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Abstract

Federated learning (FL) is a distributed machine learning paradigm that enables
multiple clients to collaboratively train a shared model without exposing their raw
data. However, existing FL research has primarily focused on optimizing learning
performance based on the assumption of uniform client participation, with few
studies delving into performance fairness under inconsistent client participation,
particularly in model-heterogeneous FL environments. In view of this challenge,
we propose PHP-FL, a novel model-heterogeneous FL. method that explicitly ad-
dresses scenarios with varying client participation probabilities to enhance both
model accuracy and performance fairness. Specifically, we introduce a Dual-End
Aligned ensemble Learning (DEAL) module, where small auxiliary models on
clients are used for dual-end knowledge alignment and local ensemble learning,
effectively tackling model heterogeneity without a public dataset. Furthermore,
to mitigate update conflicts caused by inconsistent participation probabilities, we
propose an Importance-driven Selective Parameter Update (ISPU) module, which
accurately updates critical local parameters based on training progress. Finally,
we implement PHP-FL on a lightweight FL platform with heterogeneous clients
across three different client participation patterns. Extensive experiments under
heterogeneous settings and diverse client participation patterns demonstrate that
PHP-FL achieves state-of-the-art performance in both accuracy and fairness. Our
code is available at: https://github.com/Siyuan01/PHP-FL-main.

1 Introduction

Federated Learning (FL) has emerged as a promising paradigm for enabling decentralized model
training across multiple clients without directly sharing their private data [[, Z]. By collaboratively
learning a global model while keeping data localized, FL offers strong privacy guarantees and broad
applicability across various domains such as mobile devices, healthcare, and finance [3-5].

Despite significant progress, traditional FL methods still face two critical challenges: I) Model het-
erogeneity. Traditional FL assumes that all clients share an identical local model architecture, which
is often impractical in real-world due to the diversity in client capabilities. To address this, Model-
Heterogeneous Federated Learning (MH-FL) has emerged as a promising research paradigm [D, 6—
9], which allows each client to maintain a personalized model tailored to its own resource constraints
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Figure 1: Left three: three client participation probability patterns (average value is approximately
50%). Right: client accuracy under patterns (a)-(c). Refer to Section B for experimental details.

or task requirements. However, most existing MH-FL methods [[[0-T3] primarily aim to ensure com-
patibility between diverse model architectures, yet overlook the fairness issues posed arising from
inconsistent client participation probabilities in practical deployments. This oversight can result in
biased models that favor frequently participating clients, ultimately compromising the robustness
and fairness of the FL system. II) Unfairness caused by inconsistent client participation. Most
existing FL research [, 9, T2-T6] implicitly assume a uniform client participation pattern, where
all clients are equally likely to participate in each training round, as illustrated in Figure [d. In
practical deployments, clients often face heterogeneous conditions, such as intermittent connectiv-
ity, fluctuating network bandwidth, and network coverage of base stations [[7-20]. These internal
and external factors lead to client unavailability and result in non-uniform participation probabil-
ities, as exemplified in Figure [H and [[d, which may critically degrade both the overall accuracy
and fairness of the FL system. Figure [[d compares the final client accuracy distributions between
FML [2T] (a representative MH-FL method) and our method PHP-FL under three participation pat-
terns. While FML suffers significant performance degradation in the normal and linear patterns
compared to the uniform participation, PHP-FL maintains stable accuracy with only marginal drops.
Furthermore, PHP-FL demonstrates tighter accuracy distributions, indicating better performance
fairness. Although some studies [22-25] improve overall system performance by proactively se-
lecting high-availability clients and discarding less efficient ones, such strategies often compromise
fairness across clients. Furthermore, numerous fair federated learning methods aim to enhance per-
formance fairness through personalized model [I4, D] or weight recalibration [Z7, P8]. Neverthe-
less, they typically operate under the assumption of uniform client participation, failing to address
the challenge of inconsistent client availability. Despite its importance, this issue has received lim-
ited attention in the literature, particularly in the context of MH-FL, where the interplay between
model heterogeneity and participation imbalance exacerbates the learning challenge.

To address these challenges, we propose PHP-FL, a fair federated learning method designed to
address scenarios with varying client participation probabilities in model-heterogeneous environ-
ments. Specifically, to effectively tackle model heterogeneity without relying on public datasets,
we introduce a Dual-End Aligned ensemble Learning (DEAL) module, which leverages lightweight
auxiliary models on clients to align heterogeneous local models and enable ensemble learning to
improve the performance of local tasks. Furthermore, to mitigate the adverse effects of update con-
flicts that caused by inconsistent client participation probabilities, we propose a Importance-driven
Selective Parameter Update (ISPU) module. The ISPU module adaptively updates only the most
critical task-relevant parameters based on training progress, allowing clients with different participa-
tion frequencies to selectively absorb varying ratios of global knowledge. This design helps reduce
gradient conflicts and enhancing fairness. Our main contributions are as follows:

* To the best of our knowledge, this is the first work to explicitly address performance unfair-
ness caused by inconsistent client participation probabilities in practical FL systems with
heterogeneous local models.

* We propose PHP-FL, a novel model-heterogeneous federated learning method designed
to address inconsistent client participation probabilities, aiming to jointly improve both
overall accuracy and performance fairness across clients.

» We evaluate PHP-FL through extensive experiments on a lightweight FL platform simulat-
ing multiple realistic participation patterns. Empirical results on the Fashion-MNIST and
CIFAR-10 datasets demonstrate its state-of-the-art performance, while the ablation study
further validates the effectiveness of each proposed module.



2 Related Works

Model-Heterogeneous Federated Learning. Model-Heterogeneous Federated Learning (MH-
FL) has emerged as a promising research direction [T, B, B, 9, [, [3]. Existing work in this area can
be broadly categorized into knowledge distillation-based (KD) methods, representation alignment
methods, and partial model sharing methods. KD is one of the most widely adopted techniques
in MH-FL. The studies in [?P9-3T] enable clients with different architectures to distill knowledge
through a shared or public dataset. However, such reliance on public data limits applicability in
privacy-sensitive settings. Another popular line of work, like [I5, T2, ], focuses on representa-
tion alignment, which aligns feature representations or prototypes rather than raw model parameters,
allowing clients to maintain model diversity while contributing to a shared learning objective. Fur-
thermore, some studies [[4, 32-34] adopt partial model sharing strategies, where clients share only
specific model components (e.g., a shared backbone or predictor) while keeping the other parts dis-
tinct, thereby enabling partial compatibility across models. However, few MH-FL methods explicitly
address fairness for clients under inconsistent participation probabilities, a critical requirement for
equitable and robust deployment.

