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ABSTRACT

Complex tasks are increasingly delegated to ensembles of specialized LLM-based
agents that reason, communicate, and coordinate actions—both among themselves
and through interactions with external tools, APIs, and databases. While persistent
memory has been shown to enhance single-agent performance, most approaches
assume a monolithic, single-user context—overlooking the benefits and challenges
of knowledge transfer across users under dynamic, asymmetric permissions. We
introduce Collaborative Memory, a framework for multi-user, multi-agent en-
vironments with asymmetric, time-evolving access controls encoded as bipartite
graphs linking users, agents, and resources. Our system maintains two memory
tiers: (1) private memory—private fragments visible only to their originating user;
and (2) shared memory—selectively shared fragments. Each fragment carries
immutable provenance attributes (contributing agents, accessed resources, and
timestamps) to support retrospective permission checks. Granular read policies
enforce current user—agent—resource constraints and project existing memory frag-
ments into filtered transformed views. Write policies determine fragment retention
and sharing, applying context-aware transformations to update the memory. Both
policies may be designed conditioned on system, agent, and user-level information.
Our framework enables safe, efficient, and interpretable cross-user knowledge
sharing, with provable adherence to asymmetric, time-varying policies and full
auditability of memory operations.

1 INTRODUCTION

The theory of Distributed Cognition [Hutchins| (1995)) posits that cognitive processes are not confined
to individual minds but are distributed across groups of people, artifacts, and their interactions within
an environment. From this perspective, a collective system—comprising individuals and shared
external representations—can function as a unified cognitive entity, capable of collaborative reasoning
and complex problem-solving. This conceptual framework aligns closely with recent advances in
multi-agent systems (Guo et al.| (2024); [Tran et al.| (2025a), where ensembles of specialized agents—
often instantiated as large language models (LLMs)—are orchestrated to solve problems that exceed
the capacity of any single model. These agents not only communicate and coordinate with one
another but also interface with external resources such as tools, APIs, and structured data sources|Yao
et al.|(2022);/Schick et al.| (2023)).

A key enabler of such collaboration is persistent memory. Recent work has demonstrated that
equipping LLM agents with long-term memory significantly enhances their ability to reason over
extended horizons |Lewis et al.| (2020); Melz (2023). For example, MemGPT introduces an oper-
ating system-inspired abstraction for managing contextual memory over time [Packer et al.| (2023));
MemTree employs a hierarchical memory structure for organizing and retrieving information dy-
namically Rezazadeh et al.| (2024); and GraphRAG constructs a graph-based memory of entities
and relations to enable structured knowledge access [Edge et al.|(2024); |Shinn et al.|(2023). These
systems allow agents to store, recall, and build upon prior experiences in a manner that supports more
coherent and context-aware behavior.
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Scenario 3: Dynamically Evolving Collaborative Memory
Figure 1: Illustration of multi-user, multi-agent collaboration. Scenario 1 (top-left): A fully col-
laborative memory environment where all users share unrestricted access to all agents. Scenario 2
(top-right): An asymmetric collaborative memory setup with heterogeneous privilege levels. Scenario
3 (bottom): Dynamically changing access, where permissions are granted or revoked over time.

However, these architectures mainly assume a single-user, single-agent paradigm with centralized,
globally accessible memory. This assumption fails in many real-world applications that are inher-
ently multi-user and multi-agent, such as collaborative enterprise assistants, multi-user productivity
platforms, and distributed workflow systems [Packer et al.|(2023). In these settings, sharing memory
across user boundaries can reduce redundant inquiries, maintain consistency, and improve collective
reasoning (Figure[I)). Yet research often overlooks these complexities, leaving two key challenges
underexplored: 1) Information Asymmetry: users have access to different agents, and agents connect
to different resources—making it crucial for memory systems to enforce these asymmetries to prevent
unauthorized information sharing; and 2) Dynamic Access Patterns: permissions shift over time with
changing roles, policies, and task needs.

These asymmetric and temporally evolving constraints pose a central question: How can a multi-user,
multi-agent system maximize the utility of collective memory while ensuring that information sharing
conforms to permissions governing what can be shared, when, and by whom? In this paper, we take
a first step toward addressing this question by introducing a framework designed specifically for
multi-user, multi-agent memory management under asymmetric and dynamic access constraints. Our
proposed framework comprises several key components:

* Dynamic bipartite access graphs. We formalize time-dependent permissions using two bipartite
graphs: one representing user-to-agent permissions, and another representing agent-to-resource
permissions. These graphs explicitly encode the evolving permissions landscape, capturing real-
world dynamics such as user onboarding, role changes, and evolving policy constraints.

* Two-tier memory system. To enable controlled yet flexible knowledge sharing, each agent
maintains a dual-tier memory architecture consisting of private memory and shared memory.
Private memory isolates sensitive information to individual user contexts, while shared memory
enables knowledge transfer among users when allowed by the system’s access policies.

* Fine-grained read and write policies. Memory interactions are governed by distinct read and
write policies. The write policy projects raw interaction logs into structured memory fragments,
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selectively allocating these fragments to either private or shared memory tiers. Conversely, the
read policy dynamically constructs a memory view tailored to each agent’s current permissions,
selectively incorporating memory fragments according to fine-grained access constraints. Impor-
tantly, these policies are highly configurable, supporting specification and enforcement at multiple
granularity levels—system-wide, agent-specific, and user-specific—and are adaptive over time.

To our knowledge, this is the first formulation of memory sharing that explicitly accounts for fine-
grained access asymmetries in multi-agent, multi-user systems. Our work establishes foundational
concepts and formalizations, laying the groundwork for future research into efficient, secure, and
adaptive collaborative multi-agent systems.

2 RELATED WORK

Long-term memory for single LLM agents. Early work on augmenting LLMs with persistent
context treats memory as a flat retrieval table, but recent systems introduce hierarchical or structured
representations that better support long-horizon reasoning. MemGPT leverages operating-system
abstractions to emulate virtual memory and extend the effective context window of an LL.M |Packer
et al.| (2023). MemTree organizes interaction history as a hierarchical dynamically evolving tree
whose nodes hold abstracted summaries, enabling continual updates of memory |Rezazadeh et al.
(2024). HippoRAG constructs a hippocampal-inspired knowledge graph and applies Personalized
PageRank to integrate new information while avoiding catastrophic forgetting |Gutiérrez et al.| (2024)).
GraphRAG takes a complementary approach, constructing an entity-relation graph over the corpora
and retrieving sub-graphs to answer complex queries Edge et al.[(2024). Although highly effective,
all of these designs assume a single-user, single-agent setting with globally visible memory.

Multi-agent collaboration and shared memory. LLM agents increasingly collaborate as heteroge-
neous teams whose members specialize in search, planning, self-critique, and tool calling. AutoGen
provides an open-source conversation framework that lets developers script arbitrary interaction
graphs among tool-augmented agents Wu et al.|(2023). AgentVerse explores emergent social be-
haviors when groups of agents are asked to solve tasks collectively, showing measurable gains over
single-agent baselines |Chen et al.| (2023). MoSA (Mixture-of-Search-Agents) uses Monte-Carlo Tree
Search to fuse diverse reasoning trajectories proposed by multiple LLMs and consistently outperforms
strong single-model solvers on math and commonsense benchmarks|Yang et al.| (2025). COPPER
introduces a shared reflector that learns to issue counterfactual rewards, mitigating credit-assignment
issues in multi-agent planning Bo et al.|(2024). Most of these frameworks either maintain no persis-
tent memory or assume a fully shared memory store; Memory Sharing|Gao & Zhang| (2024) begins to
address this gap by letting agents asynchronously contribute to, and retrieve from, a single common
memory pool, but it still overlooks user-level privacy or access constraints.

Access-control models for knowledge sharing. The security literature offers mature abstractions
for permission management. Role-Based Access Control (RBAC) assigns users to roles that carry
predefined privileges, supporting efficient policy administration in large organizations |Sandhu et al.
(2000). Attribute-Based Access Control (ABAC) generalizes RBAC by deciding authorization
through logical predicates over arbitrary subject, object, and environmental attributes Hu et al. (2013).
Our framework inherits the policy modularity of ABAC while explicitly modeling time-varying
bipartite graphs between users, agents, and resources; to our knowledge, no existing LLM memory
system combines such policies with provenance-aware fragment storage.

Summary. Prior work establishes the benefits of (i) structured long-term memory for individual
agents and (ii) division-of-labor in multi-agent systems; however, none accommodates the asymmetric,
dynamic permissions that arise when multiple human users interact with collaborative multiple LLM
agents. Our contribution is to bridge these threads by embedding formal access-control graphs and
policy-conditioned read/write transformations directly into the memory substrate, enabling safe and
auditable cross-user knowledge transfer.
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Figure 2: Left: Illustration of the dynamic multi-user environment, where multiple users collaborate
with various agents that each have access to different resources. Right: Illustration of Collaborative
Memory. User u; sends a query ¢; and receives responses from agents a; and as. These responses
are passed to the write policies 7"rit/Private g gwrite/shared "y hich ypdates both the private and shared
memories. Memory fragments that are not accessible are shown in gray. When user us issues another
query go, the agent access resource 1 as well as reading from the collaborative memory, retrieving
only the information it is permitted to access.

3 COLLABORATIVE MEMORY

Large-scale, multi-user applications increasingly rely on ensembles of LLM agents that reason,
communicate, and coordinate actions—both among themselves and with external resources such
as tools, APIs, or databases Tran et al.| (2025a). Prior research Zhong et al.| (2023); [Liu et al.
(2023)); Tran et al.| (2025b)) demonstrates that granting agents access to a persistent memory of past
interactions can significantly enhance task performance; however, most existing designs assume a
single-user setting, thus overlooking the benefits of cross-user knowledge transfer. In this work, we
present Collaborative Memory, a framework that enables agents to share knowledge across multiple
users without violating each user’s or agent’s access constraints. As illustrated in Figure [2} users’
queries, agent responses, and write policies collectively maintain and manage both private and shared
memories, ensuring that each agent can only read the information it is permitted to access.

3.1 SETUP AND DYNAMIC ACCESS GRAPHS

Let U, A, and R denote the sets of users, large language model agents, and resources (e.g., tools,
APIs, a structured data source), respectively. For convenience, we also write /(-), A(+), and R(-) to
indicate subset operators over these sets. We use lowercase u, a, and r to refer to individual users,
agents, and resources.

At each timestep ¢, access permissions are captured by two bipartite graphs:
Gua(t) CU X A, Gar(t) CAXTR, (1

where (u;,a;) € Gy.(t) means user u; may invoke agent a; at time ¢, and (a;,7%) € Gar(t)
indicates that a; can access resource 7. These graphs evolve over time to reflect new users,
revocations, or changes in resource permissions. We define:

Au,t) :={a| (u, a) € Gua(t)},
R(a,t) :=={r| (a, r) € Gar(t)}.

