
Efficient Evaluation of Multi-Task
Robot Policies With Active Experiment Selection

Abrar Anwar, Rohan Gupta, Zain Merchant, Sayan Ghosh,
Willie Neiswanger, Jesse Thomason

University of Southern California,

Abstract: Evaluating learned robot control policies to determine their perfor-
mance costs the experimenter time and effort. As robots become more capable in
accomplishing diverse tasks, evaluating across all these tasks becomes more dif-
ficult as it is impractical to test every policy on every task multiple times. Rather
than considering the average performance of a policy on a task, we consider the
distribution of performance over time. In a multi-task policy evaluation setting,
we actively model the distribution of robot performance across multiple tasks and
policies as we sequentially execute experiments. We show that natural language
is a useful prior in modeling relationships between tasks because they often share
similarities that can reveal potential relationships in policy behavior. We leverage
this formulation to reduce experimenter effort by using a cost-aware information
gain heuristic to efficiently select informative trials. We conduct experiments on
existing evaluation data from real robots and simulations and find a 50% reduction
in estimates of the mean performance given a fixed cost budget. We encourage the
use of our surrogate model as a scalable approach to track progress in evaluation.
Code can be found at: github.com/AbrarAnwar/seq-eval

Keywords: Robot Evaluation, Active Testing, Language

1 Introduction

With the growth of large-scale robot datasets and pretrained policies, robot systems have become
increasingly capable of carrying out a wide variety of tasks; however, this diversity makes evaluating
these policies increasingly challenging. The combinatorial growth makes an exhaustive evaluation
even more impractical. Language-guided manipulation [1, 2, 3] and navigation [4, 5, 6] approaches
continue to improve. As such, there is a need for maintaining estimates of policy performance and
efficient evaluation strategies that can enable systematic and scalable testing of multi-task robot
policies in the real world. Unlike fields such as computer vision or natural language processing,
physical robotics experiments are conducted sequentially, and each policy rollout requires significant
experimenter time and effort. Our paper actively estimates the performance of a set of policies over
tasks, and then uses this framework to explore cost-aware, informative experiment sampling.

In practice, experimenters are typically interested in selecting the best checkpoints, tuning hyperpa-
rameters, or comparing model architectures, which do not necessarily require a full evaluation across
every policy-task combination. A robot policy that can “pick up an apple” is likely capable of “pick-
ing up an orange” in an otherwise similar scene. Our work explores this insight and considers the
structural relationships between tasks by framing robot evaluation as a population parameter estima-
tion problem. This formulation then lets us design efficient, active experiment sampling strategies.

When evaluating a robot policy, it is common to consider only average-case performance. However,
robot performance often has high variance, so we instead consider the evaluation of a policy on a
specific task as understanding the performance distribution. How do we learn these performance
distributions in an effective and efficient manner?

9th Conference on Robot Learning (CoRL 2025), Seoul, Korea.

https://github.com/AbrarAnwar/seq-eval

pick up the blue mug

pick up the red bottle

pick up the coke can

pour the milk

pour the coffee

open the window

open the door

Policy 1

Policy 2

Policy 3

Policy 4

Tasks Policies

Real-robot evaluation across
tasks and polices is expensive

Estimate performance
across tasks

seen task

???

Tasks

Po
li

ci
es

=
Success on

implies performance on

Cost-Aware Active Testing

Given previous experiments

Select next experiment based on
outcome estimates and cost

What is the
performance of

other cells?

+[]task policy

MLP

performance

distribution

Low info gain

Exp 1

Exp 2

pick up the red
mug

pick up the red
mug

pick up the
coke can

open the door

High cost

pick up the coke can

pick up the red bottle

Changing from test instances incurs cost!

Figure 1: Overview. Exhaustively evaluating
multiple robot policies across various tasks has
high experimenter cost. In this work, we leverage
latent relationships between tasks and policies to
model performance distributions across all tasks
and policies. These estimates are updated sequen-
tially and used to implement cost-aware active ex-
periment selection strategies.

To operationalize this problem, we characterize
every policy-task pair by a parameterized dis-
tribution reflecting the experiment conditions.
For example, we use a Bernoulli distribution
to model performance for tasks with binary re-
ward and a Gaussian distribution for a con-
tinuous reward. As an experimenter conducts
evaluations sequentially, we learn a surrogate
model that estimates parameters for the perfor-
mance distribution of every policy-task pair.

To build an efficient evaluation strategy, we
leverage the shared structure between tasks. As
we sample new experiments, we learn a surro-
gate model conditioned on latent task and pol-
icy embeddings. We show that better represen-
tations of tasks, namely from language priors,
improve estimates of the outcome distributions,
indicating that there is shared information be-
tween tasks learnable from policy performance.
Though surrogate models have been used in
robotics to predict outcomes in human-robot in-
teraction scenarios [7], they did not consider the
cost of evaluating each scenario.

Since evaluation is expensive, we want to minimize the cost of evaluation while still estimating the
performance of all policies across all tasks of interest. Then, with our surrogate model, we leverage
strategies from the active learning literature to integrate cost-efficient sampling heuristics.

2 Background and Related Work

Evaluation in Machine Learning. In computer vision and NLP, it is common to characterize
the out-of-distribution performance of a single model [8, 9, 10, 11, 12, 13, 14] or create standards
for comparing different models [12]. These approaches allow experimenters to quickly compare
between models. However, in robotics, policy evaluation is difficult since each task is expensive to
evaluate. We use methods from active learning to improve experiment selection during evaluation.

Active Testing. Similar to active learning, which aims to select training labels, active testing ap-
proaches [15, 16, 17] focus on selecting test instances to evaluate to better predict model perfor-
mance. Though these settings focus on classification or regression labeling tasks, this formulation is
important to robotics because evaluation is expensive. Various Bayesian optimization, active learn-
ing, and active testing approaches use surrogate models to estimate the value of a training or test
instance [18, 19, 20, 21, 22, 23], often incorporating cost-aware sampling [24, 25]. In robotics,
surrogate models have been used to predict outcomes of a human-robot interaction scenarios in sim-
ulation for policy learning [7]; however, this past work did not consider the cost evaluating each
scenario. Since robot evaluation can have high variance, we take inspiration from past work [26] to
focus on active learning of probabilistic models using a surrogate model.

Evaluation of Robot Policies. The goal of robot evaluation is to compare policies and gain insight
into their behavior. Simulated evaluation [27, 28, 29, 30] is a common policy testing method, but
often poorly correlates with real-world performance [31, 32]. We therefore focus on real-robot eval-
uation, which is costly and noisy. Recent efforts include selecting initial conditions [33], evaluating
LLM-based planners [34], actively assessing black-box symbolic planners [35, 36, 37], or bounding
policy performance using outcome distributions [38]. Other work examines how initial condition
changes affect sensitivity [39, 40, 41, 42] or use these factors to guide data collection [43]. We
instead actively evaluate multi-task policies and learn their underlying performance distributions.

