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ABSTRACT

Autoencoders have long been considered a nonlinear extension of Principal Com-
ponent Analysis (PCA). Prior studies have demonstrated that linear autoencoders
(LAEs) can recover the ordered, axis-aligned principal components of PCA by
incorporating non-uniform ℓ2 regularization or by adjusting the loss function.
However, these approaches become insufficient in the nonlinear setting, as the
remaining variance cannot be properly captured independently of the nonlinear
mapping. In this work, we propose a novel autoencoder framework that inte-
grates non-uniform variance regularization with an isometric constraint. This de-
sign serves as a natural generalization of PCA, enabling the model to preserve key
advantages, such as ordered representations and variance retention, while remain-
ing effective for nonlinear dimensionality reduction tasks.

1 INTRODUCTION

Principal Component Analysis (PCA) remains one of the most widely used techniques for dimen-
sionality reduction due to its simplicity, interpretability, and ability to produce ordered, variance-
preserving latent representations. As a natural extension, autoencoders have been proposed to gen-
eralize PCA into the nonlinear regime by leveraging neural networks to learn complex mappings.
However, autoencoders suffer from a major limitation in practice: the bottleneck (latent) dimension
must be chosen in advance, which requires prior knowledge or expensive tuning.

For linear autoencoders (LAEs), previous work has demonstrated that introducing non-uniform ℓ2
regularization (Bao et al., 2020) or modifying the loss function (Oftadeh et al., 2020) enables the
model to recover the principal components of PCA in an axis-aligned and variance-ordered manner.
However, extending these desirable properties to nonlinear autoencoders remains challenging. The
key difficulty lies in the fact that variance allocation becomes entangled with the nonlinear transfor-
mation itself, making it difficult to preserve the global variance structure inherent to PCA.

In this work, we propose a nonlinear autoencoder framework that addresses this challenge by inte-
grating non-uniform variance regularization with an isometric constraint. This combination allows
the model to retain PCA-like properties, such as ordered representation and variance control, while
benefiting from the flexibility of nonlinear mappings. We theoretically and empirically verify that
the proposed method achieves effective nonlinear dimensionality reduction while preserving mean-
ingful variance structure across various datasets. Compared to a conventional autoencoder, the main
advantage of our model is that one only needs to assume a (sufficiently large) upper bound for the
bottleneck dimension; then, like PCA, one can select the appropriate number of latent dimensions
post hoc based on the variance captured by each learned component.

2 RELATED WORK

The fundamental equivalence between linear autoencoders and PCA is a cornerstone in under-
standing the representational capabilities of these models. Early theoretical work established that
a single-layer linear AE, trained with mean squared error (MSE) reconstruction loss, learns a sub-
space equivalent to that spanned by the principal components of its input data. Bourlard & Kamp
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(1988) demonstrated this connection by showing that the linear AE solution could be derived via
Singular Value Decomposition (SVD), effectively recovering the principal subspace. Concurrently,
Baldi & Hornik (1989) rigorously proved that the optimal weight matrices of a linear AE span the
same subspace as the principal components, characterizing the essential points of the associated loss
landscape and showing that the global minimum corresponds to the PCA solution.

Recent theoretical analyses have further refined our understanding of linear autoencoders, particu-
larly in terms of optimization dynamics, regularization, and invariance. Work by Kunin et al. (2019)
explored the loss landscapes of regularized linear autoencoders, revealing how different regulariza-
tion schemes affect the geometry and the convergence paths towards the PCA solution. Similarly,
Plaut (2018) provided a detailed analysis demonstrating how linear autoencoders, even without ex-
plicit orthogonality constraints, recover the principal components themselves (not just the subspace)
under specific conditions related to weight initialization and optimization trajectory. The issue of ro-
tational invariance inherent in the basic linear autoencoder objective was addressed by Oftadeh et al.
(2020), who proposed a modified loss function to eliminate this invariance and ensure convergence
directly to the ordered principal components. The convergence dynamics, especially the role of reg-
ularization in guaranteeing eventual recovery of principal components, were further formalized by
Bao et al. (2020), solidifying the theoretical link under practical training regimes.

Extending the PCA paradigm beyond linearity has been a major focus, aiming to capture complex,
nonlinear structures while retaining desirable properties like ordered, uncorrelated representations.
Kernel PCA (Schölkopf et al., 1997) provides a direct nonlinear generalization by implicitly map-
ping data into a high-dimensional feature space where linear PCA is performed. While powerful,
kernel PCA faces scalability challenges with large datasets. Nonlinear autoencoders offer an al-
ternative pathway. Early hierarchical approaches (Scholz & Vigário, 2002) laid the groundwork
for nonlinear PCA using multi-layer networks. A significant challenge for standard nonlinear au-
toencoders is the lack of inherent ordering or orthogonality in their latent dimensions, unlike PCA.
To address this, techniques like nested dropout (Rippel et al., 2014) enforce an ordered variance
structure during training, compelling the autoencoder to learn features of monotonically decreasing
importance, analogous to principal components. More recently, explicit architectural designs have
been proposed to bridge deep learning and PCA principles. The PCA-AE framework (Pham et al.,
2022) directly incorporates PCA objectives within the autoencoder training process, structuring the
latent space to mimic PCA properties while extending them to nonlinear representations through
neural networks. Implicit Rank-Minimizing Autoencoder(IRMAE) learns a low-rank representa-
tion by only adding several linear layers after the encoder part due to the implicit bias of gradient
descent in deep linear networks. Another line of work approaches the ”ordering/relevance” issue
via probabilistic priors. For instance, ARD-VAE (Automatic Relevance Detection VAE) replaces
the fixed prior in VAE with a hierarchical prior over latent dimensions, thereby letting the model
automatically infer which latent axes are ”active” or relevant.