Hence, A(u, t) is the set of agents that user v can invoke at time ¢, and R(a, t) is the set of resources
agent a can access at time ¢.

@

3.2 MEMORY TIERS AND PROVENANCE

We let M denote the set of all memory fragments stored (write) and retrieved (read) during user—
agent interactions. Each fragment m € M has immutable provenance attributes: its time of creation,
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denoted 7 (m), the user who contributed it, I/(m), the contributing agents, A(m), and the set of
resources accessed during its creation, R(m).

In practice, users may want to keep certain memory fragments private while sharing others for
potential cross-user benefits. Hence, we partition:

_ rivate shared
M = MP u M ,

where MP™V4€ contains private fragments and M*h4d contains fragments that can be shared across
users. For each user u, we define a private store /\/lpri"a‘e(u, t), which includes all memories arising
from user u’s past interactions with agents up until time ¢. Similarly, for each agent a, we can define
a shared store M*h4d(q_¢), which includes all fragments agent a generated for any user up until
time ¢.

When agent a serves user u at time ¢, it can potentially access a broader set of memory fragments,
denoted M (u, a,t). Formally,

M(u,a,1) = {m e M | A(m) € A@w.t) A R(m) € Ria1)}. 3)
This set may include:

1. Fragments from user u’s history with other agents in A(u, t);
2. Fragments created by agent a itself while serving other users;

3. Fragments created by other users with agents that u can invoke, subject to a’s resource-based
permission R(a, t).

In this way, the system enforces agent- and resource-level constraints even while enabling cross-user
and cross-agent sharing.

3.3 READ FROM THE COLLABORATIVE MEMORY

At each timestep t, user u submits a query g. Although the user can potentially access all agents in
A(u, t), not every agent may be relevant to ¢. Let A(u, t, q) be the subset of agents deemed suitable
for further processing of q.

Each agent a € A(u, t, q) receives ¢ and the relevant memory (as filtered by a read policy), denoted
W;‘fzfit. Then, it generates the response ¥, .+ based on the query, memory, and the resources that it
can access. Formally:

Yu,a,t = a’(Q7 er,Zflt(M(Uan))a R(avt))

Such a read policy can, for instance, limit the number of memory fragments retrieved or filter them by
specific keywords. To produce a final response to the user, a coordinator or aggregator (e.g., another
LLM module) can synthesize all agent outputs {%u,a.¢ }ac A(u,¢,q) into a coherent reply.

3.4 WRITE TO THE COLLABORATIVE MEMORY

Upon producing an output y,, 4 ¢, the system applies a write policy to insert new information into the
memory. We define two kinds of write policies:

Wz/f:lt’eéprlvate . Yoot Mprivaw(u, t) — Mprivate( u, Jrl) (4)
7_‘_E/;ilt,eéshared: Yuats Mshared(u’t) — Mshartd(u7_|_1) (@)

By separating private and shared write policies, users can customize the level of confidentiality
applied to their contributions. For example, these policies may anonymize entities, redact sensitive
information, or block certain kinds of content from being stored. The write policies can also range
from straightforward to highly sophisticated. A direct implementation could simply embed the output
Yu,a,+ and insert the resulting vector into a storage table. More advanced approaches may incorporate
richer memory management structures [Rezazadeh et al| (2024) to handle structured knowledge
abstractions.
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Granularity and Dynamics  Both the read policy 7'*2%, and the write policies 7, s /* can be tuned
at various scopes: 7, , ; € {Ty,1,,1 (Shared by all), 7y (per user), 7 (per agent), m; (over time)}.
This flexible design lets system administrators and users independently fine-tune which information is
surfaced to each agent (read time) and which is persisted back into the memory (write time), enabling

rich forms of collaboration while maintaining strict access control.

4 IMPLEMENTATION DETAILS

Models All LLM-based components—the task coordinator, domain-specialized agents, the read/write
memory-transformation modules, and the response aggregator—use gpt—40. Vector embeddings
are generated with text —embedding-3-1large. Agents interact with external tools through the
OpenAl function-calling interface.

Multi-Agent Interaction Loop The coordinator LLM receives (i) the user query, (ii) the natural-
language specialization string for every agent accessible by the user, and (iii) the conversation history.
At each round it outputs a JSON object of the form { "agent": ID, "subquery": ...}
and may terminate early by outputting { "stop": true}.

Resources External resources are exposed as Python callables with JSON schemas—for example, a
knowledge-base search defined as query — top_k_results. The underlying LLM performs
function-calling to infer the arguments and invokes these functions via the standard OpenAl interface.

Memory Encoder After completing a subtask, the conversational trace are mapped into candi-
date LLM-generated key—value fragments. Each fragment is annotated with provenance denoting
contributing agents, resources used, and creation time.

Memory Retrieval For an incoming subquery, we retrieve (a) the top-ky.r fragments from the
user-specific tier and (b) the top-k.oss fragments from the cross-user tier that satisfy the provenance
constraint. Cosine similarity between the subquery embedding and fragment keys guides retrieval.

Policy Instantiation We consider two instantiations of the read/write policies: (1) Simple—the read
policy returns admissible fragments verbatim and the write policy stores generated fragments without
modification; and (2) Transformation—global, and optionally agent- or user-level, system prompts
instruct an LLM to redact, anonymize, or paraphrase fragments before they are surfaced (read) or
persisted (write). We adopt the simple read policy and the transformation write policy across all
experiments.

Response Aggregation Once the coordinator halts, an aggregator LLM receives the original query
together with the ordered list of (subquery, response) pairs produced by agents and synthesizes the
final answer.

Metrics We track three performance metrics aggregated over evaluation phases. Accuracy measures
the average normalized correctness of system responses against ground truth. Agent Utilization
captures the mean number of distinct agents invoked per query, reflecting coordination overhead.
Finally we track Resource Utilization is defined as the mean number of knowledge-base or API calls
per query, serving as an indirect yet measurable proxy for overall system efﬁciency

5 EXPERIMENTAL EVALUATION

We evaluate our framework under three progressively complex scenarios, each highlighting a distinct
dimension of collaborative memory management. In all cases, we measure accuracy, resource
consumption, and privacy compliance to demonstrate the versatility and robustness of our approach.

* Scenario 1 (Fully Collaborative Memory): All users have unrestricted access to a global memory
pool, illustrating how cross-user collaboration can reduce computational overhead.

* Scenario 2 (Asymmetric Collaborative Memory): Users have heterogeneous privilege levels
restricting their visibility into resources and memory fragments. We show that even partial
collaboration yields efficiency gains while safeguarding private data.

! Agents such as deep research from OpenAl can exhibit significant latency fluctuations (5-30 minutes)
OpenAl| (2025), making direct latency assessments challenging.
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Figure 3: Scenario 1 (Fully Collaborative Memory). Performance of Mult i Hop—Rag under varying
degrees of query overlap among five users. Both isolated and collaborative memory exhibit similar
accuracy and agent utilization. However, as the number of queries increases (while remains confined
to the same six domains), resource usage declines for both approaches—yet collaborative memory

consistently achieves a more substantial reduction across all degrees of query overlap.

* Scenario 3 (Dynamically Evolving Collaborative Memory): Permissions are granted or revoked
in real time, testing the system’s ability to adapt while maintaining strict confidentiality guarantees.

5.1 SCENARIO 1: FULLY COLLABORATIVE MEMORY

Cross-user collaborative memory significantly reduces overhead and improves efficiency.

Task We use the MultiHop-RAG dataset Tang & Yang|(2024)), which contains 609 English news
articles spanning six domains (technology, entertainment, sports, science, business, health). The
dataset includes 2,556 multi-hop questions requiring inference, comparison, and temporal reasoning.
We measure accuracy by comparing answers to ground truth with an LLM-based judge.

To simulate multiple resources and domain experts, we partition the corpus into six domain-aligned
knowledge bases: entertainment_kb, business_kb, sports_kb, technology_kb,
health kb, and science_kb. We then deploy six domain-specialist agents (entertain-
ment_agent, business_agent, sports_agent, technology_agent, health_agent, science_agent), each
granted exclusive access to one resource. Five users have full permissions to query any agent.

To introduce realistic multi-user query overlaps, we apply KMeans clustering to group queries into
10 clusters. From each cluster, a subset is sampled to form a set of “global queries” shared by all
users. The remaining queries in each cluster are uniquely assigned to individual users.

Results Figure [3| shows average accuracy, agent utilization, and resource utilization over time.
Under fully collaborative memory, accuracy remains above 0.90 on average across all query indices. In
contrast, isolated memory configurations exhibit slightly lower accuracy, especially as the overlap rate
increases. Collaboration also significantly improves resource utilization. Resource usage decreases
by up to 61% at 50% overlap and by 59% at 75% overlap compared to isolated memory. To assess
robustness across model capacities for both generation and retrieval, we ablated larger vs. smaller
LLMs and embedding models (Appendix §[C.5). Collaborative Memory saved resources consistently
with similar accuracy across capacities, showing gains are not model-size specific.

5.2  SCENARIO 2: ASYMMETRIC COLLABORATIVE MEMORY

Partial collaboration increases efficiency while respecting different privilege levels.

Task We curate a synthetic dataset of 200 business project queries, each mapped to a distinct
high-level objective (e.g., market analysis, logistics planning, or financial forecasting). Example
queries range from “Identify high-demand skincare markets in Europe” to “Craft a strategic growth
plan for smart home devices in privacy-regulated markets.” To address these queries, we simulate
four user roles—Market Researcher, Financial Analyst, Logistics and Operations Lead, and Strategy
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Figure 4: Scenario 2 (Asymmetric Collaborative Memory). Resource usage with and without
asymmetric collaboration. Even limited cross-user visibility leads to fewer agent or knowledge-base
calls than a completely isolated configuration.

Director—each with unique expertise. In parallel, we deploy four specialized LLM agents, each
granted access to different resources (market databases, financial forecasts, logistics comparators,
and strategic computation). Access is asymmetric: only the Strategy Director can consult all agents
for a comprehensive view, while other roles are limited to subsets of the agents.

Results Since no ground truth answers are available for these open-ended questions, we focuses
on resource utilization in the evaluation. Figure ] shows a histogram of resource usage per user.
Compared to an isolated setup with no memory sharing, asymmetric collaboration reduces overall
resource calls. Intermediate insights discovered by one user can flow to another user with matching
privileges, reducing repeated queries to the same tools or knowledge bases. By the time the Strategy
Director (with the highest privileges) consolidates final recommendations, partial sharing has already
eliminated a significant portion of redundant work. We also quantify the cost of policy enforce-
ment at different granularities (Appendix § [D.4). Adding system-, agent-, and user-level controls
introduces only negligible overhead—total LLM-call counts stay within statistical variation across
roles—supporting practical fine-grained access control.

