
Adversarial Examples Exist in Two-Layer ReLU
Networks for Low Dimensional Linear Subspaces

Odelia Melamed ∗ Gilad Yehudai† Gal Vardi ‡

Abstract

Despite a great deal of research, it is still not well-understood why trained neural
networks are highly vulnerable to adversarial examples. In this work we focus
on two-layer neural networks trained using data which lie on a low dimensional
linear subspace. We show that standard gradient methods lead to non-robust neural
networks, namely, networks which have large gradients in directions orthogonal
to the data subspace, and are susceptible to small adversarial L2-perturbations in
these directions. Moreover, we show that decreasing the initialization scale of the
training algorithm, or adding L2 regularization, can make the trained network more
robust to adversarial perturbations orthogonal to the data.

1 Introduction

Neural networks are observed to be susceptible to adversarial perturbations [Szegedy et al., 2013],
often imperceptible by humans. Many works have shown attacks, where adding a very small
perturbation to the input may change the prediction of the network [Carlini and Wagner, 2017,
Papernot et al., 2017, Athalye et al., 2018]. Other works have shown defense mechanisms called
adversarial training [Papernot et al., 2016, Madry et al., 2017, Wong and Kolter, 2018]. Despite
a great deal of research, it is still not well-understood why neural-network training methods tend
towards such non-robust solutions.

Several recent works have given theoretical explanation for the existence of adversarial perturbations
under different settings. One line of work [Daniely and Shacham, 2020, Bubeck et al., 2021a, Bartlett
et al., 2021, Montanari and Wu, 2022] have shown that random networks are susceptible to adversarial
perturbations. These results might explain why neural networks are non-robust at initialization, but
they do not explain why trained neural networks are non-robust. Recently, Vardi et al. [2022] showed
that for data which is nearly orthogonal, after training for infinitely many iterations, the implicit bias
of neural networks towards margin maximization leads to non-robust solutions. Despite these works,
it is still unclear why trained neural networks tend to be non-robust to adversarial perturbations, and
specifically what are the assumptions on the input data which leads to non-robustness.

One common belief about “real-life” datasets, is that they approximately lie on a low dimensional
“data-manifold” in a high dimensional space. In this setting, the existence of perturbations orthogonal
to the data-manifold that change the network’s predictions is especially undesired, since such pertur-
bations do not make the input closer to data points from other classes. Indeed, such a perturbation
only increases the distance between the input and all “real-life” examples. Shamir et al. [2021] have
demonstrated empirically that under such a data-manifold assumption, the decision boundary of a
trained classifier clings to the data-manifold in a way that even very small perturbations orthogonal to
the manifold can change the prediction.
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In this paper we focus on data which lies on a low dimensional “data-manifold”. Specifically, we
assume that the data lies on a linear subspace P ⊆ Rd of dimension d− ℓ for some ℓ > 0. We study
adversarial perturbations in the direction of P⊥, i.e. orthogonal to the data subspace. We show that
the gradient projected on P⊥ is large, and in addition there exist a universal adversarial perturbation
in a direction orthogonal to P . Namely, the same small adversarial perturbation applies to many
inputs. The norm of the gradient depends on the term ℓ

d , while the perturbation size depends on the
term d

ℓ , i.e. a low dimensional subspace implies reduced adversarial robustness. Finally, we also
study how changing the initialization scale or adding L2 regularization affects robustness. We show
that in our setting, decreasing the initialization scale, or adding a sufficiently large regularization
term, can make the network significantly more robust. We also demonstrate empirically the effects of
the initialization scale and regularization on the decision boundary. Our experiments suggest that
these effects might extend to deeper networks.

2 Related Works

Despite extensive research, the reasons for the abundance of adversarial examples in trained neural
networks are still not well understood [Goodfellow et al., 2014b, Fawzi et al., 2018, Shafahi et al.,
2018, Schmidt et al., 2018, Khoury and Hadfield-Menell, 2018, Bubeck et al., 2019, Allen-Zhu and
Li, 2020, Wang et al., 2020, Shah et al., 2020, Shamir et al., 2021, Ge et al., 2021, Wang et al., 2022,
Dohmatob and Bietti, 2022]. Below we discuss several prior works on this question.

In a string of works, it was shown that small adversarial perturbations can be found for any fixed input
in certain ReLU networks with random weights (drawn from the Gaussian distribution). Building
on Shamir et al. [2019], it was shown in Daniely and Shacham [2020] that small adversarial L2-
perturbations can be found in random ReLU networks where each layer has vanishing width relative
to the previous layer. Bubeck et al. [2021a] extended this result to two-layer neural networks without
the vanishing width assumption, and Bartlett et al. [2021] extended it to a large family of ReLU
networks of constant depth. Finally, Montanari and Wu [2022] provided a similar result, but with
weaker assumptions on the network width and activation functions. These works aim to explain the
abundance of adversarial examples in neural networks, since they imply that adversarial examples are
common in random networks, and in particular in random initializations of gradient-based methods.
However, trained networks are clearly not random, and properties that hold in random networks may
not hold in trained networks. Our results also involve an analysis of the random initialization, but we
consider the projection of the weights onto the linear subspace orthogonal to the data, and study its
implications on the perturbation size required for flipping the output’s sign in trained networks.

In Bubeck et al. [2021b] and Bubeck and Sellke [2021], the authors proved under certain assumptions,
that overparameterization is necessary if one wants to interpolate training data using a neural network
with a small Lipschitz constant. Namely, neural networks with a small number of parameters are not
expressive enough to interpolate the training data while having a small Lipschitz constant. These
results suggest that overparameterization might be necessary for robustness.

Vardi et al. [2022] considered a setting where the training dataset S consists of nearly-orthogonal
points, and proved that every network to which gradient flow might converge is non-robust w.r.t. S.
Namely, building on known properties of the implicit bias of gradient flow when training two-layer
ReLU networks w.r.t. the logistic loss, they proved that for every two-layer ReLU network to which
gradient flow might converge as the time t tends to infinity, and every point xi from S , it is possible
to flip the output’s sign with a small perturbation. We note that in Vardi et al. [2022] there is a
strict limit on the number of training samples and their correlations, as well as the training duration.
Here, we have no assumptions on the number of data points and their structure, besides lying on a
low-dimensional subspace. Also, in Vardi et al. [2022] the adversarial perturbations are shown to
exist only for samples in the training set, while here we show existence of adversarial perturbation
for any sample which lies on the low-dimensional manifold.

It is widely common to assume that “real-life data” (such as images, videos, text, etc.) lie roughly
within some underlying low-dimensional data manifold. This common belief started many successful
research fields such as GAN [Goodfellow et al., 2014a], VAE [Kingma and Welling, 2013], and
diffusion [Sohl-Dickstein et al., 2015]. In Fawzi et al. [2018] the authors consider a setting where the
high dimensional input data is generated from a low-dimensional latent space. They theoretically
analyze the existence of adversarial perturbations on the manifold generated from the latent space,
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although they do not bound the norm of these perturbations. Previous works analyzed adversarial
perturbations orthogonal to the data manifold. For example, Khoury and Hadfield-Menell [2018]
considering several geometrical properties of adversarial perturbation and adversarial training for low
dimensional data manifolds. Tanay and Griffin [2016] analyzed theoretically such perturbations for
linear networks, and Stutz et al. [2019] gave an empirical analysis for non-linear models. Moreover,
several experimental defence methods against adversarial examples were obtained, using projection
of it onto the data manifold to eliminate the component orthogonal to the data (see, e.g., Jalal et al.
[2017], Meng and Chen [2017], Samangouei et al. [2018]).

Shamir et al. [2021] showed empirically on both synthetic and realistic datasets that the decision
boundary of classifiers clings onto the data manifold, causing very close off-manifold adversarial
examples. Our paper continues this direction, and provides theoretical guarantees for off-manifold
perturbations on trained two-layer ReLU networks, in the special case where the manifold is a linear
subspace.