These efforts collectively highlight the enduring influence of PCA on representation learning, from
the well-established theory of linear AEs to ongoing innovations in designing nonlinear autoen-
coders that preserve the interpretability and ordered structure characteristic of PCA.

3 PRELIMINARY

Throughout this work, we always assume the dataset X to be zero-centered, i.e., each column has
zero sample mean.

3.1 PRINCIPAL COMPONENT ANALYSIS

Principal Component Analysis (PCA) performs an orthogonal linear transformation on a real inner
product space, mapping the data to a new coordinate system. Within this system, the direction of
maximum variance in the data aligns with the first coordinate, termed the first principal component,
followed by the direction of the next greatest variance on the second coordinate, and so forth. For-
mally, consider a data matrix X ∈ Rp×n with row-wise zero mean, where each of the n columns
represents a different sample and each of the p rows corresponds to a distinct feature. The covariance
matrix is defined as:

Σ = XX⊤. (1)
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PCA can then be defined as a sequential optimization problem or a single optimization problem1:

Sequential optimization Principal components are computed by iteratively solving a sequence of
optimization problems:

uk ∈ argmin
u∈Rp,∥u∥=1

∥X(k) − uu⊤X(k)∥2F , (2)

where X(1) = X and for k = 2, · · · , p,

X(k) = X(k−1) − uiu
⊤
i X(k−1). (3)

The vector ui represents the ith principal component, indicating the direction that accounts for the ith

greatest variance in the data. As per the principles of linear algebra, ui is the eigenvector associated
with the ith largest eigenvalue λi := u⊤

i Σui of the covariance matrix Σ.

Single optimization With a predetermined d (d ≤ p), one can compute the d-dimensional sub-
space spanned by the first d principal components via

Ud ∈ argmin
U∈Rp×d,U⊤U=Id

∥X−UU⊤X∥2F . (4)

The columns of Ud constitute an orthonormal basis of the subspace spanned by u1, · · · ,ud.

3.2 LINEAR AUTOENCODER AS PCA

An autoencoder is a pair of parametrized neural networks (Eθ,Dϕ), where Eθ : Rp → Rd and
Dϕ : Rd → Rp are called encoder and decoder respectively. The optimization objective of an
autoencoder is to minimize the reconstruction loss (mean square error):

Lrecon =
1

n

n∑
i=1

∥xi −Dϕ ◦ Eθ(xi)∥22, (5)

which can be regarded as a non-linear extension of equation 4. A linear autoencoder is a special
case of an autoencoder where both the encoder and decoder are linear transformations, i.e.,

Eθ(x) = Ax, ∀x ∈ Rp,

Dϕ(z) = Bz, ∀z ∈ Rd,

for some matrices A ∈ Rd×p and B ∈ Rp×d. The autoencoder objective then becomes
A∗,B∗ ∈ argmin

A∈Rd×p,B∈Rp×d

∥X−BAX∥2F . (6)

It is well known that a linear autoencoder with the above reconstruction cost is closely related to PCA
(Bourlard & Kamp, 1988). Indeed, (A∗,B∗) constitutes an optimal solution if and only if it is of the
form (A∗,B∗) = (QU⊤

d ,UdQ
−1) for some invertible matrix Q ∈ Rd×d (Baldi & Hornik, 1989).

Moreover, introducing a uniform ℓ2 regularization breaks the symmetry of the loss landscape from
the full general linear group GLd(R) to the orthogonal group Od(R). Building on this insight, recent
works have shown that one can further constrain the autoencoder to learn the ordered, axis-aligned
principal components directly by employing non-uniform ℓ2 regularization (Bao et al., 2020) or
modified loss functions (Rippel et al., 2014; Oftadeh et al., 2020). Although these schemes exactly
recover PCA in the linear regime, they do not extend to non-linear autoencoders. In the non-linear
case, the residual variance is entangled with the learned representation. It cannot be attributed to
orthogonal directions in input space, so it cannot be systematically accounted for as in PCA.

3.3 ISOMETRIC MAPPING

Definition 1 (Isometry). Let M,N be two metric spaces with metric (distance) dM and dN . A
mapping T : M → N is called isometric if for any x,y ∈ M,

dM(x,y) = dN (T (x), T (y)). (7)

In our work, we assume M ⊂ Rp is a Riemannian manifold and N = Rd. In this case, dM
corresponds to the geodesic distance on M and dN corresponds to the Euclidean distance ∥ · ∥2.

1The objective can be formulated as either maximizing variance or minimizing reconstruction error. We
only present the latter since these two formulations are equivalent.
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4 METHODOLOGY

Although the objective of an autoencoder can be viewed as a nonlinear extension of the PCA opti-
mization problem (equation 4), it lacks the interpretability that PCA offers. In PCA, the projection
directions have a clear geometric meaning—they correspond to the directions of maximum variance
in the data. In contrast, the representations learned by an autoencoder are often difficult to interpret,
as the latent dimensions do not necessarily correspond to meaningful features.

4.1 FAILURE OF PCA-AE AND HIERARCHICAL AUTOENCODER

PCA-AE PCA-AE (Pham et al., 2022) aims to construct an ordered and disentangled latent space
by combining sequential training with covariance regularization. The model first compresses the
input into a one-dimensional bottleneck to capture the most significant variation, then progressively
expands the latent dimensionality by adding new units while keeping the previously learned ones
fixed. To further reduce redundancy, a covariance penalty is applied so that different latent units
become as uncorrelated as possible. Despite these design choices, the method faces fundamental
difficulties in the nonlinear setting. First, although features may be learned sequentially, the resulting
coordinates are neither orthogonal nor strictly uncorrelated, breaking the variance-ordering principle
of PCA and allowing information to leak from early to later units. Second, the nonlinear analogues
of “principal curves” that the procedure attempts to recover may not exist or may be non-unique for
general data distributions, leaving the training process to pursue ill-defined targets.

