
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

LEARNING ORDERED REPRESENTATIONS IN LATENT
SPACE FOR INTRINSIC DIMENSION ESTIMATION
VIA PRINCIPAL COMPONENT AUTOENCODER

Anonymous authors
Paper under double-blind review

ABSTRACT

Autoencoders have long been considered a nonlinear extension of Principal Com-
ponent Analysis (PCA). Prior studies have demonstrated that linear autoencoders
(LAEs) can recover the ordered, axis-aligned principal components of PCA by
incorporating non-uniform ℓ2 regularization or by adjusting the loss function.
However, these approaches become insufficient in the nonlinear setting, as the
remaining variance cannot be properly captured independently of the nonlinear
mapping. In this work, we propose a novel autoencoder framework that inte-
grates non-uniform variance regularization with an isometric constraint. This de-
sign serves as a natural generalization of PCA, enabling the model to preserve key
advantages, such as ordered representations and variance retention, while remain-
ing effective for nonlinear dimensionality reduction tasks.

1 INTRODUCTION

Principal Component Analysis (PCA) remains one of the most widely used techniques for dimen-
sionality reduction due to its simplicity, interpretability, and ability to produce ordered, variance-
preserving latent representations. As a natural extension, autoencoders have been proposed to gen-
eralize PCA into the nonlinear regime by leveraging neural networks to learn complex mappings.
However, autoencoders suffer from a major limitation in practice: the bottleneck (latent) dimension
must be chosen in advance, which requires prior knowledge or expensive tuning.

For linear autoencoders (LAEs), previous work has demonstrated that introducing non-uniform ℓ2
regularization (Bao et al., 2020) or modifying the loss function (Oftadeh et al., 2020) enables the
model to recover the principal components of PCA in an axis-aligned and variance-ordered manner.
However, extending these desirable properties to nonlinear autoencoders remains challenging. The
key difficulty lies in the fact that variance allocation becomes entangled with the nonlinear transfor-
mation itself, making it difficult to preserve the global variance structure inherent to PCA.

In this work, we propose a nonlinear autoencoder framework that addresses this challenge by inte-
grating non-uniform variance regularization with an isometric constraint. This combination allows
the model to retain PCA-like properties, such as ordered representation and variance control, while
benefiting from the flexibility of nonlinear mappings. We theoretically and empirically verify that
the proposed method achieves effective nonlinear dimensionality reduction while preserving mean-
ingful variance structure across various datasets. Compared to a conventional autoencoder, the main
advantage of our model is that one only needs to assume a (sufficiently large) upper bound for the
bottleneck dimension; then, like PCA, one can select the appropriate number of latent dimensions
post hoc based on the variance captured by each learned component.

2 RELATED WORK

The fundamental equivalence between linear autoencoders and PCA is a cornerstone in under-
standing the representational capabilities of these models. Early theoretical work established that
a single-layer linear AE, trained with mean squared error (MSE) reconstruction loss, learns a sub-
space equivalent to that spanned by the principal components of its input data. Bourlard & Kamp

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

(1988) demonstrated this connection by showing that the linear AE solution could be derived via
Singular Value Decomposition (SVD), effectively recovering the principal subspace. Concurrently,
Baldi & Hornik (1989) rigorously proved that the optimal weight matrices of a linear AE span the
same subspace as the principal components, characterizing the essential points of the associated loss
landscape and showing that the global minimum corresponds to the PCA solution.

Recent theoretical analyses have further refined our understanding of linear autoencoders, particu-
larly in terms of optimization dynamics, regularization, and invariance. Work by Kunin et al. (2019)
explored the loss landscapes of regularized linear autoencoders, revealing how different regulariza-
tion schemes affect the geometry and the convergence paths towards the PCA solution. Similarly,
Plaut (2018) provided a detailed analysis demonstrating how linear autoencoders, even without ex-
plicit orthogonality constraints, recover the principal components themselves (not just the subspace)
under specific conditions related to weight initialization and optimization trajectory. The issue of ro-
tational invariance inherent in the basic linear autoencoder objective was addressed by Oftadeh et al.
(2020), who proposed a modified loss function to eliminate this invariance and ensure convergence
directly to the ordered principal components. The convergence dynamics, especially the role of reg-
ularization in guaranteeing eventual recovery of principal components, were further formalized by
Bao et al. (2020), solidifying the theoretical link under practical training regimes.

Extending the PCA paradigm beyond linearity has been a major focus, aiming to capture complex,
nonlinear structures while retaining desirable properties like ordered, uncorrelated representations.
Kernel PCA (Schölkopf et al., 1997) provides a direct nonlinear generalization by implicitly map-
ping data into a high-dimensional feature space where linear PCA is performed. While powerful,
kernel PCA faces scalability challenges with large datasets. Nonlinear autoencoders offer an al-
ternative pathway. Early hierarchical approaches (Scholz & Vigário, 2002) laid the groundwork
for nonlinear PCA using multi-layer networks. A significant challenge for standard nonlinear au-
toencoders is the lack of inherent ordering or orthogonality in their latent dimensions, unlike PCA.
To address this, techniques like nested dropout (Rippel et al., 2014) enforce an ordered variance
structure during training, compelling the autoencoder to learn features of monotonically decreasing
importance, analogous to principal components. More recently, explicit architectural designs have
been proposed to bridge deep learning and PCA principles. The PCA-AE framework (Pham et al.,
2022) directly incorporates PCA objectives within the autoencoder training process, structuring the
latent space to mimic PCA properties while extending them to nonlinear representations through
neural networks. Implicit Rank-Minimizing Autoencoder(IRMAE) learns a low-rank representa-
tion by only adding several linear layers after the encoder part due to the implicit bias of gradient
descent in deep linear networks. Another line of work approaches the ”ordering/relevance” issue
via probabilistic priors. For instance, ARD-VAE (Automatic Relevance Detection VAE) replaces
the fixed prior in VAE with a hierarchical prior over latent dimensions, thereby letting the model
automatically infer which latent axes are ”active” or relevant.

These efforts collectively highlight the enduring influence of PCA on representation learning, from
the well-established theory of linear AEs to ongoing innovations in designing nonlinear autoen-
coders that preserve the interpretability and ordered structure characteristic of PCA.

3 PRELIMINARY

Throughout this work, we always assume the dataset X to be zero-centered, i.e., each column has
zero sample mean.