2

experiments
with >1 evals

Each cell is a
performance
distribuion

Tasks

Po
lic

ie
s

=

Surrogate Model

Estimate the performance of

each cell

Score Prospective ExperimentsWhich experiment
should I run?

Train

surrogate model

... ...

Run
experiment

Add outcome
to dataset

Acquisition
Function

Sample most informative
exp. for the cost

+[]task

Tasks Policies

policy

performance

distribution

estimated parameters

Estimated performance dists.
with Monte Carlo dropout

Expected
Info Gain

0.5

0.8

0.1

Cost of
experiment

0.5

1

3

Bernoulli

Gaussian

0 1

MLP

lift
eggplant

OpenVLA

lift
eggplant

Octo

lift
eggplant

Octo

lift
eggplant

RT-2-X

put eggplant
in pot

OpenVLA

put eggplant
in pot

Octo

put eggplant
in pot

RT-2-X

put eggplant
in pot

RT-2-X

lift
eggplant

OpenVLA

lift
eggplant

Octo

Figure 2: Method. We build a surrogate parameter estimation model that learns task and policy
embeddings to predict the outcome performance distribution for each policy on every task. We use
Bernoulli distributions for binary outcomes or a bimodal Gaussian for continuous outcomes. Given
this parameter estimation model, we develop an active testing strategy with cost-aware sampling
based on expected information gain.

3 Problem Formulation and Notation

The objective of this work is to design an efficient strategy to evaluate robot policies across tasks
while balancing the cost of experimentation. Consider a fixed set of M robot policies, denoted
by P = {π1, π2, . . . , πM} and a set of N tasks T = {T1, T2, ..., TN}. Each task Tj ∈ T is a
finite-horizon MDP defined by states, actions, and a high-level natural language instruction Li. Our
framework is policy-agnostic, does not assume access to policy model weights, and can be applied
to engineered robot systems in addition to end-to-end models.

Population Parameter Estimation. We formulate the problem as population parameter estima-
tion, similar to probabilistic matrix factorization [44]. Let the performance of a policy πi ∈ P on a
task Tj ∈ T be represented by the random variable Xij with distribution Pij , from which we can
sample evaluations xij ∼ Pij . Here, Pij represents the “true” performance distribution. Since the
underlying distribution Pij is unknown, the goal of population parameter estimation is to estimate a
distribution Qij that models real-world evaluation outcomes from Pij . We use θij to represent the
parameters of the learned distribution Qij . For example, θij = [µ, σ] if Qij is a Gaussian distribu-
tion. Given a limited number of observed samples from the true distribution, x1

ij , ..., x
n
ij ∼ Pij , the

goal is to estimate the parameters of an estimated distribution θij . Our setting also has samples from
other random variables, Xkl corresponding to different policy-task pairs. Therefore, in this work
we want to estimate Θ = {θij}i=M,j=N

i,j=1 for all policy-task pairs given a dataset D = {xk
ij}. These

distributions can be visualized as a grid of policy-task pairs as shown in Figure 2.

The aim is to estimate the parameters of Qij of all policy-task combinations by leveraging shared
information across this matrix. However, it is infeasible to directly evaluate all policy-task pairs
due to cost constraints. Therefore, we adopt an active testing approach, where the objective is to
iteratively select the most informative experiments (πi, Tj) to efficiently learn Θ.

Active Testing. We apply an active learning paradigm to learn a population parameter estimator
f(πi, Tj). As such, we define acquisition functions to guide the selection of task-policy pairs or
tasks alone, and then sample experiments that are most informative. First, we define an acquisition
function a(πi, Tj), and the next experiment is selected by maximizing this function over all pos-
sible experiments: (π∗

i , T
∗
j) = argmax(πi,Tj) a(πi, Tj). Although these acquisition functions are

informative, we want a balance between selecting informative experiments and their costs.

3

Evaluation Cost. In real-world evaluation, each policy-task evaluation incurs a cost. Let ceval(Tj)
denote the cost of a single evaluation of a policy on task Tj . We make a simplifying assumption that
this cost is agnostic to changes in the policy under evaluation. This cost could include the policy
execution time, the resources consumed during evaluation, or the manual work to reset the scene.
Furthermore, switching between tasks typically incurs a larger cost involving reconfiguring the scene
or robot. We define this switching cost cswitch(Tj , Tk) as the cost associated with transitioning from
task Tj to Tk. For a sequence of tasks that have been evaluated Ti1 , . . . , TiL (where each ij ∈ N),
we compute the total cost of evaluation ctotal =

∑N
j=1 ceval(Tij) +

∑N−1
j=1 cswitch(Tij , Tij+1

). Given
these costs, the problem is to design an evaluation strategy that minimizes the total cost of evaluation
while learning the population parameters of test instances.

4 Method

We design a framework for estimating the performance of robot policies across tasks by using a
surrogate model conditioned on task and policy representations. We then use this sequentially-
learned surrogate model to inform cost-aware sampling of experiments using information gain.

4.1 Surrogate Model

As we evaluate our robot policies across tasks, we track the outcomes of each trial to aggregate
a dataset D over time. Each of these outcomes are realizations of a true underlying distribution
Pij . Our goal is to learn a surrogate model from D that predicts the population parameters θij of a
performance distribution Qij . As more evaluation rollouts are conducted, we add the outcomes to D
and update the surrogate model. To train an effective surrogate model f , we use notions of similarity
between tasks and policies. Thus, we need a representation that captures the similarities between
policies and tasks with respect to their performance distributions. We define a policy embedding eπi

and task embedding eTj
, where similar performance distributions in task and policy can be captured

based on the embeddings. These policy and task representations are then provided as input to an
MLP that predicts the estimated population parameters: θ̂ij = f(πi, Tj) = MLP(eπi

, eTj
).

Task and Policy Representation. To define the task and policy embeddings eπi
, eTj

, we design
various types of embeddings. In practice, we cannot know the relationship between policies in
advance while we are conducting evaluation. Therefore, we define the policy embedding to be a
fixed, randomly initialized embedding to act as an identifier for the policy in a given experiment.
For the task embedding eπi , we leverage language embeddings from MiniLMv2 [45] which we
reduce to 32 dimensions using PCA over all tasks.

Population Parameter Estimation. Outcomes in robot learning can take the form of continuous
values like rewards, time to completion, or task progress, and binary values like task success. Thus,
the underlying distribution from the surrogate model depends on the type of task. We consider
two types of underlying distributions. When Xij is continuous, Qij takes the form of a mixture
of Gaussians with K components, x̂ij ∼ Qij =

∑K
k=1 pkN (µk, σk), where πk, µk, and σk are

the mixing coefficients, means, and standard deviations of the Gaussian components respectively
that are predicted from the surrogate model θij = f(πi, Tj). We thus train the surrogate model
with a mixture density loss [46, 47] to minimize the negative log-likelihood of the observed data
under the mixture model. In our experiments on continuous outcome distributions, we use K = 2
Gaussian components because of the intuition that robot policy performance is often bimodal; robots
either fail catastrophically or they maintain non-zero performance. In the case where Xij is binary,
indicating success or failure, Qij takes the form of a Bernoulli distribution, where θij = {p ∈ [0, 1]}
is represented by the surrogate model trained using cross-entropy loss.