Fairness in Federated Learning. Existing research on fairness in federated learning has primarily
focused on three key dimensions: (1) Contribution Fairness [4, 33, 36], which involves evaluating
each client’s contribution to the global model to guide equitable benefit distribution, often using
techniques like Shapley value or influence functions [B7, 3X]; (2) Model Fairness [39, &0], which
addresses inherent biases in model predictions concerning sensitive attributes, thereby promoting
fairness at the prediction level; and (3) Performance Fairness [I4, 20, D7, &1, D8], which aims to
ensure uniform model performance across clients, typically by minimizing the variance or standard
deviation of test accuracy among clients. As prior studies [22, &3] demonstrate, these fairness met-
rics often conflict, making it infeasible for a model to simultaneously achieve optimal performance
across all dimensions. Our work, therefore, specifically targets performance fairness, aiming to en-
sure uniform performance across clients while concurrently optimizing overall performance under
inconsistent participation probabilities in MH-FL. While another line of research [0, 44, 45] ad-
dresses client unavailability by primarily focusing on maintaining the average performance across
clients, they do not explicitly ensure performance-level fairness. Furthermore, these methods are
typically designed for homogeneous settings and face significant challenges when generalizing to
heterogeneous federated learning environments, where client capabilities vary substantially.

3 Preliminaries

The Global Objective of Federated Learning. Following typical federated learning [, 2f] set-
tings we consider a set of K clients (index by i) with local datasets {D1, Do, .. DK} where
D; = {(zj,y;)};L, and n; = |D;|. In a heterogeneous FL environment, each client 4 maintains
a unique model w;, parameterized by 6; € R%, with dimensional heterogeneity (d; # dj) arising
from hardware constraints (e.g., compute/memory limits) or personalized model specialization. This
implies dim(0;) # dim(6;), 3i # j € [K]. The global objective function can be expressed as:

K
Zin F({w) Zl—sz ), Y opi=1, (1
i i=1

where p; is the weight of client 4, {w;}!< | represents the set of the client’s local models, and

Fi(w;) = ni >oimy L(wi(0i55), y;) is the local objective for client i with loss function L.
Inconsistent Client Participation Probability. To simulate realistic client availability in feder-
ated learning, we consider three types of client participation probability patterns. Let p; ; denote the
probability that client ¢ actively participates in communication round ¢:

Definition 1 (Uniform Pattern) All clients share an identical and fixed probability a € (0,1] of
participating in each round , i.e., p;; = a, Vi€ {1,2,...,n}, Vt.

Definition 2 (Normal Pattern) The participation probabilities are drawn from a truncated normal
distribution to simulate natural heterogeneity: p; ; ~ N (u, o), and p; , is clipped to (0, 1].



Definition 3 (Linear Pattern) Client participation probabilities are distributed according to an in-
creasing arithmetic sequence: p;y = a+ (i — 1)d, i =1,2,...,n, Vt, where a is the first term
and d is the common difference. In this pattern, the initial sequence satisfies 0 < p1 4 < pa; < --- <
pi,t < 1 for round t. This sequence {pi,t}iK:l is then randomly shuffled prior to use to eliminate
any inherent ordering bias among clients. It models systematic heterogeneity such as time-varying
connectivity or device capacity.

Note that p; ; is independent of the history and other clients. The three distinct patterns considered
enable a comprehensive analysis of how heterogeneous client participation affects both fairness and
overall performance in federated learning.

Design Goals. In this paper, we aim to design a MH-FL method under inconsistent client par-
ticipation probabilities that not only optimizes the average performance across all clients but also
enhances performance fairness. Formally, let a;(i = 1,..., K) represent the test accuracy on the

i-th client’s local test dataset. The Accuracy Metric (AM) is defined as: AM = % Zle ay. The
Fairness Metric (FM) is defined as: FM = Std(ay,...,ax), where Std(-) denotes the standard
deviation. To this end, our approach seeks to maximize the average local accuracy (AM) while
minimizing the performance disparity (FM), ensuring both high overall performance and fair perfor-
mance distribution across clients.

4 Methodology

4.1 Overview of PHP-FL

Our method consists of two key modules: dual-end aligned ensemble learning (DEAL in Sec-
tion E7), and importance-driven selective parameter update (ISPU in Section B3). The DEAL
module employs a small homogeneous auxiliary model to perform bidirectional representation-logit
alignment between local and auxiliary models, which resolves model heterogeneity and enhances
overall performance via ensemble learning. To handle inconsistent client participation, the ISPU
module selectively updates task-relevant critical parameters using an importance-based masking
mechanism. This approach applies larger updates to stragglers to accelerate overall convergence,
while reducing updates for frequent participants to prevent adverse effects from the stragglers. This
ensures efficient knowledge fusion and fair parameter evolution across clients.

As shown in Figure D, the training process in each communication round ¢ of PHP-FL can be sum-
marized as follows:? @ The server first computes the client-specific auxiliary model G*~! © M}
for the active client i € A; by pruning non-essential parameters using historical binary mask M.
® Then active clients initialize the personalized auxiliary models fol. ® PHP-FL decomposes
both the local model w; and the auxiliary model g; into a backbone and a predictor, which are used
for representation extraction and soft prediction, respectively. At the beginning of local training,
the DEAL module first optimizes the ensemble weights A; on the adaptation set D, while w] and
gf‘l are frozen. @ Local training then proceeds using the customized loss L,,, which comprises
two components: (1) The dual-end alignment loss Lpgar, enabling bidirectional knowledge align-
ment through data-free distillation and representation matching. (2) The ensemble learning loss
LgnNs, which further enhances overall model performance. ® Following the local training, the ISPU
module calculates an update ratio o} based on the client’s total training rounds. It then estimates
the top-a! important parameters of g using the ¢;-norm and generates a binary mask M. Finally,
each active client uploads both its updated local auxiliary model g} and the binary mask M/ to the
server. ® The server updates the historical mask M/ € My for each active client i by replacing its
entry with the newly received M/. Then the received auxiliary models are aggregated via a simple
averaging technique to obtain the global auxiliary model G for round ¢ + 1.

4.2 Dual-End Aligned Ensemble Learning

To address system heterogeneity without relying on public datasets, previous works such as [, 5]
decompose the model w® (parameterized by 6) into a backbone wy, and a predictor w,, , and perform

2Algorithm 0 in Appendix B describes the PHP-FL algorithm.
3We omit the client index ¢ and the communication round index ¢ for notation simplicity.
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Figure 2: The overview of PHP-FL.

aggregation based on intermediate representations z = wy,(6y; ;) produced by the backbone. How-
ever, it’s challenging to classify representations generated by heterogeneous backbones for local
predictors. Inspired by the spirit of the mutual learning, some works [26, &7] leverage logits-level
knowledge distillation, where each client co-trains a heterogeneous local model w and a lightweight
homogeneous global model g (parameterized by ¢) by aligning only the final outputs of the predic-
tors. Unfortunately, this limited alignment fails to facilitate meaningful knowledge transfer to the
backbone component, resulting in suboptimal representation learning. To address these limitations,
we propose a DEAL module. In DEAL, both the backbone and predictor components between local
and auxiliary models are explicitly aligned. This dual-end alignment ensures effective and rapid
fusion of local and global knowledge. To this end, we design the following loss function:

DEAL = |D| > [ (wo (0s; 25), g (053 75)) + Dre (w(6; 25) | g (65 7)), 2
JjeD;

Backbone Alignment Predictor Alignment

where Dk is Kullback-Leibler (KL) divergence. The Maximum Mean Discrepancy (MMD) loss
Lymvp between two sets of representations z; € R™*41 and z, € R™*d2 using a Gaussian radial
basis function (RBF) kernel is computed as:

. 1 & ; :
Lyimp (21, 22) Z k(f F2) + 3 > k(h(z5), h(z5))
; ln . ®
2 () 10 ()
nm ;;k(f(zl )’h(ZQ ))’

where f : R — R% and h : R% — R? represent customizable projection functions designed
to standardize feature dimensions, enabling cross-architecture feature alignment between the local
model w and global model g when their structures are heterogeneous. The Gaussian RBF kernel
k(z,2z') = exp (—7||z — 2’||*) measures similarity between representations, with v = 1/(20%) con-
trolling the kernel bandwidth. This non-parametric metric effectively captures the distance between
the distributions of z; and zs in the Reproducing Kernel Hilbert space (RKHS). MMD is able to
effectively align feature distributions by comparing global statistics via kernel-based embeddings,
handles non-IID data robustly, and enables stable optimization [AX].



Next, to fully leverage the classification capabilities of both local models and global auxiliary mod-
els, we adopt model ensembling [49, &7, 3] to enhance performance on local tasks:

1
BNS = D] Z [Lee(w(0;25),y5) + Lee(Aw(0; 25) + (1 — N)g(9;25), y5)], 4)
! jeD;

where Lcg denotes the cross-entropy loss between the predicted label and the ground-truth label.
Furthermore, to address the challenges posed by the potential heterogeneous system capabilities
between each local model w and the global model g, we set A as a trainable parameter for each
client and randomly hold out a tiny adaptability set D} from the training set D; (e.g., 10%) for its
optimization at the beginning of every communication round. The remaining set on each client for
training is denoted as the study set D;. This round-wise resampling of the adaptability set guar-
antees that the ensemble weight \; is continuously optimized on fresh and unbiased data, thereby
effectively mitigating overfitting risks. The learning process of A on each client is:

1
| D

AL ATy Z V)J—lE(x,-,yj)NDg£CE(>\t71w(9; z;)+ (1= X"Yg(d;x;),5), 5)

jeDY
where 1) is the learning rate for A. Finally, the total training objective of the local model w combines
the dual-end alignment loss and the ensemble learning loss:

Lo =LPpar +LENS (6)

For symmetry, an analogous loss Lg is also computed but omitted here for brevity, as it follows
the same formulation with reversed inputs. The total losses L4 and L., are used to simultaneously
update the homogeneous auxiliary model and the heterogeneous client local model, with learning
rates 7g and 7,,, respectively, as follows:

_ 1 14
w' Fwt ! _nwﬁ Z thflE(zj,yj)NDf‘Cw(wt 179t 13)‘ta$j7yj)a
[

Jjeb;
. ™
gt — gtil - ngﬁ Z Vgt—lE(x%yj)ND?ﬁg(gt*l,’wtil,At,xj7yj).
vl jeD;

During the inference stage, clients use the weighted model ensemble for prediction:
;gf"ed = argmax(Aw(6; z;) + (1 — A)g(¢; x;)). (8)

This adaptive weighting mechanism automatically balances the contributions of both models based
on their current performance. It is particularly effective under system heterogeneity, where devices
may have varying computational capabilities.

4.3 Importance-Driven Selective Parameter Update

To enable straggling clients to quickly catch up upon rejoining training while preserving the learn-
ing momentum of more active clients, we propose a novel selective parameter update module, ISPU,
which selectively updates task-relevant parameters and suppresses noisy or redundant updates. In-
stead of directly overwriting the local auxiliary model gf_l with the global model G*~1, we perform
a model fusion by identifying the most significant parameters in gffl. The update ratio o is adap-
tively determined by a sigmoid-based scheduling function according to the training progress:

1
at

e (o (0 03))

where N;(t) = 3.'_, 1{i € A,} denotes the cumulative number of rounds in which client 7 has
participated up to round ¢ and 1{-} is the indicator function. Here, 7 € (0, 1] represents the prun-
ing threshold and § is a tunable sharpness hyperparameter. We then apply a binary mask on the
parameters of gf_l to retain only the critical parameters and replace them with the corresponding
parameters from the global model G'~!. Common pruning metrics include the /-norm [50, 3], Fisher

Information Matrix (FIM) [51, 57], and sensitivity-based measures [53, 54]. Specifically, we adopt

T &)




the ¢1-norm to evaluate the importance of parameters, which has been proven to be an effective
technique for assessing parameter significance [53, B]. Compared to other metrics, this formulation
better captures the importance of task-relevant parameters. After local training, the binary mask M}
is constructed to update only the top-a! important parameters of g} in the next participation round:

¢ {1, if d-th parameter € top-a! largest of g} (10)

“»d 10, otherwise

This parameter-wise filtering mechanism helps frequently active clients preserve their learned
knowledge while allowing infrequent clients to assimilate global updates more effectively, enabling
rapid catch-up and mitigating knowledge drift. Specifically, at the beginning of round ¢, the local
auxiliary model gffl of each active client i € A, is updated as follows:

g =g oM +¢" oM, (1)

where M) is the mask matrix obtained by client i from its most recent training round and —M
denotes the bit-wise inverse of the mask M. This approach ensures clients preserve critical knowl-
edge via high-importance parameters, filters out conflicts from heterogeneous data and inconsistent
training progress.

S Experiments

5.1 Experiments Details

Datasets. We evaluate our proposed PHP-FL on two standard image classification benchmarks:
Fashion-MNIST? [56] and CIFAR-10% [57]. For both datasets, we adopt a 4:1 ratio to split samples
into training and test sets. Following previous studies [[2, 58, 8Y], we simulate heterogeneous data
distributions by allocating class j proportions to each client k according to a Dirichlet distribution
(pj,r ~ Dir(53)), where a smaller 3 implies more extreme data heterogeneity across clients. We
adopt 8 = 0.1 for Fashion-MNIST and 3 = 0.5 for CIFAR-10, respectively. Notably, each client’s
local training and test sets share the same distribution.

Models. Our experimental setup employs four heterogeneous model architectures: (1)
GoogleNet [60], (2) DenseNet-121 [BT], (3) EfficientNet-B1 [6Z], and (4) ResNet-18 [63]. Each
client is assigned one of these models based on its identifier ¢, following a round-robin strategy
where client ¢ receives the model corresponding to ¢ mod 4. Comprehensive comparative results of
homogeneous model architectures are provided in Appendix C2.

Comparison Baselines. In the heterogeneous model experiments, we comprehensively evaluate
our method against six state-of-the-art heterogeneous federated learning algorithms without rely-
ing on public data, including FML [21], FedGen [I0], FedKD [I1], FedAPEN [&7], FedTGP [I7],
FedMRL [T3]. In addition, we also compare a standalone baseline where clients train locally without
any aggregation or communication.

