
Under review as a conference paper at ICLR 2023

DISCRETIZATION INVARIANT LEARNING
ON NEURAL FIELDS

Anonymous authors
Paper under double-blind review

ABSTRACT

While neural fields have emerged as powerful representations of continuous data,
there is a need for neural networks that can perform inference on such data with-
out being sensitive to how the field is sampled, a property called discretization
invariance. We develop DI-Net, a framework for learning discretization invariant
operators on neural fields of any type. Whereas current theoretical analyses of
discretization invariant networks are restricted to the limit of infinite samples, our
analysis does not require infinite samples and establishes upper bounds on the vari-
ation in DI-Net outputs given different finite discretizations. Our framework leads
to a family of neural networks driven by numerical integration via quasi-Monte
Carlo sampling with discretizations of low discrepancy. DI-Nets manifest desirable
theoretical properties such as universal approximation of a large class of maps
between L2 functions, and gradients that are also discretization invariant. DI-Nets
can also be seen as generalizations of many existing network families as they bridge
discrete and continuous network classes, such as convolutional neural networks
(CNNs) and neural operators respectively. Experimentally, DI-Nets derived from
CNNs are demonstrated to classify and segment visual data represented by neural
fields under various discretizations, and sometimes even generalize to new types of
discretizations at test time. Code: supplementary materials (URL to be released).

1 INTRODUCTION

Neural fields (NFs), which encode signals as the parameters of a neural network, have many useful
properties. NFs can efficiently store and stream continuous data (Sitzmann et al., 2020b; Dupont
et al., 2022; Gao et al., 2021; Takikawa et al., 2022; Cho et al., 2022), represent and render detailed
3D scenes at lightning speeds (Müller et al., 2022), and integrate data from a wide range of modalities
(Gao et al., 2022). NFs are thus an appealing data representation for many applications.

However, current approaches for training networks on a dataset of NFs have major limitations. The
sampling-based approach converts such data to pixels or voxels as input to discrete networks (Vora
et al., 2021), but it incurs interpolation errors and does not leverage the ability to evaluate the NF
anywhere on its domain. The hypernetwork approach trains a model to predict NF parameters (or a
lower dimensional “modulation” of such parameters) which can be tailored for downstream tasks
(Tancik et al., 2020a; Dupont et al., 2022; Mehta et al., 2021), but hypernetworks based on the
parameter space of one type of NF are incompatible with other types. Moreover, hypernetworks are
unsuitable for important classes of NFs whose parameters extend beyond a neural network, such as
those with voxel (Sun et al., 2021; Alex Yu and Sara Fridovich-Keil et al., 2021), octree (Yu et al.,
2021) or hash table (Müller et al., 2022; Takikawa et al., 2022) components. We seek to strengthen the
sampling-based approach with the notion of discretization invariance: the output of an operator that
processes a continuous signal by sampling it at a set of discrete points should be largely independent
of how the sample points are chosen, particularly as the number of points becomes large.

In this paper we propose the DI-Net, a discretization invariant neural network for learning and
inference on neural fields (Fig. 1). By parameterizing layers as integrals over parametric functions of
the input field, DI-Nets have access to powerful numerical integration techniques that yield strong
convergence properties, including a universal approximation theorem for a wide class of maps
between function spaces. DI-Nets can be applied to any type of NF, or in fact any data that can be
represented as integrable functions on a bounded measurable set. Thus DI-Nets are a broad class of
neural networks that encompass other continuous networks such as neural operators, and also extend

1

Under review as a conference paper at ICLR 2023

Figure 1: The DI-Net processes a neural field by evaluating it on a point set (discretization) which is
used to perform numerical integration throughout the network. DI-Nets are interoperable between all
types of NFs and can be trained on a broad range of tasks.

discrete networks that act on pixels, point clouds, and meshes. They can be applied to classification,
segmentation, and many other tasks.

Our contributions are as follows:

• We show that discretization invariance gives rise to a family of neural networks based on numerical
integration, which we call DI-Nets.

• Backpropagation through DI-Nets is discretization invariant, and they universally approximate a
large class of maps between function spaces.

• DI-Nets generalize a wide class of discrete models to the continuous domain, and we derive
continuous analogues of convolutional neural networks for inference on neural fields that encode
visual data.

• We demonstrate convolutional DI-Nets on NF classification and dense prediction tasks, and show
it can perform well under a range of discretization schemes.

• We probe the limits of discretization invariance in practice, finding that DI-Net has some ability to
generalize to new discretizations at test time, modulated by the task and the type of discretizations
it was trained on.

2 RELATED WORK

Neural fields Multilayer perceptrons (MLPs) can be trained to capture a wide range of continuous
data with high fidelity. The most prominent domains include shapes (Park et al., 2019; Mescheder
et al., 2018), objects (Niemeyer et al., 2020; Müller et al., 2022), and 3D scenes (Mildenhall et al.,
2020; Sitzmann et al., 2021), but previous works also apply NFs to gigapixel images (Martel et al.,
2021), volumetric medical images (Corona-Figueroa et al., 2022), acoustic data (Sitzmann et al.,
2020b; Gao et al., 2021), tactile data (Gao et al., 2022), depth and segmentation maps (Kundu et al.,
2022), and 3D motion (Niemeyer et al., 2019). Hypernetworks and modulation networks were
developed for learning directly with NFs, and have been demonstrated on tasks including generative
modeling, data imputation, novel view synthesis and classification (Sitzmann et al., 2020b; 2021;
Tancik et al., 2020a; Sitzmann et al., 2019; 2020a; Mehta et al., 2021; Chan et al., 2021; Dupont et al.,
2021; 2022). Hypernetworks use meta-learning to learn to produce the MLP weights of desired output
NFs, while modulation networks predict modulations that can be used to transform the parameters
of an existing NF or generate a new NF. Another approach for learning NF→NF maps evaluates an
input NF at grid points, produces features at the same points via a U-Net, and passes interpolated
features through an MLP to produce output values at arbitrary query points (Vora et al., 2021).

Discretization invariant networks Networks that are agnostic to the discretization of the data
domain has been explored in several contexts. Hilbert space PCA, DeepONets and neural operators
learn discretization invariant maps between function spaces (Bhattacharya et al., 2020; Lu et al.,
2021; Li et al., 2020; Kovachki et al., 2021b), and are tailored to solve partial differential equations
efficiently. On surface meshes, DiffusionNet (Sharp et al., 2022) uses the diffusion operator to
achieve convergent behavior under mesh refinement. These previous works define discretization
invariance as convergent behavior in the limit of infinite sample points, but do not characterize how
different discretizations yield different behaviors in the finite case. In this work, we choose a stronger

2

Under review as a conference paper at ICLR 2023

definition that bounds the difference between any two finite discretizations, which we show implies
the convergence condition. We formulate discretization invariant networks on general metric spaces,
which generalizes DeepONets and neural operators, then we focus on the continuous convolution as
a core layer for vision applications.

Continuous convolutions At the core of many discretization invariant approaches is the continuous
convolution, which also provides permutation invariance, translation invariance and locality. Its
applications include modeling point clouds (Wang et al., 2021; Boulch, 2019), graphs (Fey et al.,
2017), fluids (Ummenhofer et al., 2019), and sequential data (Romero et al., 2021b;a), where there is
typically no choice of how the data should be discretized. This work focuses on the effect of different
discretizations, proposes quasi-Monte Carlo as a canonical method of generating discretizations, and
can produce neural fields as output.

Approximation capabilities of neural networks A fundamental result in approximation theory
is that the set of single-layer neural networks is dense in a large space of functionals including
Lp(Rn) (Hornik, 1991). Subsequent works designed constructive examples using various non-linear
activations (Chen et al., 1995; Chen & Chen, 1993). While this result is readily extended to multi-
dimensional outputs, existing approximation results for the case of infinite dimensional outputs
(e.g., Lp(Rn)→ Lp(Rn)) do not explicitly characterize the contribution of data discretization to the
approximation error (Bhattacharya et al., 2020; Lanthaler et al., 2022; Kovachki et al., 2021b;a).

3 PRINCIPLES OF DI-NETS

In this section we formalize discretization invariance, define DI-Nets, and derive properties that
enable DI-Nets to serve as a general deep learning framework on continuous data.

3.1 NEURAL FIELDS AS FUNCTIONS

We treat NFs as integrable maps from a domain Ω to Rc. In particular, let Ω be a bounded measurable
subset of a d-dimensional compact metric space. The most common case is Ω ⊂ Rd, and in
the Appendix we consider the case of a d-dimensional manifold. Denote the space of NFs as
Fc = {fθ : Ω→ Rc :

∫
Ω
∥fθ∥2dµ <∞ and V (fθ) <∞}, where the variation V (fθ) measures how

much an NF fluctuates over its domain.1 The variation of a 1D function f ∈ C1([a, b]) is given by:

V (f) =

∫ b

a

|f ′(x)|dx, (1)

and more general definitions are given in Appendix A.1. We call θ the NF’s parameters, d its
dimensionality, and c its number of channels. For example, an occupancy network (Mescheder et al.,
2018) is 3-dimensional and has 1 channel. NeRF (Mildenhall et al., 2020) is 5-dimensional (3 world
coordinates and 2 view angles) and has 4 channels.

The discretization of an NF is a point set X ⊂ Ω on which the field is evaluated. We say that a map
H : Fc → Rn is discretizable if it induces a map ĤX : Fc → Rn that depends only on the input’s
values at X .2

3.2 DISCRETIZATION INVARIANCE VIA NUMERICAL INTEGRATION

We consider two notions of discretization invariance: (1) upper bounding the deviation of the map
ĤX from ĤY for any two discretizations X,Y , and (2) establishing convergence of ĤXN toH under
particular sequences {XN}N∈N of discretizations. We use the first notion to define discretization
invariant maps, then characterize sequences of discretizations under which such maps converge.

Definition 1. A discretizable mapH : Fc → Rn is discretization invariant if for every discretization
X and neural field fθ,

∥∥∥H[fθ]− ĤX [fθ]
∥∥∥
1

is bounded by the product of V (fθ) and the discrepancy

1The parameterization of multi-layer perceptrons guarantees that NFs are square integrable and of bounded
variation over a compact domain.

2We assume that neural field evaluation yields pointwise values, i.e. the point spread function of the underlying
signal is a delta function. It is possible to accommodate non-trivial point spread functions, but this is beyond the
scope of this work.

3

Under review as a conference paper at ICLR 2023

of X . A map H̄ : Fc → Fn is discretization invariant if H̄[·](x) is discretization invariant for all
x ∈ Ω.

This definition establishes an upper bound on the deviation between any two discretizations by a
simple application of the triangle inequality. The discrepancy of a discretization is lower for dense,
evenly distributed points. For a 1D point set it is given by:

D({xi}Ni=1) = sup
a≤c≤d≤b

∣∣∣∣ |{x1, . . . , xN} ∩ [c, d]|
N

− d− c
b− a

∣∣∣∣ . (2)

See Appendix A.1 for general definitions of discrepancy. The product of variation and discrepancy is
precisely the upper bound in the celebrated Koksma–Hlawka inequality, which bounds the difference
between the integral of a function h ∈ L2(Ω) and its sample mean on any point set X ⊂ Ω:∣∣∣∣∣ 1

|X|
∑
x′∈X

h(x′)−
∫
Ω

h(x) dx

∣∣∣∣∣ ≤ V (h)D(X). (3)

This naturally leads to a family of discretization invariant (DI) layers which specify a parametric
map on neural fields and output its sample mean. Specifically, the action of a DI layerHϕ on a neural
field fθ under discretization X is:

ĤX
ϕ : fθ 7→

1

|X|
∑
x∈X

Hϕ[fθ](x). (4)

We propose two forms of Hϕ[f]:

• Vector-valued DI layers (ĤX
ϕ : Fc → Rn) with Hϕ[fθ](x) = hϕ(x, fθ(x)) ∈ Rn. Such layers

include global pooling and learned inner products, and could be used as one of the final layers in
a classification network.

• NF-valued DI layers (ĤX
ϕ : Fc → Fn) with Hϕ[fθ](x) : x

′ 7→ hϕ(x, x
′, fθ(x), fθ(x

′)) ∈ Rn

for all x′ ∈ Ω.3 Such layers include continuous convolutions and deconvolutions, self-attention,
and pooling.

In each case, hϕ must be bounded and continuous in all its variables (so that outputs remain of
bounded variation), differentiable w.r.t. ϕ (to enable backpropagation), and Gateaux differentiable
w.r.t. fθ (which will make backpropagation discretization invariant, as we discuss in Section 3.4). We
consider more general discretization invariant maps in Appendix A.2.

Importantly, the functional form of Hϕ does not depend on the NF parameters θ except through fθ(x).
Thus DI layers are invariant to the parameterization of the NFs that it takes as input. This property
allows these layers to be applied to a mixture of NF types, which is not possible with hypernetwork
or modulation-based learning approaches.

Lastly we note that many common loss functions and regularizers generalize naturally to the continu-
ous domain as bounded continuous maps Fc → R (e.g., L2 regularization) or Fc × Fc → R (e.g.,
mean squared error), so the properties of DI layers extend to losses on NFs.

3.3 DISCRETIZATION INVARIANT NETWORKS

A DI-Net is a directed acyclic graph of the following types of layers:

• DI layers: numerical integrators mapping an NF to a new NF or vector, as defined above

• Pointwise layers: a bounded continuous scalar function applied to each point in Ω; includes
nonlinear activations, batch normalization, as well as addition or concatenation of NFs

• Vector decoder: a map Rn → Fc specified by n elements of a basis on Fc or interpolation of n/c
points (Appendix C)

3Note that the action of the layer produces a neural field with parameters (θ, ϕ). In Appendix F, we discuss
how to reparameterize NFs formed by a sequence of DI layers to control its parameter size.