3 Setting

Notations. We denote by U(A) the uniform distribution over a set A. The multivariate normal
distribution with mean µ and covariance Σ is denoted by N (µ,Σ), and the univariate normal
distribution with mean a and variance σ2 is denoted by N (a, σ2). The set of integers {1, ..,m} is
denoted by [m]. For a vector v ∈ Rn, we define vi:i+j to be the j + 1 coordinates of v starting from
i and ending with i + j. For a vector x and a linear subspace P we denote by P⊥ the subspace
orthogonal to P , and by ΠP⊥ (x) the projection of x on P⊥. We denote by 0 the zero vector. We use
Id for the identity matrix of size d.

3.1 Architecture and Training

In this paper we consider a two-layer fully-connected neural network N : Rd → R with ReLU
activation, input dimension d and hidden dimension m:

N(x,w1:m) =

m∑
i=1

uiσ(w
⊤
i x) .

Here, σ(z) = max(z, 0) is the ReLU function and w1:m = (w1, . . . , wm). When w1:m is clear from
the context, we will write for short N(x).

We initialize the first layer using standard Kaiming initialization [He et al., 2015], i.e. wi ∼
N
(
0, 1

dId
)
, and the output layer as ui ∼ U

({
− 1√

m
, 1√

m

})
for every i ∈ [m]. Note that in

standard initialization, each ui would be initialized normally with a standard deviation of 1√
m

, for
ease of analysis we fix the initial value to be equal to the standard deviation where only the sign is
random.

We consider a dataset with binary labels. Given a training dataset (x1, y1), . . . , (xr, yr) ∈ Rd ×
{−1, 1} we train w.r.t. the logistic loss (a.k.a. binary cross entropy): L(q) = log(1 + e−q), and
minimize the empirical error:

min
w1,...,wm

r∑
i=1

L (yi ·N(xi,w1:m)) .

We assume throughout the paper that the network is trained using either gradient descent (GD) or
stochastic gradient descent (SGD). Our results hold for both training methods. We assume that only
the weights of the first layer (i.e. the wi’s) are trained, while the weights of the second layer (i.e. the
ui’s) are fixed.

3.2 Assumptions on the Data

Our main assumption in this paper is that the input data lie on a low dimensional manifold, which
is embedded in a high dimensional space. Specifically, we assume that this “data manifold” is a
linear subspace, denoted by P , which has dimension d − ℓ. We denote by ℓ the dimension of the
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data “off-manifold”, i.e. the linear subspace orthogonal to the data subspace, which is denoted by
P⊥. In this work we study adversarial perturbations in P⊥. Note that adding a perturbation from
P⊥ of any size to an input data point which changes its label is an unwanted phenomenon, because
this perturbation is orthogonal to any possible data point from both possible labels. We will later
show that under certain assumptions there exists an adversarial perturbation in the direction of P⊥

which also has a small norm. This reason for this assumption is so that the projection of the first layer
weights on P⊥ remain fixed during training. An interesting question is to consider general “data
manifolds”, which we elaborate on in Section 7.

To demonstrate that the low-dimensional data assumption arises in practical settings, in Figure 1 we
plot the cumulative variance of the MNIST and CIFAR10 datasets, projected on a linear manifold.
These are calculated by performing PCA on the entire datasets, and summing over the square of the
singular values from largest to smallest. For CIFAR10, the accumulated variance reaches 90% at 98
components, and 95% at 216 components. For MNIST, the accumulated variance reaches 90% at
86 components, and 95% at 153 components. This indicates that both datasets can be projected to a
much smaller linear subspace, without losing much of the information.
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Figure 1: The cumulative variance for the (a) CIFAR10; and (b) MNIST datasets, calculated by
performing PCA on the entire datasets, and summing over the square of the singular values from
largest to smallest.

Remark 3.1 (On the Margin of the Network). Given a neural network N : Rd → R and a dataset
(x1, y1), . . . , (xr, yr) with binary labels which the network label correctly, we define the margin of
the network as γ := mini∈[r] yiN(xi).

In our setting, it is possible to roughly estimate the margin without assuming much about the data,
besides its boundedness. Note that the gradient of the loss decays exponentially with the output of the
network, because

∣∣∣∂L(q)
∂q

∣∣∣ = ∣∣∣−qe−q

1+e−q

∣∣∣. Hence, if we train for at most polynomially many iterations
and label all the data points correctly (i.e. the margin is larger than 0), then training effectively stops
after the margin reaches O(log2(d)). This is because if the margin is log2(d), then the gradient is of
size:

∣∣L′(log2(d))
∣∣ = ∣∣∣∣∣− log2(d)e− log2(d)

1 + e− log2(d)

∣∣∣∣∣ ≤ log2(d) · d− log(d) ,

which is smaller than any polynomials in d. This means that all the data points on the margin (which
consists of at least one point) will have an output of O(polylog(d)).

The number of points which lie exactly on the margin is difficult to assess, since it may depend on both
the dataset and the model. Some empirical results in this direction are given in Vardi et al. [2022],
where it is observed (empirically) that for data sampled uniformly from a sphere and trained with a
two-layer network, over 90% of the input samples lie on the margin. Also, in Haim et al. [2022] it is
shown that for CIFAR10, a large portion of the dataset lies on the margin.
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4 Large Gradient Orthogonal to the Data Subspace

One proxy for showing non-robustness of models, is to show that their gradient w.r.t. the input data
is large (cf. Bubeck et al. [2021b], Bubeck and Sellke [2021]). Although a large gradient does not
guarantee that there is also an adversarial perturbation, it is an indication that a small change in the
input might significantly change the output. Moreover, by assuming smoothness of the model, it is
possible to show that having a large gradient may suffice for having an adversarial perturbation.

In this section we show that training a network on a dataset which lies entirely on a linear subspace
yields a large gradient in a direction which is orthogonal to this subspace. Moreover, the size of the
gradient depends on the dimension of this subspace. Specifically, the smaller the dimension of the
data subspace, the larger the gradient is in the orthogonal direction. Our main result in this section is
the following:

Theorem 4.1. Suppose that a network N(x) =
m∑
i=1

uiσ(⟨wi, x⟩) is trained on a dataset which lies

on a linear subspace P ⊂ Rd of dimension d − ℓ for ℓ ≥ 1, and let x0 ∈ P . Let S = {i ∈ [m] :
⟨wi, x0⟩ ≥ 0}, and let k := |S|. Then, w.p ≥ 1− e−ℓ/16 (over the initialization) we have:∥∥∥∥ΠP⊥

(
∂N(x0)

∂x

)∥∥∥∥ ≥
√

kℓ

2md
.

The full proof can be found in Appendix B. Here we provide a short proof intuition: First,
we use a symmetry argument to show that it suffices to consider w.l.o.g. the subspace M :=
span{e1, . . . , ed−ℓ}, where ei are the standard unit vectors. Next, we note that since the dataset
lies on M , only the first d − ℓ coordinates of each weight vector wi are trained, while the other ℓ
coordinates are fixed at their initial value. Finally, using standard concentration result on Gaussian
random variables we can lower bound the norm of the gradient. Note that our result shows that
there might be a large gradient orthogonal to the data subspace. This correspond to “off-manifold”
adversarial examples, while the full gradient (i.e. without projecting on P⊥) might be even larger.

The lower bound on the gradient depends on two terms: k
m and ℓ

d . The first term is the fraction of
active neurons for the input x0, i.e. the neurons whose inputs are non-negative. Note that inactive
neurons do not increase the gradient, since they do not affect the output. The second term corresponds
to the fraction of directions orthogonal to the data. The larger the dimension of the orthogonal
subspace, the more directions in which it is possible to perturb the input while still being orthogonal
to the data. If both of these terms are constant, i.e. there is a constant fraction of active neurons, and
“off-manifold” directions, we can give a more concrete bound on the gradient:
Corollary 4.1. For ℓ = Ω(d), k = Ω(m), in the setting of Theorem 4.1, with probability ≥ 1−e−Ω(d)

we have: ∥∥∥∥ΠP⊥

(
∂N(x0)

∂x

)∥∥∥∥ = Ω(1) .

