EXTRAPOLATING LARGE MODELS FROM THE SMALL: OPTIMAL LEARNING OF SCALING LAWS

Anonymous authors

Paper under double-blind review

ABSTRACT

Evaluating large language models (LLMs) is increasingly critical yet prohibitively expensive as models scale to billions of parameters. Predictive evaluation via scaling laws has emerged as a cost-effective alternative, which extrapolates large-model performance from smaller ones, often by fitting power-law relationships. However, existing approaches lack formal guarantees on the predicted results and overlook the out-of-distribution nature of such extrapolation, leading to high instability. We address these challenges with three key contributions. First, we introduce Equivalent Sample Size (ESS), a natural and principled metric that quantifies prediction uncertainty by translating it into the number of test samples required for direct, in-distribution evaluation. Second, we analyze how extrapolation amplifies prediction variance and develop an efficient algorithm that optimally allocates smaller-model evaluations to maximize ESS under compute budgets. Third, experiments on both simulated and real datasets show that ESS and our algorithm guide the design of scaling-law learning, cut evaluation cost, and deliver reliable LLM performance predictions.

1 Introduction

Evaluating large language models (LLMs) is critical for ensuring their reliability, safety, and proper deployment across sensitive domains (Guo et al., 2023). The standard evaluation approach typically relies on benchmarking against large datasets, but this process is increasingly expensive as LLMs scale to billions of parameters. For example, evaluating a single model on Chatbot Arena can cost over \$1,000 and require hundreds of GPU hours, making routine or iterative assessment prohibitively resource-intensive (Ni et al., 2024).

To address this issue, an attractive approach is to predict the performance of targeted large models based on the performance of smaller models from the same family – a framework that we referred to as *scaling prediction* through the paper. If truly effective, scaling prediction can be used to estimate the potential of new models, optimize architectural choices, and prioritize compute allocation, all without fully training or directly benchmarking larger models. Recent work has explored this direction through *scaling laws* (Ruan et al., 2025; Chen et al., 2024; Zhang et al., 2024; Wu & Tang, 2024; Xu et al., 2025), which posits the power-law relationships between model performance and key design factors such as model size, training dataset size, and compute budget. Therefore, the model performance can be predicted from these key design factors, e.g., by a logistic regression model or neural network model. Ample studies empirically demonstrate the scaling laws – that is, the performance of a large model can be predicted given the performance of a few smaller models (Kaplan et al., 2020; Hoffmann et al., 2022).

While promising, scaling prediction faces two fundamental challenges that remain underexplored. First, there is no guarantee on the accuracy or confidence of the predicted results. Existing methods primarily employ regression fitting with small-scale model quantities and extrapolate performances to large models. However, scaling prediction is intrinsically an *out-of-distribution* (OOD) prediction problem Liu et al. (2021); Ye et al. (2021), – i.e., using data from small-scale regime to predict performance in large-scale regimes – whose optimal learning requires very careful treatment. Second, as we found, existing approaches of simply running regression on random samples suffer from inherent instability due to its nature of extrapolation from small models to the large. Due to the test

with OOD samples, small variations or noise in the observed data can lead to disproportionately large uncertainty in the predictions (Hendrycks et al., 2021; Liu et al., 2021).

In this work, we make three contributions to address these challenges. First, we introduce a metric coined Equivalent Sample Size (ESS) to quantify the quality of scaling prediction. ESS provides an intuitive interpretation: it represents how many test examples would have been required via direct, In-Distribution (ID) evaluation to achieve the same accuracy and confidence as that of the scaling prediction. This unified quantification allows practitioners to compare prediction quality across different experimental setups using different model sizes. Second, we conduct a systematic study of the scaling prediction uncertainty induced by extrapolation and solve for the optimal design of the sample regime (e.g., model sizes) that achieves the maximum ESS. Specifically, under computation budget constraints, we develop a polynomial-time algorithm for determining which (smaller) model sizes to evaluate in order to minimize prediction uncertainty, thereby maximizing ESS. This design ensures that limited evaluation resources are used most effectively, enabling practitioners to decide whether training additional small models is worthwhile to improve prediction quality. Third, we illustrate the use of ESS and our algorithm by predicting model emergent capabilities. We find that using only three models from the OPT family is sufficient to product a prediction on a large target model with comparable accuracy and ESS to that of using all seven available small models, leading to a significant reduction in the evaluation cost. The ESS also reflects the prediction quality, thus delivering reliable LLM performance predictions.