Hierarchical Autoencoder Hierarchical autoencoders (Gorban et al., 2008; Rippel et al., 2014)
attempt to impose an ordering on latent coordinates by training the model to reconstruct the in-
put using progressively larger prefixes of the latent vector. Formally, let E(k)

θ denote the encoder
restricted to the first k coordinates, i.e., for z = Eθ(x) = (z1, . . . , zd) we define E(k)

θ (x) =
(z1, . . . , zk, 0, . . . , 0). The training objective is a weighted sum of reconstruction errors,

LHAE =

d∑
k=1

αk Lk, Lk =

n∑
i=1

∥xi −Dϕ ◦ E(k)
θ (xi)∥22, (8)

where Lk measures the error when only the first k latent components are used. Despite its appeal,
HAE faces two fundamental limitations. First, because Lk monotonically decreases with k, the early
reconstruction losses L1,L2, . . . dominate the objective, causing gradients from later components
to be relatively weak. This biases training toward refining the first few latent coordinates while
neglecting subsequent ones. Second, since the gradient of LHAE is the sum of all partial gradients,
the computational cost scales linearly with latent dimensionality d, leading to significant inefficiency
in high-dimensional settings. These issues hinder both the effectiveness and scalability of HAE.

4.2 PRINCIPAL COMPONENT AUTOENCODER

The limitations of PCA-AE and HAE suggest two key lessons: (i) all latent coordinates should be
learned jointly rather than sequentially, and (ii) reconstruction from partial intermediate representa-
tions introduces inefficiencies and should be avoided. These insights motivate us to design a more
direct objective that explicitly enforces the ordering of principal components within the latent space.

We begin with the linear case. Let Z = U⊤X be the representation of data X under an orthonormal
transformation U⊤ ∈ Rp×p. Denote the variance of the ith coordinate of Z by σ2

i . The goal is
to ensure that σ2

1 captures the largest variance, σ2
2 the second largest, and so on. To encode this

“rank-ordering” preference into a scalar objective, we penalize variance losses more heavily when
they occur in later coordinates. Concretely, we assign a strictly increasing sequence of non-negative
weights 0 < γ1 < γ2 < · · · < γp to the coordinates and minimize the weighted sum of variances,∑p

i=1 γiσ
2
i . This is equivalent to scaling the ith coordinate of Z by γ

1/2
i and summing the variances

across all coordinates:
p∑

i=1

γiσ
2
i = Tr

(
Cov(Γ1/2Z)

)
= Tr

(
Γ1/2U⊤ΣUΓ1/2

)
, (9)
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where Γ = diag(γ1, . . . , γp). By construction, this objective focuses optimization on maximizing
early variances: a reduction in σ2

1 is weighted least, while the same reduction in a later coordinate
incurs a larger penalty. Thus, the solution is implicitly steered toward a descending variance order
without requiring explicit enforcement. Although heuristically motivated, the following theorem
shows that this objective recovers the principal components in the correct order:
Theorem 1. Let Σ be the covariance matrix of X with eigenvalues λ1 ≥ · · · ≥ λp ≥ 0, and let
Γ = diag(γ1, . . . , γp) be diagonal with 0 ≤ γ1 < · · · < γp. Then the minimum of

min
U∈Rp×p

Tr
(
Γ1/2U⊤ΣUΓ1/2

)
s.t. U⊤U = I (10)

is
∑p

i=1 λiγi. Moreover, U∗ is optimal if and only if its ith column is a unit eigenvector of Σ
associated with λi.

Proof. See Appendix B.1.

We now extend the above “rank–ordered variance” principle to the nonlinear setting. Suppose the
data lie on a Riemannian manifold M ⊂ Rp. Let T : M → Rp be an isometric embedding,
and define z = T (x). Because isometries preserve distance, and hence local scales and variances,
the coordinates of z can still be interpreted as orthogonal axes of variation on M. Denoting the
variance of the ith coordinate by σ2

i = Var(zi), we again assign strictly increasing non-negative
weights 0 < γ1 < · · · < γp and minimize the weighted total variance Lvar =

∑p
i=1 γiσ

2
i over all

admissible isometric embeddings.

In the autoencoder setting, the mapping T is realized by the encoder Eθ. We therefore augment
the standard reconstruction loss with the weighted-variance penalty above. Crucially, however, an
isometry constraint is required: without distance preservation, variances in latent space no longer
carry geometric meaning. As in prior autoencoder variants, we enforce this constraint softly via
regularization rather than a hard constraint:

Liso = E
[
ℓ(dM(x,y), ∥Eθ(x)− Eθ(y)∥)

]
, (11)

where ℓ is a loss function. Putting these pieces together, the objective of our Principal-Component
Autoencoder (PCAE) is

LPCAE = Lrecon + β
(
Lvar + Liso

)
, (12)

with weighting coefficient β > 0.

The choice of ℓ and γ. The variance term tends to contract latent codes toward zero, so careful
design of ℓ and {γi} is essential for preserving isometry. Below provides principled guidance:
Theorem 2. Let 0 < γ1 < · · · < γp < 2, and let f∗ minimize

R(f) = E
[ ∥∥∥f(X)− f(Y)∥2 − dM(X,Y)2

∥∥ ]
+

p∑
i=1

γi Var[f(X)i]. (13)

Then ∥f(X) − f(Y)∥ = dM(X,Y) almost surely. Furthermore, if f∗ is continuous, the equality
holds everywhere.

Proof. See Appendix B.2.

Guided by Theorem 2, we set ℓ(a, b) = |a2−b2| and choose {γi} satisfying 0 < γ1 < · · · < γp < 2.