4.2 Cost-aware Active Experiment Selection

We explore cost-aware, active-experiment acquisition functions that guide selection of experiments
based on their expected utility while considering associated costs. To define the acquisition function,

4

we first focus on how to measure the informativeness of a policy-task evaluation, which we capture
through expected information gain.

Expected Information Gain. Expected Information Gain (EIG) quantifies the value of an experi-
ment by estimating how much it reduces the predictive uncertainty of the performance distribution
for a policy-task pair. Since the surrogate model estimates performance distributions, we define the
EIG of a policy-task pair using a Bayesian Active Learning by Disagreement (BALD) [48] formu-
lation for probabilistic models [26]:

I(πi, Tj) = H[Qij]︸ ︷︷ ︸
marginal entropy

−Eθij∼f(θij |D)[H[Qij |θij]]︸ ︷︷ ︸
expected conditional entropy

. (1)

The first term represents the marginal entropy over Qij , which quantifies the total uncertainty in
Qij . The second term corresponds to the expected conditional entropy over multiple samples of pa-
rameters θij . Thus, I(πi, Tj) captures the disagreement between multiple samples of distributions.
For example, if 10 pairs of parameters for a Gaussian result in very different distributions, then their
disagreement will be high. Because the entropy of a mixture of Gaussians generally lacks a closed-
form solution, we estimate the entropy by discretizing the empirical distribution into n = 25 bins for
which to compute entropy over. BALD ensures the EIG score is higher in test instances where there
is disagreement in the predicted distributions across sampled parameters. In this case, we define
the acquisition functions a(πi, Tj) = I(πi, Tj). Computing EIG requires multiple samples of Θij ;
however, we only train a single MLP. Based on past literature [49, 50, 51], we apply dropout only at
test-time to compute multiple samples of θij from the surrogate model f(·).

Cost-Aware EIG. While EIG quantifies the informativeness of an experiment, it does not consider
the costs of conducting evaluation. To make EIG cost-aware, we design the following acquisition
function based on prior work that simply integrates cost with a multiplicative factor [25, 24]:

acost-aware(πi, Tj , Tcurrent) =
I(πi, Tj)

(λ · cswitch(Tcurrent, Tj)) + 1
, (2)

where I(πi, Tj) represents EIG for the policy πi on task Tj , cswitch(Tcurrent, Tj)) is the cost of switch-
ing from current task Tcurrent to new task Tj , and λ is a cost sensitivity hyperparameter.

Active Experiment Selection. We use this acquisition function to iteratively sample experiments
(see Algorithm 1 in Appendix B). To mitigate the cold-start problem in active learning, we initialize
the dataset D with a single randomly-selected task, for which every policy is evaluated 3 times. We
then train the surrogate model on this data. At each query step, the acquisition function a(πi, Tj)
is computed for all policy-task pairs. To compute the entropy over model parameters for the EIG
metric, we use MC dropout to sample 10 predicted outcome distributions. To balance exploration
and exploitation, we use an epsilon-greedy strategy with a rate of ϵ = 0.1. The selected experiment
(πi, Tj) is then executed 3 times, and the observed outcomes are added to the dataset D. We found
in preliminary experiments that 3 trials per selected experiment was often better for cost-efficient
population parameter estimation. Given these new outcomes in the dataset, we keep training the
surrogate model on the updated dataset to improve its predictions over time.

5 Experiments

To evaluate our active testing framework, we leverage evaluations that have already been conducted
in simulated and the real world, which we then sample offline. We evaluate our method using four
offline datasets, with more details in Appendix C. HAMSTER [52] provides evaluations of a VLA
model and four baselines across 81 tasks, each with a single continuous outcome, which we model
as a Gaussian with fixed variance. OpenVLA [2] includes 4 policies tested on 29 tasks across two
embodiments; we incorporate switching costs for both task and embodiment changes. MetaWorld
Policies [53] simulates 50 manipulation tasks with 10 diverse policies trained via different architec-
tures and state noise; we collect 100 rollouts per policy-task pair and use both binary (success/fail)
and continuous (reward) metrics. Switching cost reflects object-level differences between tasks.
MetaWorld Checkpoints tracks a single policy through 11 training checkpoints. Each of these

5

datasets can be modeled with different underlying distributions and have varying costs, semantic
diversity, and skills.

5.1 Task and Policy Representation

HAMSTER Evaluations

81 Tasks
5 Policies
Task Progress

50 Tasks
10 Policies
Reward or Success Rate
Multiple types of eval.

29 Tasks
2 embodiments

4 Policies
Success Rate

OpenVLA Evaluations

MetaWorld Policy and MetaWorld Checkpoint Evaluations

Figure 3: Offline Datasets used for Experi-
ments. We consider 4 settings of offline eval-
uations, as denoted above.

Experiment Design and Baselines. As the ideal
task or policy representation is unclear, we compute
an upper bound by training learnable policy and task
embeddings using all pre-evaluated outcomes to pre-
dict performance. We describe this in more detail
in Appendix A.1. These Optimal embeddings are
tuned specifically for this task but require full data
access a priori.

To study the effect of different embeddings, we sep-
arately design representations for tasks and policies.
As we describe in Section 4.1, we use language
embeddings as a task representation. However, we
found that language embeddings overly focus on
nouns as opposed to verbs, which causes issues as
actions with similar nouns but different verbs would
be closer together than verbs with the same nouns.
Thus, we apply the following procedure to mitigate
this issue. We (1) use part-of-speech tagging to extract all verbs and verb phrases, (2) compute a
language embedding for the verb everb

Tj
and for the entire task description etask

tj , and then (3) compute
the task embedding eTj

= 0.8 · everb
Tj

+0.2 · etask
Tj

+0.1 · N (0, 1). We also found that the embeddings
were often too close across multiple tasks, and we found that adding a slight noise term helped
separate close embeddings. We call weighted language feature representation Verb.

We compare it to a standard Language embedding for the instruction and a Random embedding
baselines. Unlike a task representation through language, there is no canonical policy representa-
tion. We use Optimal and Random embeddings, and leave broader exploration to future work.
We run all experiments over 750 steps across three seeds. Each experiment is sampled similar to
how researchers typically evaluate: we select a random task and test each policy three times. To
assess each representation’s impact, we compute the average log-likelihood of all outcomes in our
offline dataset against a probability distribution represented by the predicted population parameters

MetaWorld Checkpoints, Success RateOpenVLA, Success RateHAMSTER, Task Progress

Task: , Policy: Random Optimal
Task: , Policy: OptimalOptimal

Task: , Policy RandomVerb
Task: , Policy OptimalVerb

Task: , Policy RandomLang
Task: , Policy OptimalLang

Task: , Policy RandomRandom
Task: , Policy OptimalRandom

Figure 4: Task and Policy Representation Experiments. We compute the average log likelihood
of all outcomes under probability distribution represented by the predicted population parameters
across various policy and task representations. We evaluate these methods over three offline eval-
uation datasets over continuous and binary performance distributions. We find no large difference
between random or optimal embeddings as a policy representation, indicating that there is not much
shared information between policies. However, we find that for task representation, Optimal con-
sistently performs the best, followed by Verb, then Lang, and lastly Random. Language-based
embeddings is a good task representation that we can leverage for better active testing.