Taken together, these contributions offer a principled foundation for predictive evaluation of LLMs via scaling prediction. By introducing ESS as a measure of prediction quality and developing algorithms for optimal evaluation design, our framework leads to both more efficient scaling prediction via optimized sample choice and more reliable predictions that are crucial for real-world deployment. We hope this framework will encourage both researchers and practitioners to rethink evaluation not as a passive measurement task but as a strategic resource allocation problem that can be optimized to balance accuracy, cost, and confidence.

The rest of this paper is organized as follows. Section 2 reviews the related literature and Section 3 formulates the problem. Section 4 introduces ESS for uncertainty quantification. Section 5 reveals that extrapolation inherently induces a high variance of scaling prediction, whiles Section 6 proposes an algorithm to find the optimal design for fitting the scaling law. Section 7 includes experiment results. Conclusion and further discussion are included in Section 8.

2 RELATED WORK

Scaling laws have emerged as a powerful tool for understanding and predicting the behavior of LLMs. They reveal a consistent power-law relationship between an LLM's pre-training loss or downstream-task performance and its design factors, particularly compute measures such as training FLOPs, dataset size, and model parameters (Kaplan et al., 2020; Hoffmann et al., 2022; Bahri et al., 2024). These relationships enable researchers to forecast the performance of larger, more expensive models by leveraging empirical observations from smaller ones, thereby avoiding the prohibitive costs of direct training and evaluation.

Existing scaling prediction methods mainly fall into two categories. The first category directly fits an end-to-end scaling law, where model performance is expressed as a power-law function of compute measures. Using observations from smaller models, the fitted curve is then extrapolated to predict the behavior of larger target models (Wu & Tang, 2024; Du et al., 2024). This approach is simple and popular due to its interpretability. However, its reliance on a single functional form (typically log-linear) makes it highly sensitive to deviations from the assumed power law.

The second category introduces an intermediate quantity that itself scales with compute and serves as a bridge between raw resources and final performance. Examples of such intermediate quantity include pre-training loss (Chen et al., 2024) and model capability scores (Ruan et al., 2025). Once this intermediate variable is estimated via scaling laws, researchers then model its relationship with downstream-task accuracy using flexible predictors such as logistic regression (Xu et al., 2025; Ruan et al., 2025) or neural networks (Ye et al., 2023; Zhang et al., 2024). This two-stage approach often improves prediction accuracy, as the intermediate quantity captures generalizable patterns across tasks or model families.

In both approaches, the key step is extrapolating relationships fitted on small models into much larger, unseen regimes. Such extrapolation is fundamentally unstable: while small estimation errors may be tolerable in-distribution, they are amplified dramatically when extended out-of-distribution to trillion-parameter LLMs. This limitation, further analyzed in Section 5, motivates the need for systematic uncertainty quantification to make scaling prediction reliable for guiding the future LLM evaluations.

On the technical side, our work is related to out-of-distribution (OOD) generalization. For a comprehensive review of OOD literature, we refer to Liu et al. (2021). Generally speaking, controlling OOD generalization is fundamentally difficult, as the test data regime is unseen in the training data. Common approaches typically assume certain relationship between OOD domain and training domain, such as causal learning (Peters et al., 2016), invariant learning (Arjovsky et al., 2019; Zhao et al., 2019), and meta learning (Li et al., 2018). In contrast to these general OOD frameworks, scaling prediction owns a unique structure of extrapolating from small size to large size through power laws, hence allowing more efficient and tractable solutions.