3.1 PRINCIPAL COMPONENT ANALYSIS

Principal Component Analysis (PCA) performs an orthogonal linear transformation on a real inner
product space, mapping the data to a new coordinate system. Within this system, the direction of
maximum variance in the data aligns with the first coordinate, termed the first principal component,
followed by the direction of the next greatest variance on the second coordinate, and so forth. For-
mally, consider a data matrix X ∈ Rp×n with row-wise zero mean, where each of the n columns
represents a different sample and each of the p rows corresponds to a distinct feature. The covariance
matrix is defined as:

Σ = XX⊤. (1)

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

PCA can then be defined as a sequential optimization problem or a single optimization problem1:

Sequential optimization Principal components are computed by iteratively solving a sequence of
optimization problems:

uk ∈ argmin
u∈Rp,∥u∥=1

∥X(k) − uu⊤X(k)∥2F , (2)

where X(1) = X and for k = 2, · · · , p,

X(k) = X(k−1) − uiu
⊤
i X(k−1). (3)

The vector ui represents the ith principal component, indicating the direction that accounts for the ith

greatest variance in the data. As per the principles of linear algebra, ui is the eigenvector associated
with the ith largest eigenvalue λi := u⊤

i Σui of the covariance matrix Σ.

Single optimization With a predetermined d (d ≤ p), one can compute the d-dimensional sub-
space spanned by the first d principal components via

Ud ∈ argmin
U∈Rp×d,U⊤U=Id

∥X−UU⊤X∥2F . (4)

The columns of Ud constitute an orthonormal basis of the subspace spanned by u1, · · · ,ud.

3.2 LINEAR AUTOENCODER AS PCA

An autoencoder is a pair of parametrized neural networks (Eθ,Dϕ), where Eθ : Rp → Rd and
Dϕ : Rd → Rp are called encoder and decoder respectively. The optimization objective of an
autoencoder is to minimize the reconstruction loss (mean square error):

Lrecon =
1

n

n∑
i=1

∥xi −Dϕ ◦ Eθ(xi)∥22, (5)

which can be regarded as a non-linear extension of equation 4. A linear autoencoder is a special
case of an autoencoder where both the encoder and decoder are linear transformations, i.e.,

Eθ(x) = Ax, ∀x ∈ Rp,

Dϕ(z) = Bz, ∀z ∈ Rd,

for some matrices A ∈ Rd×p and B ∈ Rp×d. The autoencoder objective then becomes
A∗,B∗ ∈ argmin

A∈Rd×p,B∈Rp×d

∥X−BAX∥2F . (6)

It is well known that a linear autoencoder with the above reconstruction cost is closely related to PCA
(Bourlard & Kamp, 1988). Indeed, (A∗,B∗) constitutes an optimal solution if and only if it is of the
form (A∗,B∗) = (QU⊤

d ,UdQ
−1) for some invertible matrix Q ∈ Rd×d (Baldi & Hornik, 1989).

Moreover, introducing a uniform ℓ2 regularization breaks the symmetry of the loss landscape from
the full general linear group GLd(R) to the orthogonal group Od(R). Building on this insight, recent
works have shown that one can further constrain the autoencoder to learn the ordered, axis-aligned
principal components directly by employing non-uniform ℓ2 regularization (Bao et al., 2020) or
modified loss functions (Rippel et al., 2014; Oftadeh et al., 2020). Although these schemes exactly
recover PCA in the linear regime, they do not extend to non-linear autoencoders. In the non-linear
case, the residual variance is entangled with the learned representation. It cannot be attributed to
orthogonal directions in input space, so it cannot be systematically accounted for as in PCA.

3.3 ISOMETRIC MAPPING

Definition 1 (Isometry). Let M,N be two metric spaces with metric (distance) dM and dN . A
mapping T : M → N is called isometric if for any x,y ∈ M,

dM(x,y) = dN (T (x), T (y)). (7)

In our work, we assume M ⊂ Rp is a Riemannian manifold and N = Rd. In this case, dM
corresponds to the geodesic distance on M and dN corresponds to the Euclidean distance ∥ · ∥2.

1The objective can be formulated as either maximizing variance or minimizing reconstruction error. We
only present the latter since these two formulations are equivalent.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

4 METHODOLOGY

Although the objective of an autoencoder can be viewed as a nonlinear extension of the PCA opti-
mization problem (equation 4), it lacks the interpretability that PCA offers. In PCA, the projection
directions have a clear geometric meaning—they correspond to the directions of maximum variance
in the data. In contrast, the representations learned by an autoencoder are often difficult to interpret,
as the latent dimensions do not necessarily correspond to meaningful features.

4.1 FAILURE OF PCA-AE AND HIERARCHICAL AUTOENCODER

PCA-AE PCA-AE (Pham et al., 2022) aims to construct an ordered and disentangled latent space
by combining sequential training with covariance regularization. The model first compresses the
input into a one-dimensional bottleneck to capture the most significant variation, then progressively
expands the latent dimensionality by adding new units while keeping the previously learned ones
fixed. To further reduce redundancy, a covariance penalty is applied so that different latent units
become as uncorrelated as possible. Despite these design choices, the method faces fundamental
difficulties in the nonlinear setting. First, although features may be learned sequentially, the resulting
coordinates are neither orthogonal nor strictly uncorrelated, breaking the variance-ordering principle
of PCA and allowing information to leak from early to later units. Second, the nonlinear analogues
of “principal curves” that the procedure attempts to recover may not exist or may be non-unique for
general data distributions, leaving the training process to pursue ill-defined targets.

Hierarchical Autoencoder Hierarchical autoencoders (Gorban et al., 2008; Rippel et al., 2014)
attempt to impose an ordering on latent coordinates by training the model to reconstruct the in-
put using progressively larger prefixes of the latent vector. Formally, let E(k)

θ denote the encoder
restricted to the first k coordinates, i.e., for z = Eθ(x) = (z1, . . . , zd) we define E(k)

θ (x) =
(z1, . . . , zk, 0, . . . , 0). The training objective is a weighted sum of reconstruction errors,

LHAE =

d∑
k=1

αk Lk, Lk =

n∑
i=1

∥xi −Dϕ ◦ E(k)
θ (xi)∥22, (8)

where Lk measures the error when only the first k latent components are used. Despite its appeal,
HAE faces two fundamental limitations. First, because Lk monotonically decreases with k, the early
reconstruction losses L1,L2, . . . dominate the objective, causing gradients from later components
to be relatively weak. This biases training toward refining the first few latent coordinates while
neglecting subsequent ones. Second, since the gradient of LHAE is the sum of all partial gradients,
the computational cost scales linearly with latent dimensionality d, leading to significant inefficiency
in high-dimensional settings. These issues hinder both the effectiveness and scalability of HAE.