Implementation Details. Our experimental framework is built on a lightweight MH-FL platform
HtFLIib [64] using PyTorch 2.2.2 [65] with NVIDIA RTX 3090 GPU. We employ SGD as our
optimizer with a learning rate of 0.001 and a local batch size of 64. The global training process
consists of 100 communication rounds, with a total of 20 clients. During each federated training
round, clients perform 5 local epochs of training. In each round, client participation follows the
three patterns introduced in Section B. We repeated all experiments three times with different random
seeds and present the averaged results. More details are provided in Appendix Bl.

Evaluation Metrics. As defined in Section B, we evaluate the performance using the average Top-
1 accuracy (AM) across all clients. In evaluating the fairness of the clients, we adopt the standard
deviation (FM) of client accuracy when the Top-1 test accuracy is achieved. In PHP-FL, the test
accuracy and fairness for each client are derived from the ensemble output of its local and auxiliary
models, as computed by Eq. K.

4 https://github.com/zalandoresearch/fashion-mnist?tab=readme-ov-file
5 https://www.cs.toronto.edu/~kriz/cifar.html
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Table 1: Comparison with the state-of-the-art methods on Fashion-MNIST in the heterogeneous
setting. Best in bold and second with underline. 7 indicates improved accuracy (%) and | indicates improved
standard deviation (%) of accuracy compared with the best baseline, respectively.

e Uniform [a = 0.5] |Normal [ = 0.5, 0 = 0.2] | Linear [a =0.05,d = %]
AM (%) T  EM (%) | AM (%)t EM (%) | AM (%) t EM (%) |
Standalone 95.88+£0.19 9.26+1.37 |96.89+£0.19 9.37£1.22 95.77+0.05 9.86+0.53
FML [arXiv20] 89.091+0.66 23.13+1.18|88.71+0.23 23.32+1.11 | 88.154+0.73 25.21+2.76
FedGen [ICML21] [{93.97+1.13 22.78£1.46|93.81+£0.99 23.254+1.52 | 93.72+0.93 23.80+1.90
FedKD [NC22] 95.67+£0.31 9.20+0.92 |95.65+£0.30 9.02+£1.16 95.57+0.18 9.30+0.78
FedAPEN [KDD23] [{96.79+£0.06 6.744+0.26 |96.79£0.07  6.502£0.60 96.73+£0.06 6.89+0.08
FedTGP [AAAI24] [|94.35£2.57 10.9442.47|94.06£2.38 11.324+2.25 | 9421+£2.48 11.50+£2.18
FedMRL [NIPS24] [[96.06+0.45 9.0741.65 |96.05+0.43  9.254+1.39 95.78+0.09 9.81+0.64
PHP-FL (Ours) |/97.641+0.04 4.151+0.18 |97.59+£0.04 4.241+0.05 | 97.58+0.03 4.2940.04
1 0.85 12.59 1 0.80 1 2.26 1 0.95 1 2.60

Table 2: Comparison with the state-of-the-art methods on CIFAR-10 in the heterogeneous setting.
Best in bold and second with underline. 1 indicates improved accuracy (%) and | indicates improved standard
deviation (%) of accuracy compared with the best baseline, respectively.

il Uniform [a = 0.5]  |Normal [pn = 0.5, 0 = 0.2] | Linear [a =0.05,d = %]
AM (%) T  FEM (%) | AM (%)t EM (%) | AM (%) 1 EM (%) |
Standalone 56.66+0.32 10.28+£0.32|56.77£0.40 10.194+0.36 | 56.61+0.30 10.21+0.32
FML [arXiv20] 46.61+£0.61 15.1840.34|46.161.02 15.78+0.75 | 46.04+£1.16 15.85+0.83
FedGen [ICML21] [|54.27+0.15 10.29£0.26|54.38+£0.02 10.334+0.31 | 54.50+0.18 10.451+0.46
FedKD [NC22] 54.861+0.43 10.4340.23|54.82+0.37 10.364+0.33 | 54.55+0.13 10.45+0.21
FedAPEN [KDD23] || 60.30£0.33 9.40£0.30 [60.35+£0.31  9.4540.31 60.4040.31 9.4040.30
FedTGP [AAAI24] ||53.39£0.53 9.73+0.61 |53.40+£0.52 10.62+1.17 | 52.85£1.16 10.284+0.78
FedMRL [NIPS24] [|52.804+0.63 12.8141.17|52.61+0.77 12.85+1.20 | 53.11+0.63 12.954+1.27
PHP-FL (Ours) ||66.85+0.36 8.07+£0.25 [66.941+0.39  8.0710.24 66.78+0.36 8.0940.27

1 6.55 J 1.38 1 6.59 1 1.29 16.38 } 1.31

5.2 Comparison to State-of-the-Arts Methods

We evaluate PHP-FL against several state-of-the-art methods in Tables [ and D. The experiments are
conducted under three distinct client participation patterns: uniform, normal, and linear, represent-
ing diverse real-world scenarios. Across all settings, PHP-FL consistently demonstrates superior
performance. It achieves the highest average accuracy (highest AM values) while simultaneously
exhibiting the best fairness (lowest FM values). Compared to the strongest baseline FedAPEN,
PHP-FL achieves notable improvements in average performance, boosting AM by up to 0.87% on
Fashion-MNIST and a substantial 6.51% on CIFAR-10. At the same time, it enhances fairness by
reducing FM by up to 2.48% and 1.33% on the respective datasets, demonstrating the robustness and
effectiveness of PHP-FL in addressing model heterogeneity and unfairness caused by inconsistent
client participation. Appendix C further shows its faster convergence and superior performance
through accuracy and standard deviation curves.

5.3 Ablation Study

In Table B, we present an ablation study to evaluate the contribution of the DEAL and ISPU mod-
ules in PHP-FL under the normal participation pattern. When both modules are disabled, the per-
formance significantly degrades, especially on CIFAR-10, where the accuracy drops to 59.88%.
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Figure 3: Comparison results on CIFAR-10 under varying degrees of data distribution heterogeneity
across clients. All other settings follow their default configurations.
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Figure 4: Left two: effect of 7 on performance. Right: average weight X of clients in each round.

Introducing the ISPU module alone brings a modest improvement, highlighting its effectiveness in
mitigating update conflicts from inconsistent client participation.