3 THE SCALING PREDICTION PROBLEM AND SOURCES OF UNCERTAINTY

This section reviews the process of scaling prediction of model performance and demonstrates that such prediction can be highly uncertain and hence unreliable, which is overlooked in this field.

Background. Suppose we have evaluated the performance of some small models $\{f_1,\ldots,f_M\}$ on some tasks $\{T_1,\ldots,T_K\}$, denoted as $P_{m,t},m=1,\ldots,M,\ t=1,\ldots,K$. Without loss of generality, we take $P\in(0,1)$, as any metric can be monotonically mapped to this range. Our goal is to predict the performance of a large model f^* from the same family on a task $T\in T_1,\ldots,T_K$.

Scaling Prediction Process. We unify both end-to-end and intermediate scaling-law approaches as the following process. *Step 1:* Extract a critical quantity (e.g., the capability score or model performance) of training models as Y_1, \ldots, Y_M . For notation simplicity, we assume that the critical quantity Y is a scalar, as the vector scenario can be analyzed in an analogous manner coordinatewise. *Step 2:* Fit a power-law model such that

$$Y = \alpha + \beta X + \epsilon, \tag{1}$$

where $X \in \mathbb{R}^p$ encodes design factors such as the logarithm of number of parameters, size of training data, and FLOPs, ϵ is Gaussian noise, and $\alpha \in \mathbb{R}$, $\beta \in \mathbb{R}^p$ are coefficients. Eq. (1) explains the name of scaling prediction, as one extrapolates the critical quantity Y from the small-model regime to larger X. Step 3: Translate the critical quantity to model performance P as follows:

$$P = \sigma(\omega Y + b),\tag{2}$$

where $\sigma(\cdot)$ is a monotone link function, e.g., $\sigma(z)=1/(1+e^{-z})$ corresponds to a logistic regression model, and ω, b are coefficients. End-to-end scaling laws are recovered by taking $\sigma(z)=z, \omega=1$, and b=0.

Remark 1 (Unversality of the Link Function.). A nature principle in scaling prediction is that, while the critical quantity Y can be family-specific, the relationship between Y and the final performance P is largely universal across families. For example, a model's accuracy on math problems depends mostly on its underlying math capability, regardless of architecture or training dynamics; however, the rate at which this capability grows with model size varies from family to family. Consequently, the link function in Eq. (2) can often be well-estimated by leveraging performance data from other model families (Chen et al., 2024; Ruan et al., 2025).

Prediction Uncertainty. The final predictor \widehat{P} involves two main sources of uncertainty. The first stems from intrinsic random noise in the training data, represented by ϵ in Eq. (1). This noise arises from measurement error and and randomness in the model training and lies largely beyond the practitioner's control. Nevertheless, this source can be accurately estimated given a well-specified scaling model Eq.s (1) and (2).

As such, this work will focus on the second source: uncertainty introduced by extrapolation. Scaling prediction fits Eq. (1) on small models and use it to predict the performance of much larger ones. Because this applies patterns learned in a limited regime to an unseen region, even slight noise or variation in the observed data can lead to disproportionately large uncertainty in the predictions.

To our knowledge, the uncertainty of scaling prediction has not been rigorously quantified in prior work. We therefore propose a framework to quantify and reduce the uncertainty inherent to extrapolation in the following sections.

4 UNCERTAINTY QUANTIFICATION VIA EQUIVALENT SAMPLE SIZE

In this section, we address the problem of quantifying the reliability of scaling prediction. We introduce a measure called *Equivalent Sample Size (ESS)*, which has a natural interpretation from a cost–benefit perspective. Intuitively, ESS compares the information gained by fitting a scaling law on smaller models to that obtained from directly evaluating the target model on an in-distribution test dataset. It represents the number of test examples one would need in direct evaluation to achieve the same level of accuracy and confidence as the scaling prediction.