6

MetaWorld Policies, Success Rate OpenVLA, Success Rate

MetaWorld Policies, Reward MetaWorld Checkpoints, Reward HAMSTER, Task Progress

MetaWorld Checkpoints, Success Rate

Cost-aware Task EIG Task EIG
RandomCost-aware EIG EIG
Random Task

Figure 5: Average L1 Error of the Mean Over Cost. We compute the error between the ground
truth means of a policy-task pair and the mean of the predicted performance distribution. EIG-based
methods better estimate the means for both continuous and binary distributions. Task sampling
methods are more cost-efficient than policy-task sampling methods at similar log-likelihoods.

from the surrogate model. Details on the baselines and how we train the Optimal policy and task
representations can be found in Appendix D.

Random representations do not share information across policies and tasks. Our results indicate
that random embeddings for tasks or policies consistently perform worse, as they fail to capture any
meaningful structure or shared information between tasks. The increasing performance of Random
is due to new experiments being sampled; however, minimal interpolation of outcomes occurred.

Task types impact performance estimation. The HAMSTER evaluations consist of many changes
to objects rather than changes to the type of task itself such as “pickup the milk. . . ” and “pickup
the shrimp. . . ”. This structure leads to clearer benefits when using language-based representations.
In contrast, OpenVLA has less separable tasks, thus it shows a much smaller separation between
random, optimal, and language-based embeddings. MetaWorld Checkpoints, however, show a more
stable improvement of Verb as opposed to simply Lang since there are many more tasks.

Optimal task and policy representations. Despite the improvement from using Lang or Verb,
they do not fully bridge the gap in performance to optimal task embeddings. Thus, language-based
representations do not represent all shared information between tasks. Additionally, the use of opti-
mal policy embeddings did not provide additional sample-efficiency, likely due to over reliance on
task embeddings during training or the limited number of policies in the dataset.

5.2 Cost-Aware Experiment Selection

To evaluate the effectiveness of our cost-aware active experiment selection methods, we assess the
population parameter estimation capability of our framework across various datasets using continu-
ous and binary performance distributions.

Sampling Strategies. We compare two families of strategies: (1) selecting a policy-task pair, and
(2) selecting a task and evaluating all policies d = 3 times. For pairwise selection, we use: Random
Sampling, which samples uniformly; EIG, which selects the pair with highest expected informa-
tion gain (EIG, see Section 4.1); and Cost-aware EIG, which accounts for task-switching cost via
Equation 2. For task-based sampling, we use: Random Task, sampling tasks uniformly; Task
EIG, selecting the task with highest total EIG; across policies and Cost-aware Task EIG, which
maximizes sum total cost-aware EIG across policies. The task-based sampling strategies are more

7

MetaWorld Policies

Reward

t = 0 t = 150 t = 750 True Distribution

0.0

HAMSTER

Task Progress

OpenVLA

Success Rate

1.0

Figure 6: Predicted Mean Distributions. We provide a visualization of the means for the predicted
continuous and binary distributions over 0, 150, and 750 sampled queries. We use random sampling
with 3 evaluations per policy-task pair to show that our surrogate model can actively learn the full
distribution of performance and learn the performance distribution over time. For example, for
MetaWorld Policies at t = 750, 750/3 = 250 policy-task pairs were sampled of the total 50 ∗
10 = 500 possible policy-task pairs that could be evaluated, the estimated mean performance is
qualitatively comparable to the true mean; Figure 5 reports these results quantitatively as L1 error.

realistic to how experimenters evaluate their robots today, as experimenters typically select a task
and then evaluate every policy. All methods are run for 1500 steps across three seeds with Random
policy and Verb task embeddings. We report the L1 distance between the true and estimated means
derived from the estimated population parameters per policy-task pair (see Appendix E for details).

EIG-based approaches better estimate mean performance, but struggle to learn population
parameters. Figure 5 shows EIG methods consistently outperform baselines in estimating the mean,
often at lower cost. For example, for OpenVLA at a cost of 500, Cost-Aware Task EIG has an L1
error of 0.017 while random task has double that error at 0.036. This results in an approximate
50% reduction in error when using EIG-based sampling for the same cost. We also note that
qualitatively, we find that in the middle of an evaluation sequence, EIG-based approaches outperform
random sampling baselines. This result is likely due to estimates converging as a larger number of
policy-task pairs have been sampled at least once. Figure 7 shows the average log-likelihood of
offline outcomes against the predicted population parameters of the model. EIG-based methods
slightly outperform random baselines in fitting the full distribution, with stronger gains in some
cases (e.g., MetaWorld Policies with success rate), though results vary across datasets. This result
suggests that learning the performance distribution in a cost-effective manner remains challenging,
especially in the early stages of evaluation when data is sparse.

Tradeoffs between task- and policy-task sampling. Both Figure 5 and Figure 7 show that task-
based sampling is generally better in OpenVLA and HAMSTER, but cost-aware EIG generally
estimates the L1 error better than its task-based counterpart on MetaWorld. Policy-task sampling
approaches are likely more efficient in MetaWorld experiments as there are a large number of ex-
periments where there is a high cost to switch, and evaluating 10 policies over a single task may not
be as informative. In contrast, HAMSTER and OpenVLA have fewer policies, meaning the cost of
evaluating all policies for a single task is lower. Additionally, we found that policy-task sampling
methods are more likely to switch tasks, causing a faster accumulation of cost.

Learning the Performance Landscape. Figure 6 illustrates how our formulation of sequentially
sampling experiments refines the predictions of the performance landscape. Early in the evaluation
process, predictions tend to center around the mean and are misaligned with the true distribution. As
more experiments are selected, the estimates begin to resemble the true means. Even if evaluation
cost is not a constraint, the surrogate model is a scalable way to track evaluation progress and
monitor trends during the evaluation process.

Concluding Statement. By framing robot evaluation as an active testing problem, we investigate
the relationships between tasks to predict policy performance distributions. The surrogate model not
only informs cost-aware sampling but also serves as a scalable tool for tracking evaluation progress.
We hope this ability enables more informed decision-making in the robot development lifecycle.