4.3 DETERMINING THE INTRINSIC DIMENSION

The latent representation learned by our model is inherently ordered: the ith coordinate corresponds
to the ith principal component. This structure allows us to estimate the intrinsic dimension in the
same way as PCA, using a cumulative variance criterion. Concretely, given a threshold τ (e.g.,
99%), we select the smallest k such that the first k coordinates together explain at least τ of the total
variance. For baseline autoencoders, however, the variance of latent coordinates does not directly
correspond to the data variance. In these cases, we adopt the relevance score proposed by Saha et al.
(2025) to assess the importance of each coordinate and determine the effective latent dimension.

5
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5 EXPERIMENTAL RESULTS

Datasets. We evaluate our model on both synthetic and real-world datasets to cover scenarios with
known and unknown intrinsic structure. The dSprites (Matthey et al., 2017) and 3DShapes (Burgess
& Kim, 2018) are synthetic datasets with explicitly controlled generative factors, providing reli-
able ground truth for evaluating whether a model can recover intrinsic dimensionality. In contrast,
MNIST (LeCun et al., 2010) and CelebA (Liu et al., 2015) are real-world image datasets where the
underlying generative factors are unknown and must be inferred implicitly. This combination allows
us to test both identifiability under controlled settings and robustness in practical, high-variability
data. Further dataset details are provided in Appendix C.1.

Competing Methods. We benchmark against four representative approaches to ordered/compact
latent structure: (i) PCA-AE (Pham et al., 2022), which trains latent units sequentially (from
1D upward) and adds a covariance penalty to reduce redundancy; (ii) Hierarchical Autoencoder
(HAE) (Gorban et al., 2008; Rippel et al., 2014), which imposes an order by minimizing a weighted
sum of reconstruction losses from latent prefixes; (iii) ARD-VAE (Saha et al., 2025), a Bayesian
VAE with automatic relevance determination that scores and prunes latent dimensions; and (iv) IR-
MAE (Jing et al., 2020), which encourages low-rank latent codes via implicit rank minimization.

Implementing Details. By Theorem 1 and Theorem 2, learning an ordered representation requires
enforcing 0 < γ1 < · · · < γp < 2. A naive arithmetic or geometric progression for {γi} is
problematic: the former yields nearly identical weights when p is large, while the latter suffers from
precision underflow. Both lead to vanishing gradients and slow convergence. To overcome this,
we introduce a dynamic-coefficients scheme. We initialize γi = 1.9i/p and maintain a threshold t.
Every K epochs (K = 10 in our experiments), we identify the smallest index j such that

∑j
i=1 σ

2
i >

t ·
∑p

i=1 σ
2
i , and update coefficients as

γi =


0.5i/(j − 1), i < j,

1, i = j,

1 + 0.5(i− j)/(p− j), i > j.

This adaptive reweighting ensures progressive adjustment of coordinate importance in line with
variance allocation, preventing gradient collapse and significantly accelerating training. Model ar-
chitectures and hyperparameters are listed in Appendix C.2.

5.1 DATA WITH KNOWN INTRINSIC DIMENSION

We first validate PCAE on datasets where the ground-truth intrinsic dimension is known. The
dSprites dataset has five generative factors (shape, scale, orientation, position-X, position-Y)2, while
3DShapes has six factors (floor hue, wall hue, object hue, scale, shape, orientation). Because the
shape factor is categorical, we fix it in both datasets, yielding ground-truth intrinsic dimensions of 5
for dSprites and 4 for 3DShapes. As shown in Table 1, PCAE is the only method that consistently
(std = 0) and exactly recovers the true intrinsic dimension. We set the bottleneck size to 16, but
importantly, PCAE’s variance estimates remain stable under different bottleneck settings (Figure 1),
highlighting its robustness in identifying principal coordinates.

Table 1: Intrinsic dimensions estimated by our model and other baselines with τ = 99%.
Dataset Ground Truth Ours HAE PCA-AE ARD-VAE IRMAE

dSprites 4 4.00 ± 0.00 7.40 ± 0.49 15.60 ± 0.49 5.80 ± 0.40 6.40 ± 0.80

3dShapes 5 5.00 ± 0.00 6.20 ± 0.40 14.40 ± 0.64 6.00 ± 0.00 5.20 ± 0.40

5.2 DATA WITH UNKNOWN INTRINSIC DIMENSION

Dimension Estimation. We next evaluate on real-world datasets (MNIST and CelebA) where
the ground-truth intrinsic dimensions are unknown. Unlike synthetic data, the latent factors here
vary widely in scale: some (e.g., lighting or pose) exhibit large variance, while others (e.g., subtle

2An additional color factor is always fixed to white, making the effective dimension 5.
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Figure 1: Estimated variances of latent coordinates for dSprites and 3DShapes under different bot-
tleneck sizes. In both cases, the recovered intrinsic dimension remains fixed at the ground-truth
value, demonstrating that PCAE is robust to the choice of bottleneck dimension.

expressions or fine textures) contribute only marginally and may be nearly indistinguishable from
noise. To capture this heterogeneity, we estimate intrinsic dimensions under two thresholds τ =
99%, 99.9%, which respectively correspond to stricter or looser inclusion of weak factors.

Since no ground truth is available, we report the maximum likelihood estimator (MLE) (Pope et al.,
2021), a standard nonlinear intrinsic dimension estimator, as a reference baseline. Specifically,
MLE yields values of 11 (k = 5) and 13 (k = 20) for MNIST, and 17 (k = 5) and 26 (k = 20) for
CelebA.3 As shown in Table 2, our estimates closely align with these MLE reference ranges, while
baseline autoencoders, particularly on CelebA, substantially overestimate the intrinsic dimension.
This highlights that PCAE not only avoids overfitting noise but also provides stable and interpretable
dimension estimates in complex, high-variability data.

