Under review as a conference paper at ICLR 2024

ON THE GLOBAL CONVERGENCE OF NATU-
RAL ACTOR-CRITIC WITH NEURAL NETWORK
PARAMETRIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Despite the empirical effectiveness of natural actor-critic (NAC) algorithms, their
theoretical underpinnings remain relatively unexplored, especially with neural
network parameterizations. In the existing literature, the non-asymptotic sample
complexity bounds for NAC hold only when the critic is either tabular or are repre-
sented by a linear function. In this work, we relax such assumptions for NAC and
utilize multi-layer neural network parameterization of the critic and an arbitrary
smooth function for the actor. We establish the non-asymptotic sample complexity

bounds of O (W) for the global convergence of NAC algorithm. We ob-

tain this result using our unique decomposition of the error incurred at each critic
step. The critic error is decomposed into the error incurred in fitting the sampled
data, the error incurred due to the lack of knowledge of the transition matrix as
well as the error incurred due to the limited approximation power of the class of
neural networks. In contrast to the existing works for NAC with neural network
parameterization of the critic, our analysis does not require i.i.d sampling.

1 INTRODUCTION

The use of neural networks in actor-critic (AC) algorithms is widespread in various machine learning
applications, such as games (Vinyals et al., 2017; Bonjour et al., 2022), robotics (Morgan et al.,
2021), autonomous driving (Kiran et al., 2022), ride-sharing (Al-Abbasi et al., 2019), networking
(Geng et al., 2020), and recommender systems (Li et al., 2020). AC algorithms sequentially update
the estimate of the actor (policy) and the critic (value function) based on the data collected at each
iteration, as described in Konda & Tsitsiklis (1999). An empirical and theoretical improvement
of the AC, known as natural actor-critic (NAC), was proposed in Peters & Schaal (2008). NAC
replaced the stochastic gradient step of the actor with the natural gradient descent step described
in Kakade (2001b) based on the theory of Rattray et al. (1998). The finite-time or non-asymptotic
sample complexity bounds for NAC are limited to settings the critic has a linear parametrization (Xu
ctal., 2020a). However, since linear parametrization is quite restrictive, in practice mostly non-linear
neural network-based parameterizations for both actor and critic are used as in Wang et al. (2021a).
Despite the widespread use in practice, no finite-time sample complexity bounds are available for
the setting when neural networks (NNs) represent the critic in the NAC algorithm.

The linear parametrization allows for a closed-form update for both the actor and the critic update
steps. On the other hand, no such closed-form expressions are available for the NAC algorithm
with non-linear parametrization. In recent work by Fu et al. (2020), a finite time bound is derived
for linear function approximation but for NN parametrization, only an asymptotic convergence is
established, moreover, this work requires i.i.d sampling. Wang et al. (2019) establishes similar
asymptotic bounds where both the actor and critic are represented using a 2-layer neural network.
Hence, we ask this question

Is it possible to obtain non-asymptotic sample complexity bounds for global convergence of the
natural actor-critic algorithm with a multi-layer neural network parametrization of the critic?

We answer this question by deriving precise non-asymptotic sample complexity bounds for the
global convergence of the NAC algorithm. Our approach relies on decomposing the error incurred

Under review as a conference paper at ICLR 2024

Table 1: This table summarizes the sample complexities of different natural actor-critic algorithms.
Our result is the first to provide sample complexity results of NAC for a general MDP setting with
neural network (NN) parametrization for the critic.