8

6 Limitations

Cost-effective performance distribution estimation. While our approach better estimates the
mean performance of policy-task pairs (see Section 5.2), the surrogate model does not learn the
parameters of the performance distribution in a more cost-effective manner than random sampling,
as reflected in the lower log-likelihoods in Figure 7. This is likely because cost-aware strategies fa-
vor repeating low-cost experiments. As a result, task coverage decreases, and the model sees fewer
diverse or uncommon items. We focused on ensuring that the surrogate model is able to estimate the
landscape of performance across tasks and policies at low cost, but in practice, experimenters care
about policy comparisons. Our framework can be combined with concurrent work on optimal stop-
ping for experiments during policy comparisons [54], or focus on other applications such as finding
the best average policy, finding a ranked ordering of policies, or finding the worst performing tasks.
Each of these would require different active sampling strategies.

Cost-aware, myopic experiment selection. We represented robot execution costs naively at a fixed
cost; however, different tasks may have different execution costs that may depend on whether a
policy fails on its task or not, such as having to clean up spilled milk. When execution or switching
costs are non-uniform, single-step look-ahead is typically not sufficient for cost-aware experiment
selection. More optimal cost-aware solutions must plan future evaluations with respect to cost and
potential information gain. Future work can extend our methods by developing myopic, look-ahead
algorithms that can select longer sequences of experiments at a time. If we can myopically estimate
the most informative tasks at lower costs, we hope our work can act as a learned reward function [55]
that encourages autonomous, reset-free, multi-task reinforcement learning in the real world.

Language-based task representations. For computing our language representations, the design
of Verb involved a weighted sum between verb and full-instruction embeddings. We found this
heuristic term to perform better, and the weightings of these terms to not impact performance. Most
language embeddings emphasize objects, as they act like bag-of-words models, but verbs are more
indicative of the task in robotics. This finding motivates future work in learning robotics-specific task
representations that are grounded in actions and are available a priori. There are also hierarchical

Av
er

ag
e

Lo
g

Li
ke

lih
oo

d

MetaWorld Policies, Success Rate OpenVLA, Success Rate

Av
er

ag
e

Lo
g

Li
ke

lih
oo

d

MetaWorld Policies, Reward MetaWorld Checkpoints, Reward HAMSTER, Task Progress

Av
er

ag
e

Lo
g

Li
ke

lih
oo

d

Av
er

ag
e

Lo
g

Li
ke

lih
oo

d

Av
er

ag
e

Lo
g

Li
ke

lih
oo

d

MetaWorld Checkpoints, Success Rate

Cost-aware Task EIG Task EIG
RandomCost-aware EIG EIG
Random Task

Av
er

ag
e

Lo
g

Li
ke

lih
oo

d

Figure 7: Average Log Likelihood Over Cost. We show the average log likelihood of all the
outcomes in our offline dataset against the cost of evaluation for MetaWorld Policies, MetaWorld
Checkpoints, HAMSTER, and OpenVLA over continuous and binary performance distributions.
Each set of experiments is run for 1500 trials. We find that EIG-based approaches struggle to model
the true distribution in a more cost-efficient manner than Random Task sampling. Task-based sam-
pling strategies are more cost-efficient than policy-task approaches.

9

relationships between tasks such as “pour milk” likely depending on being able to “pick up the milk”
that this work does not consider.

Policy representation. We used simple random or optimal embeddings for policy representations
and found minimal differences between the two, but learning policy embeddings may better predict
performance. Policy embedding priors might be formed by encoding the training data of those
policies or their predictions to offline data.

Acknowledgments

This work was supported in part by a grant from the Army Research Lab (ARL) Army AI Innova-
tions Institute (A2I2), award number W911NF-23-2-0010. The claims and findings of this work do
not necessarily represent the views of the ARL.

10

References
[1] Octo Model Team, D. Ghosh, H. Walke, K. Pertsch, K. Black, O. Mees, S. Dasari, J. Hejna,

C. Xu, J. Luo, T. Kreiman, Y. Tan, L. Y. Chen, P. Sanketi, Q. Vuong, T. Xiao, D. Sadigh,
C. Finn, and S. Levine. Octo: An open-source generalist robot policy. Robotics: Science and
Systems (RSS), 2024.

[2] M. Kim, K. Pertsch, S. Karamcheti, T. Xiao, A. Balakrishna, S. Nair, R. Rafailov, E. Foster,
G. Lam, P. Sanketi, Q. Vuong, T. Kollar, B. Burchfiel, R. Tedrake, D. Sadigh, S. Levine,
P. Liang, and C. Finn. Openvla: An open-source vision-language-action model. Conference
on Robot Learning (CoRL), 2024.

[3] K. Black, N. Brown, D. Driess, A. Esmail, M. Equi, C. Finn, N. Fusai, L. Groom, K. Hausman,
B. Ichter, et al. π0: A vision-language-action flow model for general robot control. arXiv
preprint arXiv:2410.24164, 2024.

[4] D. Shah, B. Osiński, S. Levine, et al. Lm-nav: Robotic navigation with large pre-trained
models of language, vision, and action. Conference on Robot Learning (CoRL), 2023.

[5] D. Shah, A. Sridhar, N. Dashora, K. Stachowicz, K. Black, N. Hirose, and S. Levine. Vint: A
foundation model for visual navigation. Conference on Robot Learning (CoRL), 2022.

[6] A. Anwar, J. Welsh, J. Biswas, S. Pouya, and Y. Chang. Remembr: Building and reasoning
over long-horizon spatio-temporal memory for robot navigation. International Conference on
Robotics and Automation (ICRA), 2025.

[7] V. Bhatt, H. Nemlekar, M. C. Fontaine, B. Tjanaka, H. Zhang, Y.-C. Hsu, and S. Nikolaidis.
Surrogate assisted generation of human-robot interaction scenarios. Conference on Robot
Learning (CoRL), 2023.

[8] D. Wang, N. Ding, P. Li, and H.-T. Zheng. CLINE: Contrastive Learning with Semantic Neg-
ative Examples for Natural Language Understanding. Association for Computational Linguis-
tics (ACL), 2021.

[9] D. Hendrycks, X. Liu, E. Wallace, A. Dziedzic, R. Krishnan, and D. Song. Pretrained trans-
formers improve out-of-distribution robustness. Association for Computational Linguistics
(ACL), 2020.

[10] B. Recht, R. Roelofs, L. Schmidt, and V. Shankar. Do imagenet classifiers generalize to ima-
genet? In International Conference on Machine Learning (ICML), 2019.

[11] D. Hendrycks and T. Dietterich. Benchmarking neural network robustness to common cor-
ruptions and perturbations. International Conference on Learning Representations (ICLR),
2019.

[12] P. Liang, R. Bommasani, T. Lee, D. Tsipras, D. Soylu, M. Yasunaga, Y. Zhang, D. Narayanan,
Y. Wu, A. Kumar, et al. Holistic evaluation of language models. Transactions on Machine
Learning Research (TLMR), 2022.

[13] Y. Chang, X. Wang, J. Wang, Y. Wu, L. Yang, K. Zhu, H. Chen, X. Yi, C. Wang, Y. Wang, et al.
A survey on evaluation of large language models. ACM Transactions on Intelligent Systems
and Technology (TIST), 2024.