Table 2: Intrinsic dimensions estimated by our model and other baselines for MNIST/CelebA with
threshold τ = 99%, 99.9%. The bottleneck latent dimension is 24 for MNIST and 64 for CelebA.

Dataset τ Ours HAE PCA-AE ARD-VAE IRMAE

MNIST 99% 11.00±0.00 8.20±0.40 23.80±0.40 9.20±0.40 15.80±0.56
99.9% 14.20±0.40 14.00±0.00 24.00±0.00 11.40±0.49 16.80±0.56

CelebA 99% 16.00±0.63 55.60±1.04 61.40±0.49 34.80±6.56 42.40±0.80
99.9% 27.00±0.89 60.60±0.49 63.80±0.40 54.00±8.00 43.00±0.63

Interpolation. Beyond estimating intrinsic dimension, PCAE also learns interpretable latent
spaces that preserve the geometry of the data manifold. A desirable property is smoothness: equal
steps in latent space should correspond to gradual and consistent changes in the decoded images.
Figure 2 illustrates this property—our interpolations vary more uniformly than those of competing
methods. To quantify smoothness, we interpolate l steps between two encoded samples, decode each
to x̂(t), compute successive distances dt = ∥x̂(t+1) − x̂(t)∥, and report Var({dt}) as the smooth-
ness score (lower is better).4 As shown in Table 3, PCAE achieves substantially lower variance,
indicating smoother and hence more interpretable trajectories through the data manifold.

Table 3: Smoothness (%) evaluated for our model and other baselines. Smaller is better.
Dataset Ours HAE PCA-AE ARD-VAE IRMAE

MNIST 4.55±0.12 33.44±12.61 8.00±0.50 12.78±1.47 5.78±0.29

CelebA 1.35±0.05 1.68±0.07 7.85±4.15 1.66±0.04 1.60±0.04

3k denotes the number of nearest neighbors used by the MLE estimator.
4See Appendix for the formal definition.
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Figure 2: Linear interpolation between two randomly generated samples.

Smoothness alone does not guarantee plausibility—interpolations might drift away from the true
distribution. We therefore compute FID (Heusel et al., 2017) between interpolated reconstructions
and real samples. Moreover, since PCAE learns a variance-ordered representation, we evaluate FID
using only the top-k latent coordinates. Table 4 shows that PCAE captures more meaningful vari-
ation with fewer components, yielding the strongest gains when k is small. This demonstrates that
ordered latent dimensions directly translate into more faithful and interpretable generative behavior.

Table 4: FID score evaluated for our model and other baselines. Smaller is better.
Dataset Dim Ours HAE PCA-AE ARD-VAE IRMAE

MNIST
8 56.84±1.62 62.44±2.09 70.82±3.01 64.28±2.03 57.97±1.17

12 49.45±1.28 54.35±2.28 58.31±2.33 57.34±1.95 50.55±1.04
24 45.35±1.37 50.49±0.98 48.27±1.56 48.57±2.11 45.97±1.33

CelebA
16 59.42±1.31 68.59±1.37 82.43±3.25 73.55±1.60 62.83±1.85
32 56.99±1.58 62.90±1.25 73.27±2.77 65.60±1.79 57.76±0.47
64 54.82±0.68 60.37±0.34 66.18±2.38 60.42±1.84 53.95±0.89

5.3 TIME COMPLEXITY

PCA-AE optimizes latent units sequentially, so its training time scales linearly with bottleneck
size p, i.e. O(p). HAE also introduces d prefix reconstruction losses, making both its time and
space complexity O(p) (though with a smaller constant factor). In contrast, PCAE, IRMAE, and
ARD-VAE optimize all coordinates jointly, so their per-epoch cost is essentially independent of
p. As shown in Table 5, PCAE is more than an order of magnitude faster than PCA-AE and
HAE on CelebA, underscoring its scalability advantage. A one-time cost of PCAE is construct-
ing the geodesic distance matrix over the dataset X, which requires O(|X|2 log |X|) time. For
large datasets, we approximate by building the graph only on a subset X̃ ⊂ X and linking each
x ∈ X to its nearest neighbor x̃ ∈ X̃. Then, whenever one needs the distance between any
two points x,y ∈ X, one can approximate it by using x̃, ỹ. This reduces the complexity to
O(|X̃|2 log |X̃|+ |X̃| · |X|).

8
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Once training is complete, estimating the intrinsic dimension with PCAE requires only computing
coordinate-wise variances of latent codes z, which takes a few seconds regardless of network size.
By contrast, ARD-VAE relies on relevance scores that involve Jacobian evaluation of the decoder
with respect to z, whose cost scales poorly as model complexity increases. The runtimes reported in
Table 5 verify that PCAE achieves both fast training and efficient post-hoc dimension estimation.

Table 5: The training time per epoch of our model and other baselines.
Ours HAE PCA-AE ARD-VAE IRMAE

dim = 8 (s/epoch) 9.09±0.04 30.70±0.07 58.83±0.03 8.88±0.05 8.66±0.04

dim = 64 (s/epoch) 9.19±0.04 203.57±0.05 464.68±0.02 8.99±0.05 8.75±0.05

Total Runtime (hrs) 1.37±0.03 14.95±0.02 33.10±0.08 1.45±0.05 1.43±0.05

5.4 DOWNSTREAM CLASSIFICATION

An important test of learned representations is their utility in downstream tasks. Because PCAE
produces an ordered and compact latent space, it is expected to preserve discriminative structure
while reducing dimensionality and computational cost. To evaluate this, we freeze the encoder and
train a lightweight multilayer perceptron (MLP) classifier on MNIST. The MLP consists of two
fully connected layers with 128 hidden units and ReLU activations, optimized with Adam (learning
rate 1 × 10−3, weight decay 1 × 10−5) for 100 epochs. Table 6 shows that PCAE achieves the
lowest error rate among all baselines. This confirms that variance-ordered latent coordinates not
only provide interpretability but also transfer effectively to practical classification tasks.