Consider the case where the norm of each data point is Θ(
√
d) = Θ(

√
ℓ), i.e. every coordinate is of

size Θ(1). By Remark 3.1, for a point x0 on the margin, its output is of size polylog(d). Therefore,
for the point x0, gradient of size Ω(1) corresponds to an adversarial perturbation of size polylog(d),
which is much smaller than ∥x0∥ = Θ(

√
d). We note that this is a rough and informal estimation,

since, as we already discussed, a large gradient at x0 does not necessarily imply that an adversarial
perturbation exists. In the next section, we will prove the existence of adversarial perturbations.

5 Existence of an Adversarial Perturbation

In the previous section we have shown that at any point x0 which lies on the linear subspace of the
data P , there is a large gradient in the direction of P⊥. In this section we show that not only the
gradient is large, there also exists an adversarial perturbation in the direction of P⊥ which changes
the label of a data point from P (under certain assumptions). The main theorem of this section is the
following:

Theorem 5.1. Suppose that a network N(x) =
m∑
i=1

uiσ(⟨wi, x⟩) is trained on a dataset which lies

on a linear subspace P ⊆ Rd of dimension d − ℓ, where ℓ ≥ 32(m − 1) log(m2d). Let x0 ∈ P ,
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and denote y0 := sign(N(x0)). Let I− := {i ∈ [m] : ui < 0} and I+ := {i ∈ [m] : ui > 0}, and
denote k− := |{i ∈ I− : ⟨wi, x0⟩ ≥ 0}|, and k+ := |{i ∈ I+ : ⟨wi, x0⟩ ≥ 0}|. Let ky0 = k− if
y0 = 1 and ky0 = k+ if y0 = −1. For w ∈ Rd denote ŵ := ΠP⊥(w), and denote the perturbation

z := y0 · α

( ∑
i∈I−

ŵi −
∑
i∈I+

ŵi

)
where α = 8

√
mdN(x0)
ℓky0

. Then, w.p. ≥ 1 − 5(me−ℓ/16 + d−1/2)

we have that ∥z∥ ≤ 8
√
2N(x0) · m

ky0
·
√

d
ℓ and:

sign(N(x0 + z)) ̸= sign(N(x0)) .

The full proof can be found in Appendix C. Here we give a short proof intuition: As in the previous sec-
tion, we show using a symmetry argument that w.l.o.g. we can assume that P = span{e1, . . . , ed−ℓ}.

Now, given the perturbation z from Theorem 5.1 we want to understand how adding it to the input
changes the output. Suppose that y0 = 1. We can write

N(x0 + z) =
∑
i∈I−

uiσ(⟨wi, x0⟩+ ⟨wi, z⟩) +
∑
i∈I+

uiσ(⟨wi, x0⟩+ ⟨wi, z⟩)

We can see that for all i:

⟨wi, z⟩ = α · ⟨wi,
∑
j∈I−

ΠP⊥(wj)−
∑
j∈I+

ΠP⊥(wj)⟩

= −α · ⟨wi,

m∑
j=1

sign(uj)ΠP⊥(wj)⟩.

For i ∈ I− we can write:

⟨wi, z⟩ = α ∥ΠP⊥(wi)∥2 − α⟨ΠP⊥(wi),
∑
j ̸=i

sign(uj)ΠP⊥(wj)⟩ ,

and using a similar calculation, for i ∈ I+ we can write:

⟨wi, z⟩ = −α ∥ΠP⊥(wi)∥2 − α⟨ΠP⊥(wi),
∑
j ̸=i

sign(uj)ΠP⊥(wj)⟩ .

Using concentration inequalities of Gaussian random variables, and the fact that ΠP⊥(wi) did not
change from their initial values, we can show that:∣∣∣∣∣∣⟨ΠP⊥(wi),

∑
j ̸=i

sign(uj)ΠP⊥(wj)⟩

∣∣∣∣∣∣ ≈
√
ℓm

d
,

while ∥ΠP⊥(wi)∥2 ≈ ℓ
d . Thus, for a large enough value of ℓ we have that ⟨wi, z⟩ ≤ 0 for i ∈ I+ and

⟨wi, z⟩ ≈ α ·
√
ℓ

d · (
√
ℓ−

√
m) for i ∈ I−.

From the above calculations we can see that adding the perturbation z does not increase the output of
the neurons with a positive second layer. On the other hand, adding z can only increase the input
of the neurons with negative second layer, and for those neurons which are also active it increases
their output as well if we assume that ℓ > m. This means, that if there are enough active neurons
with a negative second layer (denoted by k− in the theorem), then the perturbation can significantly
change the output. In the proof we rely only on the active negative neurons to change the label of
the output (for the case of y0 = 1, if y0 = −1 we rely on the active positive neurons). Note that the
active positive neurons may become inactive, and the inactive negative neurons may become active.
Without further assumptions it is not clear what is the size of the perturbation to make this change
for every neuron. Thus, the only neurons that are guaranteed to help change the label are the active
negative ones, which by our assumptions on ℓ are guaranteed to increase their output.

Note that our perturbation is not in the direction of the gradient w.r.t. the input. The direction of
the gradient would be the sum of all the active neurons, i.e. the sum (with appropriate signs) over
all i ∈ [m] such that ⟨wi, x0⟩ ≥ 0. Our analysis would not have worked with such a perturbation,
because we could not guarantee that inactive neurons would stay inactive.
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The assumption that ℓ = Ω(M) (up to log factors) is a technical limitation of our proof technique. We
note that such an assumption is also used in other theoretical papers about adversarial perturbations
(e.g. Daniely and Shacham [2020]).

Note that the direction of the perturbation z does not depend on the input data x0, only its size
depends on x0. In fact, Theorem 5.1 shows that there is a single universal direction for an adversarial
perturbation that can flip the label of any data point in P . The size of the perturbation depends on the
dimension of the linear subspace of the data, the number of active neurons for x0, the total number of
neurons in the network and the size of the output. In the following corollary we give a specific bound
on the size of the perturbations under assumptions on the different parameters of the problem:
Corollary 5.1. In the setting of Theorem 5.1, assume in addition that ℓ = Θ(d) and ky0

= Θ(m).
Then, there exists a perturbation z such that w.p. ≥ 1 − 5

(
me−ℓ/16 + d−1/2

)
we have ∥z∥ =

O(N(x0)) and:
sign(N(x0 + z)) ̸= sign(N(x0)) .

The above corollary follows directly by noticing from Theorem 5.1 that:

∥z∥ ≤ O

(
N(x0) ·

m

ky0

·
√

d

ℓ

)
= O(N(x0)) ,

where we plugged in the additional assumptions. The assumptions in the corollary above are similar
to the assumptions in Corollary 4.1. Namely, that the dimension of the data subspace is a constant
fraction from the dimension of the entire space, and the number of active neurons is a constant
fraction of the total number of neurons. Note that here we only consider active neurons with a specific
sign in the second layer.

Note that the size of the perturbation in Corollary 5.1 is bounded by N(x0). By Remark 3.1, the
output of the network for data points on the margin can be at most O(log2(d)), since otherwise the
network would have essentially stopped training. Therefore, if we consider an input x0 on the margin,
and ∥x0∥ = Θ(

√
d) = Θ(

√
ℓ), then the size of the adversarial perturbation is much smaller than

∥x0∥. For any other point, without assuming it is on the margin, and since we do not assume anything
about the training data (except for being in P ), we must assume that the size of the perturbation
required to change the label will depend on the size of the output.

6 The Effects of the Initialization Scale and Regularization on Robustness

In Section 5, we presented the inherent vulnerability of trained models to small perturbations in a
direction orthogonal to the data subspace. In this section, we return to a common proxy for robustness
that we considered in Section 4 – the gradient at an input point x0. We suggest two ways that might
improve the robustness of the model in the direction orthogonal to the data, by decreasing an upper
bound of the gradient in this direction. We first upper bound the gradient of the model in the general
case where we initialize wi ∼ N (0, β2Id), and later discuss strategies to use this upper bound for
improving robustness.

