29%
Qwen2.5-Coder-1.5B #25 416 #23 2.65% #22 7.08% #23 1.46% #23 3.92% #23 2.12% #24 97.17% #23 0.18% #23 20.00%

Deagle 50.44% 50.27% 87.34% 63.82% 0.26%

70B) (Grattafiori et al., 2024). Among these models, DeepSeek-R1, R1’s distilled versions on Qwen
2.5 and LLama 3.1, Qwen QwQ, and Qwen 3 (thinking mode) are reasoning models. The others are
non-reasoning models. We also report the results of Deagle, the champion software verifier of the
NoDataRace subtrack at the SV-COMP competition for the past four years. Deagle is a rule-based
static race detector that translates a program into SMT formulas to conduct the race detection. It
targets detecting data races while generating very few false positives. It may still generate a few
incorrect results due to the limitations of static analysis in fully capturing the dynamic behaviors,
such as dynamic loop exit conditions. Deagle produces deterministic outputs, so we only sample it
once. It can serve as a reference for the performance of SOTA non-LLM approaches.

The evaluation results are presented in Tables 1 and 2, where the bold and underlined represent the
best and second-best performing models evaluated by each metric, respectively. The models are
ranked based on their S score, which represents the total of their rankings across all metrics. From
these results, we make the following observations:

(1) Model performance varies significantly, and DRDBench remains a significant challenge for
many LLMs. The two best-performing models, DeepSeek-R1 and Qwen-QwQ, achieved pass@1
of 68.14% and 60.62%, f1 (using greedy decoding) of 75.30% and 70.76%, and FPR (using greedy
decoding) of 13.13% and 12.61%, respectively. Evaluated by the f1 scores, they even outperform
Deagle. Large-scale models, such as Qwen2.5-72B and Llama-70B, performed significantly worse
than the two, with pass@1 of 28.30% and 29.20%, f1 of 42.14% and 37.83%, and FPR of 15.93%
and 80.82%, respectively. Models with 7–8B parameters, which are popular in research, even scored
below 25% in pass@1, below 30% in f1, and most of them have more than 50% in FPR.

(2) Reasoning models significantly outperform their non-reasoning counterparts. We observe
this phenomenon on DeepSeek, Qwen 3, Qwen2.5, and Llama 3.1 series models, as visualized in
Appendix I. For instance, the pass@1, pass@5, f1 (greedy decoding), and FPR (greedy decoding)
scores of DeepSeek-R1 outperform those of DeepSeek-V3 by 33.92%, 18.83%, 37.06%, and 73.64%,
respectively. This highlights the effectiveness of reasoning training in enhancing the model’s data
race detection capabilities.

(3) While response aggregation can improve model performance, the optimal aggregation
strategy varies across models. Compared to greedy decoding, the optimal response aggregation
strategy for each model results in an average increase of 19.92% in the F1. However, the best
strategy differs among the models: Maj@5 is the optimal for 10 models, including 4 of the top
5 best-performing models; Uni@5 is the optimal for the other 15 models, helping many weaker
models achieve their best performance. We do not consider the FPR metrics in this comparison, as
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Table 2: Evaluation results of 25 popular open-source LLMs on DRDBench (Part 2 of 2).

Maj@5 Int@5 Uni@5
Model F1 FPR Recall Precision F1 FPR Recall Precision F1 FPR

DeepSeek-R1-671B #1 78.45% #6 31.66% #1 52.46% #9 91.14% #1 66.59% #5 3.17% #1 90.53% #1 68.27% #1 77.84% #4 40.03%
Qwen-QwQ-32B #2 70.74% #7 31.79% #2 39.34% #5 94.32% #2 55.53% #6 3.22% #2 79.05% #2 62.90% #2 70.06% #3 37.58%
Qwen3-Thinking-32B #3 62.79% #2 5.66% #5 26.78% #8 91.30% #5 41.41% #2 0.77% #5 72.86% #4 53.33% #4 61.59% #6 47.10%
R1-Distill-Llama-70B #5 59.28% #10 37.32% #4 30.24% #7 91.71% #4 45.48% #13 5.41% #4 74.32% #3 57.38% #3 64.76% #7 47.75%
Qwen3-Thinking-30B-A3B #6 53.96% #9 35.14% #6 25.87% #10 91.03% #6 40.28% #14 6.05% #6 68.12% #5 51.23% #5 58.48% #9 53.54%
R1-Distill-Qwen2.5-32B #7 50.97% #12 41.44% #8 19.67% #6 93.91% #7 32.53% #10 4.50% #8 59.20% #6 47.45% #6 52.67% #10 56.89%
DeepSeek-V3-671B #4 60.13% #15 47.23% #3 31.69% #11 90.62% #3 46.96% #18 11.58% #3 77.41% #8 39.61% #7 52.40% #15 73.75%
Qwen2.5-72B #11 35.13% #5 29.86% #10 10.93% #12 86.96% #10 19.42% #4 2.16% #13 44.99% #9 34.94% #9 39.33% #5 40.67%
Qwen3-Thinking-8B #9 41.90% #16 54.18% #14 9.11% #3 96.15% #13 16.64% #9 4.12% #9 58.83% #7 44.25% #8 50.51% #12 63.19%
Qwen2.5-Coder-32B #10 37.04% #11 37.71% #12 10.02% #4 94.83% #12 18.12% #10 4.50% #10 53.19% #10 30.39% #10 38.68% #11 59.85%
Qwen3-Nothinking-32B #13 27.86% #3 8.11% #11 10.38% #15 83.82% #11 18.48% #2 0.77% #14 42.08% #14 17.96% #13 25.18% #8 48.39%
Qwen2.5-32B #12 33.85% #13 44.27% #15 8.38% #13 86.79% #15 15.28% #12 5.28% #11 48.63% #12 25.28% #12 33.27% #13 63.45%
Llama-70B #8 42.81% #22 86.62% #9 14.75% #17 73.64% #9 24.58% #17 10.68% #7 59.56% #18 11.88% #15 19.81% #18 92.28%
R1-Distill-Llama-8B #14 25.82% #19 63.84% #16 4.74% #14 86.67% #16 8.98% #21 17.25% #12 45.17% #11 30.02% #11 36.07% #16 82.89%
Qwen3-Thinking-1.7B #19 8.52% #14 45.95% #20 0.36% #1 100.00% #20 0.73% #15 8.11% #18 21.31% #13 20.89% #14 21.10% #14 70.27%
Qwen3-Nothinking-1.7B #21 3.17% #1 2.19% #22 0.00% #22 0.00% #22 0.00% #1 0.00% #21 6.01% #15 17.46% #21 8.94% #1 8.72%
Qwen3-Nothinking-30B-A3B #15 25.28% #17 57.39% #7 21.31% #21 33.72% #8 26.12% #19 11.84% #15 39.16% #21 8.41% #19 13.85% #17 90.60%
Qwen3-Nothinking-8B #22 3.14% #4 27.80% #17 1.09% #20 60.00% #17 2.15% #8 3.73% #22 5.65% #16 14.09% #22 8.06% #2 33.72%
R1-Distill-Qwen2.5-7B #20 6.62% #18 58.43% #21 0.18% #1 100.00% #21 0.36% #16 8.37% #20 17.30% #17 12.43% #16 14.47% #20 94.98%
Llama-8B #17 17.48% #24 95.11% #17 1.09% #16 75.00% #17 2.15% #22 23.39% #16 30.24% #22 6.75% #20 11.03% #24 100.00%
Qwen2.5-Coder-7B #18 10.63% #21 82.50% #19 0.91% #18 71.43% #19 1.80% #20 15.70% #17 21.49% #20 10.36% #18 13.98% #23 98.59%
Qwen2.5-7B #16 20.17% #23 90.60% #13 9.29% #19 63.75% #14 16.22% #24 30.50% #19 19.85% #19 10.91% #17 14.08% #19 93.56%
R1-Distill-Qwen2.5-1.5B #25 0.00% #8 32.05% #22 0.00% #22 0.00% #22 0.00% #7 3.60% #25 0.73% #25 0.51% #25 0.60% #21 96.27%
Qwen2.5-1.5B #23 0.36% #20 81.60% #22 0.00% #22 0.00% #22 0.00% #23 26.00% #24 1.28% #24 0.59% #24 0.81% #22 98.20%
Qwen2.5-Coder-1.5B #23 0.36% #25 99.74% #22 0.00% #22 0.00% #22 0.00% #25 72.07% #23 3.83% #23 2.27% #23 2.85% #24 100.00%

Int@5 should trivially be the optimal strategy when the programs are free of data races. This finding
highlights the necessity for further research into developing a new response aggregation strategy to
ensure optimal performance across different models. We discuss more about this in Appendix J.