Table 6: Downstream classification on MNIST dataset.
Method Ours HAE PCA-AE ARD-VAE IRMAE

Error(%) 1.44±0.09 1.57±0.14 3.76±0.32 2.08±0.12 1.98±0.11

5.5 ABLATION STUDY

We finally examine the contributions of the two key loss components in PCAE. Without the isometric
term Liso, distances in latent space no longer reflect the data manifold, making coordinate variances
uninterpretable. Without the variance-ordering term Lvar, latent dimensions lose their ranking and
the intrinsic dimension cannot be identified. Table 7 confirms that both terms are indispensable: only
the full objective LPCAE recovers the correct intrinsic dimension, whereas removing either constraint
leads to severe overestimation or misalignment.

Table 7: Ablation.
Dataset Ours Lvar-only Liso-only

dSprites 4.00±0.00 12.80±0.40 9.80±0.40

3Dshapes 5.00±0.00 14.40±0.49 10.00±0.00

6 CONCLUSION

We introduced PCAE, a novel autoencoder that extends PCA principles to the nonlinear setting.
PCAE learns variance-ordered latent coordinates, enabling post-hoc intrinsic dimension estimation
without prior knowledge of the bottleneck size. Experiments demonstrate that PCAE precisely re-
covers the ground-truth dimensionality on synthetic data, aligns with MLE estimates on real-world
datasets, and generates interpretable latent spaces that facilitate smoother interpolations and stronger
downstream classification. In addition, PCAE scales efficiently compared to sequential or hierarchi-
cal baselines, making it a practical tool for nonlinear representation learning with interpretability
guarantees.

9
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A USAGE OF LARGE LANGUAGE MODELS (LLMS)

We used large language models as a general-purpose writing assistant. Its role was limited to gram-
mar checking, minor stylistic polishing, and improving the clarity of phrasing in some parts of the
manuscript. The authors made all substantive contributions to the research and writing.

B THEORETICAL PROOF

B.1 PROOF OF THEOREM 1

Before we formally prove Theorem 1, we first introduce two important lemmas. The first lemma is
known as Von Neumann’s trace inequality:

Lemma 1 (Von Neumann). Let A,B ∈ Rp×p be two square matrices with singular values σ1(A) ≥
· · · ≥ σp(A) and σ1(B) ≥ · · · ≥ σp(B) respectively, then

Tr(AB) ≤
p∑

i=1

σi(A)σi(B), (14)

with equality if and only if A and B⊤ share singular vectors. Here share singular vectors means
that there exists unit vectors v1, · · · ,vp,u1, · · · ,up ∈ Rp such that

Avi = σi(A)ui, A⊤ui = σi(A)vi,

B⊤vi = σi(B)ui, Bui = σi(B)vi,

namely, each ui (vi) is a left (right) singular vector of both A and B⊤ associated with σi(A) and
σi(B) respectively.

Proof. See (Carlsson, 2021)

The second lemma is a corollary to Lemma 1:

Lemma 2. Let A,B ∈ Rp×p be two positive semi-definite matrices with eigenvalues λ1(A) ≥
· · · ≥ λp(A) ≥ 0 and λ1(B) ≥ · · · ≥ λp(B) ≥ 0 respectively, then

Tr(AB) ≥
p∑

i=1

λi(A)λp−i+1(B), (15)

with equality if and only if the eigenvectors of A and B align in reverse order, i.e., there exists unit
vectors ui, · · · ,up such that each ui is a eigenvector of both A and B associated with λi(A) and
λp−i+1(B) respectively.

Proof. We consider αI − B with eigenvalues λ1(αI − B) ≥ · · · ≥ λp(αI − B). It is easy to see
that λi(αI − B) = α − λp−i+1(B) and all eigenvectors of αI − B associated with λi(αI − B)
are eigenvectors of B associated with λp−i+1(B). Taking α large enough such that αI −B is still
positive semi-definite, i.e. α − λp(B) ≥ · · · ≥ α − λ1(B) ≥ 0, because the singular values are

11
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exactly the eigenvalues of a positive semi-definite matrix, by Lemma 1, we have

Tr(A(αI−B)) ≤
p∑

i=1

λi(A)λi(αI−B)

=

p∑
i=1

λi(A)(α− λp−i+1(B))

=

p∑
i=1

αλi(A)− λi(A)λp−i+1(B), (16)

with equality if and only if A and αI−B share eigenvectors. On the other hand,
Tr(A(αI−B)) = Tr(αA−AB)

= Tr(αA)− Tr(AB)

=

p∑
i=1

αλi(A)− Tr(AB), (17)

Combing Eq. equation 16 and Eq. equation 17 gives

Tr(AB) ≥
p∑

i=1

λi(A)λp−i+1(B) (18)

with equality if and only if A and αI−B share eigenvectors, or equivalently, the eigenvectors of A
and B align in reverse order.

Now we can give the proof of Theorem 1.

Proof. The objective function can be rewritten using the cyclic property of the trace:

Tr(Γ
1
2U⊤ΣUΓ

1
2 ) = Tr(U⊤ΣUΓ). (19)

Because U is orthonormal, U⊤ΣU has the same eigenvalues as Σ, i.e., λi(U
⊤ΣU) = λi(Σ) = λi.