Besides, enabling only the DEAL module

yields a more pronounced performance gains. Table 3: Ablation study of key modules of PHP-FL

This is achieved by effectively addressing sys-
tem heterogeneity through data-free knowledge

under the normal pattern.

alignment and ensemble learning. Notably, DEAL |ISPU Fashion-MNIST CIFAR-10
enabling both DEAL and ISPU achieves the A7) ESUE)]| W) 18T
best performance on both datasets, with 97.59% X X 92.86 9.10 59.88  11.24
accuracy on Fashion-MNIST and 66.94% on X v 96.72 5.07 62.05 9.47
CIFAR-10, demonstrating their complementar- v X 96.98 5.73 63.08 8.16
ity and the necessity of their joint design. 4 v/ 9759 424 | 6694  8.07

5.4 Case Studies

Robustness to Non-IIDness. To evaluate PHP-FL’s robustness under varying data heterogeneity,
we conducted additional experiments on CIFAR-10 using the Dirichlet distribution with § = 0.1
(high heterogeneity) and S = 5 (low heterogeneity). As shown in Figure B, PHP-FL consistently
outperforms all baselines across both settings. Under high heterogeneity, PHP-FL surpasses the best-
performing baseline by 2.09% in accuracy (AM) and reduces the fairness metric (FM) by 1.84%.
This advantage becomes even more pronounced under low heterogeneity, where PHP-FL achieves
a remarkable 8.83% accuracy gain over the next best method while maintaining the best fairness
performance. These results clearly show that PHP-FL is not only robust to different levels of data
heterogeneity but consistently achieves state-of-the-art performance in both accuracy and fairness.

Effect of the Pruning Threshold 7 on Performance. To investigate the effect of the hyperparam-
eter 7, we conduct experiments on Fashion-MNIST and CIFAR-10 under the normal pattern. As
shown in Figure B4 and BH, on the CIFAR-10 dataset, the accuracy first increases and then decreases,
while the standard deviation initially decreases and then increases, with both metrics achieving their
best values when 7 is set to 0.2. For the Fashion-MNIST dataset, the performance remains relatively
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Figure 5: The client accuracy distribution at the best achieved AM (best mean accuracy) on CIFAR-
10 dataset under the uniform participation pattern for PHP-FL and two other baseline methods.

stable across different 7, and similarly, the best results are also observed at 7 = 0.2. Therefore, we
choose 7 = 0.2 as the default configuration for all experiments.

Effect of Adaptive Ensemble Weights. We analyze the behavior of the adaptive ensemble weight
A by tracking its average value across clients throughout training under the uniform pattern. As
depicted in Figure Bd, the dynamics of A differ significantly between datasets. For CIFAR-10, the
average A is initialized as 0.5 but quickly decreases and stabilizes around 0.43, indicating a consis-
tent preference for the global model g within the ensemble on this more complex dataset. In contrast,
on Fashion-MNIST, the average ) steadily increases from 0.5 to approximately 0.58 by the end of
training, signifying a growing reliance on the specialized local models w. This demonstrates that
the adaptive mechanism effectively captures dataset-specific characteristics, dynamically adjusting
the ensemble balance between local and global models to leverage their respective strengths during
the learning process.

Visualization of Client Accuracy Distribution. To visualize the client accuracy distribution un-
der the normal participation pattern, we plot histograms and Kernel Density Estimation (KDE) [6f]
curves for different methods on CIFAR-10 dataset. As shown in Figure B, PHP-FL achieves a more
concentrated accuracy distribution compared to FedAPEN and FedMRL, with clients generally at-
taining higher accuracy. Moreover, the differences in client performance are significantly reduced
under PHP-FL, highlighting its superiority in both enhancing average performance and promoting
fairness across clients.

6 Conclusion

In this paper, we propose PHP-FL, a novel model-heterogeneous federated learning method address-
ing the critical challenge of enhancing both accuracy and fairness under inconsistent client partic-
ipation probabilities. PHP-FL achieves this through two integrated modules: (1) the DEAL mod-
ule, which harmonizes heterogeneous models via data-free knowledge alignment; and (2) the ISPU
module, which selectively updates task-relevant parameters to mitigate update conflicts. Evaluated
across diverse participation patterns, PHP-FL demonstrates state-of-the-art performance for both ac-
curacy and fairness. Ablation study further validates the effectiveness of each module. Our research
narrows the divide between idealized uniform participation scenarios and practical heterogeneous
FL systems, providing a lightweight yet robust solution suitable for real-world implementation.

Limitations. Despite the promising results, PHP-FL has two main limitations:

First, compared to approaches that exchange only lightweight information (e.g., logits, proto-
types [29, 7], or partial model parameters [0, IT]), our method introduces non-negligible compu-
tation and communication overheads.® Although employing a smaller auxiliary model can alleviate
this burden, the additional costs from ensemble training and selective parameter updates still persist.

Second, our evaluation is conducted on a constrained set of model heterogeneity types, datasets,
and client participation patterns. Although PHP-FL demonstrates robust performance within these
scenarios, its generalizability should be further verified on more diverse and large-scale benchmarks.

SFor an analysis of the communication and computation costs, please refer to Appendix T2,
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butions and scope.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.
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contributions made in the paper and important assumptions and limitations. A No or
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* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.
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Answer: [Yes]
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sions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
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URL link to our released code.
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The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
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the same dataset, or provide access to the model. In general. releasing code and data
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detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all sub-

missions to provide some reasonable avenue for reproducibility, which may depend

on the nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear
how to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: This paper provides an URL link to our released code. The public datasets
used in this paper are properly referenced.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not
be possible, so No is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: This paper presents comprehensive details of the experimental setup in the
Experimental Section and further provides the hyperparameters of baseline methods in Ap-
pendix.

Guidelines:

* The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of
detail that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The paper reports experimental results averaged over 3 runs with correspond-
ing standard deviations in the main results.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

¢ Itis OK to report 1-sigma error bars, but one should state it. The authors should prefer-
ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: This paper describes the experimental environment in the Experiments Sec-
tion and our code.

Guidelines:

» The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: This paper fully complies with the NeurIPS Code of Ethics in all respects.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer:
Justification: There is no societal impact of the work performed.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.
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11.

12.

o If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer:
Justification: This paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The assets used in this paper are properly credited. The license and terms of
use are explicitly mentioned and properly respected.

Guidelines:
» The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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14.

15.

* If assets are released, the license, copyright information, and terms of use in the pack-
age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the li-
cense of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?

Answer: [NA]
Justification: This paper does not release new assets.
Guidelines:

» The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research

with human subjects.

* Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

* Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.
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* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.
16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLN)
for what should or should not be described.
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APPENDIX

A Pseudo codes of PHP-FL

The algorithm is outlined in Algorithm [. Please refer to Section BTl for more details.