(4) LLMs tend to behave conservatively when the program contains data races, but they are
more radical when the program is free of data races. Under greedy decoding, LLMs achieve
an average score that is 39.19% higher in precision than in recall. They attain an average
precision of 70.27% with Int@5, while achieving only 41.63% in recall under Uni@5.
When using Maj@5, they gain a 52.76% increase in precision but suffer a 15.77% decrease in
recall compared to greedy decoding. These statistics indicate that LLMs tend to report only
correct data races, rather than reporting all possible ones. However, when the program is free
of data races, LLMs have a 25.31% higher FPR under Maj@5 compared to greedy decoding. This
phenomenon seems to be the opposite of our previous conclusion. We believe this deserves further
investigation and provide more analyses in Appendix K.

(5) LLM’s race detection is highly unstable but also reveals considerable potential for improve-
ment. Our evaluation shows that simply increasing the sampling count from 1 to 5 results in a
44.95% improvement in pass@k on average. Furthermore, by employing response aggregation
strategies, recall and precision scores can improve by 46.84% (under Uni@5) and 78.08%
(under Int@5) when compared to greedy decoding, respectively. On the one hand, these results
demonstrate the instability of LLMs’ race detection. On the other hand, they also highlight substantial
potential for future improvement. If we can unlock this detection capability, currently observed
only in multi-sampling scenarios, within single-sampling contexts, we could substantially enhance
LLM performance in data race detection. Reinforcement learning, which is effective in optimizing
a model’s one-query performance, may thus help unleash this potential. We intend to study this in
future studies.

6 FAILURE CASE STUDY

To gain deeper insights into the capabilities of LLMs in data race detection, we conduct a manual
analysis of common failure cases, including: (1) ground truth data races consistently missed by
multiple models, and (2) false positive data races consistently reported by multiple models. For each
ground truth data race, we count the number of models that consistently fail to detect it after five
samples (Uni@5). Similarly, for each false positive data race, we count the number of models that
consistently report it across five samples (Int@5). The frequency distributions are visualized in
Figures 3a and 3b, where the x-axis represents the number of models, and the y-axis represents the
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(a) Distribution of false negatives (Uni@5). (b) Distribution of false positives (Int@5).
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inline int calculateNext(int s2) 

{ 

    int cnex; 

    do 

        cnex = rand(); 

    while (cnex == s2 || cnex == 0); 

    return cnex; 

} 

int seed = 1; 

inline int PseudoRandomUsingAtomic_nextInt() 

{ 

    int read, nexts; 

    assert(seed != 0); 

    atomic_acquire(); 

    read = 1; // `read = seed;` leads to failure 

    nexts = calculateNext(read); 

    seed = nexts; 

    atomic_release(); 

    return 0; 

} 

void *thr1(void *arg) 

{ 

    PseudoRandomUsingAtomic_nextInt(); 

    return 0; 

} 

int main() 

{ 

    pthread_t t; 

    while (1) 

        pthread_create(&t, 0, thr1, 0); 

} 

 

(c) Changing a single code line can cause the rate
of correctly detecting the data race between lines
13 and 17 to drop from 98% to 32% (DeepSeek-R1)
and from 40% to 11% (DeepSeek-V3).

01 

02 

03 

04 

05 

06 

07 

08 

09 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

void *thr1(void *_) { 

    pthread_mutex_lock(&mutex);        // replace with the following  

    flag1 = 1;                         //   will be fine： 

    while (flag2 == 1)                 //  

    {                                  // pthread_mutex_lock(&flag1); 

        pthread_mutex_unlock(&mutex);  // pthread_mutex_lock(&flag2); 

        pthread_mutex_lock(&mutex);    // 

    }                                  // 

    pthread_mutex_unlock(&mutex);      // 

    x = 0;  

    return 0; 

} 

void *thr2(void *_) { 

    pthread_mutex_lock(&mutex);        // replace with the following  

    flag2 = 1;                         //   will be fine： 

    while (flag1 == 1)                 // 

    {                                  // pthread_mutex_lock(&flag2); 

        pthread_mutex_unlock(&mutex);  // pthread_mutex_lock(&flag1); 

        pthread_mutex_lock(&mutex);    // 

    }                                  // 

    pthread_mutex_unlock(&mutex);      // 

    x = 1;  

    return 0; 

} 

int main() { 

    pthread_t t1, t2; 

    pthread_create(&t1, 0, thr1, 0); 

    pthread_create(&t2, 0, thr2, 0); 

    pthread_join(t1, 0); 

    pthread_join(t2, 0); 

    return 0; 

} 

 

(d) Replacing standard mutex APIs with user-defined syn-
chronization causes the rate of false positive data race
reports on variable x to significantly increase from 0% to
92% (DeepSeek-R1) and 2% to 100% (DeepSeek-V3).

Figure 3: Failure case distributions and failure mode illustration.

frequency of either ground truth or false positive data races. For readability, false positive data races
that were reported by fewer than five models are omitted from Figure 3b.

These statistics reveal that: (1) even under Uni@5, 51.37% (282 out of 549) of ground truth data
races are still missed by more than 20 models (Figure 3a), and (2) even under Int@5, 22 false
positive data races are still consistently reported by more than 10 models. We further investigate
these frequently missed or incorrectly reported data races to identify common failure modes.

Among the 282 ground truth data races missed by over 20 models under Uni@5, we identified that
multiple occurrences of the same shared variable is a common cause for these detection failures.
Additionally, we observed a common failure mode from the 22 false positive data races consistently
reported by over 10 models: the models fail to understand user-defined synchronization, even
if it has identical semantics as the library APIs. To demonstrate these failure modes, we construct
two example programs. The full programs are presented in Appendix L, with brief illustrations in
Figures 3c and 3d. We run DeepSeek-R1 and DeepSeek-V3, the best-performing reasoning and
non-reasoning models from our evaluation, on these programs 100 times, observing significant
performance degradation. We share deeper insights about these failures in Appendix L.

7 CONCLUSION

We introduce a new benchmark, DRDBench, and a novel evaluation framework, FineEval-Race,
for fine-grained assessment of LLMs’ abilities in detecting data races. DRDBench includes 1,003
pthread-based programs with 549 fine-grained data race annotations. FineEval-Race decouples
the responses of LLMs to the granularity of individual data races for fine-grained evaluation. We
conducted comprehensive experiments on 25 popular open-source LLMs and uncovered several
key insights. Additionally, we identified two common failure modes that can lead to significant
performance degradation. We believe these findings provide valuable directions for future research.
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8 ETHICAL DISCUSSION

DRDBench is built upon the open-source benchmark SV-Benchmarks (Jain et al., 2025) and has
undergone rigorous ethical reviews and content filtering processes to ensure compliance with the
highest ethical standards. We take every precaution to guarantee that the code and data within
DRDBench pose no risk of privacy leakage and meet all relevant legal requirements. This commitment
ensures that DRDBench is not only an effective benchmark but also one that aligns with ethical
guidelines, fostering both technical and ethical integrity.