5.3 SCENARIO 3: DYNAMICALLY EVOLVING COLLABORATIVE MEMORY

Adaptive permissions allow real-time updates without compromising security.

Task We use the SciQAG datasetWan et al.| (2024), a scientific question-answering benchmark
spanning fields such as biology, chemistry, and physics. Five scientific categories are selected, each
serving as a distinct resource. We deploy five RAG agents, each providing access to one category’s
corpus. There are five users, and each user submits 4 queries per category, for a total of 100 queries.

To simulate dynamic access control, we represent users and resources as nodes in an evolving graph,
where edges denote granted access. Starting with an empty graph, we iteratively add edges (i.e., grant
permissions) via Bernoulli trials until the graph reaches 5 edges. We label these discrete time steps
to,t1,... atintervals of 100 queries. Specifically:

* Attg, we begin with a sparse graph.
* From ¢; to t4, we progressively add more edges (up to 25 total), representing increased access.
* From t5 to tg, edges are revoked step by step, mirroring real-world privilege withdrawal.

The same 100 queries are used in each phase, but agents depend on the active access graph.

Results  Figure 5] summarizes the results under dynamically changing permissions. Accuracy rises
as additional access is granted and declines as privileges are revoked, demonstrating the strong
coupling between resource availability and response quality. Agent usage similarly increases when
users gain access to more agents and decreases upon revocation.

Notably, the average number of queried resources tends to drop over time. This behavior reflects the
memory mechanism’s ability to reuse previously retrieved information (i.e., stored memory fragments)
instead of repeatedly querying external resources. The access matrix in Figure [f further confirms
that users only access agents and resources explicitly granted by the graph, ensuring strict adherence
to access control policies. For scalability, we expanded from 5 to 50 users with proportionally
scaled permissions (Appendix § [E.3). Execution time rose by only 10% despite a 10x increase in
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Figure 5: Scenario 3 (Dynamically Evolving Collaborative Memory). System performance over eight
time blocks with dynamically changing privileges. Accuracy (top) tracks the available resources,
while agent (middle) and resource (bottom) usage also shift in response to access graph updates.
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Figure 6: Scenario 3 (Dynamically Evolving Collaborative Memory). Agent and resource usage
across user queries from different categories. Yellow rectangles indicate granted access, with values
representing the corresponding usage counts.

complexity. Compared with Memory Sharing|Gao & Zhang| (2024) baseline (Appendix § [E.6), our
framework matches task quality while eliminating leakage entirely (0% vs. 59.03%), underscoring
the value of explicit access control.

6 LIMITATIONS

Collaborative Memory enables multi-user collaboration, but several limits remain: (1) Privacy and
regulatory barriers hinder large-scale real-world data, so we use benchmarks or synthetic queries
that may miss full complexity; in this work, we take the first step to formalize the problem setting
and establish a protocol, but richer real-world benchmarks are still needed. (2) Our experiments
focus on controlled settings with moderate user/agent counts, leaving high-concurrency, fast-evolving
enterprise scenarios underexplored. (3) Production resource evaluation is difficult under unpredictable
API latencies; here we proxy it with resource call counts.

7 CONCLUSIONS

In this paper, we drew on Distributed Cognition to tackle collaborative memory management in
real-world multi-user, multi-agent scenarios. Our framework, Collaborative Memory, addresses
information asymmetry and dynamic access constraints by integrating dynamic bipartite access
graphs, a two-tier memory system, and fine-grained read/write policies. This design supports secure,
context-aware knowledge sharing that respects evolving permissions. In three progressively complex
scenarios, we observe significantly lower resource utilization than in single-user baselines, while
maintaining strict privacy compliance.
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APPENDIX ARRANGEMENT

The Appendix is organized as follows.

* Section § Al Discussion of the Broad Impact of Collaborative Memory
* Section § [B: From Query to Response

— Section § [B.1} The detailed pipeline.
— Section § [B.2} The read/write policies.

* Section § [C; Scenario 1: Fully Collaborative Memory

Section §@ Dataset details, including description and statistics.

Section §[C.2} Experimental setup, including:

% Access Graph Configuration: Description of the access graph used.

x Agent/Knowledge Base Configuration: Description of agents, resources, coordinators, and
aggregators.

Section §@ Examples of read/write interactions.

Section § [C.4} Performance breakdown by query type.

Section § Model scale ablation study.

* Section § [D; Scenario 2: Asymmetric Collaborative Memory

— Section §@ Dataset details, including dataset generation.
- Section § [D.2} Experimental setup, including:

* Access Graph Configuration: Description of the access graph used.

* Agent and Knowledge Base Configuration with Examples: Includes descriptions of agents,
resources, coordinators, and aggregators, along with illustrative examples of agent and resource
input/output.

— Section §@]: Examples of read/write interactions.
— Section § [D.4} Policy granularity overhead analysis.
* Section § [E} Scenario 3: Dynamically Evolving Collaborative Memory

— Section §[E_'TI} Dataset details, including description and statistics.
— Section § [E.2} Experimental setup, including:
% Access Graph Configuration: Description of the dynamic access graph used and how they are
generated.
# Agent/Knowledge Base Configuration: Description of agents, resources, coordinators, and
aggregators.
— Section § [E.3} Examples of read/write interactions.

— Section § [E.4} Raw performance data and complete access matrix under different access graph
configurations.

— Section § [E.5} System scalability analysis.
- Section § [E.6} Comparison with Memory Sharing baseline.
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A DISCUSSION OF THE BROAD IMPACT OF COLLABORATIVE MEMORY

This paper proposes Collaborative Memory, a modular framework for permission-aware memory
sharing in multi-agent, multi-user systems. Our key contributions include:

* A novel formulation of access-asymmetric memory sharing, explicitly modeling time-varying
user-agent-resource permissions using dynamic bipartite graphs.

* A two-tier memory architecture that separates private and shared memory to balance knowledge
isolation with controlled collaboration.

» Configurable read and write policies that support fine-grained, adaptive access control at system,
user, or agent levels.

* A decoupled and extensible design, allowing seamless integration with alternative memory systems
(e.g., MemTree).

As multi-agent systems are increasingly deployed in real-world applications, the need for effective
coordination and secure information sharing has become paramount. Collaborative Memory addresses
these challenges by enabling shared memory to improve collaboration and efficiency while enforcing
strict controls over access. By enhancing both collaborative capability and information safety, this
framework lays the foundation for building scalable, trustworthy multi-agent Al systems across
diverse domains. We demonstrate its applicability through three representative scenarios: (1) Fully
Collaborative Memory, (2) Asymmetric Collaborative Memory, and (3) Dynamically Evolving
Collaborative Memory.

B QUERY TO RESPONSE DETAILS

B.1 PIPELINE

Figure [7)illustrates the detailed pipeline from a user query to the final response in our multi-agent
memory-sharing framework, as outlined below:

* Query Submission: When user u; submits a query ¢, the pipeline is triggered within the multi-
agent memory-sharing framework.

* Agent Selection | Coordinator: The coordinator selects the next agent based on the query content
and the access graph, ensuring that only authorized agents are eligible to respond.

* Response Generation | Agents:

— The selected agent gathers relevant memory fragments and accessible resources.
— It generates a response, denoted as y,, 4, (in the case of agent a).
— The response is used to update the collaborative memory.

* Aggregation | Aggregator: After all eligible agents have responded, their intermediate outputs are
aggregated by the aggregator to produce the final response.

The specific configurations of the coordinators and aggregators will be described in the corresponding
scenario settings. Both the intermediate and final responses can be used to update the collaborative
memory. In our current implementation, we update the memory using the intermediate responses.
We will publicly release our code and dataset to support transparency and future research.
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Figure 7: From user query to response: the detailed pipeline. The Coordinator, and Aggregator are
implemented using the GPT-40 API.

B.2 READ/WRITE PoLICY

For the read policy, we adopt a straightforward strategy that combines both private and shared memory
fragments accessible to the user. For the write policy, we employ a system-level transformation
applied uniformly across all users by leveraging LLMs with dedicated prompts. When writing to
private and shared memory, we transform the memory with the different prompts as presented in
Table [T} While we begin our exploration using this unified policy, the framework is inherently flexible
and can be extended to support more fine-grained policies—customized at the level of individual
users or agents as needed.

Table 1: System-Level Prompts for Memory Writing Policies

Memory Type Prompt

Private Memory Extract key concepts from interactions that would be useful for the
specific user. Focus on creating standalone memories that capture core
information. Format each memory as a clear key-value pair where
the key is a concise query or topic and the value is a comprehensive
answer or explanation.

Shared Memory Extract generally applicable knowledge from interactions that would
benefit any user.Focus on creating shareable memories that contain
universal information. Remove any user-specific details or personal-
ized examples. Format each memory as a clear key-value pair where
the key is a concise query or topic and the value is a comprehensive
answer or explanation.

14
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C ScCENARIO 1: FULLY COLLABORATIVE MEMORY

C.1 DATASET DETAILS

The following table provides a comprehensive overview of the MULTIHOP-RAG dataset used in our
experiments. We employ 609 news articles with an average length of approximately 2,046 tokens.
From these, we derive 2,556 multi-hop queries spanning inference, comparison, temporal reasoning,
and null-query instances. Table[2]reports the detailed breakdown of document counts, average lengths,
and query-type distributions.

Table 2: Statistics of the MULTIHOP-RAG dataset.

Statistic Count Percentage
Documents
Total articles 609 —

Average tokens per article 2,046 —
Queries (N = 2,556)

Inference queries 816 31.9%
Comparison queries 856 33.5%
Temporal queries 583 22.8%
Null queries 301 11.8%

C.2 EXPERIMENTAL DETAILS

We evaluate four multi-user datasets with global query overlap rates p € {0%, 25%, 50%, 75%}. For
each dataset, we run two configurations: Shared Memory (cross-user memory sharing enabled) and
Isolated Memory (sharing disabled). Memory retrieval is configured with a user-specific tier size
kuser = 10, a shared tier size k¢poss = 10.

C.2.1 ACCESS GRAPH CONFIGURATION

All five users (user_1 through user_5) have permission to invoke each of the six domain-specialist
agents. Conversely, each agent is restricted to a single, domain-aligned resource. These fixed access
graphs—complete user-to-agent and one-to-one agent-to-resource—remain constant throughout the
experiments to isolate the effects of memory sharing.