Theorem 6.1. Suppose that a network N(x) =
m∑
i=1

uiσ(⟨wi, x⟩) is trained on a dataset which lies

on a linear subspace P ⊆ Rd of dimension d − ℓ for ℓ ≥ 1, and assume that the weights wi are
initialized from N (0, β2Id). Let x0 ∈ P , let S = {i ∈ [m] : ⟨wi, x0⟩ ≥ 0}, and let k = |S|. Then,
w.p. ≥ 1− e−

ℓ
16 we have: ∥∥∥∥ΠP⊥

(
∂N(x0)

∂x

)∥∥∥∥ ≤ β

√
2kℓ

m
.

The full proof uses the same concentration bounds ideas as the lower bound proof and can be found
in Appendix D. This bound is a result of the untrained weights: since the projection of the data points
on P⊥ is zero, the projection of the weights vectors on P⊥ are not trained and are fixed at their
initialization. We note that Theorem 4.1 readily extends to the case of initialization from N (0, β2Id),
in which case the lower bound it provides matches the upper bound from Theorem 6.1 up to a constant
factor. In what follows, we suggest two ways to affect the post-training weights in the P⊥ direction:
(1) To initialize the weights vector using a smaller-variance initialization, and (2) Add an L2-norm
regularization on the weights. We next analyze their effect on the upper bound.
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6.1 Small Initialization Variance

From Theorem 6.1, one can conclude a strong result about the model’s gradient without the depen-
dency of its norm on ℓ and k.

Corollary 6.1. For β = 1
d
√
2

, in the settings of Theorem 6.1, with probability ≥ 1− e−
ℓ
16 we have∥∥∥∥ΠP⊥

(
∂N(x0)

∂x

)∥∥∥∥ ≤ 1√
d
.

The proof follows directly from Theorem 6.1, by noticing that k ≤ m and ℓ ≤ d. Consider for
example an input x0 ∈ P with ∥x0∥ = Θ(

√
d), and suppose that N(x0) = Ω(1). The above

corollary implies that if the initialization has a variance of 1/d2 (rather than the standard choice of
1/d) then the gradient is of size O

(
1/
√
d
)

. Thus, it corresponds to perturbations of size Ω(
√
d),

which is the same order as ∥x0∥.

6.2 L2 Regularization

We consider another way to influence the projection onto P⊥ of the trained weights vectors: adding
L2 regularization while training. We will update the logistic loss function by adding an additive
factor 1

2λ ∥w1:m∥2. For a dataset (x1, y1), .., (xr, yr), we now train over the following objective:

r∑
j=1

L(yj ·N(xj ,w1:m))) +
1

2
λ ∥w1:m∥2 .

This regularization will cause the previously untrained weights to decrease in each training step which
will decrease the upper bound on the projection of the gradient:

Theorem 6.2. Suppose that a network N(x) =
m∑
i=1

uiσ(⟨wi, x⟩) is trained for T training steps,

using L2 regularization with parameter λ ≥ 0 and step size η > 0, on a dataset which lies on a
linear subspace P ⊆ Rd of dimension d − ℓ for ℓ ≥ 1, starting from standard initialization (i.e.,
wi ∼ N (0, 1

dId)). Let x0 ∈ P , let S = {i ∈ [m] : ⟨wi, x0⟩ ≥ 0}, and let k := |S|. Then, w.p.
≥ 1− e−

ℓ
16 we have ∥∥∥∥ΠP⊥

(
∂N(x0)

∂x

)∥∥∥∥ ≤ (1− ηλ)T
√

2kℓ

md
.

The full proof can be found in Appendix D.1. The main idea of the proof is to observe the
projection of the weights on P⊥ changing during training. As before, we assume w.l.o.g. that
P = span{e1, . . . , ed−ℓ} and denote by ŵi := ΠP⊥(wi). During training, the weight vector’s last
ℓ coordinates are only affected by the regularization term of the loss. These weights decrease in a
constant multiplicand of the previous weights. Thus, we can conclude that for every t ≥ 0 we have:
ŵ

(t)
i = (1 − ηλ)tŵ

(0)
i , where ŵ

(t)
i is the i-th weight vector at time t. It implies that our setting is

equivalent to initializing the weights with standard deviation (1−ηλ)T√
d

and training the model without
regularization for T steps. As a result, we get the following corollary:

Corollary 6.2. For (1− ηλ)T ≤ 1√
2d

, in the settings of 6.2, w.p. ≥ 1− e−
ℓ
16 we get that:∥∥∥∥ΠP⊥

(
∂N(x0)

∂x

)∥∥∥∥ ≤ 1√
d
.

6.3 Experiments

In this section, we present our robustness-improving experiments. 4 We explore our methods on
two datasets: (1) A 7-point dataset on a one-dimensional linear subspace in a two-dimensional input

4For the code of the experiments see https://github.com/odeliamel/
off-manifold-robustness
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space, and (2) A 25-point dataset on a two-dimensional linear subspace in a three-dimensional input
space. In Figures 2 and 3 we present the boundary of a two-layer ReLU network trained over these
two datasets. We train the networks until reaching a constant positive margin. We note that unlike our
theoretical analysis, in the experiments in Figure 2 we trained all layers and initialize the weights
using the default PyTorch initialization, to verify that the observed phenomena occur also in this
setting. In the experiment in Figure 3 we use a different initialization scale for the improving effect to
be smaller and visualized easily. In Figures 2a and 3a we trained with default settings. In Figures 2b
and 3b we initialized the weights using an initialization with a smaller variance (i.e., initialization
divided by a constant factor). Finally, in Figures 2c and 3c we train with L2 regularization.

(a) (b) (c)

Figure 2: Experiments on a one-dimensional dataset. We plot the dataset points and the decision
boundary in 3 settings: (a) Vanilla trained network, (b) The network’s weight are initialized from a
smaller variance distribution, and (c) Training with regularization.

Consider the adversarial perturbation in the direction P⊥, orthogonal to the data subspace, in Figures
2 and 3. In figure (a) of each experiment, we can see that a rather small adversarial perturbation
is needed to cross the boundary in the subspace orthogonal to the data. In the middle figure (b),
we see that the boundary in the orthogonal subspace is much further. This is a direct result of the
projection of the weights onto this subspace being much smaller. In the right experiment (c), we
can see a similar effect created by regularization. In Appendix E we add the full default-scaled
experiment in the two-dimensional setting to demonstrate the robustness effect. There, in both the
small-initialization and regularization experiments, the boundary lines are almost orthogonal to the
data subspace. In Appendix E we also conduct further experiments with deeper networks and standard
PyTorch initialization, showing that our theoretical results are also observed empirically in settings
going beyond our theory.

(a) (b) (c)

Figure 3: Experiments on two-dimensional dataset demonstrating a smaller robustness effect.
We plot the dataset points and the decision boundary in 3 settings: (a) Vanilla trained network, (b)
The network’s weights are initialized from a smaller variance distribution, and (c) Training with
regularization. Colors are used to emphasise the values in the z axis.

In Figure 4 we plot the distance from the decision boundary for different initialization scales of the
first layer. We trained a 3-layer network, initialized using standard initialization except for the first
layer which is divided by the factor represented in the X-axis. After training, we randomly picked
200 points and used a standard projected gradient descent adversarial attack to change the label of
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each point, which is described in the Y -axis (perturbation norm, with error bars). The datasets are: (a)
Random points from a sphere with 28 dimensions, which lies in a space with 784 dimensions; and (b)
MNIST, where the data is projected on 32 dimensions using PCA. The different lines are adversarial
attacks projected either on data subspace, on its orthogonal subspace, or without projection. It can be
seen that small initialization increases robustness off the data subspace, and also on the non-projected
attack, while having almost no effect for the attacks projected on the data subspace.