Motivation of ESS. Suppose that we want to evaluate the performance P of a target model f^* . Following Eq.s (1) and (2), scaling prediction induces a probability distribution over P. Alternatively, one could evaluate f on a test dataset. Given n samples (S_i, R_i) , $i = 1, \ldots, n$, where S_i are prompts and R_i are expected responses, the empirical performance is $\widehat{P}_n = n^{-1} \sum_{i=1}^n \ell(f(S_i), R_i)$, where ℓ is a loss function, e.g., zero-one loss. A valid $(1-\delta)$ -confidence interval (CI) for \widehat{P}_n can be obtained via Hoeffding's inequality as $[\widehat{P}_n - \epsilon_n, \widehat{P}_n + \epsilon]$, where $\epsilon_n = \sqrt{\ln(1/\delta)/(2n)}$. Clearly, these two approaches achieve comparable accuracy if their CIs have the same length.

We formulate this idea as follows.

Definition 1 (Equivalent Sample Size). Let \widehat{P}_n and \widetilde{P} denote the predictive distributions from direct evaluation and scaling prediction, respectively. Let $\widehat{D}_n(\delta)$ and $\widetilde{D}(\delta)$ be the minimal lengths of their $(1-\delta)$ confidence intervals. We say that \widetilde{P} has (n,δ) -equivalent sample size if n satisfies $\widehat{D}_n(\delta) = \widetilde{D}(\delta)$. As a special case, we have $\widehat{D}_n(\delta) = \sqrt{2\ln(1/\delta)/n}$ when \widehat{P}_n is the empirical average.

The interpretation is straightforward: the scaling prediction achieves the same accuracy as directly testing the target model on n test points. In what follows, we fix $\delta=0.05$ and refer to this quantity simply as the *effective sample size* unless otherwise noted.

Practical Implications of ESS. ESS provides a principled way to compare scaling prediction with direct evaluation under a fixed compute budget. A practitioner can either (i) allocate resources to directly test f^* on n samples, or (ii) evaluate a set of smaller models and fit a scaling law. ESS quantifies the trade-off: if the ESS exceeds n, scaling prediction delivers higher accuracy per unit cost. Based on this, the next section further explores how to select the number of models and their sizes to optimally learn the scaling law and improve efficiency. In addition, ESS can be estimated before any large-scale evaluation, enabling informed decisions in advance.

Connection to Variance of Critical Quantity. ESS is tightly linked to the uncertainty in predicting the critical quantity Y. In particular, a smaller variance of Y leads to a larger ESS, as formalized in Theorem 4.1. This connection highlights that controlling the variance of Y is key to improving the reliability of scaling predictions. Accordingly, the following sections focus on analyzing and minimizing var(Y).

Proposition 4.1. When the parameters of Eq. (2) are fixed, ESS increases monotonically as the variance of the critical quantity Y decreases.

5 EXTRAPOLATION AMPLIFIES PREDICTION UNCERTAINTY

We now analyze how extrapolation inflates the variance of scaling predictions and, by Theorem 4.1, reduces ESS. For the illustration purpose, we use the logarithm of model size as the design factor X, with X_* corresponding to the target model f^* . Without loss of generality we assume $X \in [0, \infty)$; otherwise, we can shift and rescale X to ensure non-negative.

We introduce the following notations before deriving var(Y), the key to prediction uncertainty. Recall the scaling model (1), we denote the variance of the noise ϵ as σ^2 . For M training models,

define sample means $\overline{X}_M := \frac{1}{M} \sum_{i=1}^M X_i$, and \overline{Y}_M , $\overline{X}\overline{Y}_M$, and \overline{X}^2_M analogously, and the empirical variance $\overline{\sigma}_M^2 := \frac{1}{M} \sum_{i=1}^M (X_i - \overline{X}_M)^2 = \overline{X}^2_M - (\overline{X}_M)^2$.