4.2 PRINCIPAL COMPONENT AUTOENCODER

The limitations of PCA-AE and HAE suggest two key lessons: (i) all latent coordinates should be
learned jointly rather than sequentially, and (ii) reconstruction from partial intermediate representa-
tions introduces inefficiencies and should be avoided. These insights motivate us to design a more
direct objective that explicitly enforces the ordering of principal components within the latent space.

We begin with the linear case. Let Z = U⊤X be the representation of data X under an orthonormal
transformation U⊤ ∈ Rp×p. Denote the variance of the ith coordinate of Z by σ2

i . The goal is
to ensure that σ2

1 captures the largest variance, σ2
2 the second largest, and so on. To encode this

“rank-ordering” preference into a scalar objective, we penalize variance losses more heavily when
they occur in later coordinates. Concretely, we assign a strictly increasing sequence of non-negative
weights 0 < γ1 < γ2 < · · · < γp to the coordinates and minimize the weighted sum of variances,∑p

i=1 γiσ
2
i . This is equivalent to scaling the ith coordinate of Z by γ

1/2
i and summing the variances

across all coordinates:
p∑

i=1

γiσ
2
i = Tr

(
Cov(Γ1/2Z)

)
= Tr

(
Γ1/2U⊤ΣUΓ1/2

)
, (9)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

where Γ = diag(γ1, . . . , γp). By construction, this objective focuses optimization on maximizing
early variances: a reduction in σ2

1 is weighted least, while the same reduction in a later coordinate
incurs a larger penalty. Thus, the solution is implicitly steered toward a descending variance order
without requiring explicit enforcement. Although heuristically motivated, the following theorem
shows that this objective recovers the principal components in the correct order:
Theorem 1. Let Σ be the covariance matrix of X with eigenvalues λ1 ≥ · · · ≥ λp ≥ 0, and let
Γ = diag(γ1, . . . , γp) be diagonal with 0 ≤ γ1 < · · · < γp. Then the minimum of

min
U∈Rp×p

Tr
(
Γ1/2U⊤ΣUΓ1/2

)
s.t. U⊤U = I (10)

is
∑p

i=1 λiγi. Moreover, U∗ is optimal if and only if its ith column is a unit eigenvector of Σ
associated with λi.

Proof. See Appendix B.1.

We now extend the above “rank–ordered variance” principle to the nonlinear setting. Suppose the
data lie on a Riemannian manifold M ⊂ Rp. Let T : M → Rp be an isometric embedding,
and define z = T (x). Because isometries preserve distance, and hence local scales and variances,
the coordinates of z can still be interpreted as orthogonal axes of variation on M. Denoting the
variance of the ith coordinate by σ2

i = Var(zi), we again assign strictly increasing non-negative
weights 0 < γ1 < · · · < γp and minimize the weighted total variance Lvar =

∑p
i=1 γiσ

2
i over all

admissible isometric embeddings.

In the autoencoder setting, the mapping T is realized by the encoder Eθ. We therefore augment
the standard reconstruction loss with the weighted-variance penalty above. Crucially, however, an
isometry constraint is required: without distance preservation, variances in latent space no longer
carry geometric meaning. As in prior autoencoder variants, we enforce this constraint softly via
regularization rather than a hard constraint:

Liso = E
[
ℓ(dM(x,y), ∥Eθ(x)− Eθ(y)∥)

]
, (11)

where ℓ is a loss function. Putting these pieces together, the objective of our Principal-Component
Autoencoder (PCAE) is

LPCAE = Lrecon + β
(
Lvar + Liso

)
, (12)

with weighting coefficient β > 0.

The choice of ℓ and γ. The variance term tends to contract latent codes toward zero, so careful
design of ℓ and {γi} is essential for preserving isometry. Below provides principled guidance:
Theorem 2. Let 0 < γ1 < · · · < γp < 2, and let f∗ minimize

R(f) = E
[∥∥∥f(X)− f(Y)∥2 − dM(X,Y)2

∥∥]
+

p∑
i=1

γi Var[f(X)i]. (13)

Then ∥f(X) − f(Y)∥ = dM(X,Y) almost surely. Furthermore, if f∗ is continuous, the equality
holds everywhere.

Proof. See Appendix B.2.

Guided by Theorem 2, we set ℓ(a, b) = |a2−b2| and choose {γi} satisfying 0 < γ1 < · · · < γp < 2.

4.3 DETERMINING THE INTRINSIC DIMENSION

The latent representation learned by our model is inherently ordered: the ith coordinate corresponds
to the ith principal component. This structure allows us to estimate the intrinsic dimension in the
same way as PCA, using a cumulative variance criterion. Concretely, given a threshold τ (e.g.,
99%), we select the smallest k such that the first k coordinates together explain at least τ of the total
variance. For baseline autoencoders, however, the variance of latent coordinates does not directly
correspond to the data variance. In these cases, we adopt the relevance score proposed by Saha et al.
(2025) to assess the importance of each coordinate and determine the effective latent dimension.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

5 EXPERIMENTAL RESULTS

Datasets. We evaluate our model on both synthetic and real-world datasets to cover scenarios with
known and unknown intrinsic structure. The dSprites (Matthey et al., 2017) and 3DShapes (Burgess
& Kim, 2018) are synthetic datasets with explicitly controlled generative factors, providing reli-
able ground truth for evaluating whether a model can recover intrinsic dimensionality. In contrast,
MNIST (LeCun et al., 2010) and CelebA (Liu et al., 2015) are real-world image datasets where the
underlying generative factors are unknown and must be inferred implicitly. This combination allows
us to test both identifiability under controlled settings and robustness in practical, high-variability
data. Further dataset details are provided in Appendix C.1.

Competing Methods. We benchmark against four representative approaches to ordered/compact
latent structure: (i) PCA-AE (Pham et al., 2022), which trains latent units sequentially (from
1D upward) and adds a covariance penalty to reduce redundancy; (ii) Hierarchical Autoencoder
(HAE) (Gorban et al., 2008; Rippel et al., 2014), which imposes an order by minimizing a weighted
sum of reconstruction losses from latent prefixes; (iii) ARD-VAE (Saha et al., 2025), a Bayesian
VAE with automatic relevance determination that scores and prunes latent dimensions; and (iv) IR-
MAE (Jing et al., 2020), which encourages low-rank latent codes via implicit rank minimization.