Actor Critic Sample

References parametrization | parametrization Complexity
(Xu et al., 2020b) Linear Linear O(e 41 —~)79)
(Khodadadian et al., 2021) Linear Linear O(e 3(1—~)~ 1
(Xu et al., 2020a) Linear Linear O(e2(1—7)™h

(Wang et al., 2019) 2-layer NN 2-layer NN Asymptotic

(Fu et al., 2020) Multi-layer NN | Multi-layer NN Asymptotic
This work Multi-layer NN | Multi-layer NN | O(e=4(1 — ~v)~%)

at each step of the NAC algorithm into the errors at the actor and critic steps separately. The main
novelty in our approach is that the error incurred in the critic step is decomposed into the error in
fitting the observed data, the error incurred due to the lack of knowledge of the transition matrix
and the error due to finite approximation power of the class of neural networks. This contrasts the
approach in Fu et al. (2020) where both the critic and actor optimizations are analyzed as stochastic
gradient descent problems; thus, only an asymptotic error bound is possible with their approach.
Hence, we summarize our contributions as follows.

« We derive a non-asymptotic sample complexity bound of O(e=*(1 — ~)~*%) for the global
convergence of the natural actor-critic algorithm with neural network parameterizations for
the critic and the actor. To achieve that, our two main novelties in the convergence analysis
are highlighted next.

* Building upon the insights presented in Agarwal et al. (2021), we leverage the inherent
smoothness property of the actor parametrization to derive an upper bound on the estima-
tion error of the optimal value function. This upper bound is expressed in terms of the error
incurred in attaining the compatible function approximation term, as elucidated in Sutton
et al. (1999) and the error incurred in estimating the action value function used to solve the
compatible function approximation.

¢ The error incurred at the critic step in fitting the data obtained through sampling is upper
bounded using results from Allen-Zhu et al. (2019). The error incurred due to the lack of
knowledge of the transition matrix is bounded in terms of the Radamacher complexity of
the class of neural networks. This approach allows us to achieve the first non-asymptotic
sample complexity bound for NAC with the critic parameterised by a multi layer neural
network. It also allows us to have a milder assumption on the error incurred due to the
limited approximation the function class representing the critic as compared to other finite
time convergence results such as Xu et al. (2020a). Finally, we do not need to assume i.i.d
sampling in this approach.

2 RELATED WORKS

Natural Policy Gradient. The problem of the non-convexity of the critic can be avoided if we use
the natural policy gradient algorithm (Kakade, 2001b) where instead of maintaining a parameterized
estimate of the critic, we obtain an estimate (or multiple estimates) at each iteration through a Monte
Carlo estimate. In such a case, sample complexity estimates are possible without the assumption of
linear function approximation of the value function. Agarwal et al. (2021) obtained a sample com-
plexity bound of o (W) , which was improved to o (W) in (Yuan et al., 2022) with
the restriction of the actor being represented by a log-linear class of functions. Further improvement
was obtained in (Liu et al., 2020b) with a sample complexity of @) (W) and also did not re-
quire the restriction to log-linear class of functions to represent the actor. In spite of obtaining finite
time sample complexity bounds, the Natural Policy Gradient algorithms suffer from high variance
due to the Monte Carlo estimate. Additionally, each estimate of the critic requires on average a

sample of size (ﬁ) thus these algorithms are not sample efficient in terms of . Additionally the

Under review as a conference paper at ICLR 2024

error incurred due to the Monte Carlo sampling of the critic as well as the lack of expressability of
the class of functions representing the policy is represented as a constant.

Actor-Critic Methods. First conceptualized in Sutton (1988), aim to combine the benefits of the
policy gradient methods and Q-learning based methods. The policy gradient step in these methods
is replaced by a Natural Policy Gradient proposed in (Kakade, 2001b) to obtain the so-called Natural
Actor Critic in (Peters et al., 2005). Sample complexity results for Actor Critic were first obtained
for MDP with finite states and actions in (Williams & Baird, 1990), and more recently in (Lan, 2023;
Zhang et al., 2020). Finite time convergence for natural actor critic using a linear MDP assumption
has been obtained in (Chen & Zhao, 2022; Khodadadian et al., 2021; Xu et al., 2020b) with the

best known sample complexity of o (ﬁ) (Xu et al., 2020a). Finite time sample complexity

results are however, not available for Natural Actor Critic setups for general MDP where neural
networks are used to represent the critic. (Fu et al., 2020) obtained asymptotic results for a variant
of the Natural Actor Critic using a PPO update for the policy gradient step, but it forgoes the use of
the ‘clipped surrogate objective’, which makes the algorithm unsuitable practically. The key related
works here are summarized in Table 1.