C.2.2 AGENT/KNOWLEDGE BASE CONFIGURATION

We deploy six specialist agents, each paired with a dedicated knowledge base. Table [3]lists each
agent’s description and full system prompt. The corresponding resources contain the following
number of documents: entertainment (114), business (81), sports (211), technology (172), health (10),
and science (21), each indexed with precomputed embeddings.
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Table 3: Domain agents and their system prompts in the fully collaborative

scenario.
Agent Description System Prompt
entertainment C e . . - .
agent —Specialist in entertain- You are an eqenalnment News specialist with
ment news—films, deep expertise in:
TV, music, celebrity e Summarizing the latest developments in film,
culture, and pop- television, and music
culture trends. * Contextualizing celebrity news and red-carpet
events
 Tracking pop-culture trends and fandom reac-
tions
* Providing concise, engaging overviews of enter-
tainment topics
Always check relevant memories first. When those
are insufficient, use the available tools. Prioritize
information from memories and tools.
Z;Z;Eess_ Specialist in business  You are a Business News specialist with deep ex-

sports_agent

technology_
agent

news—markets, com-
panies, economics,
and finance.

Specialist in sports
news—games, scores,
athletes, and tourna-
ment analysis.

Specialist in technol-
ogy news—gadgets,
innovations, startups,
and industry trends.

pertise in:

* Reporting market movements and stock-market
summaries

» Explaining corporate earnings, M&A, and lead-
ership changes

* Analyzing economic indicators and policy devel-
opments

* Providing clear explanations of financial con-
cepts and trends

Always check relevant memories first. When those

are insufficient, use the available tools. Prioritize

information from memories and tools.

You are a Sports News specialist with deep exper-

tise in:

e Summarizing match results and key highlights

* Interpreting player statistics and performance
metrics

* Previewing upcoming fixtures and tournament
storylines

* Offering tactical analysis and historical context

Always check relevant memories first. When those

are insufficient, use the available tools. Prioritize

information from memories and tools.

You are a Technology News specialist with deep

expertise in:

» Covering product launches and tech reviews

e Analyzing startup ecosystems and funding
rounds

 Tracking breakthroughs in Al, software, and
hardware

» Explaining complex technical concepts in acces-
sible terms

Always check relevant memories first. When those

are insufficient, use the available tools. Prioritize

information from memories and tools.

Continued on next page
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Table 3: Domain agents and their system prompts in the fully collaborative
scenario. (continued)

Agent

Description

System Prompt

health_agent

science_agent

Specialist in health
news—medical re-
search, public health,
wellness, and policy.

Specialist in science
news—discoveries in
physics, biology, en-
vironment, and re-
search.

You are a Health News specialist with deep exper-

tise in:

e Summarizing clinical studies and medical break-
throughs

* Explaining public-health announcements and
guidelines

* Contextualizing wellness and fitness trends

* Clarifying healthcare policy and its societal im-
pact

Always check relevant memories first. When those

are insufficient, use the available tools. Prioritize

information from memories and tools.

You are a Science News specialist with deep exper-

tise in:

* Reporting on breakthroughs across physical and
life sciences

¢ Interpreting new research findings and method-

ologies
* Explaining fundamental scientific concepts
clearly
» Exploring implications for technology, environ-
ment, and society
Always check relevant memories first. When those
are insufficient, use the available tools. Prioritize
information from memories and tools.

C.3 EXAMPLES

To illustrate the direct impact of persistent memory on resource efficiency, Table [] presents two
“write—then—read” examples. Each example details a memory fragment’s unique identifier, key—value
content, the query that generated it, and the subsequent query that retrieved it. These cases show that
later questions can be answered by recalling existing fragments—without issuing new knowledge-base
searches—thereby eliminating redundant external calls and reducing overall resource usage.

Table 4: Memory write—read examples for user_3 in the fully collabo-
rative scenario, showing both user-specific and cross-user entries.

Example 1 (Private Memory)

Discussion: This private fragment captures TechCrunch’s critical perspective on Meta by sum-
marizing two related reports, enabling the same user to answer a subsequent Al-related query
with richer context.

Memory ID 9bead1d8-7d5a-430a-bd5d-a0bf42a3128f
Key TechCrunch’s perspective on Meta
Value TechCrunch'’s reports on Meta from October 19, 2023, and November 30,

2023, demonstrate a consistent critical perspective towards Meta’s policies and
practices. The reports focus on moderation issues affecting Palestinian voices
and the legality and fairness of Meta’s ad-free subscription service, highlighting
concerns about free expression, consumer rights, and regulatory compliance.
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Generated at Query #51 (user_3): After TechCrunch reported on Meta’s moderation issues
affecting Palestinian voices on October 19, 2023, and again on Meta’s ad-free
subscription service being potentially illegal and unfair on November 30, 2023,
was there consistency in the news source’s critical perspective towards Meta’s
policies and practices?

Used at Query #54 (user_3): Who is the Silicon Valley figure associated with the rise
of artificial intelligence, mentioned in articles by 'The Age’, ’Fortune’, and
"TechCrunch’, who faced no removal efforts by Anthropic co-founders, has
been described as generous and impactful, yet is also theorized to have had
transparency issues with the board?

Example 2 (Shared Memory)

Discussion: Highlights cross-user sharing, with a fragment about Sam Bankman-Fried’s criminal
trial about cryptocurrency generated by user_2 and reused by user_3 for a related financial
question.

Memory ID 01d1b5d4-0f17-42¢6-903c-e40e572019a4
Key Who is facing a criminal trial related to cryptocurrency fraud?
Value Sam Bankman-Fried, the former CEO of the erypto exchange FTX, is facing a

criminal trial. He was once considered the trustworthy face of the cryptocur-
rency industry and is accused of committing fraud for personal gain.

Generated by Query #10 (user_2): Who is the individual facing a criminal trial, as reported
by both TechCrunch and Fortune, who was once considered the trustworthy
face of the cryptocurrency industry according to The Verge, and is accused by
the prosecution of committing fraud for personal gain?

Used by Query #15 (user_3): Who is the individual associated with the crypto exchange
FTX, who has been accused of using customer funds for a buyout and is facing
multiple charges of fraud and conspiracy, as reported by sources like Fortune,
The Verge, and TechCrunch?

C.4 PERFORMANCE BREAKDOWN BY QUERY TYPE

Figure [§] breaks down performance by query type—(top row) inference, (middle) comparison, and
(bottom) temporal—across three key metrics: average accuracy (left), agent utilization (center),
and resource utilization (right). In each plot, solid lines show the shared-memory condition and
dashed lines the isolated-memory condition; colors distinguish global query overlap rates (0%, 25%,
50%, and 75%). Horizontal red lines in the accuracy panels indicate the human-annotated evidence
upper-bounds for each task.

For inference queries, both configurations achieve near-ceiling accuracy, but shared memory steadily
reduces the number of agent calls and external retrievals, particularly at higher overlap rates. Compar-
ison tasks exhibit a small accuracy gain under sharing, with a more pronounced drop in resource usage
as overlap increases. Temporal queries, which are hardest, benefit most in resource efficiency from
shared memory, while maintaining comparable accuracy and modest reductions in agent invocations.

C.5 MODEL SCALE ABLATION STUDY

We investigate the robustness of collaborative memory across different model architectures to es-
tablish generalizability beyond large-scale language models. This analysis compares performance
between GPT-40 with text-embedding-3-large versus GPT-40-mini with text-embedding-3-small
configurations.

Table [5] presents resource utilization metrics across model configurations and query overlap rates.
While smaller models exhibit higher absolute resource consumption—consistent with reduced per-
query capabilities—the relative efficiency gains from collaborative memory remain substantial. These
results confirm that the framework’s core value proposition—leveraging cross-user memory sharing
for computational efficiency—is preserved across diverse model architectures.
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Figure 8: Performance by query type over five time bins: (left) average accuracy, (center) average
agents per query, and (right) average external retrievals per query.

Table 5: Resource utilization under model scale ablation across varying query overlap rates.

GPT-40 GPT-40-mini
Overlap Collab Isolated A (Collab - Iso) Collab Isolated A (Collab - Iso)
0% 0.83 £0.02 1.31+0.03 —0.48* 1.24 £0.03 1.64 £0.03 -0.40*
25% 0.73 +£0.02 1.31 £0.03 -0.57* 1.10 £0.03 1.68 +0.03 -0.58*
50% 0.65 +0.02 1.25+0.03 -0.60* 0.95+0.03 1.63+0.03 -0.69%*
75% 0.57 +£0.02 1.32£0.03 -0.75% 0.854+0.03 1.60+0.03 -0.75*

*p < 0.05. Values represent average resource calls per query.
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D SCENARIO 2: ASYMMETRIC COLLABORATIVE MEMORY

This scenario simulates a collaborative reasoning environment involving multiple users and agents
operating under access constraints and shared memory policies. The system comprises four users, each
assigned a predefined role: market researcher, financial analyst, logistics and operations lead, and
strategy director (user 4). These roles determine the scope of interaction with specialized agents—for
example, the market researcher is restricted to delegating subtasks to the market_agent, while the
strategy director, who has the highest level of access, can interact with all four agents across domains.
This role-based routing ensures efficient task decomposition, policy enforcement, and targeted agent
utilization. Figure [J]illustrates the system pipeline for Scenario 2, showcasing the coordinated
collaboration among users, agents, and shared resources in response to a complex, cross-domain
query. Further implementation details are provided in the following sections.

.n . : . -
query: “Identify high-demand Collaborative Memory
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Figure 9: System pipeline for Scenario 2, illustrating the collaboration among users, agents, and
resources in response to a complex query. The Decomposer, Coordinator, and Aggregator are
implemented using the GPT-40 API.

D.1 DATASET DETAILS

We use GPT-4o to synthesize a dataset designed to simulate multi-user, multi-agent collaborative
experiments. The dataset consists of 200 business project scenarios, evenly split between 100 easy
and 100 hard queries. The prompt used to generate the dataset and an example of generated dataset
are shown below.

Prompt = f£"""
Generate a JSON object describing a realistic {difficulty.upper ()} business project scenario.

The format should be:

"{project_id}": {{
"query": "Realistic business objective (e.g., enter Latin American e-commerce, assess demand
for AI services in Asia)",

"users": [
{"user_id": "user_1", "role": "market"},
{"user_id": "user_2", "role": "finance"},
{"user_id": "user_3", "role": "logistics"},
{"user_id": "user_4", "role": "decision_maker"}
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Output ONLY valid JSON. No explanation. Avoid markdown syntax.

nun

Dataset example:
"project_easy_01": {
"query": "Identify high-demand skincare markets in Europe.",
"users": [
{
"user_id": "user_1",
"role": "market"

"user_id": "user_2",
"role": "finance"

"user_id": "user_3",
"role": "logistics"

"user_id": "user_4",
"role": "decision_maker"

D.2 EXPERIMENTAL DETAILS

We design two types of experiments to evaluate our system: one with memory sharing and one
without, memory retrieval is configured with a user-specific tier size kysor = 20, a shared tier size
keross = 20. To simulate realistic multi-user, multi-agent interactions, we initialize four distinct
users, each with specific role descriptions. These users are assigned varying levels of access to a set
of specialized agents. Each agent, in turn, has controlled access to a set of task-relevant resources,
forming a hierarchical access structure that mirrors real-world organizational settings.