Implementing Details. By Theorem 1 and Theorem 2, learning an ordered representation requires
enforcing 0 < γ1 < · · · < γp < 2. A naive arithmetic or geometric progression for {γi} is
problematic: the former yields nearly identical weights when p is large, while the latter suffers from
precision underflow. Both lead to vanishing gradients and slow convergence. To overcome this,
we introduce a dynamic-coefficients scheme. We initialize γi = 1.9i/p and maintain a threshold t.
Every K epochs (K = 10 in our experiments), we identify the smallest index j such that

∑j
i=1 σ

2
i >

t ·
∑p

i=1 σ
2
i , and update coefficients as

γi =


0.5i/(j − 1), i < j,

1, i = j,

1 + 0.5(i− j)/(p− j), i > j.

This adaptive reweighting ensures progressive adjustment of coordinate importance in line with
variance allocation, preventing gradient collapse and significantly accelerating training. Model ar-
chitectures and hyperparameters are listed in Appendix C.2.

5.1 DATA WITH KNOWN INTRINSIC DIMENSION

We first validate PCAE on datasets where the ground-truth intrinsic dimension is known. The
dSprites dataset has five generative factors (shape, scale, orientation, position-X, position-Y)2, while
3DShapes has six factors (floor hue, wall hue, object hue, scale, shape, orientation). Because the
shape factor is categorical, we fix it in both datasets, yielding ground-truth intrinsic dimensions of 5
for dSprites and 4 for 3DShapes. As shown in Table 1, PCAE is the only method that consistently
(std = 0) and exactly recovers the true intrinsic dimension. We set the bottleneck size to 16, but
importantly, PCAE’s variance estimates remain stable under different bottleneck settings (Figure 1),
highlighting its robustness in identifying principal coordinates.

Table 1: Intrinsic dimensions estimated by our model and other baselines with τ = 99%.
Dataset Ground Truth Ours HAE PCA-AE ARD-VAE IRMAE

dSprites 4 4.00 ± 0.00 7.40 ± 0.49 15.60 ± 0.49 5.80 ± 0.40 6.40 ± 0.80

3dShapes 5 5.00 ± 0.00 6.20 ± 0.40 14.40 ± 0.64 6.00 ± 0.00 5.20 ± 0.40

5.2 DATA WITH UNKNOWN INTRINSIC DIMENSION

Dimension Estimation. We next evaluate on real-world datasets (MNIST and CelebA) where
the ground-truth intrinsic dimensions are unknown. Unlike synthetic data, the latent factors here
vary widely in scale: some (e.g., lighting or pose) exhibit large variance, while others (e.g., subtle

2An additional color factor is always fixed to white, making the effective dimension 5.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

1 3 5 7 9 11 13 15 17 19
Dimension

0

500

1000

1500

2000

2500

Va
ria

nc
e

Bottleneck Dim=8
Bottleneck Dim=12
Bottleneck Dim=16
Bottleneck Dim=20

(a) dSprites

1 3 5 7 9 11 13 15 17 19
Dimension

0

100

200

300

400

500

600

Va
ria

nc
e

Bottleneck Dim=8
Bottleneck Dim=12
Bottleneck Dim=16
Bottleneck Dim=20

(b) 3Dshapes

Figure 1: Estimated variances of latent coordinates for dSprites and 3DShapes under different bot-
tleneck sizes. In both cases, the recovered intrinsic dimension remains fixed at the ground-truth
value, demonstrating that PCAE is robust to the choice of bottleneck dimension.

expressions or fine textures) contribute only marginally and may be nearly indistinguishable from
noise. To capture this heterogeneity, we estimate intrinsic dimensions under two thresholds τ =
99%, 99.9%, which respectively correspond to stricter or looser inclusion of weak factors.

Since no ground truth is available, we report the maximum likelihood estimator (MLE) (Pope et al.,
2021), a standard nonlinear intrinsic dimension estimator, as a reference baseline. Specifically,
MLE yields values of 11 (k = 5) and 13 (k = 20) for MNIST, and 17 (k = 5) and 26 (k = 20) for
CelebA.3 As shown in Table 2, our estimates closely align with these MLE reference ranges, while
baseline autoencoders, particularly on CelebA, substantially overestimate the intrinsic dimension.
This highlights that PCAE not only avoids overfitting noise but also provides stable and interpretable
dimension estimates in complex, high-variability data.

Table 2: Intrinsic dimensions estimated by our model and other baselines for MNIST/CelebA with
threshold τ = 99%, 99.9%. The bottleneck latent dimension is 24 for MNIST and 64 for CelebA.

Dataset τ Ours HAE PCA-AE ARD-VAE IRMAE

MNIST 99% 11.00±0.00 8.20±0.40 23.80±0.40 9.20±0.40 15.80±0.56
99.9% 14.20±0.40 14.00±0.00 24.00±0.00 11.40±0.49 16.80±0.56

CelebA 99% 16.00±0.63 55.60±1.04 61.40±0.49 34.80±6.56 42.40±0.80
99.9% 27.00±0.89 60.60±0.49 63.80±0.40 54.00±8.00 43.00±0.63

Interpolation. Beyond estimating intrinsic dimension, PCAE also learns interpretable latent
spaces that preserve the geometry of the data manifold. A desirable property is smoothness: equal
steps in latent space should correspond to gradual and consistent changes in the decoded images.
Figure 2 illustrates this property—our interpolations vary more uniformly than those of competing
methods. To quantify smoothness, we interpolate l steps between two encoded samples, decode each
to x̂(t), compute successive distances dt = ∥x̂(t+1) − x̂(t)∥, and report Var({dt}) as the smooth-
ness score (lower is better).4 As shown in Table 3, PCAE achieves substantially lower variance,
indicating smoother and hence more interpretable trajectories through the data manifold.

Table 3: Smoothness (%) evaluated for our model and other baselines. Smaller is better.
Dataset Ours HAE PCA-AE ARD-VAE IRMAE

MNIST 4.55±0.12 33.44±12.61 8.00±0.50 12.78±1.47 5.78±0.29

CelebA 1.35±0.05 1.68±0.07 7.85±4.15 1.66±0.04 1.60±0.04

3k denotes the number of nearest neighbors used by the MLE estimator.
4See Appendix for the formal definition.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Ours HAE PCA-AE ARD-VAE IRMAE

M
N
IS
T

C
el
eb
A

Figure 2: Linear interpolation between two randomly generated samples.