3 PROBLEM FORMULATION

We consider a discounted Markov Decision Process (MDP) given by the tuple M :=
(S, A, P.R,~), where S is a bounded measurable state space, A is the finite set of actions.
P : S x A — P(S) is the probability transition kernel',R : S x A — P([0, Rmay]) is the re-
ward kernel on the state action space with Ry, . being the absolute value of the maximum reward,
and 0 < v < 1 is the discount factor. A policy 7 : S — P(A) maps a state to a probability
distribution over the action space. The action value function for a given policy 7 is given by

oo
Qﬂ-(87a’) =E Z’ytr(shatﬂso =S,a0=a|, (1)
t=0
where 7(s¢,ar) ~ R(:|s¢,ar), ap ~ w(-|s;) and 811 ~ P(:|sy,ap) fort = {0,--- ,00}. For a
discounted MDP, we define the optimal action value functions as
Q*(s,a) =supQ7(s,a), V(s,a) €S x A)
s

A policy that achieves the optimal action-value functions is known as the optimal policy and is de-
noted as 7*. Similarly, we can define the value function as V™ (s) = E >, v/ (s, ar)|s0 = s],
and from the definition of Q™ (s, a), it holds that V™ (s) = Eq, [Q7 (s, @)]. Similarly, we can define
the optimal value function as V*(s) = sup,. V™(s), VseS.

We define p7(s) as the stationary state distribution induced by the policy 7 starting at state
distribution v and (] (s,a) is the corresponding stationary state action distribution defined as
¢l (s,a) = pr(s)w(als). We further define V™ (v) = E, ~.,[V™(s0)], where v is an initial state
distribution. We can define the visitation distribution as d7 (s) = (1 —) Y10 V' Pr7(s; = s|so).
Here Pr™(s; = s|s,) denotes the probability the state at time ¢ is s given a slarting state of s,.
Hence, we can write d7 (s) = E; ,[d7 (s)]. Finally for any measurable function f : § x A — R

and a measure v defined on S x A we define E(f), = foA fdv,.

We additionally define the bellman operator for a policy 7 on a function @ : S x A — R is defined
as

(T7Q)(s,0) = E(r(s,0)) + 7 [Q7)) P(ds'}s,a))
Further, operator P7 is defined as
PTQ(s,a) = E[Q(s',a")|s" ~ P(-[s,a),a" ~ m(:|s")])

This is the one step Markov transition operator for policy 7 for the Markov chain defined on S x A
with the transition dynamics given by Sy11 ~ P(:|Sy, A¢) and Ayqq ~ 7(+|Sit1). It defines a distri-
bution on the state action space after one transition from the initial state. Similarly, P™ P72 - .. P™m
is the m-step Markov transition operator following policy 7 at steps 1 < ¢ < m.

"For a measurable set X, let P(X) denote the set of all probability measures over X.

Under review as a conference paper at ICLR 2024

4 NATURAL ACTOR CRITIC ALGORITHM OVERVIEW

We now describe our natural actor-critic (NAC) algorithm. In a natural policy gradient algorithm
(Kakade, 2001a), the policy is parameterized as {mx, A € A} and A C R? where d is a positive
integer. We have K total iterations of the Algorithm. At iteration k, the policy parameters are
updated using a natural policy gradient step given by

Abr1 =M + 1F () VAV (), ®)

From the policy gradient theorem in (Sutton et al., 1999) we have
VTV ™) = Ega(Viog(my,)(als)@™ (s, a)), (©)
E,(Ay) = Esq [Vlogm\k(a\s) (V¢ logﬂ,\k(a,|.9))—r] , (7

where s ~ dy,"*,a ~ 7y, (.|s). From Sutton et al. (1999), the principle of compatible function
approximation implies that we have