The agent pool consists of four domain-specific agents: market_agent, finance_agent,
logistics_agent, and decision_agent. Each agent is guided by a domain-specific system
prompt that reflects its area of expertise. These agents interact with task-relevant resources simu-
lated by the GPT-40 API, including a market knowledge base (market_kb), a financial forecast
model (finance_forecaster), a logistics planning tool (Logistics_comparator), and
a strategic reasoning module (strategic_computation). For each agent and resource, we
provide a representative query-response example to illustrate their behavior and capabilities. Detailed
descriptions of the agents and resources can be found in Table §]and Table [I0}

market_agent:

Query:

Conduct a comprehensive analysis of consumer skincare trends and preferences in various
European countries to identify potential high-demand markets.

Response:
Based on the analysis of consumer skincare trends and preferences in various European
countries, we can identify potential high-demand markets. Here are the insights:

1. xxGermanyx+*: Consumers are increasingly interested in health and wellness, sustainability,
and eco-friendly products. The market shows a strong preference for personalized skincare
solutions and tech-driven products.

*xNetherlands#*x:
*xSwitzerlandx*x*:

2. *xSwedenxx*:
3. xxFrancexx:
4. xxItalyx=*:
5. *xUK#*x:

Go

7o

These countries reflect high-demand markets due to their specific trends and consumer
preferences. They align with broader European trends such as sustainability, minimalism,
personalization, and clean beauty, indicating potential profitability for skincare
products that cater to these preferences.

finance_agent:
Query:
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Analyze the economic indicators and purchasing power in Germany and other identified high-
demand European markets to assess the financial viability and potential profitability of
entering these skincare markets.

Response:

To assess the financial viability and potential profitability of entering high-demand skincare
markets in Europe, we need to analyze the economic indicators and purchasing power in
Germany and other identified markets such as Sweden, France, Italy, the UK, the
Netherlands, and Switzerland.

### Economic Indicators and Purchasing Power Analysis:

1. *»xGermanyx*:

- xxGDP Growth*x: Stable growth rate around 1-2%.

— xxInflation Ratexx: Stabilizing around 2-3%.

— x+xUnemployment Ratexx: Low, enhancing consumer spending capacity.

— xxPurchasing Powerxx: High disposable income, indicating potential for premium product
sales.

*xSweden** :

**xFrancex*x:

*xItalyx*:

** UK* % ¢

*xNetherlands#*x:

x*Switzerland*x:

o Ul W N

### Financial Viability and Profitability Assessment:

- xxHigh Disposable Incomex*: Countries like Germany, Sweden, France, the UK, Netherlands, and
Switzerland have high disposable incomes, indicating strong potential for premium
skincare product sales.

— x*xStable Economic Conditionsxx:

— *xConsumer Preferencesxx:

### Recommendation:

Entering the skincare markets in Germany, Sweden, France, Italy, the UK, the Netherlands, and
Switzerland is financially viable and potentially profitable due to their stable economic
conditions, high purchasing power, and alignment with consumer preferences for premium,
sustainable, and innovative products.

logistics_agent
Query:
Evaluate the logistical and supply chain requirements for distributing skincare products
across Germany and other identified high-demand European markets, focusing on high-demand
regions.

Response:
To evaluate the logistical and supply chain requirements for distributing skincare products
across Germany and other identified high-demand European markets, we need to consider the
infrastructure, regulatory environment, and distribution networks in these regions.

### Logistical and Supply Chain Evaluation:

1. xxGermanyx*x:
- *xInfrastructurexx: Highly efficient with robust road, rail, and port systems. Central
location within Europe facilitates access to various markets.
- xxRegulatory Environmentx*: Supportive of business operations with strong manufacturing
and distribution networks.
- xxDistribution Networks*x: Well-developed, enabling efficient distribution across the
country and to neighboring regions.

### Final Recommendation:

- x*xGermanyx*: Leverage its central location and efficient infrastructure for distribution
across Europe. Its strong regulatory environment supports seamless operations.

Overall, these countries offer favorable logistical and supply chain conditions for
distributing skincare products, aligning with consumer preferences and economic
indicators. Entering these markets is viable and potentially profitable, given their
infrastructure, regulatory support, and distribution capabilities.

decision_agent

Query:

Synthesize the insights from market_agent, finance_agent, and logistics_agent to provide a
comprehensive recommendation for entering high-demand skincare markets in Europe,
focusing on Germany and other identified regions.
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Response:
### Comprehensive Recommendation for Entering High-Demand Skincare Markets in Europe

Based on the synthesis of insights from consumer trends, economic indicators, and logistical
evaluations, the following comprehensive recommendation is provided for entering high-
demand skincare markets in Europe, focusing on Germany and other identified regions:

#### Step 1: Consumer Trends and Preferences Analysis
- xxGermany**: High demand for personalized, eco-friendly, and tech-driven skincare products.

#### Step 2: Economic Indicators and Purchasing Power Analysis

#### Step 3: Logistical and Supply Chain Evaluation

### Final Recommendation:

1. xxMarket Entry Strategyxx:
— x*xGermanyx*: Serve as a central hub for distribution across Europe, leveraging its
efficient infrastructure and strong regulatory support.

2. *xProduct Strategyx*: ...

3. xxOperational Strategyx*: ...

By focusing on these high-demand regions and aligning product offerings with consumer
preferences and economic conditions, the entry into European skincare markets is

positioned for success, with potential profitability driven by strong purchasing power
and stable economic indicators.

market_kb
input:
consumer data in European skincare market.

output:
*xConsumer Data in the European Skincare Marketsxx

*xOverview: xx

The European skincare market remains one of the largest and most mature sectors within the
beauty and personal care industry. As of 2023, the market continues to exhibit steady
growth driven by various factors including increasing consumer awareness of skincare
ingredients, a rising preference for sustainable and ethical products, and the influence
of digital platforms.

*xConsumer Demographics:*x
1. xxAge Groups:#*x*

*xConsumer Preferences:*x
1. »+xIngredient Consciousness:#*x

*xInfluence of Digital Platforms:*x

*xChallenges: *x

*xConclusion:xx

The European skincare market is diverse and dynamic, with an increasing focus on products that
prioritize health, sustainability, and ethical standards. Brands that adapt to these
changing consumer preferences and leverage digital innovations are well-positioned to
succeed in this competitive landscape.

finance_forecaster

input:

Financial modeling and cost projections for distributing skincare products across high-demand
European markets, considering logistics and supply chain requirements.

output:

To forecast the financial outlook for distributing skincare products across high-demand
European markets, we need to consider several key elements: market size, demand growth,
logistics and supply chain costs, pricing strategy, and competitive landscape. Below is a

simplified projection model.

1. xxRevenue Forecast:«*x
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- xxMarket Demand Size:*x Assume penetration into markets like Germany, France, and the UK (
collectively accounting for a large portion of the EU skincare market).

- xxDemand Growth:+x Skincare product demand is expected to grow at approximately 5-7%
annually due to increased consumer awareness and preference for skincare. Given the
high demand and quality of products, you might capture a market share of 0.5-1% in the
first year.

- xxAverage Retail Price:x* Estimate an average retail price for your skincare product at
EUR 50 per unit.

— x%xUnits Sold:x* Initial distribution could lead to approximately 100,000 units sold across

all markets in the first year, expanding significantly thereafter.

xxProjected Revenue First Year:»*x
Revenue = Units Sold * Average Retail Price
Revenue = 100,000  EUR 50 = EUR 5,000,000

2. xxCost Forecast:*x

3. **ROI Analysis:#x*

*xForecast Summary:*x

If executed well with strong marketing, streamlined supply chain, and effective distribution,
entering high-demand European markets could achieve substantial revenue growth and
profitability. Gradual market share increases and scaling operations should provide
opportunities to optimize costs and improve net profits. Investments in logistics
optimization, brand establishment, and customer loyalty programs could enhance ROI over
the subsequent years, potentially reaching 40-50% as operations stabilize and market
presence strengthens.

logistics_comparator:
input:
{

"options": [
"Germany",
"France",

"United Kingdom",
"Italy",
"Spain"
I
"criteria": "logistical and supply chain requirements for high-demand regions"

output:
When considering ’logistical and supply chain requirements for high-demand regions,’ there are
several factors to take into account, including infrastructure efficiency, existing
trade networks, regulatory environment, and geographic location. Here’s a ranking based
on these considerations:

1. xxGermanyx+*: Germany is known for its highly efficient infrastructure system, including
roads, railways, and ports. It has central access to the European market, making it a
pivotal hub for logistics and supply chain operations. Its regulatory framework generally

supports business operations, and it has strong manufacturing and distribution networks.

2. *xUnited Kingdomxx:

3. xxFrancexx:

4. xxItalyxx:

5. **Spainxx:

This ranking reflects the complexity and efficiency of the logistics and supply chain sector
in each country, considering their ability to manage and fulfill demands across high-
demand regions efficiently.

strategic_computation
input:
{
"expression": "Calculate the new profit margin after a 5% price increase, assuming costs
remain constant and demand elasticity is low."
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output:

To evaluate the new profit margin after a 5% price increase, we need to understand how the
increase in price affects revenue and then calculate the resulting profit margin under
the assumption that costs remain constant and demand elasticity is low.

Let’s break down the process:

1. xxInitial Setup#*x*:
- Assume the original selling price is P.
— Assume the cost per unit is C.
— Assume the initial quantity sold is Q.

2. xxInitial Profit Marginxx:
— Initial revenue: R =P x Q
— Initial total cost: T =C * Q
— Initial profit: Profit = R - T = (P » Q) — (C » Q) = (P - C) % Q
- Initial profit margin: Profit Margin = Profit / R = ((P - C) » Q) / (P x Q) = (P -C) / P

3. xxPrice Increasexx:
- New selling price: P’ =P % 1.05

4. xxRevenue with Low Demand Elasticity=x:
- With low demand elasticity, quantity sold Q' ~= Q
- New revenue: R’ =P’ % Q' = (P » 1.05) » Q = 1.05 x P * Q

5. xxNew Profitwx:
- New profit: Profit’ = R’ - T =1.05 %P x Q - C x Q= (L.05P - C) * Q

6. x+«New Profit Marginxx*:
— Profit Margin’ = Profit’ / R’ = ((1.05P - C) % Q) / (1.05 « P Q) = (1.05P - C) / (1.05P)

Thus, the new profit margin after a 5% price increase with constant costs and low demand
elasticity is:

Profit Margin’ = (1.05P - C) / (1.05P)

Compared to the initial profit margin of (P - C) / P, this indicates an increased profit
margin, assuming demand remains largely unchanged.