4

Under review as a conference paper at ICLR 2023

Since pointwise layers preserve an NF’s property of bounded variation, DI-Net is discretization
invariant. A prototypical DI-Net for classification might consist of NF-valued DI layers separated by
normalization and activation layers, and end with a vector-valued DI layer followed by softmax.

Grounding our network architecture in DI layers opens up a rich toolkit of numerical integration
methods. We can generate low discrepancy discretizations using quasi-Monte Carlo (QMC), a
numerical integration method with favorable convergence rates compared to standard Monte Carlo
(Caflisch, 1998). The QMC discretization only requires a single pass through the network, can be
deterministic or pseudorandom, and can accelerate computation when the same discretization is used
for multiple network layers or all fields in a minibatch. To sample from non-uniform measures, the
standard Monte Carlo method with rejection sampling can be used instead. To integrate over a fixed
discretization of high discrepancy, we can use a quadrature method that replaces 1/|X| in the sample
mean with quadrature weights. Adaptive quadrature techniques can be used to attain specific error
bounds at inference time, which can be valuable in applications requiring robustness or verification.

3.4 CONVERGENCE UNDER EQUIDISTRIBUTED DISCRETIZATIONS

We call a sequence of discretizations {XN}N∈N whose discrepancy tends to 0 as N → ∞ an
equidistributed discretization sequence.4 By Equation (3), DI layers converge under such sequences,
i.e., limN→∞ ĤXN

ϕ ≡ Hϕ, and hence forward passes through DI-Nets are also convergent. But
demonstrating convergence of DI-Net’s discretized gradients is less straightforward.

Consider a scalar-valued DI layer on a single-channel NF, Hϕ : F1 → R. The derivatives of its
output w.r.t. each of its weights ϕk can be shown to converge as:

lim
N→∞

∂

∂ϕk
ĤXN

ϕ ≡ ∂

∂ϕk
Hϕ, (5)

under any equidistributed discretization sequence {XN}N∈N. Describing the derivative of the layer’s
output w.r.t. the input NF is more nuanced, since pointwise derivatives are not sufficient to represent
backpropagation in the continuous case. We must instead use the Gateaux derivative, which describes
the linear change in a map between functions given an infinitesimal change in the input function. We
prove the following in Appendix B.1:
Proposition 1. For every fθ ∈ F1 and fixed x̃ ∈ Ω, we can design a sequence of bump functions
{ψN

x̃ }N∈N which is 1 in a small neighborhood around x̃ and vanishes at each XN\{x̃}, such that:

lim
N→∞

∂

∂fθ(x̃)
ĤXN

ϕ [fθ] = lim
N→∞

dHϕ[fθ;ψ
N
x̃], (6)

where dHϕ[fθ;ψ
N
x̃] is the Gateaux derivative when fθ is perturbed in the direction of ψN

x̃ .

Using the chain rule for Gateaux derivatives, we can then show that backpropagation through the
entire DI-Net is convergent. These properties can be summarized in the following theorem:
Theorem 1. A DI-Net permits backpropagation of its outputs with respect to its input as well as all
its learnable parameters. The gradients converge under any equidistributed discretization sequence.

3.5 UNIVERSAL APPROXIMATION THEOREM

Functions of bounded variation are piecewise smooth, hence they can be represented as the integral
of some function. Since numerical integration can yield arbitrarily small invariance error, DI-Nets
are universal approximators in the following sense:
Theorem 2. For every Lipschitz continuous mapR : Fc → Fn, c, n ∈ N, there exists a DI-Net that
approximates it to arbitrary accuracy w.r.t. a finite measure ν on Fc. As a corollary, every Lipschitz
continuous map Fc → Rn or Rn → Fc can also be approximated by some DI-Net.

A high-level sketch of the F1 → F1 case is as follows. Appendix B.2 provides a full proof, including
the extension to multi-channel NFs.

4Any equidistributed sequence of points generates an equidistributed discretization sequence by truncating
to the first N terms, although the class of all equidistributed discretization sequences is much larger than this.
Quasi-Monte Carlo sampling can efficiently generate equidistributed sequences on a wide range of domains.

5

Under review as a conference paper at ICLR 2023

1. Fix a discretizationX of sufficiently low discrepancy to approximate any function in F1 to desired
accuracy. Let N = |X|.

2. Let π be the projection that maps any function f ∈ F1 to RN by selecting its N values along the
discretization. Through π, the measure ν on F1 induces a measure µ on RN .

3. We can approximate any function in L2(RN) by covering the volume under the graph of the
function with almost disjoint rectangles, and then at inference time summing the heights of the
rectangles at the given RN input.

4. Note that a multilayer perceptron (MLP) can approximate this rectangle cover to arbitrary accuracy
with sufficiently steep slopes at their boundaries (Lu et al., 2017).

5. R̂x : πf 7→ R[f](x) is in L2(RN) for each x ∈ X . We want to build a DI-Net that specifies
the desired connections on Ω using element-wise products with cutoff functions and linear
combinations of channels. The cutoff functions extract the input values along X into separate
channels, and the weights of the channels match the weights of the hypothetical MLP from step 4.

6. We repeat this construction N times to specify values at each of the N output points in X , and
map all other output points to the value of the closest specified point. Then we have fully specified
the desired behavior of f 7→ R[f] to desired accuracy w.r.t. the measure ν.

This construction points to the similarity between specifying a map between F1 → F1 and specifying
maps between two grids of N points. Thus many of the strategies for imposing structure on how
different points influence each other can inform DI-Net design. For example, if the influence should
be local and translation-invariant, we can design convolutional DI-Nets. If the influence should be
sparse, we can design attention-based DI-Nets. If the influence should be distributed globally among
small patches, we can design transformer-like DI-Nets with tokenization. If the influence should be
modulated by lower frequency patterns, we can use Fourier neural operators (Li et al., 2020).

4 DESIGN AND IMPLEMENTATION OF DI-NETS

DI-Nets encompass a very large family of neural networks: we have only specified the architecture as
a directed acyclic graph, and DI layers include a broad variety of network layers. DI-Nets include
DeepONets and neural operators (Kovachki et al., 2021b; Lu et al., 2021), which can learn general
maps between function spaces but in practice are designed to solve partial differential equations.
DI-Nets also encompass continuous adaptations of networks designed on discrete domains such
as convolutional neural networks (CNNs). In the same way that neural fields extend signals on
point clouds, meshes, grids, and graphs to a compact metric space, DI-Nets extend networks that
operate on discrete signals by converting every layer to an equivalent discretizable map. We make
this connection concrete in the case of CNNs below.

4.1 CONVOLUTIONAL DI-NETS

We describe how to extend convolutional layers and multi-scale architectures to DI-Nets here (also see
Fig. 2), and discuss other layers in Appendix C, including normalization, max pooling, tokenization
and attention. The resulting convolutional DI-Net can be initialized directly with the weights of a
pre-trained CNN as we investigate in Appendix E.1.

Convolution For a measurable S ⊂ Ω and a polynomial basis {pj}j≥0 that spans L2(S), S is the
support of a polynomial convolutional kernel Kϕ : Ω× Ω→ R defined by:

Kϕ(x,x
′) =

{∑n
j=1 ϕjpj(x− x′)j if x− x′ ∈ S

0 otherwise.
(7)

for some chosen n ∈ N. A convolution is the linear mapHϕ : F1 → F1 given by:

Hϕ[f] =

∫
Ω

Kϕ(·,x′)f(x′)dx′. (8)

An MLP convolution is defined similarly except the kernel becomes K̃ϕ(x,x
′) = MLP(x− x′;ϕ)

in the non-zero case. While MLP kernels are favored over polynomial kernels in many applications
due to their expressive power (Wang et al., 2021), polynomial bases can be used to construct filters

6

Under review as a conference paper at ICLR 2023

Figure 2: Convolutional DI-Nets generalize convolutional neural networks to arbitrary discretizations
of the domain. Low discrepancy point sets used in quasi-Monte Carlo integration are amenable to the
multi-scale structures often found in discrete networks. Convolutional DI-Nets may be initialized
directly from pre-trained CNNs.

satisfying desired properties such as group equivariance (Cohen & Welling, 2016a;b), k-Lipschitz
continuity, or boundary conditions.

The input and output discretizations of the layer can be chosen independently, allowing for padding or
striding (see Appendix C). The input discretization fully determines which points on S are evaluated.

Multi-scale architectures Many discretizations permit multi-scale structures by subsampling the
discretization, and QMC is particularly conducive to such design. Under QMC, downsampling is
efficiently implemented by truncating the list of coordinates in the low discrepancy sequence to the
desired number of terms, as the truncated sequence is itself low discrepancy. Similarly, upsampling
can be implemented by extending the low discrepancy sequence to the desired number of terms,
then performing interpolation by copying the nearest neighbor(s) or applying some (fixed or learned)
kernel. Residual or skip connections can also be implemented efficiently since downsampling and
upsampling are both specified with respect to the same discretization (Fig. 2 right).

4.2 TRAINING DI-NETS

The pipeline for training DI-Nets is similar to that for training discrete networks, except that input
and/or output discretizations should be specified. When training a DI-Net classifier, the input
discretization may be specified manually or sampled from a low discrepancy sequence to perform
QMC integration. When training DI-Nets for dense prediction, the output discretization should be
chosen to match the coordinates of the ground truth labels. Any input discretization can be chosen –
in most experiments we set it equal to the output discretization. At inference time, the network can
be evaluated with any output discretization (Fig. D.2), making the output in effect an NF. We outline
steps for training a classifier and dense prediction DI-Net in Algorithms 2 and 3.

5 EXPERIMENTS

We apply convolutional DI-Nets to toy classification (NF→scalar) and dense prediction (NF→NF)
tasks, and analyze its behavior under different discretizations. Our aim is not to compete with discrete
networks on these tasks, but rather to demonstrate that simply deriving DI-Nets from CNNs yields
a feasible class of models for discretization invariant learning on NFs, without introducing any
new techniques or types of layers. Appendix D provides further experimental details. We discuss
techniques that could be leveraged to design more competitive DI-Nets in Appendix F.

5.1 NEURAL FIELD CLASSIFICATION

We perform classification on a dataset of 8,400 NFs fit to a subset of ImageNet1k (Deng et al., 2009),
with 700 samples from each of 12 superclasses (Engstrom et al., 2019). For each class we train on
500 SIRENs (Sitzmann et al., 2020b) and evaluate on 200 Gaussian Fourier feature networks (Tancik
et al., 2020b).

We train DI-Nets with 2 and 4 MLP convolutional layers, as well as CNNs with similar architectures.
We also train an MLP that predicts class labels from SIREN parameters, and a “non-uniform

7

Under review as a conference paper at ICLR 2023

convolution” (Jiang et al., 2019) that applies a non-uniform Fourier transform to input points (sampled
with QMC) to map them to grid values, then applies a 2-layer CNN.

Figure 3: Classifier performance with
different resolutions at test time.

Each network is trained for 8K iterations with a learning
rate of 10−3. In training, the CNNs sample neural fields
along the 32 × 32 grid. DI-Nets and the non-uniform
network sample 1024 points generated from a scrambled
Sobol sequence (QMC discretization). We evaluate mod-
els with top-1 accuracy at the same resolution as well as
at several other resolutions.

The MLP and the non-uniform method significantly un-
derperform DI-Net, with 13.9% and 28.9% accuracy re-
spectively compared to 32.9% for our 2-layer network.
At 32× 32 resolution, DI-Nets somewhat underperform
their CNN counterparts, and this performance gap is larger
for deeper models. However, our discretization invariant
model better generalizes to images of different resolutions than CNNs (Fig. 3), particularly at lower
resolutions.

Table 1: Accuracy of 2-layer DI-
Net under various discretizations.

Train→Test Disc. Accuracy
QMC→QMC 32.9%
Grid→Grid 30.5%
Shrunk→Shrunk 30.3%
QMC→Grid 27.1%
Grid→QMC 27.8%
QMC→Shrunk 25.4%
Shrunk→QMC 13.4%

We next examine whether DI-Net can adapt to an entirely dif-
ferent type of discretization at test time. We use grid, QMC and
shrunk discretizations of 1024 (32×32) points. The Shrunk dis-
cretization shrinks a Sobol (QMC) sequence towards the center
of the image (each point x ∈ [−1, 1]2 is mapped to x2sgn(x)).
In image classification, the object of interest is usually centered,
hence the shrunk→shrunk setting performs on par with other
discretizations despite its higher discrepancy.

Interestingly, changing discretization type at inference time has
varying impact. Usually it only slightly degrades DI-Net’s accu-
racy (Table 1), but performance falls dramatically when shifting
from high to low discrepancy discretizations (shrunk→QMC).
Thus discretization invariance only provides a weak guarantee on the stability of a model’s behavior,
and points to the importance of training on the right discretizations to attain a network that generalizes
well to other discretizations for the given task.

5.2 NEURAL FIELD SEGMENTATION

We perform semantic segmentation of SIRENs fit to street view images from Cityscapes (Cordts
et al., 2016), grouping segmentation labels into 7 categories. We train on 2975 NFs with coarsely
annotated segmentations only, and test on 500 NFs with both coarse and fine annotations (Fig. 4). We
use a 48× 96 grid discretization since segmentation labels are only given at pixel coordinates. We
compare the performance of 3 and 5 layer DI-Nets and fully convolutional networks (FCNs), as well
as a non-uniform CNN (Jiang et al., 2019). We also train a hypernetwork that learns to map each
SIREN to the parameters of a new SIREN representing its segmentation.

Table 2: Segmentation performance on NFs fit to
Cityscapes images (trained on coarse segs).