9 REPRODUCIBILITY STATEMENT

In the supplementary material, we provide the datasets, the evaluation scripts, and a README
file for illustrating how to reproduce our evaluation results. We have uploaded the supplementary
material to the submission site (OpenReview). The README file can also be reviewed online at
https://anonymous.4open.science/r/DRDBench-DE0E. We believe it can guarantee
the reproducibility of our experiments.
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A BACKGROUND ON DATA RACE DETECTION

Data race detection is a prominent research area in the software engineering community. The existing
approaches can be primarily divided into two categories: heuristic-rule-based approaches and
search-based approaches.

The two most commonly used race detection techniques within the heuristic-rule-based approaches
are the happens-before relation (Lamport, 1978) and the lockset discipline (Savage et al., 1997).

(1) Happens-before relation. Most approaches (Flanagan & Freund, 2009; Bond et al., 2010; Elmas
et al., 2007; Pozniansky & Schuster, 2007; Serebryany & Iskhodzhanov, 2009) are developed on
top of the happens-before relation. The happens-before relation technique models the chronological
orders between critical synchronization operations observed during the program executions as the
happens-before orders. It then heuristically assumes that those synchronization operations performed
chronologically earlier should causally happen before later ones. If two operations are not ordered by
the happens-before orders, they are considered potentially concurrent, and thus a data race may occur
between them.

(2) Lockset discipline. Some other approaches (Yu et al., 2005; von Praun & Gross, 2001; Choi et al.,
2002; Nishiyama, 2004) rely on the lockset discipline. They detect data races by checking whether
the same mutex lock protects two memory accesses. If different mutexes protect two accesses, they
assume the accesses can run concurrently, thereby potentially resulting in a data race.

The widely used Google ThreadSanitizer (Google, 2023) further hybridizes both techniques to achieve
effective race detection.

However, these approaches are unsound, meaning they may report false data races. This stems
from two major limitations: (1) the happens-before relation does not fully capture the causal
relationships between synchronization operations, and (2) memory accesses may be synchronized
through mechanisms other than mutex locks. These limitations often result in false positives in
practical scenarios.

Recently, several search-based approaches (Mathur et al., 2018; Smaragdakis et al., 2012; Kini et al.,
2017; Roemer et al., 2018; Mathur et al., 2021; Pavlogiannis, 2020; Cai et al., 2021; Xu et al., 2020;
Jeong et al., 2019) have been proposed, which achieve soundness, meaning they avoid reporting false
data races. These approaches either (1) carefully model the causal order of memory operations and
search for feasible reordering that reveals data races without violating the causal order, or (2) execute
the program multiple times under different settings to search for evidence that may expose data races.

However, these approaches suffer from high time complexity. For example, the two most advanced
search-based approaches, M2 (Pavlogiannis, 2020) and SeqCheck (Cai et al., 2021), have a time
complexity of O(n4 log n) where n is the number of operations to be analyzed, which limits their
scalability and efficiency.

Given the NP-complete nature of data race detection and verification (Gibbons & Korach, 1997;
Mathur et al., 2020), the future of heuristic-rule-based and search-based approaches remains uncertain.
Motivated by recent advancements in neural networks (NNs) and large language models (LLMs),
researchers are increasingly exploring their potential for more effective and efficient data race
detection.

B BACKGROUND ON OPENMP AND PTHREADS

Parallel programming techniques are critical for improving the performance of applications by
leveraging multiple processors or cores. Two widely used frameworks for parallelism are OpenMP
(Open Multi-Processing)3 and pthreads (POSIX threads)4. While both enable concurrent execution,
they offer distinct approaches to parallelism. OpenMP provides a high-level, abstraction-based model
that simplifies parallelism for shared-memory systems, while pthreads gives developers low-level
control over thread management in environments requiring more granular control. Both approaches
are widely used, but the choice between them depends on the specific requirements of the application,

3https://www.openmp.org/
4https://man7.org/linux/man-pages/man7/pthreads.7.html
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Table 3: Comparison between OpenMP and pthreads.

Framework Parallel granularity Parallelism management Programming & Complexity Common use case

OpenMP Loop-level Automatical By directives, simple Scientific computing
Pthreads Thread-level Manual By API calls, complex System-level programming
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#include <stdio.h> 

#include <omp.h> 

  

#define N 1000 

  

int main() 

{ 

    int arr[N]; 

    int sum = 0; 

  

    for (int i = 0; i < N; i++) 

    { 

        arr[i] = 1; 

    } 

  

    omp_set_num_threads(4); 

  

#pragma omp parallel for reduction(+ : sum) 

    for (int i = 0; i < N; i++) 

    { 

        sum += arr[i]; 

    } 

  

    printf("Sum of array elements: %d\n", sum); 

  

    return 0; 

} 

 

Figure 4: A concurrent program that sums all the elements in an array using 4 threads under the
OpenMP framework. The programmer only needs to use the #pragma directive at line 18 for
parallelization. OpenMP handles task dispatching and data synchronization automatically.

with OpenMP being preferred for ease of use and pthreads being essential for scenarios where detailed
thread control is critical. Figures 4 and 5 present two examples of the same concurrent program
written using the OpenMP and pthreads frameworks. Tables 3 summarizes the key differences
between OpenMP and pthreads. In the following two subsections, we introduce the technical features
of these two frameworks.

B.1 OPENMP

OpenMP is a widely adopted parallel programming framework that provides an easy-to-use interface
for parallelizing applications, primarily targeting shared-memory architecture. It employs com-
piler directives (#pragma in C/C++) to mark sections of code that should be executed in parallel.
OpenMP abstracts the complexity of thread management, allowing developers to focus on the logic
of parallelism rather than low-level thread creation, synchronization, and communication.

Programming model. OpenMP follows a shared-memory model where multiple threads can
access the same shared memory, simplifying data sharing between threads. The primary method
for parallelization is through loop-level parallelism, where iterations of a loop can be executed
concurrently.

Automated parallelism management. Although developers can manually configure certain aspects
of the parallelism such as the number of threads and data sharing strategies, OpenMP manages most
aspects including thread creation, scheduling, and synchronization automatically.

Easy to use. Developers mainly rely on OpenMP directives, e.g., #pragma omp parallel
for, to parallelize loops with minimal code changes, making it an accessible tool for parallel
programming.

Use cases. OpenMP is commonly used in scientific computing, numerical simulations, and data-
intensive applications where fine-grained parallelism is needed, and the overhead of managing threads
is minimized by the abstraction it provides.
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#include <stdio.h> 

#include <pthread.h> 

  

#define N 1000 

#define NUM_THREADS 4 

  

int arr[N]; 

int sum = 0; 

pthread_mutex_t sum_mutex; 

  

typedef struct 

{ 

    int start_index; 

    int end_index; 

} ThreadData; 

  

void *compute_sum(void *arg) 

{ 

    ThreadData *data = (ThreadData *)arg; 

    int local_sum = 0; 

    for (int i = data->start_index; i < data->end_index; i++) 

    { 

        local_sum += arr[i]; 

    } 

    pthread_mutex_lock(&sum_mutex); 

    sum += local_sum; 

    pthread_mutex_unlock(&sum_mutex); 

    return NULL; 

} 

 

int main() 

{ 

    pthread_t threads[NUM_THREADS]; 

    ThreadData thread_data[NUM_THREADS]; 

    int segment_size = N / NUM_THREADS; 

    for (int i = 0; i < N; i++) 

    { 

        arr[i] = 1; 

    } 

    pthread_mutex_init(&sum_mutex, NULL); 

    for (int i = 0; i < NUM_THREADS; i++) 

    { 

        thread_data[i].start_index = i * segment_size; 

        thread_data[i].end_index = (i == NUM_THREADS - 1) ? N : (i + 1) * segment_size; 

        pthread_create(&threads[i], NULL, compute_sum, (void *)&thread_data[i]); 

    } 

    for (int i = 0; i < NUM_THREADS; i++) 

    { 

        pthread_join(threads[i], NULL); 

    } 

    printf("Sum of array elements: %d\n", sum); 

    pthread_mutex_destroy(&sum_mutex); 

    return 0; 

} 

 

Figure 5: A concurrent program that sums all the elements in an array using 4 threads under the
pthreads framework. The programmer must control the task dispatching (lines 43-45) and data
synchronization (lines 25-27) manually.