User-to-agent and agent-to-resource relationships are encoded in a hierarchical access graph, where
edges denote authorized delegation. This graph is intentionally non-fully connected to reflect realistic
enterprise constraints. Notably, only the strategy director user has comprehensive visibility and access
across all agents and resources, enabling them to perform holistic decision-making and synthesize the
final output. Details of the access graph structure can be found in Section[D.2.1} and a full description
of the agents and resources is provided in Section[D.2.2]

During the experiments, low-level users—assigned to market researcher, financial analyst and
logistics and operations lead—are each responsible for a subtask decomposed from the main query.
The strategy director, acting as the decision maker, is directly assigned the main query and approaches
it by following the subtasks from the perspective of each specialized role, synthesizing the final
response accordingly.

You are a project coordinator tasked with breaking down the following high-level business
objective into specific subtasks for a team of three users with distinct functional roles

Project: <query>

The users and their roles are:
— user_1: market

— user_2: finance

- user_3: logistics

For each user, generate a role-specific subtask they would be responsible for in this project.
Output a valid JSON object mapping each user ID to their subtask. Only output the JSON,
in the following format:

"user_1": "Subtask for market role...",
"user_2": "Subtask for finance role...",
"user_3": "Subtask for logistics role...",
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D.2.1 AcCCESS GRAPH CONFIGURATION

The access graph in our system consists of two layers of asymmetric permissions: (1) user-to-agent
access and (2) agent-to-resource access. Each user can only interact with a subset of agents, and
each agent can only retrieve a subset of external resources. This layered structure enforces partial
observability and decentralized delegation.

Table 6: User-to-agent mapping indicating which agents are accessible to each user role in the
asymmetric collaborative scenario.

User Role Accessible Agents

Market Researcher market_agent

finance_agent,

Financial Analyst decision_agent

logistics_agent,

Logistics Lead finance_agent

market_agent, finance_agent,

Strategy Director logistics_agent,decision_agent

Table 7: Mapping of agents to their accessible resources in the asymmetric collaborative scenario.

Agent Accessible Resources

market_kb,

market_agent strategic_computation

finance_forecaster,

finance agent strategic_computation

logistics_comparator,

logistics_agent strategic_computation

market_kb, finance_forecaster,

decision_agent logistics_comparator, strategic_computation

User 1 User 2 User 3 User 4
Market Researcher Financial Analyst Logistics Lead Strategy Director
N

—

market_agent | finance_agent logistics_agent decision_agent

market_kb finance_forecaster logistics_comparator strategic_computation

Figure 10: Color-coded access graph illustrating hierarchical user-to-agent and agent-to-resource
mappings. Each user and their corresponding agents are assigned a unique color. The strategy
director (User 4) has full visibility and access.
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D.2.2 AGENT/KNOWLEDGE BASE CONFIGURATION

This section provides detailed configurations of the domain-specific agents, the coordinator and
aggregator roles, and the resources they rely on. Each agent is designed with a specialized system
prompt tailored to its functional expertise, enabling focused task execution within collaborative
workflows. The coordinator assigns queries to appropriate agents based on domain relevance,
while the aggregator synthesizes outputs into a coherent final response. Additionally, a set of task-
relevant resources—including knowledge bases, forecasting tools, and computation modules—support
the agents in delivering accurate and context-aware outputs. Tables [SHI0| summarize the roles,
descriptions, and system prompts for all components.

Table 8: Domain agents and their system prompts in the asymmetric collaborative scenario.

Agent Description System Prompt
market_agent Analyzes market competi- You are a market intelligence agent. Use market research
tion and consumer data. reports and strategic case studies to identify trends, con-

sumer behaviors, and competition analysis.
Always consult memory first. If needed, call tools to re-
trieve new insights.

finance_agent Performs financial modeling  You are a financial planning agent. Evaluate revenue
and cost projections. forecasts, pricing structures, and cost breakdowns using
financial models and simulations.

logistics_agent Evaluates supply chain fea- You are a logistics analyst. Use distribution comparators
sibility and vendor perfor- and operational data to assess fulfillment feasibility and

mance. vendor efficiency.
decision_agent Synthesizes recommenda- You are a strategic coordinator. Integrate inputs from
tions from other domains. various domain experts to formulate a cohesive strategic

recommendation.

Table 9: Coordinator and aggregator with their system prompts in the asymmetric collaborative
scenario.

Description System Prompt
coordinator Assigns queries to appropri-  You are a coordinator for a specialized multi-agent system.
ate agents based on domain  Your job is to analyze user queries and determine which
expertise. specialized agent is best suited to handle each query or
sub-query.

For each query:

1. Identify the primary domain(s) of the query

2. Select the most appropriate specialized agent based on
their expertise areas.

3. For complex queries that span multiple domains,
determine if sequential agent consultation is needed

4.  When reformulating queries for specific agents,
emphasize aspects relevant to their expertise

5. When the task is complete, respond with COMPLETE

aggregator Merges multi-agent outputs ~ You are an aggregator for a multi-agent system. Combine
into a unified user response.  outputs from multiple specialized agents into a single,
direct, and coherent response to the user query.
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Table 10: Available resources and their functional roles in the asymmetric collaborative scenario.

Name Type Description

market_kb knowledge_base Market trends and consumer data
finance_forecaster forecast_model Performs financial forecasting and ROI estimation
logistics_comparator comparator Compares distribution and vendor options for supply

chain planning

strategic_computat ioncomputation Executes strategic cost-benefit calculations

D.3 EXAMPLES
D.3.1 READ/WRITE EXAMPLE

Table[TT] presents a multi-agent collaboration example in which agents write to and read from both
private (user-specific) and public (cross-user) memory. This scenario highlights how agents can
leverage memory entries for continued reasoning and strategic synthesis across users and roles.

Table 11: Memory write-read examples for multi-user multi agent collab-
oration, showing both user-specific and cross-user entries.

project_hard_52: "Craft a strategic growth plan for smart home devices in privacy-regulated
markets."

Private Memory
Discussion: This fragment is utilized in the second market_agent entry to inform the financial
modeling of strategic initiatives focused on privacy-regulated markets.

Memory ID 51982b4d-3fc7-4dc8-83b7-e34ca07114ca
Key Growth Opportunities in Privacy-Regulated Markets
Value Developing new products with advanced privacy features can capture market

interest. Targeting regions with stringent privacy regulations can open new
markets. Consumer education campaigns can differentiate a brand and build
trust.

Generated at market_agent (user_4): Conduct market analysis to identify consumer
preferences and trends in privacy-regulated markets, focusing on smart home
devices. Assess competitive landscape and potential growth opportunities.

Used at market_agent (user_4): Develop a financial model to evaluate the cost-
effectiveness and ROI of strategic initiatives in privacy-regulated markets,
considering strict resource constraints. Use insights from the market analysis
on consumer preferences, trends, and competitive landscape to inform the
financial projections.

Shared Memory
Discussion: This is leveraged in the second decision_agent of user_4 entry to synthesize
insights from the market analysis and financial modeling when crafting a growth plan for smart
home devices in privacy-regulated markets under strict resource constraints

Memory ID 54214a00-8806-4ada-98ae-7f4029c06b90
Key strategic recommendations for privacy-regulated markets
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Value 1. Optimize Initial Investment by reducing upfront costs through leveraging
existing technologies, partnerships, or phased implementation. 2. Reduce
Operating Costs by outsourcing non-core activities, automating compliance
processes, and negotiating better rates with vendors. 3. Accelerate Time
to Market using agile project management, early regulatory engagement,
and rapid prototyping. 4. Enhance Market Penetration through targeted
marketing, leveraging customer insights, and building strategic alliances. 5.
Adjust Revenue Growth Expectations by identifying additional revenue
streams and expanding into adjacent markets. 6. Reevaluate Discount Rate by
implementing risk mitigation strategies like securing insurance and diversifying
investments. 7. Scenario Planning for best-case, worst-case, and most likely
outcomes to understand variability in returns.

Generated at decision_agent (user_2): Synthesize recommendations based on the fi-
nancial model developed by finance_agent, focusing on strategic initiatives in
privacy-regulated markets with strict resource constraints.

Used at decision_agent (user_4): Synthesize the insights from the market anal-
ysis and financial modeling to craft a strategic growth plan for smart home
devices in privacy-regulated markets. Consider the strict resource constraints
and cross-domain dependencies, and provide a comprehensive final recommen-
dation.

D.3.2 WITHOUT SUBTASK DECOMPOSITION

Table[12] shows that without subtask decomposition, limited agent and resource access can prevent
effective query handling. When the query is reformulated to match User 3’s operational role,
the system produces a detailed response. In contrast, the original high-level query fails due to
misalignment with agent capabilities. These results demonstrate the system’s ability to address
complex real-world tasks via coordinated collaboration among role-specialized users, agents, and
resources.

Table 12: Comparison of user’s responses with and without subtask
decomposition.

project_easy_01: "Ildentify high-demand skincare markets in Europe."

With Subtask (User 3)

Query Evaluate the logistical and supply chain requirements for distributing skincare
products across different European markets, focusing on high-demand regions.

Response To conduct a comprehensive analysis of the logistical and supply chain require-

ments for distributing skincare products across high-demand European markets,
we need to consider both logistical infrastructure and financial projections.
Logistical Analysis: 1. Germany: Germany’s central location and efficient
infrastructure make it an ideal hub for distribution. Its strong manufacturing
and distribution networks support seamless logistics operations, providing easy
access to various European markets. 2. United Kingdom: ...

Without Subtask (User 3)

Query Identify high-demand skincare markets in Europe.
Response No agents were able to process the query.

D.4 PoLICY GRANULARITY OVERHEAD ANALYSIS

We quantify the computational overhead associated with increasingly fine-grained transformation
policies to assess the practical scalability of sophisticated access control mechanisms. This analysis
systematically measures LLM invocation frequency across policy complexity levels, providing
empirical evidence for the feasibility of multi-tiered policy enforcement in production environments.

We evaluate three policy granularity configurations representing different levels of access control
sophistication:
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» System-level policies: Global transformation rules applied uniformly across all interactions
» System + Agent-level policies: Per-agent specialization overlaid on system-wide constraints

» System + Agent + User-level policies: Full hierarchical policy enforcement with user-specific
customization

Table [I3] presents the mean LLM call frequency per user role across policy configurations. Results
indicate that policy granularity introduces minimal computational overhead, with variations in
total LLM calls remaining within statistical noise bounds. Notably, even maximum granularity
configurations show negligible increases relative to baseline system-level policies, confirming that
sophisticated multi-tier access control mechanisms maintain computational efficiency while providing
enhanced security guarantees.