Smoothness alone does not guarantee plausibility—interpolations might drift away from the true
distribution. We therefore compute FID (Heusel et al., 2017) between interpolated reconstructions
and real samples. Moreover, since PCAE learns a variance-ordered representation, we evaluate FID
using only the top-k latent coordinates. Table 4 shows that PCAE captures more meaningful vari-
ation with fewer components, yielding the strongest gains when k is small. This demonstrates that
ordered latent dimensions directly translate into more faithful and interpretable generative behavior.

Table 4: FID score evaluated for our model and other baselines. Smaller is better.
Dataset Dim Ours HAE PCA-AE ARD-VAE IRMAE

MNIST
8 56.84±1.62 62.44±2.09 70.82±3.01 64.28±2.03 57.97±1.17

12 49.45±1.28 54.35±2.28 58.31±2.33 57.34±1.95 50.55±1.04
24 45.35±1.37 50.49±0.98 48.27±1.56 48.57±2.11 45.97±1.33

CelebA
16 59.42±1.31 68.59±1.37 82.43±3.25 73.55±1.60 62.83±1.85
32 56.99±1.58 62.90±1.25 73.27±2.77 65.60±1.79 57.76±0.47
64 54.82±0.68 60.37±0.34 66.18±2.38 60.42±1.84 53.95±0.89

5.3 TIME COMPLEXITY

PCA-AE optimizes latent units sequentially, so its training time scales linearly with bottleneck
size p, i.e. O(p). HAE also introduces d prefix reconstruction losses, making both its time and
space complexity O(p) (though with a smaller constant factor). In contrast, PCAE, IRMAE, and
ARD-VAE optimize all coordinates jointly, so their per-epoch cost is essentially independent of
p. As shown in Table 5, PCAE is more than an order of magnitude faster than PCA-AE and
HAE on CelebA, underscoring its scalability advantage. A one-time cost of PCAE is construct-
ing the geodesic distance matrix over the dataset X, which requires O(|X|2 log |X|) time. For
large datasets, we approximate by building the graph only on a subset X̃ ⊂ X and linking each
x ∈ X to its nearest neighbor x̃ ∈ X̃. Then, whenever one needs the distance between any
two points x,y ∈ X, one can approximate it by using x̃, ỹ. This reduces the complexity to
O(|X̃|2 log |X̃|+ |X̃| · |X|).

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Once training is complete, estimating the intrinsic dimension with PCAE requires only computing
coordinate-wise variances of latent codes z, which takes a few seconds regardless of network size.
By contrast, ARD-VAE relies on relevance scores that involve Jacobian evaluation of the decoder
with respect to z, whose cost scales poorly as model complexity increases. The runtimes reported in
Table 5 verify that PCAE achieves both fast training and efficient post-hoc dimension estimation.

Table 5: The training time per epoch of our model and other baselines.
Ours HAE PCA-AE ARD-VAE IRMAE

dim = 8 (s/epoch) 9.09±0.04 30.70±0.07 58.83±0.03 8.88±0.05 8.66±0.04

dim = 64 (s/epoch) 9.19±0.04 203.57±0.05 464.68±0.02 8.99±0.05 8.75±0.05

Total Runtime (hrs) 1.37±0.03 14.95±0.02 33.10±0.08 1.45±0.05 1.43±0.05

5.4 DOWNSTREAM CLASSIFICATION

An important test of learned representations is their utility in downstream tasks. Because PCAE
produces an ordered and compact latent space, it is expected to preserve discriminative structure
while reducing dimensionality and computational cost. To evaluate this, we freeze the encoder and
train a lightweight multilayer perceptron (MLP) classifier on MNIST. The MLP consists of two
fully connected layers with 128 hidden units and ReLU activations, optimized with Adam (learning
rate 1 × 10−3, weight decay 1 × 10−5) for 100 epochs. Table 6 shows that PCAE achieves the
lowest error rate among all baselines. This confirms that variance-ordered latent coordinates not
only provide interpretability but also transfer effectively to practical classification tasks.

Table 6: Downstream classification on MNIST dataset.
Method Ours HAE PCA-AE ARD-VAE IRMAE

Error(%) 1.44±0.09 1.57±0.14 3.76±0.32 2.08±0.12 1.98±0.11

5.5 ABLATION STUDY

We finally examine the contributions of the two key loss components in PCAE. Without the isometric
term Liso, distances in latent space no longer reflect the data manifold, making coordinate variances
uninterpretable. Without the variance-ordering term Lvar, latent dimensions lose their ranking and
the intrinsic dimension cannot be identified. Table 7 confirms that both terms are indispensable: only
the full objective LPCAE recovers the correct intrinsic dimension, whereas removing either constraint
leads to severe overestimation or misalignment.

Table 7: Ablation.
Dataset Ours Lvar-only Liso-only

dSprites 4.00±0.00 12.80±0.40 9.80±0.40

3Dshapes 5.00±0.00 14.40±0.49 10.00±0.00

6 CONCLUSION

We introduced PCAE, a novel autoencoder that extends PCA principles to the nonlinear setting.
PCAE learns variance-ordered latent coordinates, enabling post-hoc intrinsic dimension estimation
without prior knowledge of the bottleneck size. Experiments demonstrate that PCAE precisely re-
covers the ground-truth dimensionality on synthetic data, aligns with MLE estimates on real-world
datasets, and generates interpretable latent spaces that facilitate smoother interpolations and stronger
downstream classification. In addition, PCAE scales efficiently compared to sequential or hierarchi-
cal baselines, making it a practical tool for nonlinear representation learning with interpretability
guarantees.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Pierre Baldi and Kurt Hornik. Neural networks and principal component analysis: Learning from
examples without local minima. Neural networks, 2(1):53–58, 1989.

Xuchan Bao, James Lucas, Sushant Sachdeva, and Roger B Grosse. Regularized linear autoen-
coders recover the principal components, eventually. Advances in Neural Information Processing
Systems, 33:6971–6981, 2020.

Hervé Bourlard and Yves Kamp. Auto-association by multilayer perceptrons and singular value
decomposition. Biological cybernetics, 59(4):291–294, 1988.

Chris Burgess and Hyunjik Kim. 3d shapes dataset. https://github.com/deepmind/3dshapes-dataset/,
2018.