(a) (b)

Figure 4: The distance to the decision boundary for different initializations of the first layer.
The X-axis represents the factor which the initialization of the first layer is divided by. The Y -axis
shows the size of a standard perturbed gradient descent adversarial attack to change the label of each
point for 200 randomly picked points. The datasets are: (a) Random points from a sphere with 28
dimensions, which lies in a space with 784 dimensions; and (b) MNIST, where the data is projected
on 32 dimensions using PCA. The different lines are adversarial attacks projected either on data
subspace, on its orthogonal subspace, or without projection.

7 Conclusions and Future Work

In this paper we considered training a two-layer network on a dataset lying on P ⊆ Rd where P
is a d − ℓ dimensional subspace. We have shown that the gradient of any point x0 ∈ P projected
on P⊥ is large, depending on the dimension of P and the fraction of active neurons on x0. We
additionally showed that there exists an adversarial perturbation in the direction of P⊥. The size
of the perturbation depends in addition on the output of the network on x0, which by Remark 3.1
should be poly-logarithmic in d, at least for points which lie on the margin of the network. Finally,
we showed that by either decreasing the initialization scale or adding L2 regularization we can make
the network robust to “off-manifold” perturbations, by decreasing the gradient in this direction.

One interesting question is whether our results can be generalized to other manifolds, beyond linear
subspaces. We state this as an informal open problem:

Open Problem 7.1. Let M be a manifold, and D a distribution over M × {±1}. Suppose we train
a network N : Rd → R on a dataset sampled from D. Let x0 ∈ M , then under what conditions
on M, D and N , there exists a small adversarial perturbation in the direction of (Tx0

M)
⊥, i.e.

orthogonal to the tangent space Tx0
M , of M at x0.

Our result can be seen as a special case of this conjecture, where at all points x, x′ ∈ M , the tangent
spaces are equal TxM = Tx′M . Another future direction would be to analyze deeper networks, or
different architectures such as convolutions. Finally, it would also be interesting to analyze robustness
of trained networks w.r.t. different norms such as L1 or L∞.
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A Rotation Invariance w.r.t. the Initialized Weights

In this paper, we analyze neural networks trained on high-dimensional data that lies on a low dimen-
sional linear subspace denoted by P . We assume that the dimension of P is d− ℓ. Throughout the pa-
per it will be more convenient to analyze data which lies on the subspace M = span({e1, . . . , ed−ℓ}),
because then the “off manifold” directions correspond exactly to certain coordinates of the input. In
this section we show that we can essentially analyze the data as if it is rotated to lie on M , and it
would imply the same consequences as the original data from P .
Theorem A.1. Let P ⊆ Rd be a subspace of dimension d − ℓ, and let M = span{e1, . . . , ed−ℓ}.
Let R be an orthogonal matrix such that R · P = M , let X ⊆ P be a training dataset and let
XR = {R · x : x ∈ X}. Assume we train a neural network N(x) =

∑m
i=1 uiσ(w

⊤
i x) as explained

in Section 3, and denote by NX and NXR the network trained on X and XR respectively for the
same number of iterations. Let x0 ∈ P , then we have:

1. W.p. p (over the initialization) we have
∥∥∥ΠP⊥

(
∂NX(x0)

∂x

)∥∥∥ ≥ c (resp. ≤ c) for some c ∈ R,

iff w.p. p also
∥∥∥ΠM⊥

(
∂NXR (Rx0)

∂x

)∥∥∥ ≥ c (resp. ≤ c).

2. For any c, p ≥ 0, w.p. p (over the initialization) there exists z ∈ P⊥ with ∥z∥ = c such that
sign(NX(x0 + z)) ̸= sign(NX(x0)), iff w.p. p there exists z′ ∈ M⊥ with ∥z′∥ = c such
that sign(NXR(Rx0 + z′)) ̸= sign(NXR(Rx0)).

Proof. Denote by w1:m := (w1, . . . , wm) and by Rw1:m = (Rw1, . . . , Rwm). Let w(t)
1:m the

weights of the network trained on the dataset X where w
(0)
1:m is some initialization, and w̃

(t)
1:m =

(w̃
(t)
1 , . . . , w̃

(t)
m ) the weights of the network trained on XR and initialized at Rw

(0)
1:m. In the proof,

when taking derivatives w.r.t. the wi’s we will explicitly write N(x,w1:m).

We first show by induction on the number of training steps that w̃(t)
1:m = Rw

(t)
1:m. For t = 0 it is clear

by the assumption on the initialization. Assume it is true for t, then we have for some x ∈ X:

∂N(Rx, w̃
(t)
1:m)

∂wi
= uiσ

′(⟨w̃(t)
i , Rx⟩)Rx

= uiσ
′(⟨Rw

(t)
i , Rx⟩)Rx

= uiσ
′(⟨w(t)

i , x⟩)Rx

= R · ∂N(x,w
(t)
1:m)

∂wi
.

This is true for every i ∈ [m] and for every x ∈ X . Also note that by our induction assumption we
have:

N(x,w
(t)
1:m) =

m∑
i=1

uiσ(⟨w(t)
i , x⟩) =

m∑
i=1

uiσ(⟨Rw
(t)
i , Rx⟩) = N(Rx, w̃

(t)
1:m) . (1)

Finally, the derivative of the loss on a single data point x ∈ X with label y can be written as:

∂L
(
N(x,w

(t)
1:m) · y

)
∂wi

= L′
(
N(x,w

(t)
1:m) · y

)
· ∂N(x,w

(t)
1:m)

∂wi
,

where the first term depends only on the value of N(x,w
(t)
1:m). Hence, taking a single gradient step of

N with weights w(t)
1:m and dataset X will change the weights by the same term up to multiplication

by R as if taking a gradient step with with weights w̃(t)
1:m and dataset XR. This finishes the induction.

Let w(0)
1:m be an initialization for the training of NX , where there exists z ∈ P⊥ with ∥z∥ = c such

that sign(NX(x0 + z)) ̸= sign(NX(x0)). Then, by Eq. (1) the initialization Rw
(0)
1:m for the training

of NXR is such that for z′ = Rz we have ∥z′∥ = c and sign(NXR(Rx0+ z′)) ̸= sign(NXR(Rx0)).
This argument holds also in the opposite direction. Let A ⊆ {w1:m ∈ Rd·m} be the set of all
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initializations to NX where there exists z ∈ P⊥ with ∥z∥ = c such that sign(NX(x0 + z)) ̸=
sign(NX(x0)), then by the above the set R · A = {Rw1:m : w1:m ∈ A} are exactly all the
initializations to NXR where there exists z′ ∈ M⊥ with ∥z′∥ = c such that sign(NXR(Rx0+z′)) ̸=
sign(NXR(Rx0)). Since we initialize the wi’s using a Gaussian initialization which is spherically
symmetric, we have that Pr(A) = Pr(RA). This proves item (2). Item (1) follows from similar
arguments (which we do not repeat for conciseness).

Under the assumption that the data lies on M = span{e1, . . . , ed−ℓ}, and no regularization is used,
we can show that the weights of the first layer projected on M⊥ do not change during training. This
is an essential part of the proofs, as it allows us to analyze those weights as random Gaussian vectors,
and apply concentration bounds on them.
Theorem A.2. Let M = span{e1, . . . , ed−ℓ}. Assume we train a neural network N(x,w1:m) :=∑m

i=1 uiσ(w
⊤
i x) as explained in Section 3 (where w1:m = (w1, . . . , wm)). Denote by ŵ :=

ΠM⊥(w) for w ∈ Rd, then after training, for each i ∈ [m], ŵi did not change from their initial value.

Proof. Note that for each i ∈ [m] and x ∈ M we have:

ΠM⊥

(
∂N(x,w1:m)

∂wi

)
= ΠM⊥

(
uiσ

′(w⊤
i x)x

)
= uiσ

′(w⊤
i x)x̂ = 0 .

Taking the derivative of the loss we have:

ΠM⊥

(
∂L (N(x,w1:m) · y)

∂wi

)
= ΠM⊥

(
L′ (N(x,w1:m) · y) · ∂N(x,w1:m)

∂wi

)
= L′ (N(x,w1:m) · y) ·ΠM⊥

(
∂N(x,w1:m)

∂wi

)
= 0 .