B.2 PTHREADS

Pthreads, or POSIX threads, is a low-level thread management library defined by the POSIX standard5.
Unlike OpenMP, which abstracts many details of parallelism, pthreads provides explicit control over
thread creation, synchronization, and resource management, making it suitable for more complex or
specialized concurrency requirements.

Programming model. Pthreads operates on a thread-level model, where threads are explicitly
created and managed by the developer. Threads can execute concurrently, sharing memory space, but
it is the programmer’s responsibility to ensure proper synchronization to avoid issues like data races
and deadlocks.

Fine-grained but manual parallelism management. Pthreads provides fine-grained control over
thread behavior, such as thread priorities, scheduling policies, and thread synchronization mechanisms
like mutexes, condition variables, and barriers. This flexibility is essential for low-level system

5https://posix.opengroup.org/

19

https://posix.opengroup.org/


1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 4: Additional Statistics of DRDBench: the 226 programs that contain data races

Lines of Code Number of Races

Category N Origin Min Max Average Min Max Average

goblint-regression 56 Goblint 14 107 35.09 1 4 1.14
ldv-races 8 Linux drivers 65 150 103.13 2 7 3.5
pthread 20 handcrafted 42 140 69.45 1 4 2.00
pthread-atomic 10 handcrafted 47 322 120.90 2 30 12.30
pthread-C-DAC 1 C-DAC 61 61 61.00 2 2 2.00
pthread-complex 2 handcrafted 260 387 323.50 5 11 8.00
pthread-deagle 20 Deagle 28 55 39.25 1 2 1.75
pthread-divine 8 DIVINE 32 151 90.50 1 6 3.50
pthread-driver-races 4 Linux drivers 509 616 589.25 2 7 3.25
pthread-ext 44 CProver 33 246 103.34 1 30 2.32
pthread-lit 9 handcrafted 28 125 54.56 1 9 3.33
pthread-nondet 6 handcrafted 54 62 58.33 1 3 2.33
pthread-race-challenges 37 Goblint 25 79 45.84 1 8 1.41
weaver 1 handcrafted 88 88 88.00 2 2 2.00

Summary 226 14 616 75.81 1 30 2.43

programming, real-time applications, or performance-critical systems that require precise control
over concurrency. However, such parallelism management relies entirely on human control.

High programming complexity. While providing powerful tools for concurrency, pthreads increases
the complexity of parallel programming. The developer must explicitly manage thread lifecycle,
synchronization, and resource sharing by calling pthreads APIs. If the API calls are not handled
correctly, they can lead to potential errors. There exist many actual cases in pthreads-based programs
where improper parallelism management leads to concurrency-related bugs, including the famous
DirtyCow bug6 in the Linux kernel.

Use Cases. Pthreads is commonly used in system-level programming, operating systems, networking
services, and other low-level applications where detailed control over threading and resource man-
agement is required. It is particularly valuable in environments where shared-memory systems need
explicit thread control, such as in embedded systems, database engines, or real-time systems.

C ADDITIONAL STATISTICS AND PROGRAM EXAMPLES OF DRDBENCH

Tables 4 and 5 present additional statistics for the programs in DRDBench. The category indicates
the original category within the SV-Benchmarks, N refers to the number of programs in that category,
and origin specifies the source of these programs.

To demonstrate the variety of programs and data races within DRDBench, we present two program
examples in Figures 6 and 7 and illustrate their data races in the corresponding captions.

D THE IMPACT OF USER-DEFINED HEADER INLINING

In the construction of DRDBench, we propose converting multi-file C programs into single-file
versions to simplify the evaluation steps. Since many real-world programs are organized in a multi-
file structure, a common concern is that this conversion might affect the performance of the evaluated
models, potentially leading to biased evaluation results. To alleviate this concern, we compare the
performance of the models using both single-file and multi-file versions. Our comparison shows that
this conversion has minimal influence on model performance, indicating that it is unlikely to cause
evaluation bias.

We randomly selected 40 programs from the DRDBench, including 20 that contain data races and
20 that are free of data races. Each program originally consists of multiple files. To ensure a fair

6https://dirtycow.ninja/
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Table 5: Additional Statistics of DRDBench: the 777 programs that are free of data races

Lines of Code

Category N Origin Min Max Average

goblint-regression 205 Goblint 15 170 66.70
ldv-races 19 Linux drivers 64 148 108.55
pthread 61 handcrafted 42 157 87.07
pthread-atomic 18 handcrafted 56 182 103.25
pthread-C-DAC 5 C-DAC 62 127 94.75
pthread-complex 6 handcrafted 156 391 275.75
pthread-deagle 24 Deagle 58 89 73.00
pthread-divine 10 DIVINE 32 39 35.5
pthread-driver-races 22 Linux drivers 509 624 601.00
pthread-ext 95 CProver 36 246 97.80
pthread-lit 14 handcrafted 40 85 55.40
pthread-race-challenges 63 Goblint 25 79 46.58
pthread-wmm 283 handcrafted 118 427 247.08
weaver 172 handcrafted 55 466 113.06

Summary 777 15 624 159.49
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#include <pthread.h> 

#include <assert.h> 

  

pthread_mutex_t lock; 

pthread_cond_t cond; 

int x; 

bool x_set = 0; 

  

void *thread(void *arg) 

{ 

    (void)arg; 

    pthread_mutex_lock(&lock); 

    while (!x_set) 

        pthread_cond_wait(&cond, &lock); 

    assert(x == 42); 

    pthread_mutex_unlock(&lock); 

    return NULL; 

} 

  

int main() 

{ 

    pthread_t t; 

    pthread_create(&t, NULL, thread, NULL); 

    for (int i = 0; i <= 42; i++) 

        x = i; 

    x_set = 1; 

    pthread_cond_broadcast(&cond); 

    pthread_join(t, NULL); 

} 

 

Figure 6: The program contains a trivial data race on the variable x set between lines 13 and 26.
Interestingly, the variable x does not experience a data race, as the signal/wait mechanism and the
while loop at line 13 ensure that the two accesses to x at lines 15 and 25 cannot run concurrently.
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#include <stdlib.h> 

#include <pthread.h> 

#include <semaphore.h> 

int data = 0; 

sem_t data_sem; 

void assume_abort_if_not(int cond) 

{ 

    if (!cond) 

    { 

        abort(); 

    } 

} 

  

void *thread(void *arg) 

{ 

    sem_wait(&data_sem); 

    data = __VERIFIER_nondet_int(); 

    sem_post(&data_sem); 

    return NULL; 

} 

  

int main() 

{ 

    sem_init(&data_sem, 0, 2); 

    int threads_total = __VERIFIER_nondet_int(); 

    assume_abort_if_not(threads_total >= 0); 

    pthread_t *tids = malloc(threads_total * sizeof(pthread_t)); 

    for (int i = 0; i < threads_total; i++) 

    { 

        pthread_create(&tids[i], NULL, &thread, NULL); 

    } 

    for (int i = 0; i < threads_total; i++) 

    { 

        pthread_join(tids[i], NULL); 

    } 

    free(tids); 

    return 0; 

} 

 

Figure 7: The program contains a data race on the variable data across multiple threads that
concurrently reach line 17. Interestingly, the semaphore data sem does not eliminate the data race,
as it is initialized with a value of 2 (line 24), allowing at most two threads to enter the critical section
(lines 16–18) simultaneously.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Table 6: The impact of user-defined header inlining.