Algorithm 1: PHP-FL

Input: Auxiliary small models {g{}X , Local models {w?}X |, Total number of rounds T’
Dataset partitions {D; } X, .
Output: Optimized local models {w? } | and auxiliary small models {g } X ;.
Initialize historical mask { M}/, < 119/ and global model G°;
for roundt =1to T do
Server Side:
Collect the IDs of active clients A; C {1,..., K'};
Broadcast the pruned auxiliary small model G~ ® M to client i € Ay;
{gt, M!};c 4, < Client Update;
Update the historical mask M[* € My for clients in A;: M} « M.
Aggregate auxiliary small models: Gt = ‘Tld ZiEAt R
Client Update:
for each client i € A, in parallel do
Download Gt~ @ Mz-h from server;
gf—l < initialize local auxiliary model by Eq. [T,
Randomly divides the training set D; into D§ and Dy;
for batch (z,y) € D¢ do
| Al < update ensemble weight by Eq. B;
end
for batch (z,y) € Df do
L, <Calculate local training loss by Eq. B;
L4 + Calculate the symmetrical loss similar to Eq. B;
w!, g! < update the local model and local auxiliary model by Eq. 2,

end

al « calculate update ratio by Eq. B;

M} < obtain binary mask by Eq. [0 ;
Upload g! and the binary mask M/ to server;

end
end

B Additional Experimental Details

B.1 Hyperparameter Settings

We provide a detailed summary of the hyperparameter configurations used in our experiments in
Table Bl. These settings are carefully selected to ensure fair comparison across different baselines.
For the proposed PHP-FL, the standardized feature dimension d is set to 512. The adaptability set
D¢ consists of 10% randomly sampled data from the training set D;. The ensemble weight X! is
trained for 10 epochs in each round. Additionally, following the hyperparameter search detailed
in Section B4 and [CA, the pruning threshold 7 and the sharpness factor § are set to 0.2 and 5,
respectively. Unless otherwise specified, all experiments follow the same training setting.

"Note that these parameter names in different methods are consistent with the original references and are
independent of the notation used in our work.
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Table 4: Hyperparameter settings used in our experiments.

Type | Hyperparameters | Value
Local learning rate n 0.001
Batch size 64
FL training | Local epochs per round F 5
settings Total rounds T’ 100
Number of clients K 20
« in FML 0.5
B in FML 0.5
Server learning epochs in FedGen 100
Server learning rate in FedGen 0.1
d,, in FedGen 32
dj, in FedGen 512
Tstart in FedKD 0.95
Teng in FedKD 0.98
7s in FedKD 0.001

Adaptation set ratio in FedAPEN 10%
Framework- | Server learning epochs in FedTGP | 100

specific 7 in FedTGP 100
A in FedTGP 0.1
dy in FedMRL 128
) in Ditto 0.1
« for CIFAR-10 in FedFV 0.1
« for Fashion-MNIST in FedFV 0
7 for CIFAR-10 in FedFV 10
7 for Fashion-MNIST in FedFV 0
3 in FedHEAL 0.4
7 in FedHEAL 0.4
K in FedAU 1

B.2 Visualization of Data Distributions

To intuitively illustrate the data heterogeneity across clients in our federated learning setting, we
plot scatter diagrams based on the CIFAR-10 and Fashion-MNIST datasets in Figure B. Specifically,
we simulate heterogeneous data distributions by allocating the proportion of class j to each client k
according to a Dirichlet distribution (p;  ~ Dir(3)), where a smaller 5 indicates more extreme data
heterogeneity across clients. In our experiments, we set 3 = 0.1 for Fashion-MNIST and g = 0.5
for CIFAR-10, respectively.

B.3 Model Architectures Used in Experiments

we utilize four widely recognized Convolutional Neural Network (CNN) architectures with varying
designs and complexities. We report the corresponding parameter counts of each model in Table B.
These serve as the local models for clients in our heterogeneous federated learning setup:

* GoogLeNet [60]: Introduced the inception module, which performs convolutions with
multiple filter sizes in parallel within the same block. It was designed for computational
efficiency and won the ILSVRC 2014 challenge.

* DenseNet-121 [b1]: Characterized by its dense connectivity pattern, where each layer re-
ceives feature maps from all preceding layers within a dense block. This encourages feature
reuse, strengthens gradient flow, and improves parameter efficiency. The ‘121’ denotes the
number of layers with weights.

* EfficientNet-B1 [67]: Developed using neural architecture search and a compound scaling
method that uniformly scales network width, depth, and resolution. It aims to balance
model accuracy with computational efficiency (FLOPS and parameters). B1 is a specific
scaled version providing a good trade-off.
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Figure 6: The data distribution of 20 clients in our experiments.

* ResNet-18 [63]: Employs residual connections (skip connections) that allow gradients to
bypass layers, enabling the training of much deeper networks by mitigating the vanish-
ing gradient problem. ResNet-18 is a relatively shallow variant with 18 layers containing
weights.

For a fair comparison, we adopt GoogLeNet [60] as the auxiliary model architecture for all methods

that utilize an auxiliary model, including our proposed method PHP-FL, since it has the smallest
number of parameters among the four candidate models.

Table 5: Parameter counts of the evaluated models. “M” is short for million.

Model Parameter counts
GoogleNet [b0] 5.61M
DenseNet-121 [61]] 6.96M
EfficientNet-B1 [62] 6.52M
ResNet-18 [63] 11.18M

C Additional Experimental Results

C.1 Comparison of Training Curves for Accuracy and Standard Deviation

To evaluate the convergence behavior and training stability of PHP-FL, we compare the training
curves in terms of average accuracy and standard deviation across training rounds on Fashion-
MNIST and CIFAR-10 under the uniform pattern. As shown in Figure [ and B, the results on
both datasets demonstrate that the proposed method PHP-FL significantly accelerates convergence
compared to baselines, while maintaining a low and stable standard deviation throughout training,
which effectively enhances performance and fairness across clients.

C.2 Comparison to More State-of-the-Arts Methods in the Homogeneous Setting

To further validate the generality and effectiveness of PHP-FL, we conduct additional experiments
in the homogeneous setting and report the results in Table B. Specifically, all clients adopt the iden-
tical GoogLeNet architectures [b]. Additional compared methods include FedFV [#1]] and Fed-
HEAL [8], which are designed to improve client fairness (Fair-FL), as well as FedAWE [20] and
FedAU [45], which address client unavailability (CU-FL). As shown in Table B, PHP-FL achieves
the highest average accuracy (AM) across all patterns, while also maintaining a highly competitive
performance fairness (FM). Although FedHEAL exhibits slightly better fairness, its average accu-
racy is significantly inferior compared to PHP-FL. This highlights that PHP-FL not only delivers
the highest average performance but also achieves fairness that is highly competitive with the best
fair-FL methods, striking an exceptional balance that surpasses existing methods in overall effective-
ness even in the homogeneous setting. These results underscore the robustness and practicality of
PHP-FL even in homogeneous FL scenarios, reaffirming its overall superiority.
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Figure 8: Comparison of training curves on CIFAR-10.

Table 6: Comparison with the state-of-the-art methods on CIFAR-10 in the homogeneous setting.
Best in bold and second with underline.