Model Type Coarse Segs Fine Segs
mIoU PixAcc mIoU PixAcc

3-layer FCN 0.409 69.6% 0.374 63.6%
DI-Net-3 0.471 78.5% 0.417 69.4%
5-layer FCN 0.488 79.4% 0.436 72.5%
DI-Net-5 0.443 77.7% 0.394 68.4%
Hypernetwork 0.038 7.9% 0.042 8.3%
Non-uniform 0.109 26.5% 0.106 22.7%

Networks are trained for 10K iterations with
a learning rate of 10−3. We evaluate each
model with mean intersection over union
(mIoU) and pixel-wise accuracy (PixAcc).

The hypernetwork and non-uniform CNN
perform poorly compared to both FCNs and
DI-Nets (Table 2). DI-Net-3 outperforms
the equivalent FCN, and less often confuses
features such as shadows and road markings
(Fig. 4). However, the performance deteri-
orates when downsampling and upsampling
layers are added (DI-Net-5), echoing the dif-
ficulty in scaling DI-Nets observed in classification. We suggest potential methods for remedying
this in Appendix F.

8

Under review as a conference paper at ICLR 2023

Figure 4: Cityscapes NF segmentations for models trained on coarse segmentations only. NF-Net
produces NF segmentations, which can be evaluated at the subpixel level.

5.3 SIGNED DISTANCE FUNCTION PREDICTION

We train a convolutional DI-Net to map a field of RGBA values in 3D to its signed distance function
(SDF). We create a synthetic dataset of 3D scenes with randomly colored balls embedded in 3D
space, and train on RGBA-SDF pairs using a mean squared error (MSE) loss on the predicted SDF.
We train with grid (16× 16× 16), QMC, shrunk, Monte Carlo (i.i.d. points drawn uniformly from
the domain), and mixed discretizations of 4096 points. In the mixed setting, each minibatch uses one
of the other four discretizations at random.

Under any fixed discretization, the convolutional DI-Net significantly outperforms the equivalent
discrete network (MSE of 0.022 vs. 0.067 respectively). In Figure D.2, we illustrate our model’s
ability to also produce outputs that are discretized differently than the input, making DI-Net’s output
in effect a neural field. By changing the output discretization of the last convolutional DI-Net layer,
we can evaluate the output SDF anywhere on the domain without changing the input discretization.
Whereas the discrete network is forced to output predictions at the resolution it was trained on,
convolutional DI-Net can produce outputs along a high-quality grid discretization given a coarse
QMC discretization, even when it is only trained under QMC output discretizations.

Table 3: Mean squared error (×10−2) of pre-
dicted SDFs under different discretizations. Top
3 settings bolded. MC=Monte Carlo.

Train
Test Grid QMC Shrunk MC

Grid 2.18 2.54 3.77 3.81
QMC 3.60 2.01 2.94 3.92
Shrunk 3.72 2.88 2.00 4.30
MC 6.45 5.97 4.89 5.92
Mixed 4.65 4.41 3.26 4.09

DI-Net performs almost equally well under
grid, QMC and shrunk discretizations in the in-
distribution setting, but on this task it is more sen-
sitive to out-of-distribution discretizations than the
classifier in Section 5.1. While shrunk→QMC is
the worst performing combination for the classifier,
here it is one of the better performing combinations.
DI-Net likely struggles with Monte Carlo sampling
due to its high discrepancy discretizations, result-
ing in cases where smaller balls are entirely missed.
Interestingly, the model fares worse when trained
on multiple discretizations simultaneously, suggest-
ing that the network may be guided in opposing directions by different discretizations resulting in
unstable training. These observations illustrate the complex task-dependent interplay between the
type of discretizations observed at training time and the ability of the model to generalize to new
discretizations.

6 CONCLUSION

DI-Net constitutes the first discretization invariant sampling approach for performing inference
directly on neural fields. Motivated by discretization invariance, we designed a parameterization
based on numerical integration that gives rise to strong convergence properties and a universal
approximation theorem for a wide class of functions. Not only is our framework agnostic to NF
parameterization, but it also extends to functions of bounded variation over a wide class of domains,
and thus can be applied to many systems that process a continuous signal by querying it on a subset
of its domain. We outline several directions for enhancing such models in Appendix F, which could
enable them to scale to deeper architectures and tackle more challenging tasks. With the increasing
popularity and diversity of neural fields as well as the emergence of tools to efficiently create large
datasets of NFs, DI-Nets may become an attractive option when interoperability and discretization
invariance are desired.

9

Under review as a conference paper at ICLR 2023

REFERENCES

Christoph Aistleitner and Josef Dick. Low-discrepancy point sets for non-uniform measures, 2013.
URL https://arxiv.org/abs/1308.5049.

Alex Yu and Sara Fridovich-Keil, Matthew Tancik, Qinhong Chen, Benjamin Recht, and Angjoo
Kanazawa. Plenoxels: Radiance fields without neural networks, 2021.

Kaushik Bhattacharya, Bamdad Hosseini, Nikola B Kovachki, and Andrew M Stuart. Model reduction
and neural networks for parametric pdes. arXiv preprint arXiv:2005.03180, 2020.

Alexandre Boulch. Generalizing discrete convolutions for unstructured point clouds. CoRR,
abs/1904.02375, 2019. URL http://arxiv.org/abs/1904.02375.

Luca Brandolini, Leonardo Colzani, Giacomo Gigante, and Giancarlo Travaglini. On the
koksma–hlawka inequality. Journal of Complexity, 29(2):158–172, 2013. ISSN 0885-064X.
doi: https://doi.org/10.1016/j.jco.2012.10.003. URL https://www.sciencedirect.com/
science/article/pii/S0885064X12000854.

Russel E Caflisch. Monte carlo and quasi-monte carlo methods. Acta numerica, 7:1–49, 1998.

Eric R Chan, Marco Monteiro, Petr Kellnhofer, Jiajun Wu, and Gordon Wetzstein. pi-gan: Periodic
implicit generative adversarial networks for 3d-aware image synthesis. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pp. 5799–5809, 2021.

Tianping Chen and Hong Chen. Approximations of continuous functionals by neural networks with
application to dynamic systems. IEEE Transactions on Neural networks, 4(6):910–918, 1993.

Tianping Chen, Hong Chen, and Ruey wen Liu. Approximation capability in c(r /sup n/) by multilayer
feedforward networks and related problems. IEEE Transactions on Neural Networks, 6(1):25–30,
1995. doi: 10.1109/72.363453.

Junwoo Cho, Seungtae Nam, Daniel Rho, Jong Hwan Ko, and Eunbyung Park. Streamable neural
fields. arXiv preprint arXiv:2207.09663, 2022.

Taco Cohen and Max Welling. Group equivariant convolutional networks. In International conference
on machine learning, pp. 2990–2999. PMLR, 2016a.

Taco S Cohen and Max Welling. Steerable cnns. arXiv preprint arXiv:1612.08498, 2016b.

Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus Enzweiler, Rodrigo
Benenson, Uwe Franke, Stefan Roth, and Bernt Schiele. The cityscapes dataset for semantic
urban scene understanding. In Proc. of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2016.

Abril Corona-Figueroa, Jonathan Frawley, Sam Bond-Taylor, Sarath Bethapudi, Hubert P. H. Shum,
and Chris G. Willcocks. Mednerf: Medical neural radiance fields for reconstructing 3d-aware
ct-projections from a single x-ray, 2022. URL https://arxiv.org/abs/2202.01020.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. ImageNet: A Large-Scale Hierarchical
Image Database. In CVPR09, 2009.

Emilien Dupont, Yee Whye Teh, and Arnaud Doucet. Generative models as distributions of functions.
CoRR, abs/2102.04776, 2021. URL https://arxiv.org/abs/2102.04776.

Emilien Dupont, Hyunjik Kim, SM Eslami, Danilo Rezende, and Dan Rosenbaum. From data
to functa: Your data point is a function and you should treat it like one. arXiv preprint
arXiv:2201.12204, 2022.

Logan Engstrom, Andrew Ilyas, Hadi Salman, Shibani Santurkar, and Dimitris Tsipras. Robustness
(python library), 2019. URL https://github.com/MadryLab/robustness.

Matthias Fey, Jan Eric Lenssen, Frank Weichert, and Heinrich Müller. Splinecnn: Fast geometric
deep learning with continuous b-spline kernels. CoRR, abs/1711.08920, 2017. URL http:
//arxiv.org/abs/1711.08920.

10

https://arxiv.org/abs/1308.5049
http://arxiv.org/abs/1904.02375
https://www.sciencedirect.com/science/article/pii/S0885064X12000854
https://www.sciencedirect.com/science/article/pii/S0885064X12000854
https://arxiv.org/abs/2202.01020
https://arxiv.org/abs/2102.04776
https://github.com/MadryLab/robustness
http://arxiv.org/abs/1711.08920
http://arxiv.org/abs/1711.08920

Under review as a conference paper at ICLR 2023

Ruohan Gao, Yen-Yu Chang, Shivani Mall, Li Fei-Fei, and Jiajun Wu. Objectfolder: A dataset of
objects with implicit visual, auditory, and tactile representations. In CoRL, 2021.

Ruohan Gao, Zilin Si, Yen-Yu Chang, Samuel Clarke, Jeannette Bohg, Li Fei-Fei, Wenzhen Yuan,
and Jiajun Wu. Objectfolder 2.0: A multisensory object dataset for sim2real transfer, 2022. URL
https://arxiv.org/abs/2204.02389.

Kurt Hornik. Approximation capabilities of multilayer feedforward networks. Neural networks, 4(2):
251–257, 1991.

Chiyu ”Max” Jiang, Dequan Wang, Jingwei Huang, Philip Marcus, and Matthias Nießner. Convolu-
tional neural networks on non-uniform geometrical signals using euclidean spectral transformation,
2019. URL https://arxiv.org/abs/1901.02070.

Nikola Kovachki, Samuel Lanthaler, and Siddhartha Mishra. On universal approximation and error
bounds for fourier neural operators. Journal of Machine Learning Research, 22:Art–No, 2021a.

Nikola Kovachki, Zongyi Li, Burigede Liu, Kamyar Azizzadenesheli, Kaushik Bhattacharya, Andrew
Stuart, and Anima Anandkumar. Neural operator: Learning maps between function spaces. arXiv
preprint arXiv:2108.08481, 2021b.

Abhijit Kundu, Kyle Genova, Xiaoqi Yin, Alireza Fathi, Caroline Pantofaru, Leonidas Guibas, Andrea
Tagliasacchi, Frank Dellaert, and Thomas Funkhouser. Panoptic neural fields: A semantic object-
aware neural scene representation, 2022. URL https://arxiv.org/abs/2205.04334.

Samuel Lanthaler, Siddhartha Mishra, and George E Karniadakis. Error estimates for DeepONets: a
deep learning framework in infinite dimensions. Transactions of Mathematics and Its Applications,
6(1), 03 2022. ISSN 2398-4945. doi: 10.1093/imatrm/tnac001. URL https://doi.org/10.
1093/imatrm/tnac001. tnac001.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, Andrew
Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial differential equations.
arXiv preprint arXiv:2010.08895, 2020.

Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, and Saining Xie.
A convnet for the 2020s. CoRR, abs/2201.03545, 2022. URL https://arxiv.org/abs/
2201.03545.

Ilya Loshchilov and Frank Hutter. Fixing weight decay regularization in adam. CoRR, abs/1711.05101,
2017. URL http://arxiv.org/abs/1711.05101.

Lu Lu, Pengzhan Jin, Guofei Pang, Zhongqiang Zhang, and George Em Karniadakis. Learning
nonlinear operators via DeepONet based on the universal approximation theorem of operators.
Nature Machine Intelligence, 3(3):218–229, mar 2021. doi: 10.1038/s42256-021-00302-5. URL
https://doi.org/10.1038%2Fs42256-021-00302-5.

Zhou Lu, Hongming Pu, Feicheng Wang, Zhiqiang Hu, and Liwei Wang. The expressive power of
neural networks: A view from the width. Advances in neural information processing systems, 30,
2017.

Julien NP Martel, David B Lindell, Connor Z Lin, Eric R Chan, Marco Monteiro, and Gordon
Wetzstein. Acorn: Adaptive coordinate networks for neural scene representation. arXiv preprint
arXiv:2105.02788, 2021.

Ishit Mehta, Michaël Gharbi, Connelly Barnes, Eli Shechtman, Ravi Ramamoorthi, and Manmohan
Chandraker. Modulated periodic activations for generalizable local functional representations. In
Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 14214–14223,
2021.

Lars M. Mescheder, Michael Oechsle, Michael Niemeyer, Sebastian Nowozin, and Andreas Geiger.
Occupancy networks: Learning 3d reconstruction in function space. CoRR, abs/1812.03828, 2018.
URL http://arxiv.org/abs/1812.03828.

11

https://arxiv.org/abs/2204.02389
https://arxiv.org/abs/1901.02070
https://arxiv.org/abs/2205.04334
https://doi.org/10.1093/imatrm/tnac001
https://doi.org/10.1093/imatrm/tnac001
https://arxiv.org/abs/2201.03545
https://arxiv.org/abs/2201.03545
http://arxiv.org/abs/1711.05101
https://doi.org/10.1038%2Fs42256-021-00302-5
http://arxiv.org/abs/1812.03828

Under review as a conference paper at ICLR 2023

Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ramamoorthi,
and Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. CoRR,
abs/2003.08934, 2020. URL https://arxiv.org/abs/2003.08934.

M. J. Muckley, R. Stern, T. Murrell, and F. Knoll. TorchKbNufft: A high-level, hardware-agnostic non-
uniform fast Fourier transform. In ISMRM Workshop on Data Sampling & Image Reconstruction,
2020. Source code available at https://github.com/mmuckley/torchkbnufft.