Table 13: Total LLM calls by policy granularity across different user roles.

User Role System + Agent + User System + Agent System Only
Market Researcher 3.77 £ 4.84 3.84 + 4.69 423+492
Financial Analyst 11.81 +9.31 12.69 £ 9.52 10.09 + 5.93
Logistics & Ops Lead 12.93 4+ 8.41 12.08 = 7.64 12.12 4+ 8.81
Strategy Director 2475 +12.83 2549 +12.54  24.09 £ 13.68
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E SCENARIO 3: DYNAMICALLY EVOLVING COLLABORATIVE MEMORY

E.1 DATASET DETAILS

The SciQAG dataset covers 24 Web of Science (WoS) categories. Since our experiments target
evaluating system behavior under dynamic access settings without requiring the full dataset, we
select 5 categories: "Chemistry, Analytical", "Energy & Fuels", "Materials Science, Paper & Wood",
"Materials Science, Ceramics", and "Physics, Mathematical". These five categories cover a broad
range of scientific domains. Each instance in this dataset consists of passages from a scientific paper
along with corresponding question-answer pairs. The passages serve as the reference corpus for
answering the associated questions. Table [T4]reports the detailed breakdown of document counts,
average lengths, and query-type distributions.

Table 14: Statistics of the subset of SCIQAG dataset for the dynamically evolving collaborative
scenario.

Statistic Count Percentage
Documents

Total articles 100 —
Average tokens per article 3,609 —
Queries (N = 100)

Queries from "Chemistry, Analytical" 20 20%
Queries from "Energy & Fuels" 20 20%
Queries from "Materials Science, Paper & Wood" 20 20%
Queries from "Materials Science, Ceramics" 20 20%
Queries from "Physics, Mathematical" 20 20%

E.2 EXPERIMENTAL DETAILS

» Users: We synthesize queries for 5 users. Each user has 4 randomly sampled queries from each of
the 5 categories, resulting in a total of 100 queries.

» Agents: There are 5 agents, each specializing in one of the five scientific categories, corresponding
to their respective domain expertise.

* Resources: There are 5 resources, each consisting of the passages from the dataset associated with
a specific category, used to answer the corresponding questions.

We evaluate the framework under varying access graph configurations while accumulating memory
across the dynamic experiment. The Shared Memory configuration is enabled to support cross-user
memory sharing. The same queries are reused in different graph configurations. Memory retrieval
is configured with a user-specific tier size of kyser = 10, a shared tier size of k¢,oss = 10, and a
similarity threshold of 0.1. The agent has the access to one corresponding resource. We next provide
details on the access graph configuration and the agent/knowledge base configurations.

E.2.1 AcCCESS GRAPH CONFIGURATION

We simulate the evolution of the access graph as a stochastic process. For simplicity, we maintain
the agent-resource connection as a one-to-one mapping as reported in Table [17] and change the
connections between users and agents. Specifically, we gradually add unseen edges to represent
the granting of access and remove existing edges to represent the revocation of access. During the
granting phase (from ¢y to t4), the number of edges increases progressively to 5, 10, 15, 20, and 25,
respectively. Starting from the fully connected graph at ¢4, we reverse the process by progressively
removing edges, resulting in graphs with 20, 15, 10, and 5 edges at t5 through ts, respectively. The
graph at the previous stage provides the base of the next stage. The pseudocodes for these two
procedures are in Algorithm[I]and Algorithm[2] We use p = 0.2 for the probability.
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Algorithm 1 Access Granting Procedure (Generating to—t4)

1: Initialize empty bipartite graph G with user and agent nodes

2: Define candidate edges between all user-agent pairs

3: fori=0to4do

4 Add 5 new edges to G using Bernoulli trials with probability p
5: Collect updated user-to-agent mappings from G
6
7

Save updated YAML configuration with timestamp ¢;
: end for

Algorithm 2 Access Revoking Procedure (Generating t5—tg)

1: Load fully connected bipartite graph G

2: fori=>5to 8 do
3 Remove 5 edges from G using Bernoulli trials with probability p
4: Collect updated user-to-agent mappings from G
5
6

Save updated YAML configuration with timestamp ¢;
: end for

The user-to-agent mappings at each timestamp during the granting process are summarized in
Table[T5] and the mappings for the revoking process are shown in Table [T6]
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Table 15: Users to their accessible agents at timestamp from ¢ to ¢4 in the access granting stage.

Timestamp  User

Accessible Agents

Uz materials_paper_wood_agent,materials_ceramics_agent
U, physics_mathematical_agent
to Us
Uy materials_paper_wood_agent
Us chemistry_analytical_agent
U, materials_paper_wood_agent,materials_ceramics_agent,
energy_fuels_agent
" U, physics_mathematical_agent, energy_fuels_agent
L Us energy_fuels_agent, chemistry_analytical_agent
Uy materials_paper_wood_agent, energy_fuels_agent
Us chemistry_analytical_agent
U, materials_paper_wood_agent,materials_ceramics_agent,
energy_fuels_agent
physics_mathematical_agent, enerqgy_fuels_agent
t2 U2 . .
chemistry_analytical_agent
U energy_fuels_agent, chemistry_analytical_agent,
3 materials_ceramics_agent
materials_paper_wood_agent, enerqgy_fuels_agent,
Uy ) ;
physics_mathematical_agent
Us chemistry_analytical_agent,materials_ceramics_agent,
energy_fuels_agent
U materials_paper_wood_agent,materials_ceramics_agent,
1 energy_fuels_agent, chemistry_analytical_agent
; U physics_mathematical_agent, energy_fuels_agent,
3 2 chemistry_analytical_agent,materials_ceramics_agent
U energy_fuels_agent, chemistry_analytical_agent,
3 materials_ceramics_agent, physics_mathematical_agent
Us materials_paper_wood_agent, enerqgy_fuels_agent,
physics_mathematical_agent,materials_ceramics_agent
U chemistry_analytical_agent,materials_ceramics_agent,
5 energy_fuels_agent, physics_mathematical_agent
materials_paper_wood_agent,materials_ceramics_agent,
U, energy_fuels_agent, chemistry_analytical_agent,
physics_mathematical_agent
ta physics_mathematical_agent, energy_fuels_agent,
Us chemistry_analytical_agent,materials_ceramics_agent,
materials_paper_wood_agent
energy_fuels_agent, chemistry_analytical_agent,
Us materials_ceramics_agent, physics_mathematical_agent,
materials_paper_wood_agent
materials_paper_wood_agent, energy_fuels_agent,
Uy physics_mathematical_agent,materials_ceramics_agent,
chemistry_analytical_agent
chemistry_analytical_agent,materials_ceramics_agent,
Us energy_fuels_agent, physics_mathematical_agent

materials_paper_wood_agent
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Table 16: Users to their accessible agents at timestamp from 5 to ¢g in the access revoking stage.

Timestamp  User Accessible Agents
chemistry_analytical_agent, enerqgy_fuels_agent,
Ui ; ;
physics_mathematical_agent
chemistry_analytical_agent, enerqgy_fuels_agent,
materials_paper_wood_agent,materials_ceramics_agent
chemistry_analytical_agent, energy_fuels_agent,
Us materials_paper_wood_agent,materials_ceramics_agent,
physics_mathematical_agent
chemistry_analytical_agent, energy_fuels_agent,

ts Us

Us materials_ceramics_agent, physics_mathematical_agent
Us energy_fuels_agent,materials_paper_wood_agent
materials_ceramics_agent, physics_mathematical_agent
U1 energy_fuels_agent
U chemistry_analytical_agent, energy_fuels_agent,
te 2 materials_ceramics_agent
chemistry_analytical_agent,materials_paper_wood_agent,
Us . . . ;
materials_ceramics_agent, physics_mathematical_agent
Us chemistry_analytical_agent, energy_fuels_agent,
materials_ceramics_agent, physics_mathematical_agent
energy_fuels_agent,materials_paper_wood_agent
Us , .
physics_mathematical_agent
Uy
U chemistry_analytical_agent, enerqgy_fuels_agent,
tr 2 materials_ceramics_agent
Us materials_paper_wood_agent,materials_ceramics_agent
Uy materials_ceramics_agent, physics_mathematical_agent
energy_fuels_agent,materials_paper_wood_agent
Us , .
physics_mathematical_agent
Ui
Us chemistry_analytical_agent
ts Us materials_ceramics_agent
U, materials_ceramics_agent
Us energy_fuels_agent, physics_mathematical_agent

Table 17: Agents to their accessible resources in the dynamically evolving collaborative scenario.

Agent Accessible Resources

materials_paper_wood_agent materials_paper_wood_kb

materials_ceramics_agent materials_ceramics_kb

enerqgy_fuels_agent enerqgy_fuels_kb

chemistry_analytical_agent chemistry_analytical_kb

physics_mathematical_agent physics_mathematical_kb
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E.2.2 AGENT/KNOWLEDGE BASE CONFIGURATION

We deploy five specialist agents, each paired with a dedicated knowledge base. Table [T8]list each
agent’s description and full system prompt. In addition to the specialist agents, there is a coordinator
to assign queries to different agents and an aggregator to merge the outputs. Their system prompts
are listed in Table[19]

Table 18: Domain agents and their system prompts in the dynamically
evolving collaborative scenario.

Agent Description System Prompt
chemistry_
analytical_ Specialist in  You are an Analytical Chemistry specialist with deep
agent analytical  chem- expertise in:
istry—techniques, ¢ Explaining analytical methods such as spectroscopy,
instrumentation, chromatography, and mass spectrometry
and chemical e Interpreting experimental results and chemical mea-
analysis. surements
* Discussing laboratory techniques and instrumentation
details
* Providing insights on quality control and chemical
validation processes
Always check relevant memories first. When those are
insufficient, use the knowledge_base tools. Prioritize
information from memories and the scientific literature
dataset over your parametric knowledge. Do not provide
responses to inquiries that are unrelated to the domain
of analytical chemistry.
energy_
fuels_ Specialist in  You are an Energy & Fuels specialist with deep exper-
agent energy and fu- tisein:
els—renewable * Discussing renewable energy sources like solar, wind,
energy, fossil fu- and bioenergy
els, and energy < Analyzing fossil fuel technologies including oil, gas,
technologies. and coal

» Evaluating energy storage systems and grid technolo-
gies

¢ Interpreting policies, market trends, and environmen-
tal impacts

Always check relevant memories first. When those are

insufficient, use the knowledge_base tools. Prioritize in-

formation from memories and the energy sector dataset

over your parametric knowledge. Do not provide re-

sponses to inquiries that are unrelated to the domain of

energy and fuels.

