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Abstract
In a full-time, week-long project after a Statistics
and Machine Learning course, students grouped
in “Collaboration” of Teams build pipelines to
analyse scientific data: to prove the existence
of the Higgs boson from the Large Hadron Col-
lider data or Dark Energy from supernova sur-
veys. They have the opportunity to implement
together a variety of tools and concepts from
physics, data processing, Statistics and Machine
Learning, borrowed from the course, earlier train-
ing or resources from the Internet.

1. Introduction
Quite often, when teaching Statistics and Machine Learning,
specific topics are introduced one after the other and exer-
cises (or hands-on tutorials) are self-contained. We have
set up in 2019 (and repeated in 2020 and 2021) a broader
week-long project where scientific data analysis pipelines
are built by the students, complementing a 30 hour introduc-
tory course on Statistics and Machine Learning for particle
physics and cosmology. The objective is to give them a
thorough experience by connecting the various elements
they have been taught in order to obtain the best possible
measurement. The topics are broad and students must organ-
ise themselves in teams and collaborate in the same spirit as
international experimental collaborations.

The original idea comes from another department in the
University where students are working in teams to design
a synchrotron beam line, from the extraction of the X-rays
through various collimators onto a target. Here, data mea-
sured by a scientific instrument (an experiment at the Large
Hadron Collider or large telescopes) are processed step by
step until a measurement is obtained, including uncertain-
ties.

2. Organisation
2.1. Overview

The project lasts one week full time, starting with a short
kick-off meeting Monday morning, and ending with an af-

ternoon of presentations on Friday afternoon. Prior to the
project week, students are asked to group themselves into in-
dependent “collaborations” of about 25 students. The topic
of each collaboration is then randomly assigned. We are
three tutors to mentor four collaborations, circa 100 students
(two tutors would be barely possible).

The 30-minute kick-off meeting on Monday allows tutors to
give a very brief introduction to the projects and what each
team is expected to do. Students are encouraged to find the
necessary information in their courses and on the Internet.

The collaborations then have until noon to elect a
“spokesperson” who will coordinate the different teams. Be-
fore 5 pm, the spokesperson must send a face book with the
members of each team of 5 students.

A large open space is reserved for the project for the entire
week1, though the students are free to settle anywhere, out-
side scheduled meetings. Tutors remain available there all
the time for scheduled or impromptu discussions.

Communication between tutors and students either occurs
directly or through the official University chat/meeting tools,
where dedicated channels are opened for each collabora-
tion. Students are free to set up their own chat tools where
they can exchange without tutor knowledge, to ease ex-
changes between them and to encourage the collaborative
spirit. Each team as its own tasks but they are interdepen-
dent through the global collaboration results. The interfaces
between teams are not fully spelled out at the beginning and
require some negociation, so that teams have to share data,
algorithms, concepts and tools along the week.

The spokespersons send every evening a status report, a bul-
let list of one page describing the status of each team. The
status report is discussed every morning with the spokesper-
son in the presence of the whole collaboration so that issues
are identified. If a team is stuck, or heading in a clearly
wrong direction, a tutor will talk with them to help them
overcome the hurdle. Initiatives from the teams are favoured,
the mentoring from the tutor should be as light as possible.

1Due to the Covid-19 pandemics, in 2020 the project was
entirely conducted online, while in 2021, 10% of the students were
online, the rest being onsite.
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A second checkpoint takes place in the early afternoon with
the spokesperson alone, often deeper on a specific topic or
regarding potential problems in managing collaborations.

Friday morning is devoted to the preparation of a 45-minute
presentation (+15 minutes for questions) by each collabo-
ration. The presentation is introduced by the spokesperson,
followed by a speaker in each team. The speaker is chosen
at random from each team by the tutor and announced at
noon, after the collection of deliverables, to ensure that ev-
eryone is fully engaged until then. Questions from students
are encouraged.