[14] M. Gardner, Y. Artzi, V. Basmov, J. Berant, B. Bogin, S. Chen, P. Dasigi, D. Dua, Y. Elazar,
A. Gottumukkala, N. Gupta, H. Hajishirzi, G. Ilharco, D. Khashabi, K. Lin, J. Liu, N. F.
Liu, P. Mulcaire, Q. Ning, S. Singh, N. A. Smith, S. Subramanian, R. Tsarfaty, E. Wallace,
A. Zhang, and B. Zhou. Evaluating models’ local decision boundaries via contrast sets. Find-
ings of Empirical Methods in Natural Language Processing (EMNLP Findings), 2020.

11

[15] C. Sawade, N. Landwehr, S. Bickel, and T. Scheffer. Active risk estimation. In Proceedings of
the 27th International Conference on Machine Learning (ICML-10), pages 951–958, 2010.

[16] T. Rainforth, A. Foster, D. R. Ivanova, and F. Bickford Smith. Modern bayesian experimental
design. Statistical Science, 39(1):100–114, 2024.

[17] E. Yilmaz, P. Hayes, R. Habib, J. Burgess, and D. Barber. Sample efficient model evaluation.
arXiv preprint arXiv:2109.12043, 2021.

[18] K. Eggensperger, F. Hutter, H. Hoos, and K. Leyton-Brown. Efficient benchmarking of hy-
perparameter optimizers via surrogates. In Proceedings of the AAAI conference on artificial
intelligence, 2015.

[19] E. Brochu, V. M. Cora, and N. De Freitas. A tutorial on bayesian optimization of expensive cost
functions, with application to active user modeling and hierarchical reinforcement learning.
arXiv preprint arXiv:1012.2599, 2010.

[20] B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and N. De Freitas. Taking the human out of
the loop: A review of bayesian optimization. Proceedings of the IEEE, 104(1):148–175, 2015.

[21] A. Cozad, N. V. Sahinidis, and D. C. Miller. Learning surrogate models for simulation-based
optimization. AIChE Journal, 60(6):2211–2227, 2014.

[22] Z. Qian, C. C. Seepersad, V. R. Joseph, J. K. Allen, and C. Jeff Wu. Building surrogate models
based on detailed and approximate simulations. Journal of Mechanical Design, 2006.

[23] J. Kossen, S. Farquhar, Y. Gal, and T. Rainforth. Active testing: Sample-efficient model eval-
uation. International Conference on Machine Learning (ICML), 2021.

[24] E. H. Lee, V. Perrone, C. Archambeau, and M. Seeger. Cost-aware bayesian optimization.
arXiv preprint arXiv:2003.10870, 2020.

[25] B. Paria, W. Neiswanger, R. Ghods, J. Schneider, and B. Póczos. Cost-aware bayesian op-
timization via information directed sampling. In Adaptive Experimental Design and Active
Learning in the Real World Workshop at ICML, 2020.

[26] C. Tosh, M. Tec, and W. Tansey. Targeted active learning for probabilistic models. arXiv
preprint arXiv:2210.12122, 2022.

[27] M. Deitke, W. Han, A. Herrasti, A. Kembhavi, E. Kolve, R. Mottaghi, J. Salvador, D. Schwenk,
E. VanderBilt, M. Wallingford, L. Weihs, M. Yatskar, and A. Farhadi. RoboTHOR: An
Open Simulation-to-Real Embodied AI Platform. Conference on Computer Vision and Pat-
tern Recognition (CVPR), 2020.

[28] P. Anderson, A. Shrivastava, J. Truong, A. Majumdar, D. Parikh, D. Batra, and S. Lee. Sim-
to-real transfer for vision-and-language navigation. Conference on Robot Learning (CoRL),
2021.

[29] A. Kadian, J. Truong, A. Gokaslan, A. Clegg, E. Wijmans, S. Lee, M. Savva, S. Chernova, and
D. Batra. Sim2Real Predictivity: Does Evaluation in Simulation Predict Real-World Perfor-
mance? IEEE Robotics and Automation Letters (RA-L), 2020.

[30] T. Gervet, S. Chintala, D. Batra, J. Malik, and D. S. Chaplot. Navigating to objects in the real
world. Science Robotics, 2023.

[31] W. Pumacay, I. Singh, J. Duan, R. Krishna, J. Thomason, and D. Fox. THE COLOSSEUM:
A Benchmark for Evaluating Generalization for Robotic Manipulation. Robotics: Science and
Systems (RSS), 2024.

12

[32] X. Li, K. Hsu, J. Gu, K. Pertsch, O. Mees, H. R. Walke, C. Fu, I. Lunawat, I. Sieh, S. Kir-
mani, S. Levine, J. Wu, C. Finn, H. Su, Q. Vuong, and T. Xiao. Evaluating real-world robot
manipulation policies in simulation. Conference on Robot Learning (CoRL), 2024.

[33] H. Kress-Gazit, K. Hashimoto, N. Kuppuswamy, P. Shah, P. Horgan, G. Richardson, S. Feng,
and B. Burchfiel. Robot learning as an empirical science: Best practices for policy evaluation.
arXiv, 2024.

[34] Z. Hu, F. Lucchetti, C. Schlesinger, Y. Saxena, A. Freeman, S. Modak, A. Guha, and J. Biswas.
Deploying and Evaluating LLMs to Program Service Mobile Robots. IEEE Robotics and
Automation Letters (RA-L), 2024.

[35] P. Verma, S. R. Marpally, and S. Srivastava. Discovering user-interpretable capabilities of
black-box planning agents. International Conference on Principles of Knowledge Representa-
tion and Reasoning (KR), 2021.

[36] P. Verma, R. Karia, and S. Srivastava. Autonomous capability assessment of sequential
decision-making systems in stochastic settings. Conference on Neural Information Processing
Systems (NeurIPS), 2023.

[37] R. K. Nayyar, P. Verma, and S. Srivastava. Differential assessment of black-box ai agents.
AAAI Conference on Artificial Intelligence, 2022.

[38] J. A. Vincent, H. Nishimura, M. Itkina, P. Shah, M. Schwager, and T. Kollar. How General-
izable Is My Behavior Cloning Policy? A Statistical Approach to Trustworthy Performance
Evaluation. IEEE Robotics and Automation Letters (RA-L), 2024.

[39] A. Parekh, N. Vitsakis, A. Suglia, and I. Konstas. Investigating the Role of Instruction Variety
and Task Difficulty in Robotic Manipulation Tasks. Conference on Empirical Methods in
Natural Language Processing (EMNLP), 2024.

[40] A. Xie, L. Lee, T. Xiao, and C. Finn. Decomposing the generalization gap in imitation learning
for visual robotic manipulation. International Conference on Robotics and Automation (ICRA),
2024.