Thomas Müller, Alex Evans, Christoph Schied, and Alexander Keller. Instant neural graphics
primitives with a multiresolution hash encoding. arXiv:2201.05989, January 2022.

Norman Müller, Andrea Simonelli, Lorenzo Porzi, Samuel Rota Bulò, Matthias Nießner, and Peter
Kontschieder. Autorf: Learning 3d object radiance fields from single view observations, 2022.
URL https://arxiv.org/abs/2204.03593.

Michael Niemeyer, Lars Mescheder, Michael Oechsle, and Andreas Geiger. Occupancy flow: 4d
reconstruction by learning particle dynamics. In Proceedings of the IEEE/CVF international
conference on computer vision, pp. 5379–5389, 2019.

Michael Niemeyer, Lars Mescheder, Michael Oechsle, and Andreas Geiger. Differentiable volumetric
rendering: Learning implicit 3d representations without 3d supervision. In Proc. IEEE Conf. on
Computer Vision and Pattern Recognition (CVPR), 2020.

Jeong Joon Park, Peter Florence, Julian Straub, Richard A. Newcombe, and Steven Lovegrove.
Deepsdf: Learning continuous signed distance functions for shape representation. CoRR,
abs/1901.05103, 2019. URL http://arxiv.org/abs/1901.05103.

Charles R. Qi, Li Yi, Hao Su, and Leonidas J. Guibas. Pointnet++: Deep hierarchical feature learning
on point sets in a metric space, 2017. URL https://arxiv.org/abs/1706.02413.

David W. Romero, Robert-Jan Bruintjes, Jakub M. Tomczak, Erik J. Bekkers, Mark Hoogendoorn,
and Jan C. van Gemert. Flexconv: Continuous kernel convolutions with differentiable kernel sizes.
CoRR, abs/2110.08059, 2021a. URL https://arxiv.org/abs/2110.08059.

David W. Romero, Anna Kuzina, Erik J. Bekkers, Jakub M. Tomczak, and Mark Hoogendoorn.
Ckconv: Continuous kernel convolution for sequential data. CoRR, abs/2102.02611, 2021b. URL
https://arxiv.org/abs/2102.02611.

Nicholas Sharp, Souhaib Attaiki, Keenan Crane, and Maks Ovsjanikov. Diffusionnet: Discretization
agnostic learning on surfaces. ACM Transactions on Graphics (TOG), 41(3):1–16, 2022.

Vincent Sitzmann, Michael Zollhöfer, and Gordon Wetzstein. Scene representation networks: Con-
tinuous 3d-structure-aware neural scene representations. CoRR, abs/1906.01618, 2019. URL
http://arxiv.org/abs/1906.01618.

Vincent Sitzmann, Eric R. Chan, Richard Tucker, Noah Snavely, and Gordon Wetzstein. Metasdf:
Meta-learning signed distance functions. CoRR, abs/2006.09662, 2020a. URL https://arxiv.
org/abs/2006.09662.

Vincent Sitzmann, Julien N. P. Martel, Alexander W. Bergman, David B. Lindell, and Gordon Wet-
zstein. Implicit neural representations with periodic activation functions. CoRR, abs/2006.09661,
2020b. URL https://arxiv.org/abs/2006.09661.

Vincent Sitzmann, Semon Rezchikov, William T. Freeman, Joshua B. Tenenbaum, and Frédo Durand.
Light field networks: Neural scene representations with single-evaluation rendering. CoRR,
abs/2106.02634, 2021. URL https://arxiv.org/abs/2106.02634.

Cheng Sun, Min Sun, and Hwann-Tzong Chen. Direct voxel grid optimization: Super-fast con-
vergence for radiance fields reconstruction, 2021. URL https://arxiv.org/abs/2111.
11215.

Towaki Takikawa, Alex Evans, Jonathan Tremblay, Thomas Müller, Morgan McGuire, Alec Jacobson,
and Sanja Fidler. Variable bitrate neural fields. In ACM SIGGRAPH 2022 Conference Proceedings,
pp. 1–9, 2022.

12

https://arxiv.org/abs/2003.08934
https://arxiv.org/abs/2204.03593
http://arxiv.org/abs/1901.05103
https://arxiv.org/abs/1706.02413
https://arxiv.org/abs/2110.08059
https://arxiv.org/abs/2102.02611
http://arxiv.org/abs/1906.01618
https://arxiv.org/abs/2006.09662
https://arxiv.org/abs/2006.09662
https://arxiv.org/abs/2006.09661
https://arxiv.org/abs/2106.02634
https://arxiv.org/abs/2111.11215
https://arxiv.org/abs/2111.11215

Under review as a conference paper at ICLR 2023

Mingxing Tan and Quoc V. Le. Efficientnet: Rethinking model scaling for convolutional neural
networks. CoRR, abs/1905.11946, 2019. URL http://arxiv.org/abs/1905.11946.

Matthew Tancik, Ben Mildenhall, Terrance Wang, Divi Schmidt, Pratul P. Srinivasan, Jonathan T.
Barron, and Ren Ng. Learned initializations for optimizing coordinate-based neural representations.
CoRR, abs/2012.02189, 2020a. URL https://arxiv.org/abs/2012.02189.

Matthew Tancik, Pratul P. Srinivasan, Ben Mildenhall, Sara Fridovich-Keil, Nithin Raghavan, Utkarsh
Singhal, Ravi Ramamoorthi, Jonathan T. Barron, and Ren Ng. Fourier features let networks learn
high frequency functions in low dimensional domains. CoRR, abs/2006.10739, 2020b. URL
https://arxiv.org/abs/2006.10739.

Benjamin Ummenhofer, Lukas Prantl, Nils Thuerey, and Vladlen Koltun. Lagrangian fluid simulation
with continuous convolutions. In International Conference on Learning Representations, 2019.

Suhani Vora, Noha Radwan, Klaus Greff, Henning Meyer, Kyle Genova, Mehdi S. M. Sajjadi, Etienne
Pot, Andrea Tagliasacchi, and Daniel Duckworth. Nesf: Neural semantic fields for generalizable
semantic segmentation of 3d scenes, 2021.

Shenlong Wang, Simon Suo, Wei-Chiu Ma, Andrei Pokrovsky, and Raquel Urtasun. Deep parametric
continuous convolutional neural networks. CoRR, abs/2101.06742, 2021. URL https://
arxiv.org/abs/2101.06742.

Alex Yu, Ruilong Li, Matthew Tancik, Hao Li, Ren Ng, and Angjoo Kanazawa. PlenOctrees for
real-time rendering of neural radiance fields. In ICCV, 2021.

13

http://arxiv.org/abs/1905.11946
https://arxiv.org/abs/2012.02189
https://arxiv.org/abs/2006.10739
https://arxiv.org/abs/2101.06742
https://arxiv.org/abs/2101.06742

Under review as a conference paper at ICLR 2023

Appendix
Appendix A provides additional background on the variation of a function and discrepancy of a
point set, as well as more general forms of DI layers. Appendix B provides proofs of the Univer-
sal Approximation and Convergent Empirical Gradients theorems, as well as extensions of these
properties from the single-channel case stated in the main text to multi-channel maps. Appendix C
provides a detailed specification of DI-Net layers that enable DI-Nets to replicate the behavior of
grid-based networks. Appendix D provides additional details of the data and architectures used in
our classification experiment. Appendix E provides several analyses including properties of DI-Nets
under different discretizations. Appendix F describes limitations and directions for future work.

A MORE DETAILS ON DISCRETIZATION INVARIANCE

A.1 KOKSMA–HLAWKA INEQUALITY AND LOW DISCREPANCY SEQUENCES

Recall that a function f ∈ L2(Ω) satisfies a Koksma–Hlawka inequality if for any point set X ⊂ Ω,∣∣∣∣∣ 1

|X|
∑
x′∈X

f(x′)−
∫
Ω

f(x) dx

∣∣∣∣∣ ≤ V (f)D(X), (9)

for normalized measure dx, some notion of variation V of the function and some notion of discrepancy
D of the point set. The classical inequality gives a tight error bound for functions of bounded variation
in the sense of Hardy-Krause (BVHK), a generalization of bounded variation to multivariate functions
on [0, 1]d which has bounded variation in each variable. Specifically, the variation is defined as:

VHK(f) =
∑

α∈{0,1}d

∫
[0,1]|α|

∣∣∣∣ ∂α∂xα f(xα)
∣∣∣∣ dx, (10)

with {0, 1}d the multi-indices and xα ∈ [0, 1]d such that xα,j = xj if j ∈ α and xα,j = 1 otherwise.
The classical inequality also uses the star discrepancy of the point set X , given by:

D∗(X) = sup
I∈J

∣∣∣∣∣ 1

|X|
∑
x′∈X

1I(xj)− λ(I)

∣∣∣∣∣ , (11)

where J is the set of d-dimensional intervals that include the origin, and λ the Lebesgue measure.

A point set is called low discrepancy if its discrepancy is on the order ofO((lnN)d/N). Quasi-Monte
Carlo calculates the sample mean using a low discrepancy sequence (see Fig. A.1 for examples in
2D), as opposed to the i.i.d. point set generated by standard Monte Carlo, which will generally be
high discrepancy. Because the Koksma–Hlawka inequality is sharp, when estimating the integral of a
BVHK function on [0, 1]d, the error of the QMC approximation decays as O((lnN)d/N), in contrast
to the error of the standard Monte Carlo approximation that decays as O(N−1/2) (Caflisch, 1998).

Figure A.1: Examples of low and high discrepancy sequences in 2D.

However, BVHK is a rather restrictive class of functions defined on [0, 1]d that excludes all functions
with discontinuities. Brandolini et al. (2013) extended the Koksma–Hlawka inequality to two classes
of functions defined below:

14

Under review as a conference paper at ICLR 2023

Piecewise smooth functions Let f be a smooth function on [0, 1]d and Ω a Borel subset of [0, 1]d.
Then f |Ω is a piecewise smooth function with the Koksma–Hlawka inequality given by variation

V (f) =
∑

α∈{0,1}d

2d−|α|
∫
[0,1]d

∣∣∣∣ ∂α∂xα f(x)
∣∣∣∣ dx, (12)

and discrepancy:

D(X) = 2d sup
I⊆[0,1]d

∣∣∣∣∣ 1

|X|
∑
x′∈X

1Ω∩I(xj)− λ(Ω ∩ I)

∣∣∣∣∣ . (13)

W d,1 functions on manifolds Let M be a smooth compact d-dimensional manifold with nor-
malized measure dx. Given local charts {ϕk}Kk=1, ϕk : [0, 1]d → M , the variation of a function
f ∈W d,1(M) is characterized as:

V (f) = c

K∑
k=1

∑
|α|≤n

∫
[0,1]d

∣∣∣∣ ∂α∂xα (ψk(ϕk(x))f(ϕk(x))

∣∣∣∣ dx, (14)

with {ψk}Kk=1 a smooth partition of unity subordinate to the charts, and constant c > 0 that depends
on the charts but not on f . Defining the set of intervals in M as J = {U : U = ϕk(I) for some k
and I ⊆ [0, 1]d}, with measure µ(U) = λ(I), the discrepancy of a point set Y = {yj}Ny=1 on M is:

D(Y) = sup
U∈J

∣∣∣∣∣ 1

|X|
∑
x′∈X

1U (yj)− µ(U)

∣∣∣∣∣ . (15)

Neural fields We define the variation of a neural field as the sum of the variations of each channel.

Note: The notion of discrepancy is not limited to the Lebesgue measure. The existence of low
discrepancy point sets has been proven for non-negative, normalized Borel measures on [0, 1]d due to
Aistleitner & Dick (2013). An extension of our framework to non-uniform measures is a promising
direction for future work (see Appendix F).

A.2 MORE GENERAL FORMS OF DI LAYERS

Recall that we defined DI layers as having the formHϕ[f] =
∫
Ω
Hϕ[f](x)dx for neural fields f (we

drop θ here for readability). In the case where Hϕ[f] : Ω→ Rn, i.e. Hϕ is a layer that maps neural
fields to vectors, we permit layers of the following more general form:

Hϕ[f] =

∫
Ω

hϕ(x, f(x), . . . , D
αf(x))dµ(x), (16)

for weak derivatives up to order |α| taken with respect to each channel. Dαf = ∂|α|f
∂x

α1
1 ...∂xαn

n
for

multi-index α. The dependence of h on weak derivatives up to order k = |α| requires that the weak
derivatives are integrable, i.e., f is in the Sobolev space W k,2(Ω), and that hϕ is Gateaux differen-
tiable w.r.t. these weak derivatives. Note that a non-uniform measure µ changes the discrepancy of
sampled sequences.

In the NF-valued case, we can similarly have:

Hϕ[f](x
′) =

∫
Ω

Hϕ[f](x, x
′)dµ(x) (17)

=

∫
Ω

hϕ(x, f(x), . . . , D
αf(x), x′, f(x′), . . . , Dαf(x′))dµ(x), (18)

where we require Hϕ[f](·, x′) ∈ Fn. Both of our key theoretical results (convergence of discretized
gradients and universal approximation) apply to this general form. Gateaux differentiability of hϕ
allows us to apply the same proof in Appendix B.1 to the derivatives. Since allowing layers to depend
on weak derivatives results in an even more expressive class of DI-Nets, the universal approximation
theorem still holds.

15

Under review as a conference paper at ICLR 2023

B PROOFS

B.1 PROOF OF THEOREM 1 (CONVERGENCE OF DISCRETIZED GRADIENTS)

A DI-Net permits backpropagation of its outputs with respect to its input as well as all its learnable
parameters. Under an equidistributed discretization sequence, the gradients of each layer converge
to the appropriate derivative under the measure on Ω.