Meanwhile, we know that λi(Γ) = γp−i+1. Therefore, by Lemma 2,

Tr(U⊤ΣUΓ) ≥
p∑

i=1

λi(U
⊤ΣU)λp−i+1(Γ) =

p∑
i=1

λiγi. (20)

with equality if and only if the eigenvectors of U⊤ΣU and Γ align in reverse order.

Sufficiency Let U∗ be an orthonormal matrix whose ith column is an unit eigenvector of Σ asso-
ciate with λi, then by eigen-decomposition, we have

Σ = U∗diag(λ1, · · · , λp)U
⊤
∗ , (21)

thus
U⊤

∗ ΣU∗ = U⊤
∗ U∗diag(λ1, · · · , λp)U

⊤
∗ U∗ = diag(λ1, · · · , λp), (22)

It is easy to see that Tr(diag(λ1, · · · , λp)Γ) =
∑p

i=1 λiγi and the eigenvector of diag(λ1, · · · , λp),
Γ align in reverse order.

Necessity Now, suppose U∗ is an optimal solution to equation 19, there must exist unit vectors
v1, · · · ,vp such that for i = 1, · · · , p,

U⊤
∗ ΣU∗vi = λivi, (23)
Γvi = γivi. (24)

For i = 1, · · · , p, because γi is distinct from all other γj (j ̸= i), Eq. equation 24 implies that
vi = ±ei, where ei denotes the ith standard basis vector. Substituting in Eq. equation 23 yields

U⊤
∗ ΣU∗ei = λiei, (25)

multiplying both sides from the left by U∗, we get
ΣU∗ei = λiU∗ei, (26)

hence U∗ei is an unit eigenvector of Σ associate with λi. Since U∗ei is exactly the ith column of
U∗, the proof is completed.

12
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B.2 PROOF OF THEOREM 2

Proof. Because X,Y are i.i.d., for any scalar function g, we have

E[(g(X)− g(Y))2] = E[g2(X)] + E[g2(Y)]− 2E[g(X)]E[g(Y)]

= 2E[g2(X)]− 2E[g(X)]2

= 2Var[g(X)].

(27)

Applying this to each coordinate of f ,
p∑

i=1

γiVar[f(X)i] =
1

2
E[

p∑
i=1

γi(fi(X)− fi(Y))2] =
1

2
E[(f(X)− f(Y))⊤Γ(f(X)− f(Y))].

(28)
Obviously, ∥f(X) − f(Y)∥ = 0 = d(X,Y) holds whenever X = Y. Now consider X ̸= Y, let
u := d(X,Y) > 0, w := f(X)− f(Y) and v := ∥w∥2, then

R(f) = E[|u− v|+ 1

2
w⊤Γw]. (29)

Denote θ := w
∥w∥ and c(θ) := 1

2θ
⊤Γθ, note that γ1/2 ≤ c(θ) ≤ γp/2, hence c(θ) ∈ (0, 1).

Therefore,
|u− v| ≥ c(θ)|u− v| ≥ c(θ)(u− v) (30)

which implies |u− v|+ c(θ)v ≥ c(θ)u with equality holds if and only if u = v. Therefore,

R(f) = E[|u− v|+ c(θ)v] ≥ E[c(θ)u]. (31)

with equality holds if and only if u = v, i.e. ∥f(X) − f(Y)∥ = d(X,Y) a.s.. Furthermore, we
know d is continuous, if f is continuous, the function h(x, y) := ∥f(x)− f(y)∥ is also continuous.
To complete the proof, we only need the fact that two continuous functions that agree on a dense set
must agree everywhere.

C ADDENDUM TO EXPERIMENTAL RESULTS

C.1 DATA DESCRIPTION

To evaluate our method, we consider both synthetic datasets with known generative factors and real-
world datasets with unknown latent structures. This choice allows us to (i) verify whether our model
can correctly estimate intrinsic dimension when ground truth is available, and (ii) test robustness
in realistic scenarios where intrinsic factors are complex or unobservable. In addition, the synthetic
datasets provide controlled environments for disentanglement analysis, while the real-world datasets
enable evaluation of interpolation quality, smoothness, and distributional fidelity.

dSprites (Matthey et al., 2017). dSprites consists of 2D binary images (64×64) generated from
independent latent factors: shape, scale, orientation, x-position, and y-position. A color factor is
constant. To remove categorical ambiguity, we fix the shape factor to be ellipse, yielding a ground-
truth intrinsic dimension of 4. We also constrained the orientation factor in the range [0, 28

39π] to
avoid a circular structure since it may introduce an extra dimension. The total number of samples
available is 92,160, we use 70% as our training set, 15% as validation set and the rest 15% as test
set. We use dSprites to test whether our model can exactly recover known latent dimensions and
produce ordered representations consistent across different bottleneck sizes.

3DShapes (Burgess & Kim, 2018). 3DShapes contains 480,000 RGB images (64×64) procedu-
rally rendered with six latent factors: floor hue, wall hue, object hue, scale, shape, and orientation.
As the shape factor is categorical, we fix it to be square, resulting in an effective intrinsic dimension
of 5. Because the variance of floor/wall/object hue is much higher than that of scale/orientation, the
proportion of total variance contributed by scale/orientation is far below 1%. To make these two
factors distinguishable from noise, we halve the range of the hue components, resulting in a total of
15,000 samples. We use 70% as our training set, 15% as a validation set, and the remaining 15% as
a test set.

13
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MNIST (LeCun et al., 2010). MNIST is a dataset of 70,000 grayscale handwritten digit images
(28×28). Unlike synthetic datasets, the underlying factors (e.g., stroke width, style, slant) are not
explicitly defined and vary widely in scale, with some resembling noise. This makes MNIST a rep-
resentative benchmark for real-world data where the ground-truth intrinsic dimension is unknown.
We use 60,000 samples as a training set, 5,000 as a validation set, and the remaining 5,000 as a test
set. In our experiments, we compare our estimated intrinsic dimension with the maximum likeli-
hood estimator (MLE) baseline and further evaluate latent interpolation smoothness and FID scores
to assess the quality of the manifold. MNIST is also used for downstream classification on learned
representations.