Marcus Carlsson. von neumann’s trace inequality for hilbert–schmidt operators. Expositiones
Mathematicae, 39(1):149–157, 2021. ISSN 0723-0869. doi: https://doi.org/10.1016/j.exmath.
2020.05.001. URL https://www.sciencedirect.com/science/article/pii/
S0723086920300220.

Alexander N Gorban, Balázs Kégl, Donald C Wunsch, Andrei Y Zinovyev, et al. Principal manifolds
for data visualization and dimension reduction, volume 58. Springer, 2008.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter.
Gans trained by a two time-scale update rule converge to a local nash equilibrium. Advances in
neural information processing systems, 30, 2017.

Li Jing, Jure Zbontar, et al. Implicit rank-minimizing autoencoder. Advances in Neural Information
Processing Systems, 33:14736–14746, 2020.

Daniel Kunin, Jonathan Bloom, Aleksandrina Goeva, and Cotton Seed. Loss landscapes of regu-
larized linear autoencoders. In International conference on machine learning, pp. 3560–3569.
PMLR, 2019.

Yann LeCun, Corinna Cortes, and C.J.C. Burges. Mnist handwritten digit database. ATT Labs
[Online]. Available: http://yann.lecun.com/exdb/mnist, 2, 2010.

Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the wild.
In Proceedings of International Conference on Computer Vision (ICCV), December 2015.

Loic Matthey, Irina Higgins, Demis Hassabis, and Alexander Lerchner. dsprites: Disentanglement
testing sprites dataset. https://github.com/deepmind/dsprites-dataset/, 2017.

Reza Oftadeh, Jiayi Shen, Zhangyang Wang, and Dylan Shell. Eliminating the invariance on the
loss landscape of linear autoencoders. In International Conference on Machine Learning, pp.
7405–7413. PMLR, 2020.

Chi-Hieu Pham, Saı̈d Ladjal, and Alasdair Newson. Pca-ae: Principal component analysis autoen-
coder for organising the latent space of generative networks. Journal of Mathematical Imaging
and Vision, 64(5):569–585, 2022.

Elad Plaut. From principal subspaces to principal components with linear autoencoders. arXiv
preprint arXiv:1804.10253, 2018.

Phillip Pope, Chen Zhu, Ahmed Abdelkader, Micah Goldblum, and Tom Goldstein. The intrinsic
dimension of images and its impact on learning. arXiv preprint arXiv:2104.08894, 2021.

Oren Rippel, Michael Gelbart, and Ryan Adams. Learning ordered representations with nested
dropout. In International Conference on Machine Learning, pp. 1746–1754. PMLR, 2014.

Surojit Saha, Sarang Joshi, and Ross Whitaker. Ard-vae: A statistical formulation to find the rel-
evant latent dimensions of variational autoencoders. In 2025 IEEE/CVF Winter Conference on
Applications of Computer Vision (WACV), pp. 889–898. IEEE, 2025.

10

https://www.sciencedirect.com/science/article/pii/S0723086920300220
https://www.sciencedirect.com/science/article/pii/S0723086920300220

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Bernhard Schölkopf, Alexander Smola, and Klaus-Robert Müller. Kernel principal component anal-
ysis. In International conference on artificial neural networks, pp. 583–588. Springer, 1997.

Matthias Scholz and Ricardo Vigário. Nonlinear pca: a new hierarchical approach. In Esann, pp.
439–444, 2002.

A USAGE OF LARGE LANGUAGE MODELS (LLMS)

We used large language models as a general-purpose writing assistant. Its role was limited to gram-
mar checking, minor stylistic polishing, and improving the clarity of phrasing in some parts of the
manuscript. The authors made all substantive contributions to the research and writing.

B THEORETICAL PROOF

B.1 PROOF OF THEOREM 1

Before we formally prove Theorem 1, we first introduce two important lemmas. The first lemma is
known as Von Neumann’s trace inequality:

Lemma 1 (Von Neumann). Let A,B ∈ Rp×p be two square matrices with singular values σ1(A) ≥
· · · ≥ σp(A) and σ1(B) ≥ · · · ≥ σp(B) respectively, then

Tr(AB) ≤
p∑

i=1

σi(A)σi(B), (14)

with equality if and only if A and B⊤ share singular vectors. Here share singular vectors means
that there exists unit vectors v1, · · · ,vp,u1, · · · ,up ∈ Rp such that

Avi = σi(A)ui, A⊤ui = σi(A)vi,

B⊤vi = σi(B)ui, Bui = σi(B)vi,

namely, each ui (vi) is a left (right) singular vector of both A and B⊤ associated with σi(A) and
σi(B) respectively.

Proof. See (Carlsson, 2021)

The second lemma is a corollary to Lemma 1:

Lemma 2. Let A,B ∈ Rp×p be two positive semi-definite matrices with eigenvalues λ1(A) ≥
· · · ≥ λp(A) ≥ 0 and λ1(B) ≥ · · · ≥ λp(B) ≥ 0 respectively, then

Tr(AB) ≥
p∑

i=1

λi(A)λp−i+1(B), (15)

with equality if and only if the eigenvectors of A and B align in reverse order, i.e., there exists unit
vectors ui, · · · ,up such that each ui is a eigenvector of both A and B associated with λi(A) and
λp−i+1(B) respectively.

Proof. We consider αI − B with eigenvalues λ1(αI − B) ≥ · · · ≥ λp(αI − B). It is easy to see
that λi(αI − B) = α − λp−i+1(B) and all eigenvectors of αI − B associated with λi(αI − B)
are eigenvectors of B associated with λp−i+1(B). Taking α large enough such that αI −B is still
positive semi-definite, i.e. α − λp(B) ≥ · · · ≥ α − λ1(B) ≥ 0, because the singular values are

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

exactly the eigenvalues of a positive semi-definite matrix, by Lemma 1, we have

Tr(A(αI−B)) ≤
p∑

i=1

λi(A)λi(αI−B)

=

p∑
i=1

λi(A)(α− λp−i+1(B))

=

p∑
i=1

αλi(A)− λi(A)λp−i+1(B), (16)

with equality if and only if A and αI−B share eigenvectors. On the other hand,
Tr(A(αI−B)) = Tr(αA−AB)

= Tr(αA)− Tr(AB)

=

p∑
i=1

αλi(A)− Tr(AB), (17)

Combing Eq. equation 16 and Eq. equation 17 gives

Tr(AB) ≥
p∑

i=1

λi(A)λp−i+1(B) (18)

with equality if and only if A and αI−B share eigenvectors, or equivalently, the eigenvectors of A
and B align in reverse order.