We note that this property automatically holds if the layer does not perform numerical integration.
This includes layers which take Rn as input, as well as point-wise transformations. Then the
(sub)derivatives with respect to inputs and parameters need only be well-defined at each point of the
output in order to enable backpropagation.

Choose an equidistributed discretization sequence {XN}N∈N on Ω. We consider a DI layer Hϕ

which takes an NF f (we drop dependence on θ for readability) as input and may output a vector or
NF.

Hϕ[f] =

∫
Ω

Hϕ[f](x)dx. (19)

Recall we write the estimate under XN as:

ĤN
ϕ [f] =

1

|XN |
∑

x∈XN

Hϕ[f](x). (20)

and call its derivatives the discretized derivatives ofHϕ[f]. We are interested in proving the conver-
gence of the discretized gradients ofHϕ[f] with respect to its input f as well as the parameters ϕ of
the layer.

Definition 2. For given discretization X , the projection π : f 7→ f is a quotient map L2(Ω) →
L2(Ω)/∼ under the equivalence relation f ∼ g iff f(x) = g(x) for all x ∈ X .

Thus we can write πf = {f(x)}x∈X when the discretization is clear from the context.

Lemma 1. For any DI-Net layerHϕ which takes an NF f ∈ Fm as input, the discretized gradient of
Hϕ[f] w.r.t. its parameters ϕ is convergent in N :

lim
N→∞

∣∣∇ϕĤN
ϕ [f]

∣∣ <∞. (21)

Additionally, the discretized gradient ofHϕ[f] w.r.t. its discretized input πf is convergent in N :

lim
N→∞

∣∣∇πf ĤN
ϕ [f]

∣∣ <∞. (22)

Proof. NF to Vector: gradients w.r.t. parameters

Consider the case of a layer Hϕ : Fm → Rn. If ϕ = (ϕ1, . . . , ϕK), then denote ϕ + τek =
(ϕ1, . . . , ϕk−1, ϕk + τ, ϕk+1, . . . , ϕK).

lim
N→∞

∂

∂ϕk
ĤN

ϕ [f] = lim
N→∞

∂

∂ϕk

(
1

|XN |
∑

x∈XN

Hϕ[f](x)

)
(23)

= lim
N→∞

lim
τ→0

 1

τN

N∑
j=1

Hϕ+τek [f](x)−Hϕ[f](x)

 (24)

= lim
τ→0

1

τ

∫
Ω

Hϕ+τek [f](x)−Hϕ[f](x) dx (25)

= lim
τ→0

Hϕ+τek [f]−Hϕ[f]

τ
(26)

=
∂

∂ϕk
Hϕ[f], (27)

16

Under review as a conference paper at ICLR 2023

where (25) follows by (16) and the Moore-Osgood theorem. Thus the discretized gradient converges
to the Jacobian ofHϕ w.r.t. each parameter, which is finite by differentiability and boundedness of
hϕ.

NF to NF: gradients w.r.t. parameters

From (17), we stated that a DI-Net layer H̄ϕ′ : L2(Ω)→ L2(Ω) can be expressed as:

H̄ϕ′ [f](x′) =

∫
Ω

h̄(x, f(x), . . . , Dαf(x), x′, f(x′), . . . , Dαf(x′);ϕ′)dx. (28)

We can in fact follow the same steps as the NF to Vector case above, to arrive at:

lim
N→∞

∂

∂ϕ′k

(
1

|XN |
∑

x∈XN

H̄ϕ′ [f]

)
=

∂

∂ϕ′k
H̄ϕ′ [f], (29)

with equality at each point x′ ∈ Ω and channel of the output NF.

NF input: gradients w.r.t. inputs

Here we combine the NF to vector and NF to NF cases for brevity. For fixed x̃ ∈ Ω, the discretized
derivative ofHϕ w.r.t. f(x̃) can be written:

∂

∂f(x̃)
ĤN

ϕ [f] =
∂

∂f(x̃)

(
1

|XN |
∑

x∈XN

Hϕ[f](x)

)
(30)

= lim
τ→0

1

τ |XN |
∑

x∈XN

Hϕ[f + τψN
x̃](x)−Hϕ[f](x), (31)

where ψN
x̃ is any function in W |α|,1(Ω) that is 1 at x̃ and 0 on XN\{x̃}, and whose derivatives are 0

on XN . As an example, take the bump function which vanishes outside a small neighborhood of x̃
and smoothly ramps to 1 on a smaller neighborhood of x̃, making its weak derivative 0 at x̃.

By (3) we know that the sequences
∥∥∥ĤN

ϕ [f]−Hϕ[f]
∥∥∥ and

∥∥∥ĤN
ϕ [f + τψN

x̃]−Hϕ[f + τψN
x̃]
∥∥∥ con-

verge uniformly in N to 0 for any τ > 0, where we can use the ℓ1 norm for vector outputs or the L1

norm for NF outputs. So for any ϵ > 0 and any τ > 0, we can choose N0 large enough such that for
any N > N0: ∥∥∥ĤN

ϕ [f + τψN
x̃]−Hϕ[f + τψN

x̃]
∥∥∥ < ϵ

2
, (32)

and ∥∥∥ĤN
ϕ [f]−Hϕ[f]

∥∥∥ < ϵ

2
. (33)

Then, ∥∥∥ĤN
ϕ [f + τψN

x̃]−Hϕ[f + τψN
x̃]
∥∥∥+ ∥∥∥ĤN

ϕ [f]−Hϕ[f]
∥∥∥ < ϵ, (34)

by the triangle inequality,∥∥∥(ĤN
ϕ [f + τψN

x̃]−Hϕ[f + τψN
x̃])− (ĤN

ϕ [f]−Hϕ[f])
∥∥∥ < ϵ (35)∥∥∥(ĤN

ϕ [f + τψN
x̃]− ĤN

ϕ [f]
)
−
(
Hϕ[f + τψN

x̃]−Hϕ[f]
)∥∥∥ < ϵ, (36)

hence
∥∥∥(ĤN

ϕ [f + τψN
x̃]− ĤN

ϕ [f]
)
−
(
Hϕ[f + τψN

x̃]−Hϕ[f]
)∥∥∥ converges uniformly to 0. Since

the distance between two vectors is 0 iff they are the same, we can write:

lim
N→∞

ĤN
ϕ [f + τψN

x̃]− ĤN
ϕ [f] = lim

N→∞
Hϕ[f + τψN

x̃]−Hϕ[f] (37)

lim
τ→0

1

τ
lim

N→∞

(
ĤN

ϕ [f + τψN
x̃]− ĤN

ϕ [f]
)
= lim

τ→0

1

τ
lim

N→∞

(
Hϕ[f + τψN

x̃]−Hϕ[f]
)
. (38)

17

Under review as a conference paper at ICLR 2023

By the Moore-Osgood theorem,

lim
N→∞

lim
τ→0

1

τ

(
ĤN

ϕ [f + τψN
x̃]− ĤN

ϕ [f]
)
= lim

N→∞
lim
τ→0

1

τ

(
Hϕ[f + τψN

x̃]−Hϕ[f]
)

(39)

lim
N→∞

∂

∂f(x̃)
ĤN

ϕ [f] = lim
N→∞

dHϕ[f ;ψ
N
x̃]. (40)

Since hϕ is Gateaux differentiable and bounded, Hϕ is also Gateaux differentiable for f of bounded
variation, hence the limit on the right hand side is finite.

For each discretization XN , choose a sequence of bump functions around each x ∈ XN , {ψN
x }x∈XN

.
An example of such a family is the (appropriately designed) partitions of unity with |XN | elements.

Then the discretized gradient w.r.t. πf converges to the limit of the Gateaux derivatives ofHϕ w.r.t.
the bump function sequence as N →∞.

Lemma 2. Chained discretized derivatives converge to the chained Gateaux derivatives.

Proof. Consider a two-layer DI-Net with NF input f 7→ (Hθ ◦ Hϕ)[f]. For the case of derivatives
w.r.t. the input, we would like to show the analogue of (40):

lim
N→∞

∂

∂f(x̃)

(
ĤN

θ ◦ ĤN
ϕ

)
[f] = lim

N→∞
d (Hθ ◦ Hϕ) [f ;ψ

N
x̃], (41)

where the bump function ψN
x̃ is defined similarly (1 at x̃ and 0 at each x ̸= x̃).

∂

∂f(x̃)

(
ĤN

θ ◦ ĤN
ϕ

)
[f] =

∂

∂f(x)

(
Hθ

[
ĤN

ϕ [f]
]
(x)
)

(42)

= lim
τ→0

1

τ

(
Hθ

[
ĤN

ϕ [f + τψN
x̃]
]
(x)−Hθ

[
ĤN

ϕ [f]
]
(x)
)

(43)

as in (31).

By (3) we know
∥∥∥Hθ

[
ĤN

ϕ [f + τψN
x̃]
]
− ĤN

θ

[
ĤN

ϕ [f + τψN
x̃]
]∥∥∥ converges to 0 in N for all τ >

0 (where we can use the ℓ1 norm for vector outputs or the L1 norm for NF outputs), as does∥∥∥Hθ

[
ĤN

ϕ [f]
]
− ĤN

θ

[
ĤN

ϕ [f]
]∥∥∥

L1
. Reasoning as in (32)-(39), we have:

lim
N→∞

lim
τ→0

1

τ

(
ĤN

θ

[
ĤN

ϕ [f + τψN
x̃]
]
− ĤN

θ

[
ĤN

ϕ [f]
])

(44)

= lim
τ→0

1

τ
lim

N→∞

(
Hθ

[
ĤN

ϕ [f + τψN
x̃]
]
−Hθ

[
ĤN

ϕ [f]
])

(45)

= lim
N→∞

lim
τ→0

1

τ

(
Hθ

[
ĤN

ϕ [f + τψN
x̃]
]
−Hθ

[
ĤN

ϕ [f]
])

(46)

Note that

dHϕ[f ;ψ
N
x̃] =

1

τ

(
Hϕ[f + τψN

x̃]−Hϕ[f] + o(τ)
)

(47)

Hϕ[f + τψN
x̃] = Hϕ[f] + τdHϕ[f ;ψ

N
x̃] + o(τ). (48)

18

Under review as a conference paper at ICLR 2023

Then we complete the equality in (41) as follows:

LHS = lim
N→∞

∂

∂f(x̃)

(
ĤN

θ ◦ ĤN
ϕ

)
[f] (49)

= lim
N→∞

lim
τ→0

1

τ

(
Hθ

[
ĤN

ϕ [f + τψN
x̃]
]
−Hθ

[
ĤN

ϕ [f]
])

(50)

= lim
N→∞

lim
τ→0

1

τ

(
Hθ

[
Hϕ[f] + τdHϕ[f ;ψ

N
x̃]
]
−Hθ [Hϕ[f]]

)
(51)

= lim
N→∞

dHθ

[
Hϕ[f]; dHϕ[f ;ψ

N
x̃]
]

(52)

= lim
N→∞

d (Hθ ◦ Hϕ) [f ;ψ
N
x̃] (53)

= RHS, (54)

by the chain rule for Gateaux derivatives.

The case of derivatives w.r.t. parameters is straightforward. In the same way we used (32)-(39) to
obtain (46), we have:

lim
N→∞

∂

∂ϕk
(ĤN

θ ◦ ĤN
ϕ)[f] = lim

N→∞
lim
τ→0

1

τ

(
ĤN

θ

[
ĤN

ϕ+τek
[f]
]
− ĤN

θ

[
ĤN

ϕ [f]
])

(55)

= lim
τ→0

1

τ
(Hθ[Hϕ+τek [f]]−Hθ[Hϕ[f]]) (56)

=
∂

∂ϕk
(Hθ ◦ Hϕ)[f], (57)

By induction, the chained derivatives converge for an arbitrary number of layers.

Since the properties of DI-Net layers extend to loss functions on DI-Nets, we can treat a loss function
similarly to a layer, and write:

Lg′ [g] =

∫
Ω

L[g, g′](x)dx (58)

L̂N
g′ [g] =

1

|XN |
∑

x∈XN

L[g, g′](x) (59)

lim
N→∞

∂

∂f(x̃)

(
L̂N
g′ ◦ ĤN

θ ◦ ĤN
ϕ

)
[f] = lim

N→∞
d (Lg′ ◦ Hθ ◦ Hϕ) [f ;ψ

N
x̃], (60)

where g′ can be some other input to the loss function such as ground truth labels. Thus, we can state
the following result:
Corollary 1. The gradients of a DI-Net’s loss function w.r.t. its inputs and all its parameters are
convergent under an equidistributed discretization sequence.

B.2 PROOF OF THEOREM 2 (UNIVERSAL APPROXIMATION THEOREM)

Note: By our definition of Fc (Section 3.1), there exists V ∗ such that every f ∈ F1 satisfies a
Koksma–Hlawka inequality (3) with V (|f |) < V ∗.

F1 is bounded in L1 norm since all their functions are compactly supported and bounded.

Consider a Lipschitz continuous mapR : F1 → F1 such that d(R[f],R[g])L1 ≤M0d(f, g)L1 for
some constant M0 and all f, g ∈ F1. Let M = max{M0, 1}.
Fix a discretization X ⊂ Ω with discrepancy D(X) = ϵ

12(M+2)V ∗ . By (3) this yields:∣∣∣∣∣ 1

|X|
∑
x′∈X

f(x′)−
∫
Ω

f(x) dx

∣∣∣∣∣ ≤ ϵ

12(M + 2)
, (61)

for all f ∈ F1. Let N be the number of points in X .