1
FJQ)VA V™) = 7——wj ®)
-7
wi = argminE, ,(A™* (s,a) — wV log(my, (a]s)))?,)
w
and s ~ d, %, a ~ my, (.|s) Here (A™x (s,a) = Q™ (s,a) — V™ (s)) and where ' denotes
the Moore-Penrose pseudo-inverse of the matrix F. For natural policy gradient algorithms such
as in Agarwal et al. (2021) and Liu et al. (2020b) an estimate of Q™+ (and from that an estimate

of A™uk (s,a)) is obtained through a sampling procedure that requires on average (ﬁ) for each

sample of Q™+ (and thus A™#). For the natural actor-critic setup, we maintain a parameterized
estimate of the Q-function, which is updated at each step and is used to approximate Q™*«. In our
case, a neural network with L layers and at least m neurons per layer is used to represent the ()
function, at each iteration k of the algorithm, an estimate of its parameters is obtained by solving an
optimization of the form
argmin E, ,(Q™r — Qp)?, (10)
6€O

Where (s,a) ~ Gk, O s the space of parameters for the neural networks and)y is the neural
network corresponding to the parameter 6. This step is known as the critic step. A DQN like
algorithm to get an estimate of Q7>+, as is done in practical implementations of the Natural Actor
Critic like Wang et al. (2021a). We summarize the Natural Actor-Critic approach in Algorithm 1. It
has one main for loop indexed by the iteration counter k. The first inner for loop indexed by j is the
loop where the critic step is performed. At a fixed iteration k of the main for loop and iteration j of
the first inner for loop, we solve the following optimization problem

arg min B, o (T™+ Qe j-1(s, @) = Qo(s,0))*, (11
This is equivalent to the target network feature of the Deep Q Network(DQN) algorithm. For the
inner loop at iteration j, the target is fixed to be 177>+ Qy, j_1(s,a). The first inner for loop has a
nested inner for loop indexed by 4 where the optimization step for the current target is performed.
The target network is updated at the end of the first inner loop. We note that the farget network
technique is applied in most real-world applications of natural actor critic with neural network critic
as in (Wei et al., 2019). The first inner loop controls how many times the target network is updated.
To get rid of the Markov dependence between the samples, the replay buffer technique is used
wherein we randomly sample from the collected data instead of using it sequentially. For the sake of
generality, we have not used this as our analysis will account for the Markov dependence between
the samples.

The estimate of wj; is obtained in the second inner for loop of Algorithm equation 1 indexed by
where a gradient descent is performed for the loss function of the form given in equation 9 using
the state action pairs sampled in the first inner for loop. Note that we do not have access to the
true advantage function required for the critic update. Thus, we use the estimate of the () function
obtained at the end of the first inner for loop to calculate the advantage function. After obtaining
our estimate of the minimizer of equation 9, we update the policy parameter using the stochastic
gradient update step. Here, the state action pairs used are the same we sampled in the first inner for
loop.

Under review as a conference paper at ICLR 2024

Algorithm 1 Natural Actor Critic with Neural Parametrization

Input: S, A,~, Time Horizon K € Z , Updates per time step J] € Z ,starting state sampling
distribution v, Actor step sizes f5; i, vk € {1,--- ,K},i € {1,---,n.J}, Critic step size a, policy
gradient step size 1,

1: Initialize: \o = {0}¢,

2: fork e {1,--- ,K}do

3: Initialize X = @, Qi(s,a) =0 V(s,a) e Sx A

4. forje{l,---,J}do

5: Sample s; from v and a; by following 7,
6: Initialize 6, using a standard Gaussian.
7
8

foric {1,---,n}do
Sample the tuple s;11, a; 1 by following the policy 7y,

9: Sety; =1 (si,a;) + YQr(Six1,ai41),

10: 0; = 0i—1 + oy — Qo, (84,0:))VQo, (54, a4)
11: end for

12: Qr = Qo,

13: Append the n (s;, a;) pairs to the data-set X

14: end for

15: Initialize wy = 0¢
16: foric {1,---,|X|}do
17: Ak(8i,0i) = Qi(si,ai) — D gea ™ (al$)Qr(si,a)