CelebA (Liu et al., 2015). CelebA contains over 200,000 celebrity face images, aligned and
cropped to 64×64 resolution. It exhibits significant variability in attributes such as pose, hairstyle,
expression, and illumination. The generative factors are complex and unobservable, making the
estimation of intrinsic dimension highly challenging. We use CelebA to assess whether our model
avoids overestimating the intrinsic dimension compared to baseline autoencoders. We use 60,000
samples as a training set, 5,000 as a validation set, and 5,000 as a test set. In addition, CelebA
provides a realistic setting for evaluating interpolation smoothness and FID, reflecting the semantic
fidelity of learned latent spaces under high-dimensional natural image variation.

C.2 EXPERIMENTAL SETTINGS

C.2.1 MODEL ARCHITECTURE

The architecture of the encoder and decoder used in each experiment is given in Table 8. Convn /
ConvTn denote convolutional / transposed-convolutional layers whose output channel dimension is
n. All convolutional layers use a 4 times4 kernel with stride two and padding 1, and FCn denotes a
fully connected layer with output dimension n.

Table 8: The architecture of the encoder and the decoder for each dataset.

Dataset Dsprites 3DShapes MNIST CelebA

Encoder

x∈R64×64×1

→ Conv32 → ReLU
→ Conv32 → ReLU
→ Conv64 → ReLU
→ Conv64 → ReLU
→ flatten → FC → z∈Rd

x∈R64×64×3

→ Conv32 → ReLU
→ Conv32 → ReLU
→ Conv64 → ReLU
→ Conv64 → ReLU
→ flatten → FC → z∈Rd

x∈R32×32×1

→ Conv64+BN → ReLU
→ Conv128+BN → ReLU
→ Conv256+BN → ReLU
→ Conv512+BN → ReLU
→ flatten → FC → z∈Rd

x∈R64×64×3

→ Conv128+BN → ReLU
→ Conv256+BN → ReLU
→ Conv512+BN → ReLU
→ Conv1024+BN → ReLU
→ flatten → FC → z∈Rd

Decoder

z∈Rd → FC
→ reshape 4×4×64
→ ConvT64 → ReLU
→ ConvT32 → ReLU
→ ConvT32 → ReLU
→ ConvT1 (logits)

z∈Rd → FC
→ reshape 4×4×64
→ ConvT64 → ReLU
→ ConvT32 → ReLU
→ ConvT32 → ReLU
→ ConvT3 → Sigmoid

z∈Rd → FC
→ reshape 2×2×512
→ ConvT256+BN → ReLU
→ ConvT128+BN → ReLU
→ ConvT64+BN → ReLU
→ ConvT1 → Sigmoid

z∈Rd → FC (65536)
→ reshape 8×8×1024
→ ConvT512+BN → ReLU
→ ConvT256+BN → ReLU
→ ConvT128+BN → ReLU
→ ConvT3 → Sigmoid

C.2.2 HYPERPARAMETERS

The training hyperparameters used for each experiment are listed in Table 9.

The hyperparameters for PCAE, IRMAE, and ARD-VAE are selected by grid search or original
work and listed in Table 10. HAE and PCAAE have no hyperparameters.

Table 9: Training hyperparameters

Hyperparameter dSprites 3Dshapes MNIST CelebA

learning rate 1e-4 1e-4 1e-4 1e-4
epochs 1000 1000 500 250

batch size 256 256 256 256
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Table 10: Hyperparameters for PCAE

Model Parameter dSprites 3Dshapes MNIST CelebA

PCAE β 5e-3 5e-2 1e-4 1e-4
IRMAE l 4 4 4 4

ARD-VAE β 5.0 5.0 0.5 1.0

C.3 COMPUTATION OF SMOOTHNESS

In the main paper, we use smoothness to evaluate the quality of the learned latent representation.
It is defined (calculated) as follows:

1. Randomly sample N pairs of test images.
2. For each pair (xi, xj), encode them into the latent space: (zi, zj).
3. Along the straight line in latent space, produce m equally spaced intermediate codes zi =

z(0), · · · , z(m) = zj , where z(t) = (1− t
m )zi +

t
mzj .

4. Decode each z(t) back to image x̂(t).

5. Compute the inter-step distances: dt = ∥x̂(t) − x̂(t−1)∥, t = 1, · · · , m.
6. Compute variance of d1, · · · , dm, denotes as var(xi, xj).
7. The Smoothness is then defined as the average of var(xi, xj) over all N pairs.

C.4 COMPARISON OF DIFFERENT ISOMETRIC CONSTRAINTS

In the main paper, we demonstrate that liso(d, d̂) = |d2 − d̂2| is suitable for our PCAE, here we
further verify its distinctiveness by comparing it with other loss function: 1.lsquare(d, d̂) = (d− d̂)2;
2.llog(d, d̂) = (log(d

d̂
))2. The results are reported in Table 11.

Table 11: Intrinsic dimension estimated by PCAE with different isometric constraints.

dSprites 3Dshapes MNIST CelebA
τ=99% τ=99% τ=99% τ=99.9% τ=99% τ=99.9%

ℓiso 4.00±0.00 5.00±0.00 11.00±0.00 14.20±0.40 16.00±0.63 27.00±0.89
ℓsquare 5.20±0.40 6.40±0.49 6.00±0.00 11.20±0.40 11.20±0.40 18.80±0.56
ℓlog 8.00±0.00 3.80±0.40 9.60±0.49 20.80±0.40 44.60±1.04 61.00±0.63
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