Proposition 5.1 (Variance Characterization of Scaling Prediction). The variance of the critical quantity obtained by sacling prediction model (1) is

$$\operatorname{var}(\widehat{Y}_*) = \frac{\sigma^2}{M} \cdot \frac{(X_* - \overline{X}_M)^2 + \overline{\sigma}_M^2}{\overline{\sigma}_M^2}.$$
 (3)

Here, the factor σ^2/M reflects the intrinsic random noise in the training data, while $(X_* - \overline{X}_M)^2/\overline{\sigma}_M^2$ captures how far the target model lies outside the training range. In an extrapolation setting, X_* is typically much larger than \overline{X}_M , so this term dominates the intrinsic noise and leads to a large variance. In contrast, in classical interpolation where $X_* \leq \max_i X_i$, we have $(X_* - \overline{X}_M)^2/\overline{\sigma}_M^2 \leq 1$, keeping the variance comparable to the intrinsic noise level. This difference highlights the inherent instability of scaling predictions, which necessarily extrapolate to larger models with $X_* > \max_i X_i$.

Example 1. Suppose a model with one million parameters corresponds to X=0, and X_i 's follow IID exponential distribution $Exp(\lambda)$ so that $\mathbb{P}(X_i=x)=\lambda e^{-\lambda x}, x\geq 0$. For a moderate or large M, we have $\mathrm{var}(\widehat{Y}_*)\approx M^{-1}\sigma^2\{1+(\lambda X_*-1)^2\}$, since $\overline{X}_M\approx \mathbb{E}(X)=1/\lambda$ and $\overline{\sigma}_M^2\approx \mathrm{var}(X)=1/\lambda^2$. When $\lambda=1$, predicting a model of 1,000 billion parameters $(X_*=6)$ yields $\mathrm{var}(\widehat{Y}_*)=26\sigma^2/M$. In contrast, predicting an in-distribution model $(X_*<\mathbb{E}(X)=1)$ gives at most $2\sigma^2/M$. Thus, extrapolation inflates the variance roughly by a factor of $(X_*-1)^2$.

Although derived under a linear regression model (1), this variance amplification phenomenon extends to a broad class of machine learning models, including polynomial regression, k-nearest neighbors, and tree-based methods. These estimators face the same challenge: predicting far beyond the observed range leaves few, if any, data points near X_* , inevitably increasing the variance of \widehat{Y}_* . In response, the next section develops a theory to find the optimal training design to reduce this uncertainty and thereby improve the accuracy of scaling predictions.

6 Uncertainty Reduction by Active Selection

The variance bound in Eq. (3) shows that the distribution of design factors for the small models largely determines prediction uncertainty. Moreover, Eq. (3) reveals that this variance can be reduced by (1) increasing the number of training points M, (2) evaluating models with larger X_i , or (3) increasing the spread of the X_i , i.e., increasing their variance. However, evaluating more or larger models quickly becomes prohibitively expensive. We therefore propose active selection: optimally allocating the compute budget across both the number and the sizes of the smaller models to minimize prediction variance.

Objective Function. Formally, we consider a general problem of predicting the performance of any target model with design factor $X_* \in [x_l, x_u]$. Let W(x) denote the importance weight for each target scale x, and c(x) the cost of evaluating a model of size x. Beyond the M existing models, suppose we can spend a total compute budget C to evaluate k additional models with factors X_{M+1}, \ldots, X_{M+k} . Our goal is to choose k and these new X_{M_j} 's to minimize the following weighted prediction variance:

$$\min_{k \text{ and } X_{M+j}, j=1, \dots, k} R(k, X_{M+1}, \dots, X_{M+k}; X_1, \dots, X_M, x_l, x_u)
:= \int_{[x_l, x_u]} \text{var}(\widehat{Y}_*) dW(X_*)
\text{s.t. } \sum_{j=1}^k c(X_{M+j}) \le C, \quad X_{M+j} \ge 0, j = 1, \dots, k,$$
(4)

where $var(\hat{Y}_*)$ is the prediction variance given all M+k training points. The special case $x_l=x_u$ recovers the single-target scenario where Eq. (4) reduces to Eq. (3). We also allow M=0, where no prior evaluations exist and the entire learning trajectory must be designed from scratch. In this

scenario, one selects the sizes of the small models to create the performance scaling law itself, an idea that motivates the title of our work.