19

Under review as a conference paper at ICLR 2023

Define the equivalence relation ∼ and projection π as in Definition 2. L2(Ω)/∼ is isomorphic to
R|X|, and thus can be given the normalized ℓ1 norm:

∥πf∥ℓ1 =
1

|X|
∑
x′∈X

|f(x′)|. (62)

Definition 3. Denote the preimage of π as π−1 : f ′ 7→ {f ′ ∈ F1 : πf ′ = f ′}. Invoking the axiom of
choice, define the inverse projection π−1 : πF1 → F1 by a choice function over the sets π−1(πF1).

Note that this inverse projection corresponds to some way of interpolating the N sample points such
that the output is in F1. Although our definition implies the existence of such an interpolator, we
leave its specification as an open problem. Since Ω only permits discontinuities along a fixed Borel
subset of [0, 1]d, these boundaries can be specified a priori in the interpolator. Since all functions in
F1 are bounded and continuous outside this set, the interpolator can be represented by a bounded
continuous map, hence it is expressible by a DI-Net layer.
Definition 4. π generates a σ-algebra on F1 given by A = {π−1(S) : S ∈ L }, with L the σ-
algebra of Lebesgue measurable sets on RN . Because this σ-algebra depends on ϵ and the Lipschitz
constant ofR via the point set’s discrepancy, we may write it as Aϵ,R.

In this formulation, we let the tolerance ϵ and the Lipschitz constant ofR dictate what subsets of F1

are measurable, and thus which measures on F1 are permitted. However, if the desired measure ν is
more fine-grained than what is permitted by Aϵ,R, then it is ν that should determine the number of
sample points N , rather than ϵ orR.

We now state the following lemmas which will be used to prove our universal approximation theorem.

Lemma 3. There is a map R̃ : πF1 → πF1 such that∫
Ω

∣∣∣R[f](x)− π−1 ◦ R̃ ◦ π[f](x)
∣∣∣ dx =

ϵ

6
. (63)

Proof. Let g(x) = |f(x)| for f ∈ F1. Because (61) applies to g(x), we have:

∣∣∣∣∣ 1

|X|
∑
x′∈X

g(x′)−
∫
Ω

g(x) dx

∣∣∣∣∣ ≤ ϵ

12(M + 2)
(64)∣∣∣∣∥πf∥ℓ1 − ∥f∥L1

∣∣∣∣ ≤ ϵ

12(M + 2)
. (65)

Eqn. (65) also implies that for any f ∈ πF1, we have:∣∣∣∣∥f∥ℓ1 − ∥∥π−1f
∥∥
L1

∣∣∣∣ ≤ ϵ

12(M + 2)
. (66)

Combining (65) and (66), we obtain∣∣∣∣∥f∥L1 −
∥∥π−1 ◦ π[f]

∥∥
L1

∣∣∣∣ ≤ ϵ

6(M + 2)
. (67)

By the triangle inequality and applyingR:∫
Ω

∣∣R[f](x)− π−1 ◦ π ◦ R[f](x)
∣∣ dx ≤ ϵ

6(M + 2)
. (68)

For any f, g ∈ F1 such that πf = πg, (65) tells us that d(f, g)L1 is at most ϵ/6(M + 2). Recall M
was defined such that d(R[f],R[g])L1 ≤Md(f, g)L1 for anyR.

d(π ◦ R[f], π ◦ R[g])L1 ≤ Mϵ

6(M + 2)
+

ϵ

6(M + 2)
(69)

=
(M + 1)

(M + 2)

ϵ

6
(70)

20

Under review as a conference paper at ICLR 2023

So defining:
R̃ = argmin

H
d(H ◦ π[f], π ◦ R[f])ℓ1 , (71)

we have ∣∣∣R̃ ◦ π[f]− π ◦ R[f]∣∣∣ ≤ (M + 1)

(M + 2)

ϵ

6
. (72)

Then by (68), ∫
Ω

∣∣∣R[f](x)− π−1 ◦ R̃ ◦ π[f](x)
∣∣∣ dx ≤ ϵ

6(M + 2)
+

(M + 1)

(M + 2)

ϵ

6
(73)

=
ϵ

6
. (74)

Lemma 4. Consider the extension of R̃ to RN → RN in which each component of the output has
the form:

R̃j(f) =

{
R[π−1f](x) if f ∈ πF1

0 otherwise.
(75)

Then any finite measure ν on the measurable space (F1,A) induces a finite measure µ on (RN ,L),
and

∫
RN |R̃j(f)|µ(df) <∞ for each j.

Proof. Since the σ-algebra A on F1 is generated by π, the measure µ : µ(πS) = ν(S) for all
S ∈ A is finite and defined w.r.t. the Lebesgue measurable sets on πF1. Since πF1 can be identified
with a measurable subset of RN , µ can be naturally extended to RN . Doing so makes it absolutely
continuous w.r.t. the Lebesgue measure on RN .

To show R̃j(f) is integrable, it is sufficient to show it is bounded and compactly supported.

F1 is bounded in the L1 norm. Thus by (65), πF1 is bounded in the normalized ℓ1 norm. The ℓ1
norm in RN is strongly equivalent to the uniform norm, so there is some compact set [−c, c]N , c > 0

for which the extension of πF1 to RN vanishes, so supp(R̃j(f)) ⊆ [−c, c]N .

Similarly, πF1 is bounded in the ℓ1 norm, hence there exists c′ such that R̃j < c′ for all j.

Lemma 5. For any finite measure µ absolutely continuous w.r.t. the Lebesgue measure on Rn,
J ∈ L1(µ) and ϵ > 0, there is a network K such that:∫

Rn

|J(f)−K(f)|µ(df) < ϵ

2
. (76)

Proof. The following construction is adapted from Lu et al. (2017). Since J is integrable, there is a
cube E = [−c, c]n such that: ∫

Rn\E
|J(f)|µ(df) < ϵ

8
(77)

∥J − 1EJ∥1 <
ϵ

8
. (78)

Case 1: J is non-negative on all of Rn

Define the set under the graph of J |E :

GE,J ≜ {(f , y) : f ∈ E, y ∈ [0, J(f)]}. (79)

GE,J is compact in Rn+1, hence there is a finite cover of open rectangles {R′
i} satisfying µ(∪iR′

i)−
µ(GE,J) <

ϵ
8 on Rn. Take their closures, and extend the sides of all rectangles indefinitely. This

21

Under review as a conference paper at ICLR 2023

results in a set of pairwise almost disjoint rectangles {Ri}. Taking only the rectangles R = {Ri :
µ(Ri ∩GE,J) > 0} results in a finite cover satisfying:

|R|∑
i=1

µ(Ri)− µ(GE,J) <
ϵ

8
. (80)

This implies:

|R|∑
i=1

µ(Ri) < ∥J∥1 +
ϵ

8
, (81)

and also,

ϵ

8
>

|R|∑
i=1

∫
Rn

1Ri(f , J(f))µ(df) + ∥J∥1 (82)

≥
∫
E

|J(f)−
|R|∑
i=1

1Ri(f , J(f))|µ(df), (83)

by the triangle inequality. For each Ri = [ai1, bi1]× . . . [ain, bin]× [ζi, ζi + yi], let Xi be its first n
components (i.e., the projection of Ri onto Rn). Then we have∫

E

|J(f)−
|R|∑
i=1

yi1Xi(f)|µ(df) <
ϵ

8
. (84)

Let Y (f) ≜
∑|R|

i=1 yi1Xi
(f). By the triangle inequality,

∫
Rn

|J(f)−K(f)|µ(df) ≤ ∥J − 1EJ∥1 + ∥1EJ − Y ∥1 + ∥K − Y ∥1 (85)

<
ϵ

4
+ ∥K − Y ∥1, (86)

by (78) and (84). So it remains to constructK such that ∥K − Y ∥1 <
ϵ
4 . Because 1Xi is discontinuous

at the boundary of the rectangle Xi, it cannot be produced directly from a DI-Net (recall that all
layers are continuous maps). However, we can approximate it arbitrarily well with a piece-wise linear
function that rapidly ramps from 0 to 1 at the boundary.

For fixed rectangle Xi and δ ∈ (0, 0.5), consider the inner rectangle Xδ ⊂ Xi:

Xδ = (a1 + δ(b1 − a1), b1 − δ(b1 − a1))× · · · × (an + δ(bn − an), bn − δ(bn − an)), (87)

where we omit subscript j for clarity. Letting b′i = bi − δ(bi − ai), define the function:

T (f) =

n∏
i=1

1

δ

[
ReLU(δ − ReLU(fi − b′i))− ReLU(δ − ReLU(fi − ai))

]
, (88)

where ReLU(x) = max(x, 0). T (f) is a piece-wise linear function that ramps from 0 at the boundary
of Xi to 1 within Xδ , and vanishes outside Xi. Note that

∥1X − T∥1 < µ(X)− µ(Xδ) (89)
= (1− (1− 2δ)n)µ(X), (90)

if µ is the Lebesgue measure. δ may need to be smaller under other measures, but this adjustment is
independent of the input f so it can be specified a priori.

Recall that the function we want to approximate is Y (f) =
∑|R|

i=1 yi1Xi
(f). We can build NF-Net

layers K : f 7→ K(f) =
∑|R|

i=1 yiTi(f), since this only involves linear combinations and ReLUs.

22

Under review as a conference paper at ICLR 2023

Then,

∥K − Y ∥1 =

∫
Rn

|R|∑
i=1

yi (Ti(f)− 1Xi
(f)) df (91)

=

|R|∑
i=1

yi∥1Xi
− Ti∥1 (92)

< (1− (1− 2δ)n)

|R|∑
i=1

yiµ(Xi) (93)

= (1− (1− 2δ)n)

|R|∑
i=1

µ(Ri) (94)

< (1− (1− 2δ)n)
(
∥J∥1 +

ϵ

8

)
, (95)

by (81). And so by choosing:

δ =
1

2

(
1−

(
1− ϵ

4

(
∥J∥1 +

ϵ

8

)−1
)1/n

)
, (96)

we have our desired bound ∥K − Y ∥1 <
ϵ
4 and thereby ∥J −K∥1 <

ϵ
2 .

Case 2: J is negative on some region of Rn

Letting J+(f) = max(0, J(f)) and J−(f) = max(0,−J(f)), define:

G+
E,J ≜ {(f , y) : f ∈ E, y ∈ [0, J+(f)]} (97)

G−
E,J ≜ {(f , y) : f ∈ E, y ∈ [0, J−(f)]}. (98)

As in (80), construct covers of rectangles R+ over G+
E,J and R− over G−

E,J each with bound ϵ
16 and

Rn projections X+, X−. Let:

Y +(f) =

|R+|∑
i=1

y+i 1X+
i
(f) (99)

Y −(f) =

|R−|∑
i=1

y−i 1X−
i
(f) (100)

Y = Y + − Y − (101)

We can derive an equivalent expression to (84):

ϵ

8
>

∫
E

|J(f)−
|R+|∑
i=1

y+i 1X+
i
(f) +

|R−|∑
i=1

y−i 1X−
i
(f)| df (102)

= ∥1EJ − Y ∥1. (103)

Similarly to earlier, we use (78) and (103) to get:∫
Rn

|J(f)−K(f)| df < ϵ

4
+ ∥K − Y ∥1. (104)

Choosing T+
i (f) and T−

i (f) the piece-wise linear functions associated with X+
i and X−

i , and:

K(f) =
|R+|∑
i=1

y+i T
+
i (f)−

|R−|∑
i=1

y−i T
−
i (f), (105)

23

Under review as a conference paper at ICLR 2023

we have:

∥K − Y ∥1 =

∫
Rn

∣∣∣∣∣∣
|R+|∑
i=1

y+i

(
T+
i (f)− 1X+

i
(f)
)
−

|R−|∑
i=1

y−i

(
T−
i (f)− 1X−

i
(f)
)∣∣∣∣∣∣ df , (106)

applying the triangle inequality,

≤
|R+|∑
i=1

y+i

∥∥∥1X+
i
− T+

i

∥∥∥
1
+

|R−|∑
i=1

y−i

∥∥∥1X−
i
− T−

i

∥∥∥
1

(107)

< (1− (1− 2δ+)n)

|R+|∑
i=1

y+i µ(X
+
i) + (1− (1− 2δ−)n)

|R−|∑
i=1

y−i µ(X
−
i) (108)

< (1− (1− 2δ+)n)
(∥∥J+

∥∥
1
+

ϵ

16

)
+ (1− (1− 2δ−)n)

(∥∥J−∥∥
1
+

ϵ

16

)
. (109)

By choosing:

δ+ =
1

2

(
1−

(
1− ϵ

8

(∥∥J+
∥∥
1
+

ϵ

16

)−1
)1/n

)
(110)

δ− =
1

2

(
1−

(
1− ϵ

8

(∥∥J−∥∥
1
+

ϵ

16

)−1
)1/n

)
, (111)

and proceeding as before, we arrive at the same bounds ∥K − Y ∥1 <
ϵ
4 and ∥J −K∥1 <

ϵ
2 .

Putting it all together, Algorithm 1 implements the network logic for producing the function K.

Algorithm 1: DI-Net approximation of f 7→ J(f)

Setup;
Input: target function J , L1 tolerance ϵ/2
Choose rectangles R+

i = [a+i1, b
+
i1]× . . . [a

+
in, b

+
in]× [ζ+i , ζ

+
i + y+i] satisfying (80) and R−

similarly;

δ+ ← 1
2

(
1− (1− ϵ

8

(
∥J+∥1 +

ϵ
16

)−1
)1/n

)
;

δ− ← 1
2

(
1− (1− ϵ

8

(
∥J−∥1 +

ϵ
16

)−1
)1/n

)
;

Inference;
Input: discretized input f = {fk}nk=1
x← (0, 0, 1, 0, 0);
for rectangle R+

i ∈ R+ do
for dimension k ∈ 1 : n do

x← (fk − b+ik + δ(b+ik − a
+
ik), fk − a

+
ik, x3, x4, x5);

x← ReLU(x);
x← (δ − x1, δ − x2, x3, x4, x5);
x← ReLU(x);
x← (0, 0, x3(x1 − x2)/δ, x4, x5);

end
x← (0, 0, 1, y+i x3 + x4, x5);

end
for rectangle R−

i ∈ R− do
for dimension k ∈ 1 : n do

x← (fk − b−ik + δ(b−ik − a
−
ik), fk − a

−
ik, x3, x4, x5);

. . . ;
end
x← (0, 0, 1, x4, y

−
i x3 + x5);

end
Output: x4 − x5

24

Under review as a conference paper at ICLR 2023

We can provide x with access to f either through skip connections or by appending channels with the
values {c+ fk}nk=1 (which will be preserved under ReLU).