Type s Uniform [a = 0.5] |Normal [px = 0.5, 0 = 0.2] | Linear [a =0.05,d = %]
AM (%) T FM (%) | | AM (%) T EM (%) | AM (%) T M (%) |
FML [arXiv20] 41.31+0.46 13.28+£0.31[41.00£0.48 13.46+0.35 | 39.21£2.80 13.3740.30
FedGen [ICML21] |[61.79+0.13 8.80+0.46 |61.734+0.15 8.95+0.25 61.601+0.29 8.9940.20
MELFL FedKD [NC22] 61.26+0.08 10.03£0.10|60.964+0.38  9.9340.11 60.731+0.70 10.0140.09
FedAPEN [KDD23] [|66.4940.30 8.1440.16 [66.54+0.31  8.26+0.18 66.601+0.35 8.2540.17
FedTGP [AAAI24] ||60.12£0.48 9.974+0.46 |60.15+0.46 10.20+0.31 | 59.88+£0.69 10.1410.31
FedMRL [NIPS24] [|62.864+0.62 8.6010.16 [62.86+0.62  8.95+0.58 62.58+0.54 8.8010.38
Fair-FL FedFV [IJCAI21] 59.7540.87 11.034+1.63[60.05£1.31 10.54+2.02 | 58.3241.45 11.084+1.60
FedHEAL [CVPR24]||59.43£0.83 7.03+£0.76 |59.36+0.75 7.93+1.14 59.15+0.57 7.94+1.15
CU-FL FedAWE [NIPS24] |[62.75+£0.09 9.3940.30 |62.684+0.13  9.31+£0.25 62.5410.31 9.361+0.28
FedAU [ICLR24] 62.794+0.20 9.17+0.19 [62.724+0.25 9.2140.29 62.594+0.47 9.354+0.15
All PHP-FL (Ours) 67.994+0.16 8.05+0.19 [67.88+£0.32 8.084+0.16 67.841+0.13 8.1240.12
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C.3 Performance with Varying Numbers of Clients

In this Section, we compare the performance of different methods with varying numbers of clients
on CIFAR-10. Specifically, the uniform pattern involves 10 clients with full participation in every
round; the normal pattern consists of 50 clients whose participation probabilities are sampled from
a normal distribution (¢ = 0.2, ¢ = 0.2), resulting in an average of 10 clients per round; and
the linear pattern also includes 50 clients, with participation probabilities increasing linearly from
0.02 by a step of %, yielding the same average of 10 clients per round. As shown in Table [,
PHP-FL consistently achieves the best accuracy (AM) and performance fairness (FM) across all
three patterns. Notably, compared to the strongest baseline FedAPEN, our method improves AM by
6.62%, 6.47%, and 6.12% under the uniform, normal, and linear settings, respectively, while also

reducing FM, demonstrating superior robustness and fairness with varying numbers of clients.

Table 7: Comparison with the state-of-the-art methods with varying numbers of clients on CIFAR-
10 in the heterogeneous setting. Best in bold and second with underline.

Uniform [a = 1.0] | Normal [p = 0.2, 0 = 0.2] | Linear [a = 0.02,d = 2:36 }

Methods K—1
AM (%)t FM(%) | | AM(%)+ FM(%) | | AM(%)1 FM (%) |
Standalone 58.8940.20 10.53+0.24|50.73+1.29 14.044+1.40 | 51.81+0.30 12.8140.47

FML [arXiv20] 46.61£0.61 15.184+0.34|36.59+1.17 17.35+1.22 | 35.2640.22 17.10+£0.16
FedGen [ICML21] ([{57.82£0.06 9.45+0.29 |43.704+1.03 15.10£1.26 | 43.354+1.08 14.9240.53
FedKD [NC22] 57.46+£0.45 11.2640.33]49.27£0.93  13.98+£0.63 | 49.07£0.62 13.99+0.71
FedAPEN [KDD23] |[63.90+£0.10 9.05£0.51 [52.99+£1.23 13.68+£1.77 | 53.76£0.39 12.74£0.27
FedTGP [AAAI24] ||58.45+£0.69 9.88+£0.37 |40.154+0.32 14.74+0.69 | 38.18+1.04 16.0841.48
FedMRL [NIPS24] ||58.33+0.20 14.2340.63|49.32+1.34 13.641+1.01 | 49.261+0.74 13.26£0.27
PHP-FL (Ours) ||70.521+0.03 7.974-0.49 (59.46+0.83 12.69+1.41 | 59.88+0.26 11.22+0.37

Table 8: Comparison results on CIFAR-10 dataset under the Markovian participation pattern. All
other settings follow their default configurations.

Method Standalone FML FedGen FedKD FedAPEN FedTGP FedMRL PHP-FL (Ours)
AM (%) 11|52.77+£1.44 42.734+0.96 51.93+0.84 51.3140.80 57.84+0.53 50.554+1.79 49.02+1.74 64.04+0.73
FM (%) | |[16.1042.50 19.29+2.04 14.914+0.38 16.82+1.45 13.9943.34 12.144+1.66 15.86+0.08 11.69+1.35

C.4 Performance under the Markovian Participation Pattern

To better reflect dynamic client availability in real-word scenarios, we have conducted additional
experiments under the Markovian participation pattern following FedAU [43]. In this pattern, each
client follows a two-state Markov chain to determine its participation status in each training round,
where the two states correspond to “participating” and “not participating” in the current training
round. This modeling introduces temporal correlation in client participation behavior while main-
taining sufficient randomness, offering a more realistic simulation compared to independently sam-
pled participation patterns.

For the parameter settings of the Markovian pattern experiment, we constrain the maximum transi-
tion probability from the non-participating state to the participating state to 0.05, thereby avoiding
excessively frequent state changes and ensuring realistic participation dynamics. The initial state of
each client’s Markov chain is randomly sampled according to the stationary probability, which is
set to 0.5 to ensure that approximately half of the clients participate in each round on average. The
transition probabilities are carefully calibrated to maintain this stationary distribution throughout
the training process, ensuring system stability while introducing participation heterogeneity across
clients. As shown in Table B, the experimental results under the Markovian participation pattern
further validate PHP-FLs robustness, consistently achieving superior accuracy and fairness despite
the increased dynamic and unpredictable client availability.
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C.5 Effectiveness of Adaptive Selective Updates in the ISPU Module

To further validate the design rationality of the adaptive selective parameter update mechanism in
our ISPU module, we conduct an ablation study comparing different update strategies for the local
auxiliary model g, focusing on the update ratio «. Specifically, we evaluate the following variants:

* Fixed update. Updates a fixed ratio of the most important parameters, with a set to a
constant and we adopt o = 0.5.

Full Update. Updates all parameters without selection, which is equivalent to o = 1.

* Random Update. All parameters are stochastically updated with probability «, where «
is dynamically determined by our proposed method using Eq. 8.

* Adaptive update (Ours). Dynamically adjusts o using Eq. B based on client participation
history and parameter importance.

As shown in Table B, our adaptive update mechanism consistently achieves the best accuracy and
performance fairness. Full update shows the poorest performance, and while fixed Update offers
some stability, it is surpassed by the adaptive methods. Random update achieves competitive ac-
curacy but inferior fairness compared to our method. The findings highlight the superiority of our
adaptive selective update mechanism within the ISPU module.