Now we can give the proof of Theorem 1.

Proof. The objective function can be rewritten using the cyclic property of the trace:

Tr(Γ
1
2U⊤ΣUΓ

1
2) = Tr(U⊤ΣUΓ). (19)

Because U is orthonormal, U⊤ΣU has the same eigenvalues as Σ, i.e., λi(U
⊤ΣU) = λi(Σ) = λi.

Meanwhile, we know that λi(Γ) = γp−i+1. Therefore, by Lemma 2,

Tr(U⊤ΣUΓ) ≥
p∑

i=1

λi(U
⊤ΣU)λp−i+1(Γ) =

p∑
i=1

λiγi. (20)

with equality if and only if the eigenvectors of U⊤ΣU and Γ align in reverse order.

Sufficiency Let U∗ be an orthonormal matrix whose ith column is an unit eigenvector of Σ asso-
ciate with λi, then by eigen-decomposition, we have

Σ = U∗diag(λ1, · · · , λp)U
⊤
∗ , (21)

thus
U⊤

∗ ΣU∗ = U⊤
∗ U∗diag(λ1, · · · , λp)U

⊤
∗ U∗ = diag(λ1, · · · , λp), (22)

It is easy to see that Tr(diag(λ1, · · · , λp)Γ) =
∑p

i=1 λiγi and the eigenvector of diag(λ1, · · · , λp),
Γ align in reverse order.

Necessity Now, suppose U∗ is an optimal solution to equation 19, there must exist unit vectors
v1, · · · ,vp such that for i = 1, · · · , p,

U⊤
∗ ΣU∗vi = λivi, (23)
Γvi = γivi. (24)

For i = 1, · · · , p, because γi is distinct from all other γj (j ̸= i), Eq. equation 24 implies that
vi = ±ei, where ei denotes the ith standard basis vector. Substituting in Eq. equation 23 yields

U⊤
∗ ΣU∗ei = λiei, (25)

multiplying both sides from the left by U∗, we get
ΣU∗ei = λiU∗ei, (26)

hence U∗ei is an unit eigenvector of Σ associate with λi. Since U∗ei is exactly the ith column of
U∗, the proof is completed.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

B.2 PROOF OF THEOREM 2

Proof. Because X,Y are i.i.d., for any scalar function g, we have

E[(g(X)− g(Y))2] = E[g2(X)] + E[g2(Y)]− 2E[g(X)]E[g(Y)]

= 2E[g2(X)]− 2E[g(X)]2

= 2Var[g(X)].

(27)

Applying this to each coordinate of f ,
p∑

i=1

γiVar[f(X)i] =
1

2
E[

p∑
i=1

γi(fi(X)− fi(Y))2] =
1

2
E[(f(X)− f(Y))⊤Γ(f(X)− f(Y))].

(28)
Obviously, ∥f(X) − f(Y)∥ = 0 = d(X,Y) holds whenever X = Y. Now consider X ̸= Y, let
u := d(X,Y) > 0, w := f(X)− f(Y) and v := ∥w∥2, then

R(f) = E[|u− v|+ 1

2
w⊤Γw]. (29)

Denote θ := w
∥w∥ and c(θ) := 1

2θ
⊤Γθ, note that γ1/2 ≤ c(θ) ≤ γp/2, hence c(θ) ∈ (0, 1).

Therefore,
|u− v| ≥ c(θ)|u− v| ≥ c(θ)(u− v) (30)

which implies |u− v|+ c(θ)v ≥ c(θ)u with equality holds if and only if u = v. Therefore,

R(f) = E[|u− v|+ c(θ)v] ≥ E[c(θ)u]. (31)

with equality holds if and only if u = v, i.e. ∥f(X) − f(Y)∥ = d(X,Y) a.s.. Furthermore, we
know d is continuous, if f is continuous, the function h(x, y) := ∥f(x)− f(y)∥ is also continuous.
To complete the proof, we only need the fact that two continuous functions that agree on a dense set
must agree everywhere.

C ADDENDUM TO EXPERIMENTAL RESULTS

C.1 DATA DESCRIPTION

To evaluate our method, we consider both synthetic datasets with known generative factors and real-
world datasets with unknown latent structures. This choice allows us to (i) verify whether our model
can correctly estimate intrinsic dimension when ground truth is available, and (ii) test robustness
in realistic scenarios where intrinsic factors are complex or unobservable. In addition, the synthetic
datasets provide controlled environments for disentanglement analysis, while the real-world datasets
enable evaluation of interpolation quality, smoothness, and distributional fidelity.

dSprites (Matthey et al., 2017). dSprites consists of 2D binary images (64×64) generated from
independent latent factors: shape, scale, orientation, x-position, and y-position. A color factor is
constant. To remove categorical ambiguity, we fix the shape factor to be ellipse, yielding a ground-
truth intrinsic dimension of 4. We also constrained the orientation factor in the range [0, 28

39π] to
avoid a circular structure since it may introduce an extra dimension. The total number of samples
available is 92,160, we use 70% as our training set, 15% as validation set and the rest 15% as test
set. We use dSprites to test whether our model can exactly recover known latent dimensions and
produce ordered representations consistent across different bottleneck sizes.

3DShapes (Burgess & Kim, 2018). 3DShapes contains 480,000 RGB images (64×64) procedu-
rally rendered with six latent factors: floor hue, wall hue, object hue, scale, shape, and orientation.
As the shape factor is categorical, we fix it to be square, resulting in an effective intrinsic dimension
of 5. Because the variance of floor/wall/object hue is much higher than that of scale/orientation, the
proportion of total variance contributed by scale/orientation is far below 1%. To make these two
factors distinguishable from noise, we halve the range of the hue components, resulting in a total of
15,000 samples. We use 70% as our training set, 15% as a validation set, and the remaining 15% as
a test set.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

MNIST (LeCun et al., 2010). MNIST is a dataset of 70,000 grayscale handwritten digit images
(28×28). Unlike synthetic datasets, the underlying factors (e.g., stroke width, style, slant) are not
explicitly defined and vary widely in scale, with some resembling noise. This makes MNIST a rep-
resentative benchmark for real-world data where the ground-truth intrinsic dimension is unknown.
We use 60,000 samples as a training set, 5,000 as a validation set, and the remaining 5,000 as a test
set. In our experiments, we compare our estimated intrinsic dimension with the maximum likeli-
hood estimator (MLE) baseline and further evaluate latent interpolation smoothness and FID scores
to assess the quality of the manifold. MNIST is also used for downstream classification on learned
representations.