Theorem 3 (Maps between Single-Channel NFs). For any Lipschitz continuous mapR : F1 → F1,
any ϵ > 0, and any finite measure ν w.r.t. the measurable space (F1,Aϵ,R), there exists a DI-Net T
that satisfies: ∫

F1

∥R(f)− T (f)∥L1(Ω)ν(df) < ϵ. (112)

Proof. If ν is not normalized, the discrepancy of our point set needs to be further divided by
max{ν(F1), 1}. We assume for the remainder of this section that ν is normalized. Perform the
construction of Lemma 5N times, each with a tolerance of ϵ/2NK, whereK is the Lipschitz constant
of R. Choose a partition of unity {ψj}Nj=1 for which ψj(x) = 1 [xk = argminx′∈X d(x, x′)], and
output N channels with the values {Kj(f)ψj(·)}Nj=1. By summing these channels we obtain a
network K̃ that fully specifies the desired behavior of R̃ : RN → RN , with combined error:∫

RN

∥∥∥R̃(f)− K̃(f)∥∥∥
ℓ1
µ(df) <

ϵ

2
. (113)

Thus, ∫
F1

∣∣∣∣∣ 1

|X|
∑
x′∈X

R̃ ◦ π[f](x′)− K̃ ◦ π[f](x)

∣∣∣∣∣ ν(df) ≤ ϵ

2
. (114)

By (66) we have:∫
F1

∣∣∣∣∫
Ω

∣∣∣π−1 ◦ R̃ ◦ π[f](x)− π−1 ◦ K̃ ◦ π[f](x)
∣∣∣ dx∣∣∣∣ ν(df) ≤ ϵ

2
+

ϵ

6(M + 2)
(115)

By Lemma 3 we have:∫
F1

∫
Ω

∣∣∣R[f](x)− π−1 ◦ K̃ ◦ π[f](x)
∣∣∣ dx ν(df) ≤ ϵ

2
+

ϵ

6(M + 2)
+
ϵ

6
(116)

And thus the network T = π−1 ◦ K̃ ◦ π gives us the desired bound:∫
F1

∥R(f)− T (f)∥L1(Ω) ν(df) < ϵ. (117)

Corollary 2 (Maps from NFs to vectors). For any Lipschitz continuous map R : F1 → Rn, any
ϵ > 0, and any finite measure ν w.r.t. the measurable space (F1,Aϵ,R), there exists a DI-Net T that
satisfies: ∫

F1

∥R(f)− T (f)∥ℓ1(Rn)ν(df) < ϵ. (118)

Proof. Let M0 be the Lipschitz constant ofR in the sense that d(R[f],R[g])ℓ1 ≤M0d(f, g)L1 . Let
M = max{M0, 1}. There exists R̃ : πF1 → Rn such that

∥∥∥R̃ ◦ π[f]−R[f]∥∥∥
ℓ1
≤ ϵ/12. As in

Lemma 4, consider the extension of R̃ to RN → Rn in which each component of the output has the
form:

R̃j(f) =

{
R[π−1f]j if f ∈ πF1

0 otherwise.
(119)

Then for similar reasoning, ν onF1 induces a measure µ on RN that is finite and absolutely continuous
w.r.t. the Lebesgue measure, and

∫
RN |R̃j(f)|µ(df) <∞ for each j.

25

Under review as a conference paper at ICLR 2023

We construct our RN → R approximation n times with a tolerance of ϵ/2n, such that:∫
RN

∥∥∥R̃(f)− K̃(f)∥∥∥
ℓ1(Rn)

µ(df) <
ϵ

2
. (120)

Applying (65), we find that the network T = K̃ ◦ π gives us the desired bound:∫
F1

∥R(f)− T (f)∥ℓ1(Rn)ν(df) < ϵ. (121)

Corollary 3 (Maps from vectors to NFs). For any Lipschitz continuous mapR : Rn → F1 and any
ϵ > 0, there exists a DI-Net T that satisfies:∫

Rn

∥R(x)− T (x)∥L1(Ω)dx < ϵ. (122)

Proof. Define the map R̃ : Rn → πF1 ⊂ RN by R̃ = π ◦ R. Since R̃ is bounded and compactly
supported,

∫
RN |R̃i(x)|dx <∞ for each i.

We construct a Rn → R approximation N times each with a tolerance of ϵ/2NK with K the
Lipschitz constant, such that: ∫

Rn

∥∥∥R̃(x)− K̃(x)∥∥∥
L1(Ω)

dx <
ϵ

2
. (123)

Applying (66), we find that the network T = π−1 ◦ K̃ gives us the desired bound:∫
Rn

∥R(x)− T (x)∥L1(Ω)dx < ϵ. (124)

Denote the space of multi-channel NFs as Fc = {f : Ω→ Rc :
∫
Ω
∥f∥1dx <∞, fi ∈ F1 for each

i}. Denote the norm on this space as:

∥f∥Fc
=

∫
Ω

c∑
i=1

|fi(x)|dx. (125)

Definition 5 (Concatenation). Concatenation is a map from two NF channels fi, fj ∈ F1 to
[fi, fj] ∈ F2. The concatenation of NFs can be defined inductively to yield Fn ×Fm → Fn+m for
any n,m ∈ N.

All maps Fn ×Fm → Fc can be expressed as a concatenation followed by a map Fn+m → Fc. A
map Rn → Fm is also equivalent to m maps Rn → F1 followed by concatenation. Thus, we need
only characterize the maps that take one multi-channel NF as input.

Considering the maps Fn → Fm, we choose a lower discrepancy point set X on Ω such that the
Koksma–Hlawka inequality yields a bound of ϵ/12mn(M + 2). Let π project each component of
the input to πF1, and π−1 inverts this projection under some choice function. We take A ′ to be the
product σ-algebra generated from this π: A ′ = {E1 × · · · ×Ec : E1, . . . , Ec ∈ A } where A is the
σ-algebra on F1 from Definition 4.
Corollary 4 (Maps between multi-channel NFs). For any Lipschitz continuous mapR : Fn → Fm,
any ϵ > 0, and any finite measure ν w.r.t. the measurable space (Fn,A ′

ϵ,R), there exists a DI-Net T
that satisfies: ∫

Fn

∥R(f)− T (f)∥Fm
ν(df) < ϵ. (126)

Proof. The proof is very similar to that of Theorem 3. Our network now requires nN maps from
RmN → R each with error ϵ/2mnN . Summing the errors across all input and output channels yields
our desired bound.

26

Under review as a conference paper at ICLR 2023

The multi-channel analogue of Corollary 2 is clear, and we state it here for completeness:
Corollary 5 (Maps from multi-channel NFs to vectors). For any Lipschitz continuous map R :
Fn → Rm, any ϵ > 0, and any finite measure ν w.r.t. the measurable space (Fn,A ′

ϵ,R), there exists
a DI-Net T that satisfies: ∫

Fn

∥R(f)− T (f)∥ℓ1(Rm)ν(df) < ϵ. (127)

C PIXEL-BASED DI-NET LAYERS

Here we present a variety of layers that show how to generalize pixel-based networks (convolutional
neural networks and vision transformers) to DI-Net equivalents. Many of the following layers were
not directly used in our experiments, and we leave an investigation of their properties for future
work. We use cin to denote the number of channels of an input NF and cout to denote the number of
channels of an output NF.

Convolution layer The convolution layer aggregates information locally and across channels. It
has cincout learned filters Kij , which are defined on some support S which may be a ball or orthotope.
The layer also learns scalar biases bj for each output channel:

gj =

cin∑
i=1

Kij ∗ fi + bj , (128)

with ∗ the continuous convolution as in (8).

To transfer weights from a discrete convolutional layer, K can be parameterized as a rectangular
B-spline surface that interpolates the weights (Fig. 2 left). To replicate the behavior of a discrete
convolution layer with odd kernel size, S is zero-centered. For even kernel size, we shift S by half
the dimensions of a pixel. We use a 2nd order B-spline for 3× 3 filters and 3rd order for larger filters.
We use deBoor’s algorithm to evaluate the spline at intermediate points.

Strided convolution is implemented by simply truncating the output discretization to the desired factor
as described in Section 4. Different padding behaviors from the discrete case are treated differently.
Zero-padding is replicated by scaling H[f](x) by |(S+x)∩Ω|

S+x where S + x is the kernel support S
translated by x. For reflection padding, the value of the NF at points outside its domain are calculated
by reflection. For no padding, the NF’s domain is reduced accordingly, dropping all sample points
that are no longer on the new domain.

Linear combinations of channels Linear combinations of channels mimic the function of 1× 1
convolutional layers in discrete networks. For learned scalar weights Wij and biases bj :

gj(x) =

cin∑
i=1

Wijfi(x) + bj , (129)

for all x ∈ Ω. These weights and biases can be straightforwardly copied from a 1× 1 convolutional
layer to obtain the same behavior. One can also adopt a normalized version, sometimes used in
attention-based networks:

Wij =
wij∑cin

k=1 wkj
(130)

Normalization All forms of layer normalization readily generalize to the continuous setting
by estimating the statistics of each channel with numerical integration, then applying point-wise
operations. These layers typically rescale each channel to have some mean mi and standard deviation
si.

µi =

∫
Ω

fi(x)dx (131)

σ2
i =

∫
Ω

fi(x)
2dx− µ2

i (132)

gi(x) =
fi(x)− µi

σi + ϵ
× si +mi, (133)

27

Under review as a conference paper at ICLR 2023

where we assume dx is normalized and ϵ > 0 is a small constant. Just as in the discrete case, µi

and σ2
i can be a moving average of the means and variances observed over the course of training

different NFs, and they can also be averaged over a minibatch of NFs (batch normalization) or
calculated per datapoint (instance normalization). Mean mi and standard deviation si can be learned
directly (batch normalization), conditioned on other data (adaptive instance normalization), or fixed
at 0 and 1 respectively (instance normalization). These layers are not discretization invariant in
the sense of Definition 1, since the output can be poorly behaved for small values of σi, but the
convergence condition still holds, i.e. normalization is convergent under an equidistributed sequence
of discretizations.

Max pooling There are two natural generalizations of the max pooling layer to a collection of
points: 1) assigning each point to the maximum of its k nearest neighbors, and 2) taking the maximum
value within a fixed-size window around each point. However, both of these specifications change
the output’s behavior as the density of points increases. In the first case, nearest neighbors become
closer together so pooling occurs over smaller regions where there is less total variation in the NF. In
the second case, the empirical maximum increases monotonically as the NF is sampled more finely
within each window. Because we may want to change the number of sampling points on the fly, both
of these behaviors are detrimental.

If we consider the role of max pooling as a layer that shuttles gradients through a strong local
activation, then it is sufficient to use a fixed-size window with some scaling factor that mitigates the
impact of changing the number of sampling points. Consider the following simplistic model: assume
each point in a given patch of an NF channel is an i.i.d. sample from U([−b, b]). Then the maximum
of N samples {fi(xj)}Nj=1 is on average N−1

N+1b. So we can achieve an “unbiased” max pooling layer
by taking the maximum value observed in each window and scaling it by N+1

N−1 (if N = 1 or our
empirical maximum is negative then we simply return the maximum), then (optionally) multiplying a
constant to match the discrete layer.

To replicate the behavior of a discrete max pooling layer with even kernel size, we shift the window
by half the dimensions of a pixel, just as in the case of convolution.

Tokenization A tokenization layer chooses a finite set of non-overlapping regions ωj ⊂ Ω of equal
measure such that ∪jωj = Ω. We apply the indicator function of each set to each channel fi. An
embedding of each fi|ωj

into Rn can be obtained by taking its inner product with a polynomial
function whose basis spans each L2(ωj). To replicate a pre-trained embedding matrix, we interpolate
the weights with B-spline surfaces.

Average pooling An average pooling layer performs a continuous convolution with a box filter,
followed by downsampling. To reproduce a discrete average pooling with even kernels, the box filter
is shifted, similarly to max pooling.

An adaptive average pooling layer can be replicated by tokenizing the NF and taking the mean of
each token to produce a vector of the desired size.

Attention layer There are various ways to replicate the functionality of an attention layer. Here we
present an approach that preserves the domain. For some dk ∈ N consider a self-attention layer with
cindk parametric functions qij ∈ L2(Ω), cindk parametric functions kij ∈ L2(Ω), and a convolution
with dk output channels, produce the output NF g as:

Qj = ⟨qij , fi⟩ (134)
Kj = ⟨kij , fi⟩ (135)

V [f] =

cin∑
i=1

vij ∗ fi + bj (136)

g(x) = softmax

(
QKT

√
dk

)
V [f](x) (137)

A cross-attention layer generates queries from a second input NF. A multihead-attention layer
generates several sets of (Q,K, V) triplets and takes the softmax of each set separately.