18: w; = wi—1 — Bik (wi'V,\ log 7y, (ai]si) — Ax (s, az‘)) Valogmy, (ai]s;)
19: end for

20: Update A1 = Ap + nw| x|

21: end for

Output: my .,

5 GLOBAL CONVERGENCE RESULT

5.1 ASSUMPTIONS

Before stating the main result, we formally describe the required assumptions in this subsection.
Assumption 1. For any A1, A2 € A and (s,a) € (S x A) we have

[Viog(ma,)(als) — Viog(m,)(als)|lz < Bl[A1 = Azll2 (12)
where 3 > 0.
Such assumptions have been utilized in prior policy gradient based works such as Agarwal et al.

(2021); Liu et al. (2020b) and finite time analysis of NAC using linear critic such as Xu et al.
(2020a). This assumption is satisfied for the softmax policy parameterization

exp(fa(s, a))
o' ca®XP(fa(s,a"))

m(als) = (13)
2

where f) (s, a) is a neural network with a smooth activation function. This is the most common form

of the policy used in practice (Wei et al., 2019; Wang et al., 2021a). This assumption is also satisfied

for Gaussian (Doya, 2000) and Boltzmann policies (Konda & Tsitsiklis, 1999). Thus our analysis is

more general than Fu et al. (2020) which is restricted to energy-based policies.

Assumption 2. Forany A € A, let) be the corresponding policy, v be the starting distribution over
the state space, and let (> be the corresponding stationary state action distribution. We assume
that there exists a positive integer p such that for every positive integer T

dry (P((sr,ar) € -|(s0,a0) = (s,0)), (G () < pp",¥(s,a) € S x A (14)

This assumption implies that the Markov chain is geometrically mixing. Such assumption is widely
used both in the analysis of stochastic gradient descent literature such as Doan (2022); Sun et al.

Under review as a conference paper at ICLR 2024

(2018), as well as finite time analysis of RL algorithms such as Xu et al. (2020a). In Fu et al. (2020),
it is assumed that data can be sampled from the stationary distribution of a given policy. We note
that this is not possible in practice. Instead, we can only sample from a Markov chain which has a
stationary distribution as the desired distribution to sample from.

Assumption 3. For any fixed A € A and 0 € © we have

. (Ao(s,0) — 0T Viog(m)(als))” < pias (15)

minE

w 5,a~G,
Similar assumptions are made in Fu et al. (2020), where this error is assumed to be zero when the
critic has a linear function parameterization. In policy gradient works such as Liu et al. (2020b), the
assumption replaces the parameterised estimate of the advantage function Ay (which is known to
us) with the true advantage function for policy 7y denoted by A™ (which is unknown to us). Doing
so ignores the error that is incurred due to a mismatch in the actor and critic parameterization which
is a critical aspect of a successful implementation of natural actor-critic algorithms. In Xu et al.

(2020a), this assumption is implicit as this term is defined as a constant denoted by cg;;ggm.

Assumption 4. For any fixed 6 € © and A\ € A we have

i L 2
minE o (Qoi(s,0) = T™Qo(s,0))° < €approa (16)

This assumption is key to the validity of the DQN step. Note that in works such as Xu et al. (2020a),
an upper bound is placed on the approximation error when the function class (in that case linear
functions) are used to approximate the unknown true value function (see term denoted as (o 0")
Our assumption is weaker as we only require the class of neural network to be able to approximate
the function obtained by applying the bellman operator to a neural network belonging to the same

class.