Optimal Solution. Solving Eq. (4) is highly non-trivial, as it is a non-convex constrained optimization problem, a class that is typically NP-hard (Benson, 2006b;a). Interestingly, the objective (4) has a special structure: it can be expressed as the ratio of two quadratic functions of X_i 's. Exploiting this structure, we derive a key property of the optimal solution that significantly simplify the optimization. Specifically, we show that the optimal design turns out to always evaluate at most three different model scales, though each chosen scale may be sampled multiple times.

Before presenting the main result, we introduce a natural assumption. Without loss of generality, let $X_{M+1} \leq X_{M+2} \leq \cdots \leq X_{M+k}$.

Assumption 1. The cost function c(x) and its second order derivative are non-negative and monotonically increasing, i.e., $c(\alpha) > c(\beta) \ge 0$ and $c''(\alpha) > c''(\beta) \ge 0$ for all $\alpha > \beta \ge 0$.

Assumption 1 captures the practical reality that evaluation becomes rapidly more expensive as model size grows. For example, when x is the logarithm of model size, a cost that grows linearly or quadratically in size can be written as $c(x) = e^{a+bx}$ for some constants $a \in \mathbb{R}, b > 0$. It can be verified that Assumption 1 holds for such cost functions.

Theorem 6.1. Under Assumption 1, optimal learning of the scaling law under a given computation budget needs not to use more than two non-zero model scales. Formally, the optimal solution of Eq. (4) must exhibit one of the following two properties:

(1)
$$0 = X_{M+1}^* = \dots = X_{M+k_1}^* < X_{M+k_1+1}^* = \dots X_{M+k_2}^* < X_{M+k_2+1}^* \dots = X_{M+k}^*$$
, and $\sum_{j=1}^k c(X_{M+k}^*) = C$, where k_1, k_2 are non-negative integers such that $0 \le k_1 < k_2 < k$; or

$$(2)\ 0 = X_{M+1}^* = \dots = X_{M+k_1}^* < X_{M+k_1+1}^* = \dots = X_{M+k}^*.$$

We illustrate the intuition behind Theorem 6.1 by examining the special case of predicting a single target model. In this setting, optimizing (4) reduces to minimizing (3) under a convex budget constraint. A natural strategy is to fix the number of additional models k and then determine their optimal sizes. The key step is to "break" the ratio structure in (3) by conditioning on the average model size \overline{X}_{M+k} . This renders the numerator constant, so the problem reduces to maximizing the empirical variance. Using variational analysis, we show that any optimal solution contains at most two non-zero scales; otherwise, reallocating budget from mid-size to larger models would yield a smaller variance.

Remark 2 (Optimal Learning of Scaling Law). Theorem 6.1 provides the theoretical basis for the optimal learning strategy to learn the power-law curve, in the sense of minimizing prediction uncertainty. In particular, Theorem 6.1 enables an efficient solution to (4), achieving the minimum prediction variance of the critical quantity Y. By Theorem 4.1, evaluating models according to this solution maximizes the equivalent sample size (ESS), thereby improving the reliability of scaling predictions. Practitioners can apply this result either to select additional models that refine an existing scaling law or to plan the sizes of new models in a forthcoming LLM family for the most informative exploration of performance.