28

Under review as a conference paper at ICLR 2023

Data augmentation Most data augmentation techniques, including spatial transformations, point-
wise functions and normalizations, translate naturally to NFs. Furthermore, spatial transformations
are efficient and do not incur the usual cost of interpolating back to the grid. Thus DI-Nets might be
suitable for a new set of data augmentation methods such as adding Gaussian noise to the discretization
coordinates.

Positional encoding Given their central role in neural fields, positional encodings (adding sinusoidal
functions of the coordinates to each channel) would likely play an important role in helping pixel-
based DI-Nets capture high-frequency information under a range of discretizations.

Vector decoders (Rn → Fc) and parametric functions in Fc A vector can be expanded into an
NF in several ways. We can create an NF that simply places input values at fixed coordinates and
produces values at all other coordinates by interpolation. Alternatively, we can define a parametric
function that spans Fc using the input vector as the parameters, for example by taking as input n
numbers and treating them as coefficients of the first n elements of an orthonormal polynomial basis
on Ω. If Ω is a subset of [a, b]d, one can use a separable basis defined by the product of rescaled 1D
Legendre polynomials along each dimension. If Ω is a d-ball, we can use the Zernike polynomial basis.
For a general coordinate system, a small MLP could be used where Rn can represent its parameters or
a learned lower-dimensional modulation (Dupont et al., 2022) of its parameters. Beyond using such
parametric functions as vector decoder layers, they also give rise to n-parameter layers that compute
an inner product (“learned global pooling layer”) or elementwise product (“dense modulation layer”)
of an input NF with the learned functions.

Warp layer Layers that apply a self-homeomorphism q on Ω (a bicontinuous map from Ω→ Ω)
preserve discretization invariance since it simply modifies the upper bound of the invariance error in
subsequent layers to use a discrepancy of q(X) rather than a discrepancy of X .

D EXPERIMENTAL DETAILS

D.1 ALGORITHMS

Algorithm 2: Classifier Training
Input: network Tθ, NF / label dataset D, classifier loss L, input discretization X
for step s ∈ 1 : Nsteps do

NFs fi, labels yi ← minibatch(D)
Label estimates ŷi ← Tθ[fi;X]
Update θ based on ∇θL(ŷi, yi)

end
Output: trained network Tθ

Algorithm 3: Dense Prediction Training
Input: network Tθ, dataset D with dense coordinate-label pairs, task-specific loss L
for step s ∈ 1 : Nsteps do

NFs fi, point labels (xij , yij)← minibatch(D)
Output NFs gi ← Tθ[fi]
Point label estimates ŷij ← gi(xij)
Update θ based on ∇θL(ŷij , yij)

end
Output: trained network Tθ

D.2 DETAILS ON IMAGENET CLASSIFICATION

We split ImageNet1k into 12 superclasses (dog, structure/construction, bird, clothing, wheeled vehicle,
reptile, carnivore, insect, musical instrument, food, furniture, primate) based on the big 12 dataset
(Engstrom et al., 2019), which is in turn derived from the WordNet hierarchy.

29

Under review as a conference paper at ICLR 2023

We fit SIREN (Sitzmann et al., 2020b) to each image in ImageNet using 5 fully connected layers with
256 channels and sine non-linearities, trained for 2000 steps with an Adam optimizer at a learning
rate of 10−4. It takes coordinates on [−1, 1]2 and produces RGB values in [−1, 1]3. We fit Gaussian
Fourier feature (Tancik et al., 2020b) networks using 4 fully connected layers with 256 channels with
ReLU activations. It takes coordinates on [0, 1]2 and produces RGB values in [0, 1]3.

The average pixel-wise error of SIREN is 3 · 10−4 ± 2 · 10−4, compared to 1.6 · 10−2 ± 8 · 10−3

for Gaussian Fourier feature networks. The difference in quality is visible at high resolution, but
indistinguishable at low resolution (Fig. D.1). DI-Net-2 uses strided MLP convolutions, a global
average pooling layer, then two fully connected layers. DI-Net-4 adds a residual block with two
MLP convolutions after the strided convolutions. We train all models with an AdamW optimizer
(Loshchilov & Hutter, 2017).

Figure D.1: Comparison of SIREN (left) and Gaussian Fourier feature network (right) representations
of an image, rendered at 256×256 resolution. The Fourier feature network’s representation is slightly
blurrier (compare the tree bark), but this effect is not noticeable at lower resolutions.

The architecture of the MLP is 3 fully connected layers with 128 hidden units each and ReLU
activation separated by batch normalization. It learns to map the SIREN parameters to the class label.
We found that the model’s loss curve becomes unstable after 3000 iterations so we reduce the number
of iterations to 2000.

The non-uniform CNN applies the non-uniform Fourier transform (Muckley et al., 2020) followed by
inverse Fast Fourier Transform to resample the input signal to the grid. It then feeds the result to a
2-layer CNN to perform classification.

During training, we augment with noise, horizontal flips, and coordinate perturbations.

D.3 DETAILS ON CITYSCAPES SEGMENTATION

SIREN is trained on Cityscapes images for 2500 steps, using the same architecture and settings as
ImageNet. Seven segmentation classes are used for training and evaluation, labeled in the dataset
as ‘flat’ (e.g. road), ‘construction’ (e.g. building), ‘object’ (e.g. pole), ‘nature’, ‘sky’, ‘human’, and
‘vehicle’.

DI-Net-3 uses two MLP convolutional layers at the same resolution followed by channel mixing
(pointwise convolution). There are 16, 32 and 32 channels in the intermediate features. The support
of the kernels in the MLP convolutional layers is .025× .05 and .075× .15 respectively, to account
for the wide images in Cityscapes being remapped to [−1, 1]2.

DI-Net-5 uses a strided MLP convolution to perform downsampling and nearest neighbor interpolation
for upsampling. There are 16 channels in all intermediate features. There is a residual connection
between the higher resolution layers.

30

Under review as a conference paper at ICLR 2023

Figure D.2: 2D slices of two toy 3D scenes with signed distance functions predicted by DI-Net and a
fully convolutional network.

The CNN baselines use 3x3 convolutions with the same number of layers and channels as DI-Net.
All networks use ReLU activation and batch normalization.

The hypernetwork learns a map from the SIREN RGB to a SIREN with the same architecture that
represents the segmentation. It predicts changes to the weights of all layers before the final fully
connected layer, and predicts raw values for the weights of the final layer since it has 7 output
channels for segmentation instead of 3 for RGB.

The non-uniform CNN applies the non-uniform Fourier transform followed by inverse Fast Fourier
Transform, and feeds the result to the 3-layer FCN to perform segmentation.

D.4 SIGNED DISTANCE FUNCTIONS

In our SDF prediction experiment, we construct toy scenes of 2-4 balls of random radii (range
0.2-0.5), centers, and colors scattered in 3D space (Ω = [−1, 1]3). For simplicity, we train each
network directly on the closed form expressions for the RGBA fields and signed distance functions,
rather than fitting neural fields first.

The FCN contains 3 convolutional layers of kernel lengths 3, 5 and 1 respectively. Accordingly, the
convolutional DI-Net contained 2 convolutional layers followed by a linear combination layer. There
are 8 channels in all intermediate features. We train each network for 1000 iterations with an AdamW
optimizer with a batch size of 64 and a learning rate of 0.1 with an MSE loss on the SDF.

E ADDITIONAL ANALYSIS

E.1 INITIALIZATION WITH DISCRETE NETWORKS

When a DI-Net is initialized with a large pre-trained convolutional neural network, its outputs are
identical by construction. However, the behavior of the pre-trained CNN is not preserved when the
DI-Net switches to other discretizations – even tiny perturbations from the regular grid are sufficient
to change a classifier’s predictions. Although the effect on the output of a single layer is much lower
than the signal, small differences in each layer accumulate to exert a large influence on the final
output. Figure E.2 illustrates this phenomenon for DI-Net initialized with a truncated EfficientNet. In
addition, we find that once grid discretization is abandoned, large DI-Nets cannot easily be fine-tuned
to restore the behavior of the discrete network used to initialize it. This suggests that not only does
the discretization at training time not necessarily permit new discretizations at inference time, but
also that the optimization landscape of maps on L2/IX → R can vary significantly with X .

31

Under review as a conference paper at ICLR 2023

Table E.1: Pre-trained models fine-tuned on ImageNet NF classification.

Model Type Accuracy
EfficientNet (Tan & Le, 2019) 66.4%
DI-Net-EN 48.1%

Table E.2: Pre-trained models fine-tuned on Cityscapes segmentation.

Model Type Mean IoU Pixel Accuracy
ConvNexT (Liu et al., 2022) 0.429 68.1%
DI-Net-CN 0.376 68.7%

In Tables E.1 and E.2, we illustrate that DI-Net initialized with a large pre-trained discrete network
does not match the performance of the original model when fine-tuned with QMC sampling. We use
a truncated version of EfficientNet (Tan & Le, 2019) for classification, and fine-tune for 200 samples
per class. For segmentation we use a truncated version of ConvNexT-UPerNet (Liu et al., 2022),
fine-tuning with 1000 samples.

We also find that the output of an NF-Net is less stable under changing sampling resolution with a grid
pattern (Fig. E.1). While the output of a network with QMC sampling converges at high resolution,
the grid sampling scheme has unstable outputs until very high resolution. Only the grids that overlap
each other (resolutions in powers of two) produce similar activations.

Figure E.1: Distance of the output of a DI-Net
from its grid output at 32× 32 resolution, when
sampling at various resolutions. Its outputs de-
viate rapidly as its discretization shifts from a
regular grid to a low discrepancy sequence

Figure E.2: An DI-Net’s output diverges as sam-
ple points are gradually shifted from a grid layout
to a low discrepancy sequence.

Our preliminary experience with DI-Nets highlights the need for improved sampling schemes and
parameterizations that will allow large continuous-domain neural networks to learn effectively. Stable,
scalable methods are needed to realize DI-Nets’ full potential for continuous data analysis.

E.2 COMPUTATIONAL COMPLEXITY

The DI-Net’s complexity is similar to that of a discrete model with an equivalent architecture. In
general time and memory both scale linearly with the number of sample points (regardless of the
dimensionality of Ω), as well as with network depth and width.

Implemented naively, the computational cost of the continuous convolution is quadratic in the number
of sample points, as it must calculate weights separately for each neighboring pair of points. We
can reduce this to a linear cost by specifying a Nbin Voronoi partition of the kernel support B, then
using the value of the kernel at each seed point for all points in its cell. Thus the kernel need only be
evaluated Nbin times regardless of the number of sample points. Additionally Nbin can be modified
during training and inference.

32

Under review as a conference paper at ICLR 2023

DI-Net-4 (our ImageNet classifier) performs a forward pass on a batch of 48 images in 96± 4ms on
a single NVIDIA RTX 2080 Ti GPU.

F FUTURE DIRECTIONS

Scaling convolutional DI-Nets Our initial experiments suggest that convolutional DI-Nets do not
scale well in depth. We suspect that within a CNN-like architecture, the gradients of discrete convolu-
tional layers with respect to kernel parameters have much smoother optimization landscapes over
large networks relative to continuous convolutional layers parameterized with MLPs or coefficients
of a polynomial basis. It is then no surprise that implementations of neural networks with continuous
convolutions do not simply substitute the convolutional layers in a standard CNN architecture, but
also make use of a variety of additional techniques (Qi et al., 2017; Wang et al., 2021; Boulch, 2019)
which would likely be helpful for scaling convolutional DI-Nets.

Parameterization of output NFs In this work we assume that a DI-Net that produces an NF
specifies the output discretization a priori, but some applications may need the output to be sampled
several times at different discretizations. It is inefficient to re-evaluate the entire network in such
cases, and we propose two solutions for future work. One method can store the last few layers of the
network alongside the input activation, and adapt the discretizations as needed in these last few layers
only. A second approach can treat the discretized outputs of DI-Net as parameters of the output NF
in the manner of Vora et al. (2021), which would maintain interoperability of the entire framework.

Extending DI-Net to high discrepancy sequences In many applications, there are large regions of
the domain that are less informative for the task of interest. For example, most of the information
in 3D scenes is concentrated at object surfaces, so DI-Nets should not need to process a NeRF by
densely sampling all 5 dimensions. Moreover, ground truth labels for dense prediction tasks may
only be available along a high discrepancy discretization. Such a discretization can be handled by
quadrature, but more work is required to design efficient quadrature methods within a neural network.
Additional techniques such as learned coordinate transformations or learned discretizations may also
be helpful for extending our model to extreme discretizations or highly non-uniform measures.

Error propagation When an NF does not faithfully represent the underlying data, it is important
to characterize the influence on DI-Net’s output. In the worst case, these deviations are adversarial
examples, and robustness techniques for discrete networks can also be applied to DI-Net. But what
can we say about typical deviations of NFs? Future work should analyze patterns in the mistakes that
different types of NFs make, and how to make DI-Nets robust to these.

33

	Introduction
	Related Work
	Principles of DI-Nets
	Neural Fields as Functions
	Discretization Invariance via Numerical Integration
	Discretization Invariant Networks
	Convergence under Equidistributed Discretizations
	Universal Approximation Theorem

	Design and Implementation of DI-Nets
	Convolutional DI-Nets
	Training DI-Nets

	Experiments
	Neural Field Classification
	Neural Field Segmentation
	Signed Distance Function Prediction

	Conclusion
	More Details on Discretization Invariance
	Koksma–Hlawka inequality and low discrepancy sequences
	More General forms of DI layers

	Proofs
	Proof of Theorem 1 (Convergence of Discretized Gradients)
	Proof of Theorem 2 (Universal Approximation Theorem)

	Pixel-Based DI-Net Layers
	Experimental Details
	Algorithms
	Details on ImageNet Classification
	Details on Cityscapes Segmentation
	Signed distance functions

	Additional Analysis
	Initialization with discrete networks
	Computational Complexity

	Future Directions