5.2 MAIN RESULT

Theorem 1. Suppose Assumptions 1-4 hold and we have @ = © (m) Bik = m
where i, is the strong convexity parameter of the loss function in equation 9, 1 = —= and m >

5

O(K.J.671) then from Algorithm 1 we obtain with probability at least 1 — &
K
. 1 1 log(J-n)) J)
min(V*(v) — V™« (v)) <O + oO(———|+0
i (V) v) <0 _K(l_v)) K(l_v);(Gr ()

ey (o(-a(9) o (%))

Hence, for K = O(e 2(1 —v)72%), J = O (log (1)), n = o (e2(1—=9)"2), m>0(e261)

min(V*(v) = V™ (v)) < e+

1
k<K ‘ 1—~ (ebias + (\/eapprox)) s (18)

which implies a sample complexity of K - J -n = O (741 —)™%).

Remark 1: We note that there are seven terms on the right-hand side of equation 17. The first term is
a consequence of the smoothness property of the actor parameterization. The second term is the error
incurred in estimating wj;. The third term is the error incurred due (o the inherent randomness of the
system during each critic update step, in Farahmand et al. (2010) this was known as the statistical
error. The fourth term on the right is the error incurred in fitting the data at each fixed target in the
critic step. The fifth term on the right is the error incurred due to a lack of knowledge of the transition
matrix. The sixth term €34 represents the minimum possible attainable value of the loss function in
the actor step. It is also a measure of how compatible are the architecture of the actor and critic. In
Wang et al. (2019) it is shown that for an over-parameterized neural network used to represent both

Under review as a conference paper at ICLR 2024

the actor and critic this error is zero. The term €gpproz 15 @ measure of how well the class of neural
networks we use to represent the critic can approximate a function obtained by applying the bellman
operator to a function from that same class. Works such as Fan et al. (2020); Chen & Jiang (2019)
set this error to zero. The requirement on the minimum number of neurons m in each layer of the
critic network can be be thought of as a consequence of the universal approximation property which
states that sufficiently wide neural networks(even those with a single hidden layer) can approximate
any continuous function with arbitrary accuracy.

Remark 2: Our sample complexity when compared to the existing state of the art sample complex-
ity bound for natural policy gradient with non-linear policy parameterization of O (¢=3(1 —~)~°)
achieved in Liu et al. (2020a) reveals a key insight. Note that our bound is worse off in terms of €
by a factor of ¢!, This is due to the fact that we have to obtain an estimate of the critic parameters
while the natural policy gradient does not. We can see this in our result from the fifth term on the
right hand side of equation 17 which is O(n_%) which is from the critic optimization step. The nat-
ural policy gradient algorithm requires on average (1 —)~ state action samples for every sample
of Q(s,a). This is reflected in our results as our error bounds are better in terms of (1 —) by a
factor of (1 —) ~2. We discuss this detail in Appendix E.

Remark 3: Note the presence of the probability term for our convergence result. This term is present
due to the fact that the optimization for the critic step is non-convex, hence convergence can only
be guaranteed with a high probability. We show in the Appendix F that if the critic is represented
by a two layer neural network with ReLU activation, using the convex reformulation as laid out in
Mishkin et al. (2022), a deterministic upper bound on the error can be obtained.

6 PROOF SKETCH OF THEOREM 1

The proof is split into two stages. In the first stage, we demonstrate how the difference in value
functions is upper bounded as a function of the errors incurred till the final step K. The second part
is to upper bound the different error components.

Upper Bounding Error in Separate Error Components: We use the smoothness property as-
sumed in Assumption 1 to obtain a bound on the expectation of the difference between our estimated
value function and the optimal value function.