The whole pipeline is implemented in Google Colaboratory
Jupyter (Kluyver et al., 2016) Python notebooks, which
was introduced and used during the practice sessions of the
course. This solution was chosen for two reasons: it does
not require any individual configuration and it is scalable.
The initial dataset and intermediate steps are shared through
Google Drive cloud storages. All students have laptops
connected to a robust wireless network. Some students
may also have installed an Anaconda environment on their
laptops and developed on them.

2.2. Student background

The course is designed for undergraduate students in engi-
neering schools, at the university Bachelor level. After a
general training, with majors in mathematics and physics,
students choose their areas of interest (here physics) during
their curriculum. The proposed course is part of the “data
analysis” sequence of their curriculum. Most of our students
had no background in the topics to be covered, other than a
basic understanding of quantum mechanics, and basics of
statistics and probability. Students have all received formal
training in the Python language, but the level of proficiency
vary greatly between students.

The course is designed as a series of introductory lectures to
Cosmology and Particle Physics allowing to understand the
type of data and the purpose of data analysis. The Statistics
and Machine Learning concepts listed in 3.2 are covered.
Several practice sessions with exercises are scheduled to get
students used to coding and data manipulation.

2.3. Deliverables

The main deliverable is the 45-minute presentation. A pdf
file of the slides (without animation!) has to be received
by the tutors on Friday at noon. The presentation has to
be understandable to students in other collaborations (e.g.
the cosmology collaborations students should understand
the Higgs boson presentation). In addition, notebooks also
have to be delivered on Friday at noon. For instance, for the
Higgs pipeline, 3 notebooks are requested: one that runs the
pipeline from start to finish, except for the training, one that

trains the BDT (Boosted Decision Trees), one that trains the
NN (Neural Networks). Additional notebooks to illustrate
specific studies are also welcome. In all cases the notebooks
should be clearly commented on what they are doing, all
graphs should be clearly labelled.

To track the progress of the project, the spokesperson sends
a single page progress report by midnight each day. In addi-
tion, each student must fill out an online form by midnight
with a few sentences about what they did, who they worked
with, any difficulties and the plan for the next day. They are
also encouraged to express their satisfaction/dissatisfaction.

2.4. Evaluation

The evaluation stage of students’ progress, work, and in-
volvement during the week is an important and necessary
element of the teaching experience. As indicated earlier,
specific indicators for monitoring the on-going work were
developed. The primary one is a comprehensive daily report
with a short 5-10 minute presentation by the spokesperson
for each collaboration. It is the primary source of evalu-
ation of each team, complemented by ad-hoc discussions
with the teams on the initiative of the teams themselves,
the spokesperson or the tutors. Tutors remain watchful to
the flexibility of each team to adapt to upstream and down-
stream teams requests. Most often, the difficulties are either
technical or relational.

In addition to these overall reports, individual reports are
requested through online forms to track each student’s work
and consistency with the team’s messages. These individual
reports help to gauge individual efforts, as “invisible” stu-
dents may contribute significantly to the team effort through
private channels. The tutors may schedule face-to-face
discussion with the few students who seems less engaged.
Overall, the careful evaluation of teams and students is the
main reason to limit the attendance to 50 students per tutor.

The final evaluation is based on a 45-minute presentation by
each collaboration of the work done throughout the week.
The spokesperson is responsible for the introduction and
overall consistency of the collaboration’s message, and the
overall conclusion. Each student’s final grade is evaluated
primarily on the team performance, the quality and diver-
sity of the studies performed, technical and interpersonal
skills, and the Python notebooks quality. Tutors can provide
additional bonus to spokespersons for the extra workload
and for individuals who provided outstanding efforts for the
overall collaborations.
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3. Academic content
3.1. Brief description of the pipelines

Two alternative projects are proposed, which have been
devised to credibly reproduce high-profile, Nobel prize level
scientific achievements. Despite the sequential nature of
the pipelines, all teams can get started immediately, before
connecting to each other.