The above calculation did not depend on the specific value of the wi’s. Hence, the value of the ŵi’s
for every i ∈ [m] did not change during training from their initial value.

B Proofs from Section 4

Before proving the main theorem, we will first need the next two lemmas about the concentration of
Gaussian random variables:
Lemma B.1. Let w ∈ Rn such that w ∼ N (0, σ2In). Then:

P
[
∥w∥2 ≤ 1

2
σ2n

]
≤ e−

n
16 .

Proof. Note that
∥∥w

σ

∥∥2 has the Chi-squared distribution. A concentration bound by Laurent and
Massart [Laurent and Massart, 2000, Lemma 1] implies that for all t > 0 we have

Pr

[
n−

∥∥∥w
σ

∥∥∥2 ≥ 2
√
nt

]
≤ e−t .

Plugging-in t = n
16 , we get

Pr

[
n−

∥∥∥w
σ

∥∥∥2 ≥ 1

2
n

]
= Pr

[∥∥∥w
σ

∥∥∥2 ≤ 1

2
n

]
≤ e−n/16 .

Thus, we have

Pr

[
∥w∥ ≤ σ

√
n

2

]
≤ e−n/16 .

Lemma B.2. Let w1, . . . , wm ∈ Rn such that for all i ∈ [m], wi ∼ N (0, σ2In), then we have:

P

∥∥∥∥∥
m∑
i=1

wi

∥∥∥∥∥
2

≤ 1

2
mσ2n

 ≤ e−
n
16 .
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Proof. We denote the j-th coordinate of the vector wi ∈ Rn by wi,j . Note, for any i ∈ {1, . . . ,m}

and j ∈ {1, . . . , n} we have wi,j ∼ N (0, σ2). We denote by s the sum vector s :=
m∑
i=1

wi, and by

sj the j- th coordinate of s. By this definition, sj =
m∑
i=1

wi,j is a sum of m independent Gaussian

variables and therefore also a Gaussian variable. Particularly, s ∼ N (0,mσ2In). We use Lemma B.1
with variance mσ2 and get that:

P

∥∥∥∥∥
m∑
i=1

wi

∥∥∥∥∥
2

≤ 1

2
mσ2n

 ≤ e−
n
16 .

We are now ready to prove the main theorem of this section:

Proof of Theorem 4.1. Let M = span{e1, . . . , ed−ℓ}. By Theorem A.1(1), given a training dataset
X ⊆ P , it is enough to consider a training set XR = {Rx : x ∈ X}, where R is an orthogonal
matrix such that R ·P = M , and training is done over XR. From now on, we assume that the training
data, as well as x0 lie on M , and the consequences of this proof would also imply for a dataset X
and x0 ∈ P .

The projection of the gradient on M⊥ is equal to:

ΠM⊥

(
∂N(x0)

∂x

)
= ΠM⊥

(
m∑
i=1

uiwi1⟨wi,x0⟩≥0

)
=

m∑
i=1

ΠM⊥ (uiwi)1i∈S =
∑
i∈S

ΠM⊥ (uiwi) .

Denote by ŵi = (wi)d−ℓ+1:d, the last ℓ coordinates of wi. By Theorem A.2 we get that for every
i ∈ [m], ŵi did not change from their initial value during training.

Recall that we initialized ŵi ∼ N (0, 1√
d
Iℓ). Note that the set S is independent of the value of the

ŵi’s. This is because ŵi does not effect the training, hence will not effect wi −ΠM⊥(wi). Also, after
choosing x0 we have ⟨ŵi, x̂0⟩ = 0, since x̂0 = 0, which means that the choice of S is independent
of the ŵi’s. We can conclude that the random variables ŵi for i ∈ S are sampled independently.

Note, since for all i ∈ {1, . . . ,m}, |ui| = 1√
m

and they are not trained, we get that uiŵi are also
Gaussian random variables with the same mean, and variance multiplied by 1

m . Therefore, from
Lemma B.2 we get that w.p. ≥ 1− e−ℓ/16:∥∥∥∥∥∑

i∈S

uiŵi

∥∥∥∥∥ ≥
√

1

2

√
kl

dm
.

Combining the above, we get: ∥∥∥∥ΠM⊥

(
∂N(x0)

∂x

)∥∥∥∥ ≥
√

1

2

√
kl

dm
.

C Proofs from Section 5

Before proving the main theorem, we prove a few lemmas about concentration of Gaussian random
variables:

Lemma C.1. Let w ∈ Rn with w ∼ N (0, σ2In). Then:

Pr
[
∥w∥2 ≥ 2σ2n

]
≤ e−

n
16 .
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Proof. Note that
∥∥w

σ

∥∥2 has the Chi-squared distribution. A concentration bound by Laurent and
Massart [Laurent and Massart, 2000, Lemma 1] implies that for all t > 0 we have

Pr

[∥∥∥w
σ

∥∥∥2 − n ≥ 2
√
nt+ 2t

]
≤ e−t .

Plugging-in t = n
16 , we get

Pr

[∥∥∥w
σ

∥∥∥2 ≥ 2n

]
≤ Pr

[∥∥∥w
σ

∥∥∥2 − n ≥ n/2 + n/8

]
≤ e−n/16 .

Thus, we have

Pr
[
∥w∥ ≥ σ

√
2n
]
≤ e−n/16 .

Lemma C.2. Let u ∈ Rn, and v ∼ N (0, σ2In). Then, for every t > 0 we have

Pr [|⟨u, v⟩| ≥ ∥u∥ t] ≤ 2 exp

(
− t2

2σ2

)
.

Proof. We first consider ⟨ u
∥u∥ , v⟩. As the distribution N (0, σ2In) is rotation invariant, one can rotate

u and v to get ũ and ṽ such that ũ
∥u∥ = e1, the first standard basis vector and ⟨ u

∥u∥ , v⟩ = ⟨ ũ
∥u∥ , ṽ⟩.

Note, v and ṽ have the same distribution. We can see that ⟨ ũ
∥u∥ , ṽ⟩ ∼ N (0, σ2) since it is the first

coordinate of ṽ. By a standard tail bound, we get that for t > 0:

Pr

[
|⟨ u

∥u∥
, v⟩| ≥ t

]
= Pr

[
|⟨ ũ

∥u∥
, ṽ⟩| ≥ t

]
= Pr [|ṽ1| ≥ t] ≤ 2 exp

(
− t2

2σ2

)
.

Therefore

Pr [|⟨u, v⟩| ≥ ∥u∥ t] ≤ 2 exp

(
− t2

2σ2

)
.

Lemma C.3. Let u ∼ N (0, σ2
1In), and v ∼ N (0, σ2

2In). Then, for every t > 0 we have

Pr
[
|⟨u, v⟩| ≥ σ1

√
2nt
]
≤ e−n/16 + 2e−t2/2σ2

2 .

Proof. Using Lemma C.1 we get that w.p. ≤ e−n/16 we have ∥u∥ ≥ σ1

√
2n. Moreover, by

Lemma C.2, w.p. ≤ 2 exp
(
− t2

2σ2
2

)
we have |⟨u, v⟩| ≥ ∥u∥ t. By the union bound, we get

Pr
[
|⟨u, v⟩| ≥ σ1

√
2nt
]
≤ Pr

[
∥u∥ ≥ σ1

√
2n
]
+ Pr [|⟨u, v⟩| ≥ ∥u∥ t] ≤ e−n/16 + 2 exp

(
− t2

2σ2
2

)
.

We are now ready to prove the main theorem of this section:

Theorem 5.1. By Theorem A.1(2), we can assume w.l.o.g. that P = M = span{e1, . . . , ed−ℓ}.
We also assume w.l.o.g. that y0 = 1, the case y0 = −1 is proved in a similar manner. Denote by
w̄ := (w)d−ℓ+1:d, the last ℓ coordinates of w. By Theorem A.2 we have that w̄i have not changed
after training from their initial value.