Remark 3 (Budget Need Not Be Exhausted). Theorem 6.1 implies that the budget is fully used only when the optimal solution involves two nonzero scales. Notably, when the budget is small, it can be optimal to leave part of it unused. Intuitively, with a small budget it is better to reduce variance by replicating small models rather than paying for larger ones, so the optimal design may deliberately underspend. For instance, suppose we already have four models of sizes 0.5, 1, 1.5, 2, and a cost function $c(x) = 0.3e^x$. If the budget is C = 1, the optimal solution adds three new models of size 0 for a total cost of 0.9 < C. Increasing the budget to C = 3 changes the optimal solution to four models of size 0 plus one medium-scale model of size 1.8.

Implication on Efficient Optimization. Theorem 6.1 not only reveals an interesting property of the optimal solution, but also hints at an efficient polynomial time algorithm for solving the nonconvex problem (4) since the characterization of the optimal solution helps drastically reduce the search space. In particular, if the optimal solution only features two model scales, we only need to optimize the single nonzero scale. For an optimal solution with two nonzero scales, the additional constraint $\sum_{i=1}^k c(X_{M+i}^*) = C$ again reduces the problem to a single-variable search. Thus, solving

(4) reduces to enumerating all feasible triples $0 \le k_1 \le k_2 \le k \le C/c(0)$ and optimizing a one-dimensional Lipschitz-continuous objective. Pseudo-code of this procedure is in Appendix C.

7 EXPERIMENTS

We evaluate our approach on both simulated and real-world data to show that (1) Equivalent Sample Size (ESS) effectively quantifies and interprets scaling prediction uncertainty, and (2) our active selection algorithm reduces prediction uncertainty under a fixed cost budget, providing practical guidance for optimal experimental design and thus facilitating the learning of performance scaling laws.

7.1 SIMULATED STUDY

Our first experiment predicts the performance of target models with size $X_* \in (4,7)$. Following Ruan et al. (2025), we focus on the LLAMA-2 family and its emergent capabilities (Srivastava et al., 2023; Wei et al., 2022) on four tasks: word unscramble, Persian QA, 3-digit subtraction, and 2-digit multiplication.

Data Generation. For illustration, consider the LLAMA-2 family on the word-unscramble task. We take the coefficients of scaling models (1) and (2) from Ruan et al. (2025). The critical quantity and model size (in logarithm) follow $Y=0.52X-0.9+\epsilon$, where ϵ is a standard Gaussian noise with standard deviation equal to 0.2. Model performance P is linked to Y by $P=\sigma(2Y-6.11)$, where $\sigma(z)=1/(1+e^{-z})$ is the standard logistic function. The evaluation cost grows with size as $C(x)=0.3e^x$.

Methods. We compare two methods, Base and Optimal, in terms of their predicted model performance measured by ESS. Base represents the standard practice of fitting the scaling law in (1) using training models whose sizes are not deliberately chosen (Chen et al., 2024; Ruan et al., 2025; Xu et al., 2025). In our experiment, Base samples M=10 models to fit the scaling law, which are IID from a truncated exponential distribution $truncExp(\lambda=1,b=3)$, where b is the upper bound of the truncation.

Subject to the same total evaluation cost as Base, Optimal employs our active selection algorithm to choose model sizes that minimize prediction variance, and thereby maximize ESS. We expect Optimal to achieve substantially higher ESS than Base because it strategically allocates the evaluation budget to reduce the uncertainty inherent in scaling predictions.

Results and Findings. We ran 20 replicates and present a box-plot of ESS versus target model size in Figure 1. The figure shows that Optimal consistently achieves a much higher ESS than Base, especially for large models. For example, in the word unscramble task, the median ESS at X=4 increases from about 500 (Base) to 3000 (Optimal), which is a six-fold gain. It means that the prediction error and uncertainty are significantly reduced by properly selecting training models, aligning with our theoretical findings.

Figure 2, which depicts a typical simulation run, illustrates the reason behind: Base samples mostly small models (blue squares), whereas Optimal strategically selects a few key models (yellow crosses, two around size 2.2 and four near size 0) to expand the size range and stabilize the scaling-law fit.