Model Pass@1 Pass@5 F1 FPR

DeepSeek-R1-671B 85.00% 90.00% 93.33% 20.00%
w/ inlining 85.00% 85.00% 95.65% 5.00%
Diff 0.00% ↓5.56% ↑2.49% ↓75.00%

Qwen-QwQ 70.00% 80.00% 87.64% 20.00%
w/ inlining 75.00% 85.00% 85.11% 10.00%
Diff ↑7.14% ↑6.25% ↓2.89% ↓50.00%

Qwen3-Thinking-32B 65.00% 85.00% 78.65% 25.00%
w/ inlining 65.00% 85.00% 82.22% 5.00%
Diff 0.00% 0.00% ↑4.54% ↓80.00%

DeepSeek-V3-671B 65.00% 85.00% 78.65% 50.00%
w/ inlining 60.00% 85.00% 72.09% 40.00%
Diff ↓7.69% 0.00% ↓8.34% ↓20.00%

Qwen2.5-72B 5.00% 30.00% 26.47% 25.00%
w/ inlining 0.00% 20.00% 25.00% 15.00%
Diff ↓100.00% ↓33.33% ↓5.55% ↓40.00%

Qwen2.5-Coder-32B 20.00% 50.00% 48.00% 30.00%
w/ inlining 30.00% 50.00% 55.00% 25.00%
Diff ↑50.00% 0.00% ↑14.58% ↓16.67%

evaluation, we reused the same prompt described in our submission paper. To tackle the challenge
of line number identification in multi-file programs, we labeled the line numbers of each file in a
continuous format. For example, if a program had two files with 10 and 20 lines respectively, the
lines in the first file were labeled from 1 to 10, while the lines in the second file were labeled from 11
to 30. We also included the filename before the content of each file in the prompt.

We evaluated the top three best-performing reasoning models (DeepSeek-R1, Qwen-QwQ, and
Qwen3-Thinking-32B), along with the top three best-performing non-reasoning models (DeepSeek-
V3, Qwen2.5-72B, and Qwen2.5-Coder-32B) from the main experiment. we focused on the metrics
of pass@1, pass@5, and F1 and FPR under greedy decoding. These metrics provided a compre-
hensive overview of the models’ race detection capabilities. We excluded aggregation strategies from
this comparison to avoid any potential evaluation bias they might introduce.

The experimental results are presented in Table 6. We use green to highlight the scores where the
model performs better with single-file programs, while red indicates the opposite scenario. It is
important to note that for the FPR metric, smaller values are better, whereas for the other metrics,
larger values are preferable.

The experimental results show that converting multi-file programs into single-file versions has a
minimal impact on the model’s race-detecting performance. This conversion may even help reduce
the hallucination of models when handling race-free programs, as evidenced by the improvements in
the FPR scores. We believe this improvement occurs because the conversion reduces code length,
making it easier for the models to understand the code.

E PROMPT TEMPLATE FOR THE FINEEVAL-RACE

Listing 1 presents the prompt template used in our fine-grained evaluation framework, FineEval-Race.
Note that the blue lines are only for illustration purposes. They are not a part of the prompt template.
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Listing 1: Prompt template of FineEval-Race