Continued on next page
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Table 18: Domain agents and their system prompts in the dynamically
evolving collaborative scenario. (continued)

System Prompt

Agent Description

materials_

paper_ Specialist in materi-

wood__ ]

agent als science—paper,
wood, and bioma-
terials research and
applications.

materials_

ceramics_ Specialist in

agent materials sci-
ence—ceramics,
glass, and high-
performance
materials.

physics_

mathematicalSpecialist in

agent mathematical

physics—models,
theories, and
mathematical
formulations of
physical systems.

You are a Paper & Wood Materials Science specialist

with deep expertise in:

» Explaining the properties and processing of paper and
wood materials

* Discussing advancements in sustainable materials and
bio-based composites

* Analyzing mechanical, chemical, and environmental
performance

* Exploring industrial applications in packaging, con-
struction, and manufacturing

Always check relevant memories first. When those are

insufficient, use the knowledge_base tools. Prioritize

information from memories and the materials science

dataset over your parametric knowledge. Do not provide

responses to inquiries that are unrelated to the domain

of paper and wood materials.

You are a Ceramics Materials Science specialist with

deep expertise in:

» Explaining the processing and properties of ceramics
and glass

* Analyzing thermal, mechanical, and electrical perfor-
mance characteristics

 Discussing applications in aerospace, electronics, and
structural components

* Exploring advances in high-temperature and wear-
resistant materials

Always check relevant memories first. When those are

insufficient, use the knowledge_base tools. Prioritize

information from memories and the materials science

dataset over your parametric knowledge. Do not provide

responses to inquiries that are unrelated to the domain

of ceramics and high-performance materials.

You are a Mathematical Physics specialist with deep

expertise in:

» Explaining mathematical models of physical systems
and phenomena

 Interpreting equations, simulations, and theoretical
predictions

» Discussing areas such as quantum mechanics, statisti-
cal physics, and dynamical systems

* Providing insights into mathematical methods used in
physics research

Always check relevant memories first. When those are

insufficient, use the knowledge_base tools. Prioritize

information from memories and the physics literature

dataset over your parametric knowledge. Do not provide

responses to inquiries that are unrelated to the domain

of mathematical physics.
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Table 19: Coordinator and aggregator with their system prompts in the dynamically evolving collabo-
rative scenario.

Description System Prompt

coordinator Assigns queries You are a coordinator for a specialized scientific knowl-
to  appropriate edge system consisting of domain-specific expert agents.
agents based on Your job is to analyze user queries and determine which
domain expertise.  specialized agent is best suited to handle each query or
sub-query.

For each query:

1. Identify the primary domain(s) of the query

2. Select the most appropriate specialized agent based on
their expertise areas.

3. For complex queries that span multiple domains, deter-
mine if sequential agent consultation is needed

4. When reformulating queries for specific agents, empha-
size aspects relevant to their expertise

5. When the task is complete, respond with COMPLETE

aggregator Merges multi- You are an aggregator for a multi-agent scientific knowl-
agent outputs into  edge system. Your role is to combine outputs from multi-
a unified user ple specialized agents into a single, logically structured,
response. and detailed response to the user query.

E.3 EXAMPLES

To illustrate how our system stores and subsequently reuses memory entries and how the saved
memory facilitates solving subsequent queries, Table[20|presents two representative *“write—then—read”
cases using private and shared memory fragments. Each example includes the memory’s unique ID,
the stored key—value pair, the original query that triggered the memory write, and the later query that
retrieved it. Example 1 demonstrates private memory reuse: the memory was created when user_1
submitted Query #18 and later accessed by the same user in Query #40. Example 2 highlights shared
memory reuse: information originally stored in response to user_5’s query was subsequently retrieved
by user_2. We provide detailed discussions in the table.

E.4 RAW PERFORMANCE DATA AND COMPLETE ACCESS MATRIX UNDER DIFFERENT
ACCESS GRAPH CONFIGURATIONS

In this section, we present the results across graph configurations, including (1) raw data of the system
performance over eight time blocks with dynamically changing privileges and (2) the full access
matrix in Figure[TT]

Figure [[T] presents the complete agent and resource usage patterns across user queries. It clearly
illustrates that agents and resources are only utilized when access is explicitly granted (i.e., in the
yellow rectangles) despite the change of the privileges.

E.5 SYSTEM SCALABILITY ANALYSIS

We evaluate the computational scalability of our framework under increased system complexity
to establish its viability for enterprise-scale deployments. This analysis systematically stress-tests
performance by scaling the user-agent access graph from 5 users with 10 permission edges to 50
users with 100 edges, representing a 10x increase in both user population and access relationship
complexity.

Table 22] reports key performance metrics across graph configurations while maintaining a fixed
access sparsity of 0.60. Results demonstrate graceful scaling behavior: despite the substantial increase

37



Under review as a conference paper at ICLR 2026

Table 20: Memory write—read examples for private and shared memories in the dynamically evolving
collaborative scenario.

Example 1 (Private Memory)
Discussion: The stored content discusses structural dimorphism in cellulose, emphasizing the role of 21
symmetry structures as high-energy intermediates, thereby supporting analysis of flexibility in cellulose’s

structural transitions.

Memory ID
Key
Value

Generated at

Used at

8177e2aa-2ef0-4b20-bdcb-af33d8d1ae00

Potential energy surfaces for cellulose

The study concluded that twofold symmetry structures of cellulose act as barriers
between lower-energy forms. Energy maps using empirical force fields and quantum
mechanical methods suggested that 21 symmetry structures might have higher potential
energy due to close atomic contacts, potentially serving as transition points or barriers.
Despite the increased energy from these close contacts, hydrogen bonds could stabilize
these structures. The study also highlighted the flexibility of cellulose chains and
possible deviations from 21 symmetry, indicating substantial flexibility and the influence
of crystal packing on the flat ribbon-like 21 structures.

Query #18 (user_1): What was the conclusion about the potential energy surfaces for
cellulose and its derivatives?

Query #40 (user_1): What is the significance of cellulose’s dimorphism?

Example 2 (Shared Memory)

Discussion: Although the original context involved irradiated wood, the saved explanation—how moisture
accelerates hydrolytic and chemical degradation—proved relevant to understanding degradation processes
in insulating paper. Additionally, this sharing occurs because both User_2 and User_5 have access to the
chemistry analytical agent. The constraints enforced by our access graph ensure that the shared information
is used safely and appropriately.

Memory ID
Key
Value

Generated at

Used at

01b1f4d0-d7d5-4be5-a2e96-98620a49add?2

Influence of relative humidity on irradiated wood

Relative humidity affects the chemical changes in irradiated wood during heat treatment,
influencing color change. Higher humidity increases moisture content, facilitating
hydrolytic reactions and lignin breakdown, leading to chromophore formation and color
change. Moisture acts as a plasticizer, enhancing polymer mobility and reaction rates,
which accelerates lignin breakdown. Controlling humidity can manage color alteration
in wood.

Query #21 (user_5): How does relative humidity affect the change in color of irradiated
wood during heat treatment?

Query #66 (user_2): What role does moisture play in the degradation of insulating
papers?

Table 21: Performance and Memory Statistics Across Different Access Graph Configurations

Time Condition Accuracy # Resources # Agent # User Memory # Cross Memory
to Grant 027 +0.01 046=+0.02 0.51=+0.03 2.94 +0.93 3.25+£0.70
t1 Grant 0404+0.02 034+£0.02 0.74£0.04 5.85+0.14 7.09 £0.37
to Grant 0.54 £0.03 0.60+0.03 1.14+0.06 9.81 £ 0.57 11.40 £ 091
t3 Grant 0.56 £0.03 0.574+0.03 1.29+0.06 11.11 +£ 1.04 12.90 £+ 0.83
ty Grant 0.61 £0.03 048 +0.02 1.31+0.07 11.27 £ 0.60 13.10 + 0.43
ts Revoke 0.56 £0.03 0.21=£0.01 1.19+0.06 11.57 £ 0.72 11.90 + 0.62
te Revoke 047 +£0.02 030+0.01 1.08£0.05 10.77 + 2.06 10.80 &+ 2.07
ty Revoke 049+£0.02 0234+£001 1.07+£0.05 10.75 + 1.44 10.75 + 1.44
ts Revoke 0.374+0.02 0.06 £0.00 0.68 £ 0.03 6.75 £ 0.48 6.75 £ 0.48

in system complexity, end-to-end execution time increases by only ~10%. Task accuracy remains
stable, while resource utilization metrics scale proportionally with increased user demand.

E.6  COMPARISON WITH MEMORY SHARING BASELINE

We establish the empirical necessity of formal access control through direct comparison with existing
memory sharing approaches that lack user-level privacy constraints. This analysis compares our
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Table 22: System performance across varying graph sizes (Sparsity = 0.60).

Configuration Accuracy Resource Usage Agent Usage Exec. Time (s)

5 users - 5 agents - 10 edges 0.396 £0.040  0.620 £ 0.058  0.720 £ 0.055 14.366 £ 1.548
50 users - 5 agents - 100 edges  0.421 £ 0.017  0.814 £0.034  0.866 £ 0.029 15.863 £+ 0.519

Relative Change +6.3% +31.3% +20.3% +10.4%

framework against the Memory Sharing baseline|Gao & Zhang| (2024, which implements unrestricted
memory pooling across agents without consideration of multi-user access policies. The comparison
elucidates the fundamental security-utility trade-offs inherent in collaborative memory systems.

Table 23| reports performance metrics under controlled experimental conditions (5 users, 5 agents,
10 access edges, sparsity = 0.60). While both approaches achieve comparable task accuracy and
computational efficiency, they exhibit fundamentally different security characteristics. The baseline
Memory Sharing approach demonstrates a critical vulnerability: 59.03% information leakage ratio,
indicating frequent exposure of memory fragments to unauthorized users. Conversely, our Collab-
orative Memory framework achieves zero information leakage while preserving task performance,
representing complete policy compliance across all access control constraints.

Table 23: Comparison between CollabMem and Memory Sharing baseline (5 users — 5 agents — 10
access edges, Sparsity = 0.60).

Method Accuracy Resource Usage Agent Usage Private Mem Shared Mem  Leakage Ratio
CollabMem 0.401 + 0.020 0.70 + 0.035 0.74 £0.037 3.80+£0.490 5.57 +0.369 0.00 £ 0.00
MemorySharing  0.404 + 0.020 0.74 + 0.037 0.73 £ 0.036 N/A 6.98 +0.485  59.03% =+ 1.86%
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Figure 11: Complete agent and resource usage across user queries from different categories. Yellow
rectangles indicate granted access, with values representing the corresponding usage counts.
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