. log(|A|) nBW? 1 N erry,
min V*(v) - V™« (v) < + + = , (19)
k{1l K} ®)) Kn(l—v) 2(1-7) K ,; -~
where
erry = By gr amne (1) (|A™ — w0 (s,a)Viog(my, (als)))), (20)

where W is a constant such that ||w*|| < W Vk, where k denotes the iteration of the outer for loop
of Algorithm 1. We split the term in equation 20 into the errors incurred due to the actor and critic
step as follows

erry = Egq|A™ —wFViog(my, (als)))) 2n
< Eyo(|A™r — Ag g|) + By o (|Ag.y — w*Viog(my, (als))]) - (22)
I II

Note that I is the difference between the true A™« function corresponding to the policy 7y, and
Ay is our estimate. This estimation is carried out in the first inner for loop of Algorithm 1. Thus I
is the error incurred in the critic step. I is the error incurred in the estimation of the actor update.
This is incurred in the stochastic gradient descent steps in the second inner for loop of Algorithm 1.

Upper Bounding Error in Critic Step: For each iteration k£ of the Algorithm 1. We show that
minimizing I is equivalent to solving the following problem

argminEg ,(Q™+ — Qo)?, (23)
€O

Under review as a conference paper at ICLR 2024

where (s,a) ~ g,’} M We recreate the result for the value function from Lemmas 2 of Munos (2003)
for the action value function () to obtain

J-1
Esal@™ = Qral < D A4 PP I Bl + 7 <RL>)
i=1 1=7
where € = T™% Q, j—1 — Q5 is the Bellman error incurred at iteration j of the first inner for loop
and iteration k of the outer for loop of Algorithm 1. The first term on the right hand side is called
as the algorithmic error, which depends on how good our approximation of the Bellman error is.
The second term on the right hand side is called as the statistical error, which is the error incurred
due to the random nature of the system. Intuitively, the Bellman error depends on how much data is
collected at each iteration, how efficient our solution to the optimization step is to the true solution,
and how well our function class can approximate 7"+ Qy ;1. Building upon this intuition, we split
¢ into four different components as follows.

= T™Qpj-1 — Qk,;j
T™ Qrj1— Qi+ Qi — Qh+ Qi — Qi+ Qi — Qry

1 2 3 4
€k.j ki ki ki

Ells,j + Gi,j + 624 + Ei,ja 25)

€k.j

We now define the terms introduced above. We first define the various (J-functions which we can
approximate in decreasing order of the accuracy and then define the corresponding errors.

We start by defining the best possible approximation of the function T™*« Q. ;1 possible from the
class of neural networks with smooth activation functions, with respect to the expected square from
the true ground truth 77« Qy, ;1.

Definition 1. For iteration k of the outer for loop and iteration j of the first inner for loop of
Algorithm 1, we define

Qt,; = argminE(Qp(s,a) — T™ Q. j_1(s, a))?, (26)
Qo.,0€0

where (s,a) ~ () " (s, a).

Note that we do not have access to the transition probability kernel P, hence we do not know 77>« .
To alleviate this, we use the observed next state and actions instead. Using this, we define Q% ; as,
Definition 2. For iteration k of the outer for loop and iteration j of the first inner for loop of
Algorithm 1, we define

Q% = argminE(Qq(s, a) — (1'(s,a) + 7Qrj—1(s',a"))?, (27)
’ Qo,0€0

where (s,a) ~ () (s.a), s’ ~ P(s'|s,a), 7' (:|s,a) ~ R(-|s,a) and a’ ~ 7+ (.|s")

To obtain Qi, o we still need to compute the true expected value in Equation 27. However, we still
do not know the transition function I°. To remove this limitation, we use sampling. Consider the
set of n state-action pairs sampled by starting from a state action distribution v and following policy
7%, using which we define Q%Aj as,

Definition 3. For the set of n state action pairs sampled in iteration k of the outer for loop and
iteration j of the first inner for loop of Algorithm I we define

1 2
Q= %géngl - > (QO(Sia a;) — (r(si as) + ”/Qk,j—l(sz'+1,az‘+1))) ; (28)
0,0€ i=1

%’ j is the best possible approximation for)-value function which minimizes the sample average

of the square loss functions with the target values as (r’(si, a;) + YQk,j—1(8i41, ai+1)). In other
words this is the optimal solution for fitting the observed data.