[41] A. Anwar, R. Gupta, and J. Thomason. Contrast sets for evaluating language-guided robot
policies. Conference on Robot Learning (CoRL), 2024.

[42] J. Gao, S. Belkhale, S. Dasari, A. Balakrishna, D. Shah, and D. Sadigh. A taxonomy for
evaluating generalist robot policies. 2025.

[43] J. Gao, A. Xie, T. Xiao, C. Finn, and D. Sadigh. Efficient Data Collection for Robotic Ma-
nipulation via Compositional Generalization. Proceedings of Robotics: Science and Systems
(RSS), 2024.

[44] A. Mnih and R. R. Salakhutdinov. Probabilistic matrix factorization. Conference on Neural
Information Processing Systems (NeurIPS), 2007.

[45] Y. Gu, L. Dong, F. Wei, and M. Huang. Minillm: Knowledge distillation of large language
models. In International Conference on Learning Representations (ICLR), 2024.

[46] C. M. Bishop. Mixture density networks. Technical Report, 1994.

[47] D. Ha and J. Schmidhuber. World models. Conference on Neural Information Processing
System (NeurIPS), 2018.

[48] N. Houlsby, F. Huszár, Z. Ghahramani, and M. Lengyel. Bayesian active learning for classifi-
cation and preference learning. arXiv preprint arXiv:1112.5745, 2011.

13

[49] Y. Gal and Z. Ghahramani. Dropout as a bayesian approximation: Representing model uncer-
tainty in deep learning. International Conference on Machine Learning (ICML), 2016.

[50] A. Loquercio, M. Segu, and D. Scaramuzza. A general framework for uncertainty estimation
in deep learning. IEEE Robotics and Automation Letters (RA-L), 2020.

[51] E. Ledda, G. Fumera, and F. Roli. Dropout injection at test time for post hoc uncertainty
quantification in neural networks. Information Sciences, 2023.

[52] Y. Li, Y. Deng, J. Zhang, J. Jang, M. Memmel, C. R. Garrett, F. Ramos, D. Fox, A. Li, A. Gupta,
and A. Goyal. Hamster: Hierarchical action models for open-world robot manipulation. Inter-
national Conference on Learning Representations (ICLR), 2025.

[53] T. Yu, D. Quillen, Z. He, R. Julian, K. Hausman, C. Finn, and S. Levine. Meta-world: A
benchmark and evaluation for multi-task and meta reinforcement learning. Conference on
Robot Learning (CoRL), 2020.

[54] D. Snyder, A. J. Hancock, A. Badithela, E. Dixon, P. Miller, R. A. Ambrus, A. Majumdar,
M. Itkina, and H. Nishimura. Is your imitation learning policy better than mine? policy com-
parison with near-optimal stopping. Robotics: Science and Systems (RSS), 2025.

[55] J. Zhang, Y. Luo, A. Anwar, S. A. Sontakke, J. J. Lim, J. Thomason, E. Biyik, and J. Zhang.
Rewind: Language-guided rewards teach robot policies without new demonstrations. Confer-
ence on Robot Learning (CoRL), 2025.

14

A Surrogate Model

A.1 Computing optimal representations

To compute the optimal embeddings, we take the MLP surrogate model, add a learnable task and
policy embedding, and then supervise against its respective loss against all the evaluation data a pri-
ori. This approach quickly learns to estimate the performance distribution parameters, conditioned
on the learnable embeddings. Then, once training has converged, we stop training, reset the surro-
gate model’s weights, and freeze the policy and task embedding layers. This surrogate model is then
used for actively learning the policy distribution parameters.

A.2 Surrogate model details

We actively train the surrogate model, which is a 2-layer MLP that takes in the policy and task
embeddings and outputs the number of parameters. We train with a learning rate of 1e-4 and a weight
decay of 1e-4. We train with a dropout of 10% and also use dropout during parameter sampling. For
computing metrics such as L1 error, log-likelihoods, and others, we do not use dropout.

B Active Experiment Selection Procedure

Below, we provide the active experiment selection procedure in detail.

Algorithm 1 Active Experiment Selection Procedure
Require: A set of policies πi ∈ P to evaluate over tasks Tj ∈ T , an empty dataset of outcomes D,

an untrained surrogate model f(πi, Tj), exploration rate ϵ = 0.1
1: Randomly sample a single task Tj and evaluate every policy 3 times. Add outcomes xk

ij to D
2: Set Tcurrent = Tj

3: Increment Ctotal = Ctotal + ceval · |P| · 3
4: Train the surrogate model f(·) on D for k epochs
5: for each query step do
6: Use MC dropout to sample 10 predicted distributions from the surrogate model for every

policy-task pair
7: Use sampled distributions to compute scores sij = a(πi, Tj , Tcurrent) according to Eq. 2
8: With probability ϵ, select a random (πi, Tj)
9: Otherwise, select (πi, Tj) = argmax(πi,Tj) sij

10: Conduct 3 evaluations and observe x1
ij , x

2
ij , x

3
ij ∼ Pij

11: Add these outcomes to D
12: Train f(·) on D for k epochs
13: Increment Ctotal = Ctotal + ceval · 3
14: if Tj ̸= Tcurrent then ▷ Task switching cost applies
15: Increment Ctotal = Ctotal + cswitch(Tcurrent, Tj)
16: Update Tcurrent = Tj

17: end if
18: end for

Experiment sampling. We run each policy-task pair three times, since preliminary experiments
showed that estimating binary performance distributions required more trials to estimate the popu-
lation parameters. Using 1 trial per policy-task selection led to more costly task switches with poor
parameter estimations. Additionally, The OpenVLA evaluation dataset used 10 trials for each task,
so we used 3 trials per policy-task pair as we could execute that experiment 3 times if needed.

Expected Information Gain Computation Though our approach to mitigating the cold-start prob-
lem with test-time dropout inspired by past work [50, 51] appears to have improved performance
during sampling, this approach has not been rigorously tested by the Bayesian optimization commu-
nity in particular. We had also tried other approaches, such as ensembling and variational prediction,
but these approaches also overfit to the small size of the dataset early in the evaluation procedure.

15

C Offline Dataset Details

C.1 HAMSTER

We use evaluations from HAMSTER [52], which compares a hierarchical VLA model against 4
other policies across 81 diverse tasks with varying objects, complexity, and linguistic variation. Each
policy-task pair is evaluated once using a continuous progress metric. We model each outcome as
the mean of a Gaussian distribution with fixed variance. For HAMSTER, we have a cost of 0.5 per
execution of an experiment, then an additional switching cost of +1 if a task is of the same task type
but requires adding/removing objects. If a new task type is selected, we then add a cost of +2 for
requiring new, often large, objects to be brought into the scene.

C.2 OpenVLA

From OpenVLA [2], we use evaluations of 4 policies across 29 tasks. Partial successes (e.g., 0.5)
are rounded down to binary outcomes. We have a cost of 0.5 per execution of an experiment. If a
task is changed, such as moving an eggplant to lifting a battery, a cost of 1 is applied. OpenVLA
also has multiple embodiments available, Bridge and the Google Robot. If there is an embodiment
change, we set the switching cost to 3, as this change is relatively large.