## Role and task definition
You are an expert at concurrent program design and data race detection. In the following, you
will be given a program. You’ll need to carefully look over the program to check whether it
contains data race bugs. If it contains data race bugs, please locate them in line number pairs.
## Domain-specific knowledge introduction
The data race bug is a bug that occurs when (1) two or more threads access a shared variable
at the same time, and (2) at least one of the accesses is a write. Note that, two operations
**cannot** execute at the same time when (1) both are atomical operations, (2) both are
protected by the same mutex, (3) they are guarded by a semaphare which ensures the exclusive
access of the shared variable, or (4) other mechanism that forbids the two operations to execute
at the same time.
The program can use ` VERIFIER atomic begin()` and ` VERIFIER atomic end()` to
mark the start and the end of an atomic zone. Besides, if the function name has the
` VERIFIER atomic` prefix, the corresponding function should also be regarded as an
atomic zone. All operations inside the atomic zone should be regarded as atomic.
The program can use `pthread mutex lock(&m)` and `pthread mutex unlock(&m)` to lock
and unlock a mutex `m`.
The program can use `sem wait()` and `sem post()` to control semaphores; they do not lock or
unlock mutexes. A semaphore holds an integer value. The `sem wait()` is used to decrease the
semaphore’s value (typically by 1) to signal that the program wants to enter a critical section
or use a resource. If the semaphore’s value is greater than 0, `sem wait()` decrements it and
then proceeds. If the semaphore’s value is 0, `sem wait()` is blocked until the semaphore’s
value becomes greater than 0. The `sem post` is used to increment the semaphore’s value
(typically by 1), indicating that a resource has been released.
The program can use `pthread create()` to create a new thread and use `pthread join()` to
join the created thread. All the operations inside the new thread should happen after the
`pthread create()` site and before the `pthread join()` site.
The program can use `pthread cond wait()` and `pthread cond signal()` to wait and signal a
condition variable. It can also use `pthread barrier wait()` to wait for a barrier.
The program also uses `assume abort if not()` as `assert()`. It can use
` VERIFIER nondet int()` to get a random integer. Besides, the indices of the
lines are provided at the beginning of each line, e.g., ”1:”, to help locate the line numbers.
## Step-by-step description of the detection procedure
You can follow the following steps to detect the data race bugs:
1. Read the program carefully and understand how the threads are created and joined.
2. Check the shared variables and their accesses.
3. Check the synchronization mechanisms (atomic zones, mutexes, semaphores, condition
variables, etc.) and their usage.
4. For each pair of accesses to the same shared variable, check whether they can constitute a
data race.
## Output format instructions
After thoroughly checking all potential data race bugs, please output all the confirmed data
races. If no data race is found, please answer with an empty list. Please answer in the
following JSON format (each race as one dict):
```json
{

“races”: [
{

“shared variable”: “the name of the same shared variable”,
“lineA”: the line number of the first access in `int` format,
“lineB”: the line number of the second access in `int` format

},
...]

}```
## Source code of the program
<The code to be analyzed, with each line prepended by its corresponding line number.>
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Table 7: The impact of domain-specific knowledge in the prompt.

Model Pass@1 Pass@5 F1 FPR

DeepSeek-R1-671B 65.49% 76.99% 66.85% 12.10%
+DK 68.14% 80.97% 75.30% 13.13%
Diff ↑4.05% ↑5.17% ↑12.64% ↑8.51%

Qwen-QwQ 52.65% 65.93% 60.15% 49.42%
+DK 60.62% 77.43% 70.76% 12.61%
Diff ↑15.14% ↑17.44% ↑17.64% ↓74.48%

Qwen3-Thinking-32B 43.36% 60.18% 56.63% 9.65%
+DK 46.90% 62.39% 58.58% 12.74%
Diff ↑8.16% ↑3.67% ↑3.44% ↑32.02%

DeepSeek-V3-671B 38.05% 54.42% 46.71% 40.41%
+DK 50.88% 68.14% 54.94% 49.81%
Diff ↑33.72% ↑25.21% ↑17.62% ↑23.26%

Qwen2.5-72B 16.81% 32.74% 27.72% 27.28%
+DK 28.32% 40.27% 42.14% 15.93%
Diff ↑68.47% ↑23.00% ↑52.02% ↓41.61%

Qwen2.5-Coder-32B 24.36% 40.27% 27.30% 38.48%
+DK 27.88% 47.79% 36.60% 27.93%
Diff ↑14.45% ↑18.67% ↑34.07% ↓27.42%

F THE IMPACT OF DOMAIN-SPECIFIC KNOWLEDGE IN THE PROMPT

Exploring the impact of domain knowledge in the prompt could provide valuable insights, e.g.,
whether it is necessary to include such information in the prompt and whether the models have learnt
such knowledge during the pre-training. To this end, we conducted an additional experiment. We
utilized the top three best-performing reasoning models (DeepSeek-R1, Qwen-QwQ, and Qwen3-
Thinking-32B) and non-reasoning models (DeepSeek-V3, Qwen2.5-72B, and Qwen2.5-Coder-32B)
from our main experiment to conduct this experiment. In this experiment, we removed the Domain-
specific knowledge introduction section from the prompt and compared the model’s performance
with the complete prompt. we focused on the metrics of pass@1, pass@5, and F1 and FPR
under greedy decoding. These metrics provided a comprehensive overview of the models’ race
detection capabilities. We excluded aggregation strategies from this comparison to avoid any potential
evaluation bias they might introduce.

The experimental results are presented in Table 7, where DK stands for domain knowledge. We use
green to highlight the scores where introducing the domain knowledge brings improvements, while
red indicates the opposite scenario. It is important to note that for the FPR metric, smaller values are
better, whereas for the other metrics, larger values are preferable.

Although the models did not achieve zero scores when no domain knowledge was provided, indicating
that they had acquired some level of domain knowledge during their pre-training, we found that
incorporating explicit domain knowledge significantly improves their overall performance. All 6
models gained higher scores for the Pass@k and F1 metrics, 3 models gained significantly lower
FPR scores, and the other 3 models suffered comparatively smaller increases in the FPR scores. We
believed this enhancement occurred because the domain knowledge acquired during pre-training
was incomplete. To eliminate the differences among models caused by pre-training processes, we
proposed including a dedicated section for domain knowledge in the prompt. This design ensured
that all models could have access to complete domain knowledge. We believed this design could
facilitate a fair comparison and allow our evaluation to focus on assessing the models’ race-detecting
capabilities rather than the completeness of their pre-training knowledge.

G DECODING HYPERPARAMETERS

In the experiment, we use the default decoding hyperparameters recommended by each model’s
source code for multi-sampling. These default hyperparameters are summarized in Table 8. An entry
of “N/A” indicates that the source code does not specify a default value for the hyperparameter. In
such cases, we set temperature=1.0, top p=1.0, and top k=-1. The top k=-1 means that the top-K
sampling mechanism is disabled.
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Table 8: Default decoding hyperparameters of LLMs

Model Series Temperature Top p Top k

DeepSeek-R1 0.6 0.95 N/A(-1)
DeepSeek-V3 N/A(1.0) N/A(1.0) N/A(-1)
R1-Distill-Qwen2.5 0.6 0.95 N/A(-1)
R1-Distill-Llama 0.6 0.95 N/A(-1)
Qwen-QwQ 0.6 0.95 40
Qwen-3 0.6 0.95 20
Qwen-2.5 0.7 0.8 20
Qwen-2.5-Coder 0.7 0.8 20
Llama-3.1 0.6 0.9 N/A(-1)

Table 9: The estimated financial cost of evaluating closed-source commercial models.

Model $ per 1M prompt tokens $ per 1M completion tokens Estimated financial cost

DeepSeek-V3 $0.28 $0.88 $4.90
GPT-5 (Nothinking) $1.25 $10.00 $40.00
GPT-4o $2.50 $10.00 $50.00
Claude-3.7 Sonnet (Nothinking) $3.00 $15.00 $69.00
Claude Opus 4 (Nothinking) $15.00 $75.00 $345.00

DeepSeek-R1 $0.50 $2.15 $40.55
GPT-5 (Thinking) $1.25 $10.00 $180.00
OpenAI-o1 $15.00 $60.00 $1140.00
OpenAI-o3 $2.00 $8.00 $152.00
Claude-3.7 Sonnet (Thinking) $3.00 $15.00 $279.00
Claude Opus 4 (Thinking) $15.00 $75.00 $1395.00

H FINANCIAL COST OF EVALUATING CLOSED-SOURCE COMMERCIAL MODELS

In our experiments, we did not evaluate closed-source commercial models. This was primarily due to
the high financial cost associated with closed-source commercial models. We estimated the financial
cost of using several closed-source commercial models, including GPT-5, GPT-4o, OpenAI-o1,
OpenAI-o3, Claude-3.7 Sonnet, and Claude Opus 4, as detailed in Table 9. For these estimations, we
utilized the token consumption information of DeepSeek-V3 (8M prompt tokens + 3M completion
tokens) to assess the cost of non-reasoning commercial models. Additionally, we used the data from
DeepSeek-R1 (8M prompt tokens + 17M completion tokens) to evaluate the reasoning commercial
models. The pricing was sourced from OpenRouter 7.

In conclusion, the use of these closed-source commercial models is quite expensive and will signifi-
cantly exceed the cost associated with DeepSeek-V3 or DeepSeek-R1. Evaluating these closed-source
models will cost hundreds or even thousands of dollars, which surpasses our current budget limit.
We plan to assess these models in the future if we can secure additional funding. Furthermore, we