We now defined the errors using the) functions just defined. We start by defining the approximation
error which represents the difference between the function 7™*+();_; and its best approximation
possible from the class of neural networks used for critic parametrization denoted by Q}g, i

Under review as a conference paper at ICLR 2024

Definition 4 (Approximation Error). For a given iteration k of the outer for loop and iteration j of
the first inner for loop of Algorithm 1, we define, e}c’j =T Qp j—1 — Q}C’j, where Qi j_1 is the
estimate of the Q function at iteration k of the outer for loop and iteration j — 1 of the first inner for
loop of Algorithm 1.

This error is a measure of the approximation power of the class of neural networks we use to repre-
sent the critic. We upper bound this error in lemma 3 in Appendix B.

We also define Estimation Error which denotes the error between the best approximation of
T™x Qy,j—1 possible from the class of neural networks denoted by Q}. ; and the minimizer of the

loss function in equation 27 denoted Qﬁﬂ-.

Definition 5 (Estimation Error). For a given iteration k of the outer for loop and iteration j of the
first inner for loop of Algorithm I, we define, €} ; = Q. ; — Q7 ;.

We demonstrate that this error is zero in lemma 4 in Appendix B.

We now define Sampling error which denotes the difference between the minimizer of expected
loss function in equation 27 denoted by Q% j and the minimizer of the empirical loss function in
equation 28 denoted by Q%A ;- We can see that intuitively, the more samples we have the closer these
two functions will be. We use Rademacher complexity results to upper bound this error.

Definition 6 (Sampling Error). For a given iteration k of the outer for loop and iteration j of the
first inner for loop of Algorithm 1, we define, €} ; = Q3 ; — Q7 ;.

An upper bound on this error is established in 5 in Appendix B.

Lastly, we define optimization error which denotes the difference between the minimizer of the
empirical square loss function, Q)x,, and our estimate of this minimizer that is obtained from the
gradient descent algorithm.

Definition 7 (Optimization Error). For a given iteration k of the outer for loop and iteration j of
the first inner for loop of Algorithm 1, we define, €}, = Q%j — Qk,;. Here Q. ; is our estimate of
the () function at iteration k of Algorithm 1 and iteration j of the first inner loop of Algorithm 1.

The upper bound on these error terms is established in lemma 6 in Appendix B.

Upper Bounding Error in Actor Step: Notc that we require the minimization of the term
Eso(Aks — w*Viog(ry, (als))). Here the expectation is with respect to stationary state action
distribution corresponding to 7y, . But we do not have samples of states action pairs from the sta-
tionary distribution with respect to the policy 7y, , we only have samples from the Markov chain
induced by the policy 7y, . We thus refer to the theory in Doan (2022) and Assumption 3 to upper
bound the error incurred.

For the error incurred in the actor update we define the related loss function as
Definition 8. For iteration k of the outer for loop of Algorithm 1 ,we define wy, as the estimate of the
minima of the loss function given by IE(S D (o.0) (Ag. (s, a) — (w)Vlog(ﬂ,\k)(a|s))2 obtained
at the end of the second inner for loop of Algorithm 1. We further define the true minima as
_ . . B 2

wp = argfllnE(s,a)Ng,,Ak(s,a) (Ak.,J(Sva) (w)Vlog(n,\k)(a|s)) ’ (29)
For finding the estimate wy, we re-use the state action pairs sampled in the first inner for loop of
Algorithm 1. The difference between our estimate wy, and the wj, (which is also the minimizer of
I71) is then used to upper bound the difference between the value of I at our estimate wy, and the

minimum possible value of IT achieved at w;, which is upper bounded using Assumption 3. Details
of this are given in lemma 7 in Appendix B.

7 CONCLUSIONS

In this paper, we study a natural actor critic algorithm with a neural network used to represent both
the actor and the critic and find the sample complexity guarantees for the algorithm. We show
that our approach achieves a sample complexity of O(e~#4(1 — «)~*). This demonstrates the first
approach for achieving sample complexity beyond linear MDP assumptions for the critic.