C.3 MetaWorld Policies/Checkpoints

MetaWorld [53] is an open-source simulated benchmark containing a set of 50 different manip-
ulation environments for multi-task learning. With MetaWorld, we use both binary success and
continuous reward normalized between 0 and 1.

For MetaWorld evaluation, we have a cost of 0.5 per execution of an experiment. In MetaWorld
tasks, some tasks keep the same objects in the same scene such as opening or closing a window,
while others would require new objects like a faucet or a door. Because these changes are easier to
enumerate, we apply only a task switching cost of +1 if the primary object changes, and a switching
cost of 0 in the case of the same object being manipulated.

We train 10 multi-task policies with varying architectures and noise to ensure diverse behaviors, and
then evaluate 100 times in each environment to serve as an approximation of the true performance
population distribution. For training these policies, we rollout an expert policy for 100 episodes for
the 50 tasks to build our training set. We then train a state-based, language-conditioned behavior
cloning policy. The policy takes in a 768-dimensional language embedding, a 39-dimensional state
vector, and outputs a 4-dimensional action. For MetaWorld Checkpoints, we train a single MLP-
based policy for 100 epochs, recording the policy performance at epoch 1, 10, 20, ..., 100 for a total
of 11 checkpoints. For MetaWorld Policies, we instead train 10 policies on random MLP architecture
sizes and also apply different amounts of noise to the proprioceptive inputs to the policy to mimic a
noisy understanding of state information. We do this procedure to produce policies that vary more
in performance while still having a systematic “flaw” in understanding the scene, which we hope
would be captured in our policy embeddings. Then, for each policy and environment, we sample 50
evaluations each and store them offline for sampling.

D Task and Policy Representation Experiment Design

We evaluate how different task and policy representations affect the quality of the surrogate model’s
predictions. Because each experiment involves both a task and a policy, we define embedding strate-
gies for each separately. Below, we detail the representations evaluated in our experiments.

Task Representations. We define 4 different task representations.

16

• Optimal: Learned task embeddings trained to directly predict performance using all avail-
able data. These serve as an upper bound but are not feasible in real settings due to their
reliance on full data access.

• Verb: Our primary method, which constructs a representation from a weighted combina-
tion of the task’s instruction embedding and its extracted verbs. This captures both linguis-
tic and action-related structure (see Section 4.1).

• Language: A baseline that uses only the sentence embedding of the full task description,
without decomposition.

• Random: Randomly initialized vectors for each task. These break any meaningful struc-
ture and serve as a naive control.

Policy Representations. Since we cannot compute policy representations apriori, we use the two
following approaches, and leave the question on discovering new policy representations to future
work.

• Optimal: Learned policy embeddings trained using full data to predict outcomes. As with
task embeddings, these are used only to establish a performance upper bound.

• Random: Random vectors assigned to each policy, used as a baseline in the absence of
structured policy descriptors. We leave the design of more informed policy representations
(e.g., based on architecture, behavior, or training data) to future work.

All embedding configurations are evaluated over 750 experiment steps, across three random seeds.
In each step, a task is sampled uniformly at random, and all policies are evaluated three times on
that task. To assess surrogate model quality, we compute the average log likelihood of all outcomes
in the offline dataset under the predicted distribution derived from the model’s estimated population
parameters.

E Sampling Strategy Details

We explore two main families of sampling strategies for selecting experiments: (1) selecting a spe-
cific policy-task pair, and (2) selecting a task and evaluating all policies on that task. Below, we
detail each method:

• Random Sampling: Select a policy-task pair (πi, Tj) uniformly at random. Acquisition
function: a(πi, Tj) = 1/(|P| × |T |).

• EIG: Select the policy-task pair with the highest expected information gain (EIG), as de-
scribed in Section 4.1. Acquisition function: a(πi, Tj) = I(πi, Tj).

• Cost-aware EIG: Incorporate task-switching costs by selecting the pair that maximizes
cost-adjusted EIG. See Equation 2 for the full formulation.

• Random Task: Select a task Tj uniformly at random and evaluate all policies on it, d = 3
times each. Acquisition function: a(Tj) = 1/|T |.

• Task EIG: Select a task by summing the EIG across all policies and choosing the task with
the highest total information gain. Acquisition function: a(Tj) =

∑
i I(πi, Tj).

• Cost-aware Task EIG: Like Task EIG, but incorporates cost-awareness by summing the
cost-adjusted EIG across all policies relative to the current task. Acquisition function:
a(Tj) =

∑
i acost-aware(πi, Tj , Tcurrent).

These strategies are evaluated over 1500 experiment steps across three random seeds. We use Ran-
dom policy embeddings and Verb task embeddings throughout. Our main evaluation metric is the
L1 error between the true mean outcome of a policy-task pair and the surrogate’s predicted mean.

17

Cost-aware Task EIG Task EIG
RandomCost-aware EIG EIG
Random Task

Figure 8: We average metrics across all datasets and split by sampling type. We also normalize
the cost on the x-axis by the highest cumulative cost accrued in our evaluations. We find that for
non-task-based sampling approaches, our cost-aware sampling is consistently more efficient, while
random sampling is at a higher cost.

E.1 Relationship to probabilistic matrix factorization (PMF).

We model outcomes xij ∼ Qij where Qij is parameterized by distribution params θij . This parallels
to PMF, where ratings rij ∼ N (µT

i vj , σ
2), but instead we use a neural network to estimate θij

rather than a linear inner product. We assume conditional independence of outcomes given these
parameters.

E.2 Additional Results

We re-plot an averaged set of results across all offline datasets and for continuous and binary dis-
tributions in Figure 8. The disjoint jumps at the ends are typically due to the changing number of
evaluations at certain costs (i.e. some runs finish at lower costs while others finish at higher costs,
leading to higher values that are averaged). Cost-aware EIG consistently outperforms random and
standard EIG, converging with approximately 150 fewer evaluations (raw cost of ∼ 900 vs ∼ 1200).
For task-based sampling, the gap is not as large in aggregate, and Figure 5 shows improvements
vary based on the dataset. Beyond raw estimation performance, our surrogate model can be used as
a tool to track performance estimates during the evaluation process (as shown in Figure 6).

18

	Introduction
	Background and Related Work
	Problem Formulation and Notation
	Method
	Surrogate Model
	Cost-aware Active Experiment Selection

	Experiments
	Task and Policy Representation
	Cost-Aware Experiment Selection

	Limitations
	Surrogate Model
	Computing optimal representations
	Surrogate model details

	Active Experiment Selection Procedure
	Offline Dataset Details
	HAMSTER
	OpenVLA
	MetaWorld Policies/Checkpoints

	Task and Policy Representation Experiment Design
	Sampling Strategy Details
	Relationship to probabilistic matrix factorization (PMF).
	Additional Results