3.1.1. THE HIGGS PIPELINE

Students are presented a special version of the Higgs Ma-
chine Learning (HiggsML) challenge dataset (ATLAS col-
laboration (2014), 2014) and associated documentation.
This dataset was created for a 2014 Kaggle challenge to
investigate Machine Learning algorithms on a high-profile
High Energy physics task: extracting the Higgs boson sig-
nal from overwhelming background noise. The dataset is a
csv file containing tabular data with 17 “primary” features
corresponding to the measured parameters of the particles
from the simulated proton collision. This is a classification
task with a specific figure of merit, the Approximate Median
Significance (AMS) that evaluates discovery potential. Prior
to the project, students have studied notebooks for a BDT
or NN trained on a similar dataset, which they can adapt to
this new dataset as a starting point.

The pipeline to be built has five components to be addressed
by one team each.

• Feature Engineering (FE): the original HiggsML
dataset has been stripped of all “derived” features, com-
puted using the knowledge of physics experts. The FE
team should first rebuild the derived features (given by
mathematical formulas), study their importance with
the BDT and NN classifiers downstream, and propose
new features.

• Boosted Decision Tree (BDT): the BDT team should
train a BDT (actually two: XGboost and LightGBM)
to maximise the AMS, first on the original dataset with
only primary features, then with the additional features
provided by the FE team. They should proceed with
hyperparameter optimisation (HPO) and other studies
as listed in section 3.2.

• Neural Network (NN): the NN team should train a
Neural Network to maximise the AMS, first on the
original dataset with only primary features, then with
the additional features provided by the FE team. They
should proceed with HPO (in particular optimise the
architecture of the NN) and other studies as listed in
section 3.2. Given the few minutes of training time
compared to few seconds for the BDT, they should
organise well to optimally cover the HPO space.

• STAT: the STATISTICS team has to develop a likeli-
hood framework based on the output of the two previ-
ously trained model (BDT and NN) in order to incor-
porate shape discrimination between signal and back-
ground and to exploit the modelling power of the algo-
rithms to increase the statistical significance of signal
detection.

• SYST: the SYSTEMATICS team should become fa-
miliar with the entire data analysis pipeline and develop
a framework to re-evaluate the trained models (BDT
and NN) under different conditions when the nomi-
nal working assumptions are wrong or biased by some
amount (e.g. a +3% error on background estimate,...).
A script allowing to alter the original dataset is pro-
vided to them. Thus, they should evaluate the impact of
the different biases on the input dataset to investigate
systematic effects and, if possible, find ways to provide
results robust to these effects during model (BDT and
NN) training stages.

Ideally, they should iterate to provide the best performance
on the statistical significance of the Higgs signal determi-
nation and have the lowest dependence on the systematics
which have natively a stronger impact.

3.1.2. THE COSMOLOGY PIPELINE

Students are presented with two simulated datasets: Type
Ia supernovae and Cosmic Microwave Background (CMB)
data. They were both simulated assuming cosmological
parameters (Hubble-Lemaı̂tre constant H0, matter density
Ωm and Dark Energy density ΩΛ) distinct from those mea-
sured for our Universe. The aim of the project is to build
a pipeline for each probe allowing to go from raw obser-
vations to constraints on these parameters as well as joint
analysis breaking degeneracies of each probe. The different
Work-Packages are organised in the following manner:

• WP-SN1: Supernovae detection from a series of im-
ages: The input data are a series of images containing
stars and galaxies with known magnitude and location.
The images are noisy and taken under different condi-
tions. Supernovae are detected on image differences
with respect to a reference one with no supernovae. De-
liverables are a list of SNIa candidates for each field.

• WP-SN2: Photometry of detected supernovae from
a series of images: The input data is similar to that of
WP-SN1 but with a list of SNIa candidates coordinates.
The deliverable is a measurement of each calibrated
SN’s flux and error bars on image differences.

• WP-SN3: Supernovae lightcurve fitting and cosmo-
logical constraints: The input data is a set of cali-
brated lightcurves for a number of SNe. The objective
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is to build a Hubble diagram from these SNe mea-
suring their brightness at maximum including various
corrections. A Markov-Chain-Monte-Carlo (MCMC)
approach provides cosmological constraints on (H0,
Ωm, ΩΛ) from the Hubble diagram.