CelebA (Liu et al., 2015). CelebA contains over 200,000 celebrity face images, aligned and
cropped to 64×64 resolution. It exhibits significant variability in attributes such as pose, hairstyle,
expression, and illumination. The generative factors are complex and unobservable, making the
estimation of intrinsic dimension highly challenging. We use CelebA to assess whether our model
avoids overestimating the intrinsic dimension compared to baseline autoencoders. We use 60,000
samples as a training set, 5,000 as a validation set, and 5,000 as a test set. In addition, CelebA
provides a realistic setting for evaluating interpolation smoothness and FID, reflecting the semantic
fidelity of learned latent spaces under high-dimensional natural image variation.

C.2 EXPERIMENTAL SETTINGS

C.2.1 MODEL ARCHITECTURE

The architecture of the encoder and decoder used in each experiment is given in Table 8. Convn /
ConvTn denote convolutional / transposed-convolutional layers whose output channel dimension is
n. All convolutional layers use a 4 times4 kernel with stride two and padding 1, and FCn denotes a
fully connected layer with output dimension n.

Table 8: The architecture of the encoder and the decoder for each dataset.

Dataset Dsprites 3DShapes MNIST CelebA

Encoder

x∈R64×64×1

→ Conv32 → ReLU
→ Conv32 → ReLU
→ Conv64 → ReLU
→ Conv64 → ReLU
→ flatten → FC → z∈Rd

x∈R64×64×3

→ Conv32 → ReLU
→ Conv32 → ReLU
→ Conv64 → ReLU
→ Conv64 → ReLU
→ flatten → FC → z∈Rd

x∈R32×32×1

→ Conv64+BN → ReLU
→ Conv128+BN → ReLU
→ Conv256+BN → ReLU
→ Conv512+BN → ReLU
→ flatten → FC → z∈Rd

x∈R64×64×3

→ Conv128+BN → ReLU
→ Conv256+BN → ReLU
→ Conv512+BN → ReLU
→ Conv1024+BN → ReLU
→ flatten → FC → z∈Rd

Decoder

z∈Rd → FC
→ reshape 4×4×64
→ ConvT64 → ReLU
→ ConvT32 → ReLU
→ ConvT32 → ReLU
→ ConvT1 (logits)

z∈Rd → FC
→ reshape 4×4×64
→ ConvT64 → ReLU
→ ConvT32 → ReLU
→ ConvT32 → ReLU
→ ConvT3 → Sigmoid

z∈Rd → FC
→ reshape 2×2×512
→ ConvT256+BN → ReLU
→ ConvT128+BN → ReLU
→ ConvT64+BN → ReLU
→ ConvT1 → Sigmoid

z∈Rd → FC (65536)
→ reshape 8×8×1024
→ ConvT512+BN → ReLU
→ ConvT256+BN → ReLU
→ ConvT128+BN → ReLU
→ ConvT3 → Sigmoid

C.2.2 HYPERPARAMETERS

The training hyperparameters used for each experiment are listed in Table 9.

The hyperparameters for PCAE, IRMAE, and ARD-VAE are selected by grid search or original
work and listed in Table 10. HAE and PCAAE have no hyperparameters.

Table 9: Training hyperparameters

Hyperparameter dSprites 3Dshapes MNIST CelebA

learning rate 1e-4 1e-4 1e-4 1e-4
epochs 1000 1000 500 250

batch size 256 256 256 256

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Table 10: Hyperparameters for PCAE

Model Parameter dSprites 3Dshapes MNIST CelebA

PCAE β 5e-3 5e-2 1e-4 1e-4
IRMAE l 4 4 4 4

ARD-VAE β 5.0 5.0 0.5 1.0

C.3 COMPUTATION OF SMOOTHNESS

In the main paper, we use smoothness to evaluate the quality of the learned latent representation.
It is defined (calculated) as follows:

1. Randomly sample N pairs of test images.
2. For each pair (xi, xj), encode them into the latent space: (zi, zj).
3. Along the straight line in latent space, produce m equally spaced intermediate codes zi =

z(0), · · · , z(m) = zj , where z(t) = (1− t
m)zi +

t
mzj .

4. Decode each z(t) back to image x̂(t).

5. Compute the inter-step distances: dt = ∥x̂(t) − x̂(t−1)∥, t = 1, · · · , m.
6. Compute variance of d1, · · · , dm, denotes as var(xi, xj).
7. The Smoothness is then defined as the average of var(xi, xj) over all N pairs.

C.4 COMPARISON OF DIFFERENT ISOMETRIC CONSTRAINTS

In the main paper, we demonstrate that liso(d, d̂) = |d2 − d̂2| is suitable for our PCAE, here we
further verify its distinctiveness by comparing it with other loss function: 1.lsquare(d, d̂) = (d− d̂)2;
2.llog(d, d̂) = (log(d

d̂
))2. The results are reported in Table 11.

Table 11: Intrinsic dimension estimated by PCAE with different isometric constraints.

dSprites 3Dshapes MNIST CelebA
τ=99% τ=99% τ=99% τ=99.9% τ=99% τ=99.9%

ℓiso 4.00±0.00 5.00±0.00 11.00±0.00 14.20±0.40 16.00±0.63 27.00±0.89
ℓsquare 5.20±0.40 6.40±0.49 6.00±0.00 11.20±0.40 11.20±0.40 18.80±0.56
ℓlog 8.00±0.00 3.80±0.40 9.60±0.49 20.80±0.40 44.60±1.04 61.00±0.63

15

	Introduction
	Related Work
	Preliminary
	Principal Component Analysis
	Linear Autoencoder as PCA
	Isometric Mapping

	Methodology
	Failure of PCA-AE and Hierarchical Autoencoder
	Principal Component Autoencoder
	Determining the Intrinsic Dimension

	Experimental Results
	Data with Known Intrinsic Dimension
	Data with Unknown Intrinsic Dimension
	Time Complexity
	Downstream Classification
	Ablation Study

	Conclusion
	Usage of Large Language Models (LLMs)
	Theoretical Proof
	Proof of Theorem 1
	Proof of Theorem 2

	Addendum to Experimental Results
	Data description
	Experimental Settings
	Model Architecture
	Hyperparameters

	Computation of Smoothness
	Comparison of Different isometric constraints