intend to make the DRDBench dataset publicly available, enabling other researchers to evaluate these
closed-source commercial models using the DRDBench.

I THE COMPARISON BETWEEN REASONING AND NON-REASONING MODELS

Table 10 presents a comparison between reasoning models and their non-reasoning counterparts. In
this analysis, we focus on the metrics of pass@1, pass@5, and F1 and FPR under greedy decoding.
These metrics provide a comprehensive overview of the models’ race detection capabilities. We
have excluded aggregation strategies from this comparison to avoid any potential evaluation bias
they may introduce. We use green to highlight the scores where reasoning models outperform their
non-reasoning counterparts, while red indicates the opposite scenario. It is important to note that for
the FPR metric, smaller values are better, whereas for the other metrics, larger values are preferable.
In conclusion, reasoning models tend to outperform their non-reasoning counterparts, especially in
larger models with greater parameter sizes.

7https://openrouter.ai/
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Table 10: The comparison between reasoning models and their non-reasoning counterparts

Model Pass@1 Pass@5 F1 FPR

DeepSeek-R1-671B 68.14% 80.97% 75.30% 13.13%
DeepSeek-V3-671B 50.88% 68.14% 54.94% 49.81%
Diff ↑33.92% ↑18.83% ↑37.06% ↓73.64%

Qwen3-Thinking-32B 46.90% 62.39% 58.58% 12.74%
Qwen3-Nothinking-32B 19.03% 26.11% 21.84% 13.77%
Diff ↑146.45% ↑138.95% ↑168.22% ↓7.48%

Qwen3-Thinking-30B-A3B 43.81% 61.50% 54.75% 19.05%
Qwen3-Nothinking-30B-A3B 16.81% 20.35% 18.02% 84.43%
Diff ↑160.62% ↑202.21% ↑203.83% ↓77.44%

Qwen3-Thinking-8B 29.65% 45.13% 44.04% 37.84%
Qwen3-Nothinking-8B 3.98% 4.87% 5.38% 20.08%
Diff ↑644.97% ↑826.69% ↑718.59% ↑88.45%

Qwen3-Thinking-1.7B 7.96% 19.47% 11.37% 31.02%
Qwen3-Nothinking-1.7B 3.10% 10.62% 5.10% 3.22%
Diff ↑156.77% ↑83.33% ↑122.94% ↑863.35%

R1-Distill-Qwen2.5-32B 40.71% 59.29% 50.12% 23.04%
Qwen2.5-32B 17.70% 34.96% 29.73% 22.04%
Diff ↑130.00% ↑69.59% ↑68.58% ↑4.54%

R1-Distill-Qwen2.5-7B 8.85% 20.35% 9.87% 59.85%
Qwen2.5-7B 16.81% 22.57% 13.07% 92.41%
Diff ↓47.35% ↓9.84% ↓24.48% ↓35.23%

R1-Distill-Qwen2.5-1.5B 0.88% 1.33% 0.55% 59.72%
Qwen2.5-1.5B 0.88% 2.21% 0.82% 82.63%
Diff 0.00% ↓39.82% ↓32.93% ↓27.73%

R1-Distill-Llama-70B 48.23% 73.89% 56.87% 20.59%
Llama-70B 29.20% 42.92% 37.83% 80.82%
Diff ↑65.17% ↑72.16% ↑50.33% ↓74.52%

R1-Distill-Llama-8B 20.35% 38.94% 27.11% 58.69%
Llama-8B 23.89% 27.43% 19.54% 100.00%
Diff ↓14.82% ↑41.96% ↑38.74% ↓41.31%

J AGGREGATION STRATEGY

This section first explains why the optimal aggregation strategy varies by model, and then shares
discussions about our points of view in finding a new aggregation strategy to consistently achieve
optimal model performance in future studies.

In traditional two-class classification tasks, models typically output probability scores for both
positive and negative classes. We denote the probability score for the positive class as p and for the
negative class as 1− p.

In practical applications, the model needs to provide a specific class label instead of just a probability
score. To achieve this, we can set a threshold, denoted as t. If the probability score p is greater than
or equal to the threshold t, we classify the input as belonging to the positive class. Conversely, if p is
below the threshold, we classify the input as the negative class. The threshold t can be adjusted to
balance the trade-off between precision and recall. The optimal threshold may vary depending on the
model, and finding this optimal threshold typically requires extensive evaluation.

LLMs output probability scores for individual tokens. However, a data race, represented as a JSON
object, consists of multiple tokens. Besides, the order of data races in the LLM’s responses can vary.
These make it challenging to directly calculate the probability of the LLM reporting a specific data
race. One possible solution is to sample multiple responses from the LLMs and count how many
times a specific data race appears in those responses. This allows us to estimate the probability p
that the LLM predicts a specific data race. We can then apply a threshold t to determine whether the
model should ultimately report a specific data race.

The different aggregation strategies proposed in our submission can be understood as various settings
for the threshold t. Specifically, the strategy Maj@k can be seen as setting the threshold t to ⌈k⌉

2k ,
Int@5 sets the threshold t to 1.0, and Uni@5 sets t to 1

k . When a large number of samples is taken,
meaning k is large, the threshold t approaches 0.5 for Maj@k, 1.0 for Int@5, and 0.0 for Uni@5.
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In traditional two-class classification tasks, the optimal threshold t represents the best trade-off
between precision and recall. It can differ from one model to another. In the context of data race
detection, precision reflects the model’s ability to correctly identify data races, minimizing false
positives, while recall indicates the model’s effectiveness in finding all actual data races, minimizing
false negatives. Similar to the traditional two-class classification tasks, in our data race detection task,
the optimal aggregation strategy may also differ based on the model, as different models prioritize
precision and recall differently.

In this study, we follow the self-consistency approaches (Wang et al., 2023; Chen et al., 2024;
Wu et al., 2025) to examine the effectiveness of three different voting strategies for aggregating
responses. The evaluation results indicate that simple voting strategies do not consistently yield
optimal performance, as the best aggregation strategy varies by model. This motivates us to explore
how we can develop a new aggregation strategy that achieves optimal performance across various
models.

From our perspective, we may begin by sampling multiple responses from a model. Next, we analyze
the token-level probabilities of all tokens that belong to a specific data race to assess the model’s
overall “confidence” regarding each identified data race. Afterward, we combine the data race reports
from all the sampled responses and use the model’s “confidence” to filter out lower-quality reports.
Since this study extends beyond the scope of this paper, we plan to investigate it in future work.

K THE PREFERENCE OF LLMS

The evaluation results in Tables 1 and 2 reveal a notable disparity in model performance, with
precision metrics significantly outperforming recall metrics. This trend suggests that the
models are highly effective at identifying a small number of true positive data races, while they
struggle to report all possible instances. The application of the Maj@5 aggregation strategy, which
identifies data races that the LLMs are highly confident about, further highlights this behavior, as it
leads to an increase in precision and a corresponding decrease in recall when compared to
greedy decoding. This phenomenon indicates that the models exhibit conservative behavior when
data races are present, prioritizing the identification of high-confidence, correct data races over a
comprehensive report of all potential races.

In contrast, the models’ behavior shifts when a program is free of data races. The Maj@5 aggregation
strategy results in a significant increase in the FPR metrics when compared to greedy decoding.
This suggests that in the absence of true positive data races, the models assign a wide range of false
positives with high confidence, leading to a more radical reporting behavior.

We guess the LLMs appear to function as effective comparative data race rankers, proficient at
identifying which pair of memory accesses is more likely to form a data race. When data races
are present, this ranking is clear, resulting in a conservative output. However, when no true data
races exist, the ranking becomes ambiguous, leading the models to assign moderate confidence to
numerous false positives. The apparent contradiction can be attributed to the models’ inability to
confidently state that no data races exist in such cases.

To address this weakness, we need to train the models to effectively say “no” by assigning low
confidence to all potential data race reports when none actually exist. Since in-context learning, such
as prompting the models to return an empty JSON object when no data race is detected, has shown
limited effectiveness, we believe a more permanent solution lies in integrating this concept directly
into the training corpus. This would involve teaching the models to confidently identify whether a
program is free of data races. However, pursuing this line of research falls outside the scope of the
current paper. We intend to study this in future works.

L FAILURE MODES

Figures 8 and 9 present the full versions of the programs used to demonstrate the failure modes
discussed in Section 6. In the following, we provide several deeper insights into these two failure
modes.
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#include <assert.h> 

#include <pthread.h> 

int m = 0; 

pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER; 

void atomic_acquire() 

{ 

    pthread_mutex_lock(&mutex); 

    while (m != 0) 

    { 

        pthread_mutex_unlock(&mutex); 

        pthread_mutex_lock(&mutex); 

    } 

    m = 1; 

    pthread_mutex_unlock(&mutex); 

} 

void atomic_release() 