• WP-CMB1: From Time-Ordered-Data (TOD) to
Cosmic Microwave Background (CMB) Maps: The
input data are noisy TOD along with the corresponding
pointing. The deliverable is a projected map with un-
certainties of these TODs maximising signal-to-noise
ratio through time-domain filtering.

• WP-CMB2: From CMB Maps to CMB angular
power spectra: Input data is a simulated observed
map of the CMB including inhomogeneous noise and
the corresponding coverage map. The objective and
deliverable is to calculate the CMB angular power
spectrum from this map, uncertainties are determined
through a Monte-Carlo simulation.

• WP-CMB3: Cosmological constraints from CMB
angular power spectra: The input data is an angular
power spectrum of the CMB with error bars. The
objective is to constrain cosmological parameters using
a MCMC approach and theoretical power spectra.

Finally, WP-SN3 and WP-CMB3 are expected to perform a
joint MCMC analysis of their dataset in order to obtain the
final measurements on the cosmological parameters.

3.2. Statistics and ML tools and concepts to be
implemented

During the construction of the pipelines, students have the
opportunity to implement many concepts and use many
tools. Although the ones from the course are sufficient to
obtain reasonable results, they are encouraged to look for
more. These tools and concepts are listed below without
any details.

In physics: special relativity, and how the Higgs boson was
discovered! General relativity, to prove the existence of dark
energy!

In statistics and data processing : data cleanup (check
those NaNs!), signal processing and filtering, Markov Chain
Monte Carlo, scientific plots with labels and legends. Stu-
dents have to practice maximum likelihood and least squares
estimators, check the consistency of the results and quantify
the associated uncertainties, either by the classical definition
of confidence intervals or by Monte Carlo simulation.

In Machine Learning: use of SciPy and Scikit-Learn (Pe-
dregosa et al., 2011), feature engineering (Machine Learning
does not work miracles), feature normalisation, feature im-
portance with permutation importance, feature selection,

Boosted Decision Trees with XGBoost (Chen & Guestrin,
2016) and LightGBM (Ke et al., 2017), Neural Networks
with Keras (Chollet et al., 2015), importance sampling, train
vs. test splitting, cross-validation, overtraining, model se-
rialisation, classifier evaluation, ROC curve, significance
curve, hyperparameter optimisation (manual, grid search,
random search), clustering (DBScan (Ester et al., 1996)).

In addition, students soft skills are being exercised as well.
Team work of course, at the level of the team and at the level
of the collaboration, scientific discussion, presentation of
results in a compelling way.

4. Outlook
By the end of the week, students manage to run a full data
analysis pipeline, the details of which they expose in a way
that shows (in most cases) they really understand what they
are doing. For the Higgs pipeline, we had in mind that the
students would iterate their model in order to minimise the
overall uncertainty. In practice no collaboration have had
the time to do it so far. If we would provide a functional
minimal pipeline with clear interfaces to get started, they
would spend less time with technicalities but they probably
would learn less overall.

Also, using Git is certainly a better way to exchange code
than Google Colab, but few students master contributing to
a Git repository (as opposed to downloading from it), so
that using Git would bar a large fraction of the students to
contribute. On the other hand, the topics are rich enough so
that the job of any team is never complete; good students
can always do more in-depth studies2. It is up to the tu-
tors to adjust the balance between autonomy (at the risk of
achieving little) and strong supervision (at the risk of falling
back to more usual exercises).

This type of project is very different from a challenge “à la
Kaggle” where a single figure of merit is optimised. What
matters here is that students overcome the various difficul-
ties with minimal guidance and are able to perform a number
of small studies on their own. We have often seen teams per-
form unexpected studies with quite interesting results. This
type of project can certainly be adapted to other datasets
from different domains, and with students with different
level of expertise.
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