Table 9: Effectiveness of Adaptive Selective Updates in the ISPU module. Results are evaluated
under the linear participation pattern on Fashion-MNIST and CIFAR-10. Best in bold.

. . Fashion-MNIST CIFAR-10
Different variants
AM (%) T FM (%) | | AM (%) T FM (%) |
Fixed Update (o = 0.5) 97.43 4.41 64.11 9.14
Full Update (o = 1.0) 96.82 5.73 62.81 8.65
Random Update (dynamic «) 97.28 6.23 65.97 8.97
Adaptive Update (Ours with dynamic «) 97.58 4.29 66.78 8.09

C.6 Effect of the Sharpness Factor on Performance

In our proposed PHP-FL, the hyperparameter § in Eq. B controls the sharpness of the mapping
from local participation frequency to the update ratio « in the ISPU module. A larger J causes
« to approach 1 for frequently participating clients and O for infrequent ones, whereas a smaller
0 smooths the adjustment, pushing « toward 0.5. As shown in Table [, performance is relatively
stable across a range of  values, but we observe that § = 5 consistently achieves near-optimal results
in both accuracy and fairness across Fashion-MNIST and CIFAR-10. Therefore, we set 4 = 5 in our
experimental configuration.

Table 10: Effect of the hyperparameter § on performance. Best in bold and second with underline.

Dataset Metric 6=01 06=05 6=1 0= =10 6=50 ¢ =100
AM (%) T 97.54 97.62 9759 97.61 9759 97.52 97.51
FM (%) | 4.25 4.13 439 412 4.60 4.35 443
AM (%) T 67.24 67.28 67.06 6727 66.36 67.17 66.82
FM (%) | 8.44 8.10 8.12  8.01 8.51 8.49 8.55

Fashion-MNIST

CIFAR-10

C.7 Cost and Efficiency Analysis

Communication Cost. We compare the per-round communication cost with baselines in terms of
the number of parameters transmitted between 20 clients and the server on CIFAR-10. As shown
in Table [, among the evaluated baselines, methods such as FedGen and FedTGP demonstrate
significantly lower communication costs due to their use of partial model sharing and lightweight
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prototypes. Unfortunately, methods relying on auxiliary model transmission (e.g., FML, FedKD,
FedAPEN, and FedMRL) exhibit communication cost exceeding 200M parameters per round. In
contrast, PHP-FL requires only 112.52M parameters per round, which is nearly half the cost of other
auxiliary model-based approaches such as FedAPEN and FedMRL. This reduction is primarily due
to clients downloading only the pruned global auxiliary model parameters instead of the full model.

Computation Cost. We also report the total computation cost per round across all clients in terms
of FLOPs (floating-point operations),® as summarized in Table [[1. Following [I2], other operations
such as data preprocessing are not included in the FLOPs calculation. To ensure a fair comparison,
this experiment involves 20 clients with full participation in each round. All other configurations
remain aligned with the main experiments.

According to Table [, PHP-FL incurs the per-round computation cost at 813.71GFLOPs. This
increase is marginal when compared with other auxiliary model-based methods such as FML
(753.51G), FedKD (753.51G), FedAPEN (771.01G), and FedMRL (757.34G). Compared to Fed-
Gen (391.38G) and FedTGP (387.99G), the increased computation cost primarily arises from the
training of additional auxiliary models. Besides, the slightly higher cost of the proposed PHP-FL
is mainly attributed to the extra training required for ensemble weights. While FedTGP achieves
the lowest computation cost, its accuracy significantly lags. Despite this slight increase in cost com-
pared with other auxiliary model-based methods, PHP-FL achieves significantly the best results in
both accuracy and performance fairness, as shown in the main experiments. The results underscore
a compelling trade-off, with our method delivering notable performance gains at the cost of only a
slight increase in computation.

Table 11: Comparison of communication and computation costs per round on CIFAR-10, where
communication cost is measured by the number of parameters transmitted between 20 clients and
the server, and computation cost is evaluated as the total number of FLOPs executed across all 20
clients. ‘M’ and ‘G’ denote million and giga, respectively. For FedKD, the SVD computation cost
is excluded from this analysis.

Method H Communication Cost Computation Cost
FML [arXiv20] 224.20M 753.51G
FedGen [ICML21] 5.92M 391.38G
FedKD [NC22] 200.26M 753.51G
FedAPEN [KDD23] 224.20M 771.01G
FedTGP [AAAI24] 0.192M 387.99G
FedMRL [NeurIPS24] 224.05M 757.34G
PHP-FL (Ours) 112.52M 813.71G

Efficiency Analysis. In addition, we conducted further experiments to measure the total costs
(communication rounds, computation cost, and communication cost) required to reach 50% accuracy
compared to baselines. As shown in Figure B, while PHP-FL’s per-round communication cost is
higher than non auxiliary model-based methods (e.g., FedGen and FedTGP) due to the transmission
of auxiliary model, it reaches target accuracy in just 2 rounds, whereas all baselines require at least
5 rounds. Consequently, the total communication and computation costs are substantially lower.
Furthermore, the per-round costs can be readily optimized in practice by employing smaller auxiliary
models or mask quantization (e.g., bitwidth reduction). Thus, PHP-FL offers a far more efficient
path to convergence in practical deployments.

D Discussion

Communication Cost. In the auxiliary model-based methods, active clients often need to upload
L = |g| parameters of the global auxiliary model in each communication round, which are typi-
cally represented in full-precision floating-point format. Our method similarly requires uploading

8We calculate FLOPs using the thop library: https://github.com/Lykeni7/pytorch-UpCounter.
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Figure 9: From left to right: Communication rounds, total number of transmitted parameters, and
computation FLOPs required to achieve the 50% accuracy on CIFAR-10 under the uniform pattern.

the global auxiliary model but with an additional binary mask matrix M of the same dimension
L. Fortunately, since each element in M is a binary value (0 or 1), it only incues 1 bit per pa-
rameter, rendering the added communication overhead negligible compared to the transmission of
full-precision parameters. Moreover, when downloading the global auxiliary model, clients only
need to receive « - L (o € (0, 1)) parameters, where the pruning threshold 7 in Eq B can be adjusted
as needed. This flexibility allows us to further reduce communication costs dynamically.

Participation Patterns. We clearly state that we make no assumptions about the distribution of
client participation patterns and allow them to be arbitrary throughout the training process. More-
over, similar to [25], we do not require any prior knowledge of the client sampling process for the
proposed method PHP-FL.

Privacy. Similar to FedAvg [1], PHP-FL does not require sharing raw data or client-specific het-
erogeneous model parameters. Instead, only the lightweight, homogeneous auxiliary models and
the mask matrix related to model parameters are uploaded to the server. This design ensures that
sensitive local model structures and data remain on the client side, making PHP-FL suitable for
privacy-critical applications. Therefore, PHP-FL is compatible with standard privacy-preserving
mechanisms such as secure aggregation [67]. Differentially private variants of FedAvg [b¥] can be
seamlessly integrated similarly.
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