{ 

    pthread_mutex_lock(&mutex); 

    while (m != 1) 

    { 

        pthread_mutex_unlock(&mutex); 

        pthread_mutex_lock(&mutex); 

    } 

    m = 0; 

    pthread_mutex_unlock(&mutex); 

} 

inline int calculateNext(int s2) 

{ 

    int cnex; 

    do 

        cnex = rand(); 

    while (cnex == s2 || cnex == 0); 

    return cnex; 

} 

int seed = 1; 

inline int PseudoRandomUsingAtomic_nextInt() 

{ 

    int read, nexts; 

    assert(seed != 0); 

    atomic_acquire(); 

    read = 1; // `read = seed;` leads to failure 

    nexts = calculateNext(read); 

    seed = nexts; 

    atomic_release(); 

    return 0; 

} 

void *thr1(void *arg) 

{ 

    PseudoRandomUsingAtomic_nextInt(); 

    return 0; 

} 

int main() 

{ 

    pthread_t t; 

    while (1) 

    { 

        pthread_create(&t, 0, thr1, 0); 

    } 

} 

 

Figure 8: Changing a single code line can cause the rate of correctly detecting the data race between
lines 39 and 43 to drop from 98% to 32% (DeepSeek-R1-671B) or from 40% to 11% (DeepSeek-V3-
671B) under 100 samples.

In the failure mode illustrated in Figure 8, we find that the primary cause of the issue is the model’s
lack of awareness regarding the memory access of the variable seed at line 39 when the program
contains more than two instances of the variable seed. Listings 2 and 3 show how the model responds
when presented with programs that have two and three instances of seed, respectively. In the first
example with two instances, the model correctly recognizes both accesses to the seed variable. When
a third instance is added, the model seems to concentrate on only two of the multiple instances. It
still ignores the seed instance at line 39, even after refining its thinking by reflection (shown as the
bold sentences in Listing 3). This ultimately leads to the detection failure. We guess that this issue
arises because the Transformer’s token-to-token attention mechanism struggles to simultaneously
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#include <assert.h> 

#include <pthread.h> 

int flag1 = 0, flag2 = 0; // pthread_mutex_t flag1, flag2; 

int x; 

pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER; 

void *thr1(void *_) 

{ 

    pthread_mutex_lock(&mutex);        // replace with the following  

    flag1 = 1;                         //   will be fine： 

    while (flag2 == 1)                 //  

    {                                  // pthread_mutex_lock(&flag1); 

        pthread_mutex_unlock(&mutex);  // pthread_mutex_lock(&flag2); 

        pthread_mutex_lock(&mutex);    // 

    }                                  // 

    pthread_mutex_unlock(&mutex);      // 

    x = 0;  

    return 0; 

} 

void *thr2(void *_) 

{ 

    pthread_mutex_lock(&mutex);        // replace with the following  

    flag2 = 1;                         //   will be fine： 

    while (flag1 == 1)                 // 

    {                                  // pthread_mutex_lock(&flag2); 

        pthread_mutex_unlock(&mutex);  // pthread_mutex_lock(&flag1); 

        pthread_mutex_lock(&mutex);    // 

    }                                  // 

    pthread_mutex_unlock(&mutex);      // 

    x = 1;  

    return 0; 

} 

int main() 

{ 

    pthread_t t1, t2; 

    pthread_create(&t1, 0, thr1, 0); 

    pthread_create(&t2, 0, thr2, 0); 

    pthread_join(t1, 0); 

    pthread_join(t2, 0); 

    return 0; 

} 

 

Figure 9: Replacing standard mutex APIs with user-defined synchronization causes the rate of false-
positive data race reports (on variable x) to significantly increase from 0% to 92% (DeepSeek-R1) or
2% to 100% (DeepSeek-V3) under 100 samples.

capture the relationships between multiple pairs of tokens, particularly when these token pairs have
similar meanings or intentions.

Listing 2: Model response when the program contains only two seed instances

(...) But the real shared variable here is seed. Let’s look at where seed is accessed. (...) Wait,
the code for PseudoRandomUsingAtomic nextInt has:
Line 39: assert(seed !=0);
Line 40: atomic acquire();
Line 41: read = 1;
Line 42: nexts = calculateNext(read);
Line 43: seed = nexts;
Line 44: atomic release();
Wait, the code here seems to set read to 1, then compute nexts based on read (which is 1),
then assign seed to nexts. But seed is only being written here. The read from seed is line
39, which is outside the atomic acquire. (...) So two threads could read seed in line 39
while another is writing it in line 43. (...)

30



1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Listing 3: Model response when the program contains three seed instances

(...) Therefore, the accesses to seed in lines 41 (read) and 43 (write) are protected by this
custom lock. So there’s no data race here. (...) But what about other accesses to seed?
Are there any other lines where seed is accessed? Let’s check the code. The function
calculateNext (line 32) checks if cnex is equal to s2 (which is the seed passed in), but that’s a
local variable. The seed is read in line 41 and written in line 43. So all accesses to seed
are within the critical section. (...)

In the program illustrated in Figure 9, the user utilizes two variables, flag1 and flag2, along with a
standard lock variable, mutex, to ensure exclusive access between the two functions, thr1 and thr2.
The models attempt to analyze the semantics of this code, which is presented in Listing 4. However,
they only identify that the variable x is not protected by the lock variable mutex, failing to realize that
the values of flag1 and flag2 provide exclusive access. As a result, the models incorrectly report a
data race on the variable x. When the user-defined synchronization is replaced with standard library
APIs, the models can correctly recognize the exclusive access and do not report a data race. This
situation highlights that the LLMs may not fully understand the code, which limits their capability to
detect data races.

Listing 4: Model response when the program contains user-defined synchronization

(...) Starting with flag1. Thr1 writes to flag1 at line 9 while holding the mutex. Thr2 reads
flag1 at line 23. But wait, when thr2 is in the loop (line 23), it’s inside the mutex lock.
Because thr2 is holding the mutex when it checks flag1, and thr1 also locks the mutex when
modifying flag1. So any access to flag1 (both read and write) is protected by the mutex. So
no data race on flag1.
Similarly, flag2 is written by thr2 (line 22) under the mutex, and thr1 reads it at line 10. Again,
both accesses are within the mutex, so no race there.
Now, the variable x. Thr1 writes to x at line 16, and thr2 writes to x at line 29. Are these
writes protected by the mutex? Let’s check.
In thr1, after exiting the loop, the thread unlocks the mutex (line 15) and then writes to x
(line 16). Similarly, thr2 unlocks the mutex at line 28 and then writes to x at line 29. So
both writes to x happen after the mutex is unlocked. Therefore, the accesses to x are not
protected by the mutex. (...)

M LIMITATION

While the programs in the SV-Benchmarks cover a broad range of real-world applications and data
race patterns, they cannot encompass every possible application and data race scenario. We aim to
continuously expand the benchmark with new data races collected over time. Given that identifying
and documenting data races is a time-consuming and labor-intensive process, our study primarily
leverages existing datasets. Future work could extend the benchmark to include more recent data race
vulnerabilities documented in sources such as the CVE8 and CWE9 databases. Additionally, there
is potential for exploring agent-based race detection approaches and repo-level data race detection
techniques.

N BROADER IMPACTS

We hope this work sets a new baseline for evaluating LLMs’ capabilities in data race detection. It has
the potential to inspire future research on leveraging NNs and LLMs for effective and efficient data
race detection, thereby improving the software quality of concurrent programs. At this moment, we
do not foresee any obvious undesirable ethical or social impacts.

8https://www.cve.org/
9https://cwe.mitre.org/
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O LICENSE

The DRDBench is licensed under the Creative Commons Attribution 4.0 International License (CC
BY 4.0), whose content is summarized as below.

We release the benchmark under the CC-BY license and Terms of Use, requiring disclosure when
used for model evaluation. This license supplements, but does not replace, the original licenses of
source materials; compliance with these and any applicable rights of data subjects is necessary. This
statement clarifies the responsibilities and liabilities associated with using this benchmark. While
we’ve made every effort to ensure the samples’ accuracy and legality, we cannot guarantee their
absolute completeness or correctness. We assume no liability for any rights violations, whether legal
or otherwise, that may occur through the use of this benchmark, including but not limited to copyright
infringement, privacy violations, or misuse of sensitive information. By accessing, downloading,
or using this benchmark, you implicitly accept this statement and agree to adhere to the terms and
conditions of the CC-BY license. If you do not agree with these terms or the CC-BY license, you are
not authorized to use this benchmark.
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