We can write N(x0 + z) as:
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N(x0 + z) =

m∑
i=1

uiσ(⟨wi, x0⟩+ ⟨wi, z⟩)

=
∑
i∈I−

uiσ(⟨wi, x0⟩+ ⟨wi, z⟩) +
∑
i∈I+

uiσ(⟨wi, x0⟩+ ⟨wi, z⟩)

=
∑
i∈I−

uiσ(⟨wi, x0⟩+ ⟨w̄i, z̄⟩) +
∑
i∈I+

uiσ(⟨wi, x0⟩+ ⟨w̄i, z̄⟩) (2)

where the last equality is since (z)1:d−ℓ = 0, hence ⟨w, z⟩ = ⟨w̄, z̄⟩ for every w ∈ Rd. We will
bound each term of the above separately.

For the first term in Eq. (2), where i ∈ I− we can write:

⟨w̄i, z̄⟩ = α ∥w̄i∥2 + α⟨w̄i,
∑
j ̸=i

sign(uj)w̄j⟩ .

By our assumptions, w̄i ∼ N
(
0, 1

dIℓ
)

and
∑

j ̸=i sign(uj)w̄j ∼ N
(
0, m−1

d Iℓ
)
, since it is a sum of

m− 1 i.i.d. Gaussian random variables, which are also symmetric hence multiplying them by −1
does not change their distribution. From Lemma B.1 we get w.p. ≥ 1− e−ℓ/16 that

α · ∥w̄i∥2 ≥ α · ℓ

2d
.

From Lemma C.3, and using t =
√

(m−1) log(dm2)
d we get w.p. ≥ 1 − e−ℓ/16 + 2e−t2d/2(m−1) =

1− e−ℓ/16 + 2m−1d−1/2 that

⟨w̄i,
∑
j ̸=i

sign(uj)w̄j⟩ ≤
1√
d
t
√
2ℓ

=
1

d
·
√

2ℓ(m− 1) log(m2d) . (3)

Applying union bound over the above two events, and for every i ∈ I−, we get w.p. ≥ 1 −
2
(
me−ℓ/16 + d−1/2

)
that:

⟨w̄i, z̄⟩ ≥
αℓ

2d
− α

d

√
2ℓ(m− 1) log(m2d) .

For the second term in Eq. (2), where i ∈ I+ we can write in a similar way:

⟨w̄i, z̄⟩ = −α ∥w̄i∥2 + α⟨w̄i,
∑
j ̸=i

sign(uj)w̄j⟩ .

Using the same argument as above, we get w.p ≥ 1− 2
(
me−ℓ/16 + d−1/2

)
that:

⟨w̄i, z̄⟩ ≤ −αℓ

2d
+

α

d

√
2ℓ(m− 1) log(m2d) .

By assuming that ℓ ≥ 8(m − 1) log(m2d) we get that ⟨w̄i, z⟩ ≤ 0. Denote C := αℓ
2d −

α
d

√
2ℓ(m− 1) log(m2d), then going back to Eq. (2), using the above bounds and applying union

bound, we get w.p. ≥ 1− 4
(
me−ℓ/16 + d−1/2

)
that:

N(x0 + z) ≤
∑
i∈I−

uiσ(⟨wi, x0⟩+ C) +
∑
i∈I+

uiσ(⟨wi, x0⟩)

=
∑
i∈I−

uiσ(⟨wi, x0⟩+ C) +
∑
i∈I+

uiσ(⟨wi, x0⟩) +
∑
i∈I−

uiσ(⟨wi, x0⟩)−
∑
i∈I−

uiσ(⟨wi, x0⟩)

=
∑
i∈I−

uiσ(⟨wi, x0⟩+ C)−
∑
i∈I−

uiσ(⟨wi, x0⟩) +N(x0)

=
∑
i∈I−

ui (σ(⟨wi, x0⟩+ C)− σ(⟨wi, x0⟩)) +N(x0) .
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Define F− := {i ∈ I− : ⟨wi, x0⟩ ≥ 0}, and k− = |F−|. We have that:

∑
i∈I−

ui (σ(⟨wi, x0⟩+ C)− σ(⟨wi, x0⟩)) ≤
∑
i∈F−

ui (σ(⟨wi, x0⟩+ C)− σ(⟨wi, x0⟩))

=
∑
i∈F−

uiC = −k−C√
m

,

where the first inequality is since we only sum over negative terms, and the second inequality is since
both ⟨wi, x0⟩ ≥ 0 (because i ∈ F−) and C ≥ 0 (because ℓ ≥ 32(m− 1) log(m2d)). Combining all
of the above, we get that:

N(x0 + z) ≤ −k−C√
m

+N(x0) . (4)

By our assumption that ℓ ≥ 32(m− 1) log(m2d) we have that

C = α

(
1

2

ℓ

d
−
√
2
√
m− 1

√
ℓ

d

√
log(dm2)

)

=
α
√
ℓ

d

(√
ℓ

2
−
√
2(m− 1) log(m2d)

)

≥ αℓ

4d
.

Plugging in C and α = 8
√
mdN(x0)
k−ℓ to Eq. (4) we get that:

N(x0 + z) ≤ −k−C√
m

+N(x0)

≤ − k−√
m

· ℓ

4d
· 8

√
mdN(x0)

k−ℓ
+N(x0) = −N(x0) < 0 ,

and in particular sign(N(x0)) ̸= sign(N(x0 + z)).

We are left with calculating the norm of z:

∥z∥ = α ·

∥∥∥∥∥∥
∑
i∈I−

ΠM⊥(wi)−
∑
i∈I+

ΠM⊥(wi)

∥∥∥∥∥∥
= α ·

∥∥∥∥∥
m∑
i=1

−sign(ui)ΠM⊥(wi)

∥∥∥∥∥
= α ·

∥∥∥∥∥
m∑
i=1

−sign(ui)w̄i

∥∥∥∥∥ .

Since for each i ∈ [m], w̄i ∼ N
(
0, 1

dIℓ
)
, then −sign(ui)w̄i also have the same distribution, because

this is a symmetric distribution. Hence,
∑m

i=1 −sign(ui)w̄i ∼ N
(
0, m

d Iℓ
)

as a sum of Gaussian
random variables. Using Lemma C.1 we get w.p ≥ 1− e−ℓ/16 that ∥

∑m
i=1 −sign(ui)w̄i∥

2 ≤ 2mℓ
d .

Plugging in α we get that:

∥z∥ ≤
√

2mℓ

d
· 8

√
mdN(x0)

k−ℓ
= 8

√
2N(x0) ·

m

k−
·
√

d

ℓ
.
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D Proofs for Section 6

For proving the main theorem, we will use the following lemma that upper bounds the norm of a sum
of Gaussian random variables:

Lemma D.1. Let w1, .., wm ∈ Rn such that for all i ∈ [m], wi ∼ N (0, σ2In), then we have:

P

∥∥∥∥∥
m∑
i=1

wi

∥∥∥∥∥
2

≥ 2mσ2n

 ≤ e−
n
16

Proof. We denote the j-th coordinate of the vector wi ∈ Rn by wi,j . Note, for any i ∈ [m] and

j ∈ [n] we have wi,j ∼ N (0, σ2). We denote by s the sum vector s :=
m∑
i=1

wi, and by sj the j-th

coordinate of s. By this definition, sj =
m∑
i=1

wi,j is a sum of m independent Gaussian variables and

therefore also a Gaussian variable. Therefore, s ∼ N (0,mσ2In). We use Lemma C.1 with variance
mσ2 and get that:

P

∥∥∥∥∥
m∑
i=1

wi

∥∥∥∥∥
2

≥ 2mσ2n

 ≤ e−
n
16 .

We now prove the main theorem of this section:

Proof of Theorem 6.1. Similar to the lower bound of the norm, let M = span{e1, . . . , ed−ℓ}. By
Theorem A.1(1), given a training dataset X ⊆ P , it is enough to consider a training set XR = {Rx :
x ∈ X}, where R is an orthogonal matrix such that R · P = M , and training is done over XR. From
now on, we assume that the training data, as well as x0 lie on M , and the consequences of this proof
would also imply for a dataset X and x0 ∈ P .

The projection of the gradient on M⊥ is equal to:

ΠM⊥

(
∂N(x0)

∂x

)
= ΠM⊥

(
m∑
i=1

uiwi1⟨wi,x0⟩≥0

)
=

m∑
i=1

ΠM⊥ (uiwi)1i∈S =
∑
i∈S

ΠM⊥ (uiwi) .

Denote by ŵi = (wi)d−ℓ+1:d, the last ℓ coordinates of wi. By Theorem A.2 we get that for every
i ∈ [m], ŵi did not change from their initial value during training.

Recall that we initialized ŵi ∼ N (0, β2Iℓ). Note that the set S is independent of the value of the
ŵi’s. This is because ŵi does not effect the training, hence will not effect wi −ΠM⊥(wi). Also, after
choosing x0 we have ⟨ŵi, x̂0⟩ = 0, since x̂0 = 0, which means that the choice of S is independent
of the ŵi’s. We can conclude that the random variables ŵi for i ∈ S are sampled independently.

Therefore, from Lemma B.2 we get that w.p. ≥ 1− e−ℓ/16:

∥∥∥∥∥∑
i∈S

ŵi

∥∥∥∥∥ ≤ β
√
2kℓ .

Note, since for all i ∈ [m], |ui| = 1√
m

and they are not trained, we get w.p. ≥ 1− e−ℓ/16 that:∥∥∥∥ΠM⊥

(
∂N(x0)

∂x

)∥∥∥∥ ≤ β

√
2kℓ

m
.
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D.1 Explicit L2 regularization

Proof of Theorem 6.2. As before, for this proof we rotate the data subspace P to lie on M =
span{e1, . . . , ed−ℓ} and rotate the model’s weights accordingly. For a dataset (x1, y1), .., (xr, yr),
we train over the following objective:

r∑
j=1

L(yj ·N(xj ,w1:m))) +
1

2
λ ∥w1:m∥2

In Theorem A.2, we showed for all (xj , yj) that if we train the model using the loss L we get:

ΠM⊥

(
∂L (N(xj ,w1:m) · yj)

∂wi

)
= 0

Now, we analyze the training process using the new loss which includes the regularization term. We
denote by w

(t)
i the weight vector wi after t training steps, and by ŵ

(t)
i := ΠM⊥

(
w

(t)
i

)
its projection

on the subspace orthogonal to M . We look at the projected gradient of w(t)
i w.r.t. the loss:

ΠM⊥

∂
∑r

j=1 L
(
N(xj ,w

(t)
1:m) · yj

)
∂wi

+
∂ 1

2λ
∥∥∥w(t)

i

∥∥∥2
∂wi

 =

=

r∑
j=1

ΠM⊥

∂L
(
N(xj ,w

(t)
1:m) · yj

)
∂wi

+ΠM⊥

∂ 1
2λ
∥∥∥w(t)

i

∥∥∥2
∂wi


=ΠM⊥

∂ 1
2λ
∥∥∥w(t)

i

∥∥∥2
∂wi


=ΠM⊥

(
λw

(t)
i

)
=λŵ

(t)
i .

For a training step of size η, using gradient descent we get that:

ŵ
(t+1)
i = ŵ

(t)
i − ηλŵ

(t)
i .

Thus, after a total of T iteration of training we get that:

ŵ
(T )
i = (1− ηλ)T ŵ

(0)
i .

Therefore, the projection of gradients after training onto P⊥ will be the same as if they were initialized
to ∼ N

(
0, (1−ηλ)2T

d Id

)
and trained using logistic loss without regularization. The rest of the proof

is the same as Theorem 6.1 for β = (1−ηλ)T√
d

.

E Further Experiments and Experimental Details

E.1 Further Experiments

In Figure 5 we present the boundary of a two-layer ReLU network trained over a 25-point dataset
on a two-dimensional linear subspace, similar to Figure 3. We train the networks until reaching a
constant positive margin. The difference between the figures is that in Figure 5 we initialize the
weights using the default PyTorch initialization, while in Figure 3 we initialized using a smaller scale
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for the robustness effect to be smaller, and visualized more easily. The experiment in Figure 5 is
demonstrating an extreme robustness effect, occurring when using the standard settings.

(a) (b) (c)

Figure 5: Experiments on two-dimensional dataset. We plot the dataset points and the decision
boundary in 3 settings: (a) Vanilla trained network, (b) The network’s weights are initialized from a
smaller variance distribution, and (c) Training with regularization. Colors are used to emphasise the
values in the z axis.

In Figure 6 we go beyond the theory discussed in this paper, and present similar phenomena in all
three settings for a five-layer ReLU network. In Figure 6a we can see the boundary of the regularly
trained network within a small distance in P⊥ from the data points. In Figure 6b we use small
initialization for all five layers, and present a boundary almost orthogonal to the data manifold. In
Figure 6c, the boundary of a regularized trained network is in a similar form. This experiment
suggests that our theoretical results might be extended also to deeper networks, where all layers are
trained.

(a) (b) (c)

Figure 6: Experiments on one-dimensional dataset with deep network. We plot the dataset points
and the decision boundary in 3 settings: (a) Vanilla trained network, (b) The network’s weights are
initialized from a smaller variance distribution, and (c) Training with regularization.

E.2 One-dimensional dataset experiment - 2 layer network (Figure 2)

Dataset For all the three experiments we used a 7-point data set, spread equally on the two
dimensional line y = x from (−1,−1) to (1, 1).

Network For all the three experiments we used two-layer ReLU network of width 100 with biases
in both layers. The weights of both layers were initialized using (1+3) default PyTorch initialization
for linear layers, (2) default initialization divided by 3.

Training We used train step of size 0.02 for (1+3) and 0.04 for (2). We trained both layers until the
margin reached 0.3. The losses we used were (1+2) Logistic loss, (3) Logistic loss with 0.005 L2

regularization.
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E.3 Two-dimensional dataset experiment - smaller effect (Figure 3)

Dataset For all the three experiments we used a 25-point data set, spread equally on a grid which
lies on the z = 0.5 axis.

Network For all the three experiments we used two-layer ReLU network of width 4000 with biases
in both layers. The weights in the first layer were initialized in (1+3) from N (0, 1/3I3), and in (2)
from N (0, 1/36I3). The weight of the output layer were initialized to the uniform distribution over
the set {−1, 1}.

Training For all the experiments we trained both layers until the margin reached 0.3 and we used
train step of size 0.002. The losses we used were (1+2) Logistic loss, (3) Logistic loss with 0.8 L2

regularization on the weights of the first layer.

E.4 Two-dimensional dataset experiment (Figure 5)

Dataset For all the three experiments we used a 25-point data set, spread equally on a grid which
lies on the x− y axis.

Network For all the three experiments we used two-layer RelU network of width 400 with biases
in both layers. The weights in any layer were initialized using (1+3) default PyTorch initialization for
linear layers, (2) default initialization divided by 3.

Training For (1) experiments we used train step of size 0.005, and for (2+3) we used step of size
0.05. We trained both layers until the margin reached 0.1. The losses we used were (1+2) Logistic
loss, (3) Logistic loss with 0.005 L2 regularization.

E.5 One-dimensional dataset experiment - 5 layer network (Figure 6)

Dataset For all the three experiments we used a 7-point data set, spread equally on the two
dimensional line y = x from (−1,−1) to (1, 1).

Network For all the three experiments we used 5-layer RelU network of width 100 with biases in
all layers. The weights in any layer were initialized using (1+3) default PyTorch initialization for
linear layers, (2) default initialization divided by 3.

Training For (1+3) experiments we used train step of size 0.02, and for (2) we used step of size
0.06. we trained all layers until the margin reached 0.3. The losses we used were (1+2) Logistic loss,
(3) Logistic loss with 0.01 L2 regularization.
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