Moreover, ESS effectively reflects the scaling prediction quality. As shown in Figure 1, ESS remains very low for the 2-Digit Multiplication task, equivalent to only a few dozen test points, indicating that the prediction can be inaccurate and non-confident. We further confirm this implication of ESS by analyzing the prediction error in Appendix D.

7.2 REAL-WORLD APPLICATION: PREDICTING EMERGENT CAPABILITIES

In our simulation studies, the proposed active select algorithm identifies the optimal number and sizes of training models for a given cost budget. In the subsequent real-world experiment, however, model sizes cannot be freely chosen because we cannot access or evaluate new models of arbitrary size. Instead, we must work with the set of models already available to fit the scaling law. Under this constraint, we show that prediction variance can still be reduced, and ESS increased, by applying our active-selection algorithm to choose a subset of the available models that minimizes Eq. (4).



Figure 1: Box-plot of the equivalent sample size (ESS) at varied model size by classic scaling-law-based approach ('Base') and our proposed adaptive selection algorithm ('Optimal') under the same budget. ESS of prediction by models selected by Optimal is significantly higher than that by Base, indicating that Optimal efficiently allocates the budget for maximally improving the reliability of scaling prediction.

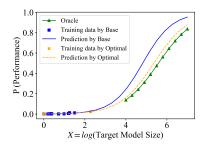


Figure 2: A typical realization of training points and predicted performance curves by classic scaling-law-based approach ('Base') and our proposed adaptive selection algorithm ('Optimal'). 'Oracle' is the true model performance. Optimal stabilizes the curve fit and improves prediction by strategically selecting a few key models that expanding the size range.

Dataset Collection. We evaluate four emergent LLM capabilities of LLMs: word unscramble, Persian QA, 3-digit subtraction and 2-digit multiplication. We use 72 publicly available models drawn from families such as LLaMA2, Qwen1.5, Falcon, GPT-Neo, OPT, Bloom, and Pythia. Their benchmark performance on datasets including MMLU, HellaSwag, GSM8K, and HumanEval is used to extract the critical quantity Y, following Ruan et al. (2025). We also collect their ground-truth performance on the four emergent tasks and estimate the link function in Eq. (2).

For the target family, we choose OPT because it offers sufficient models to fit a performance scaling law. Specifically, it has eight models with 125M, 350M, 1.3B, 3B, 7B, 13B, 30B, and 66B parameters. We designate the 66B model as the prediction target, while the remaining seven can be evaluated on the emergent tasks for training. Compute measure X is log-FLOPs calculated as $X = \log(6N \cdot D)$ (Kaplan et al., 2020), where N is the model size and D = 0.18 is the pre-training data size. Because all OPT models share the same D, X is linearly correlated with model size. The evaluation cost is $c(x) = 0.3e^x$.

Methods. We compare the ESS of scaling prediction using the same two methods as in the simulation studies: Base and Optimal. In this real-world experiment, Base fits the power law in (1) using all seven smaller OPT models, while Optimal applies our active selection algorithm to choose a cost-constrained subset of available models for fitting the power law. In the experiment, the cost budget of Optimal is varied from 1 to 16.25, where 16.25 is the total cost of evaluating all models. Full details of the scaling-law fitting procedure are provided in Appendix D. We anticipate that Optimal will deliver predictions of accuracy comparable to Base while requiring substantially lower evaluation cost.

Results and Findings. Figure 3 displays the ESS v.s. cost curve for Optimal and the ESS by Base. We have the following key observations from this result. First, Figure 3 demonstrates that a small, well-chosen subset can provide scaling predictions comparable to those obtained from the full set. Across all four tasks, halving the cost budget to C=8 lowers ESS by less than 20%, indicating only a minor loss in predictive power.

Second, we find that four models are consistently selected by our algorithm under a cost budget of C=8: one small model (125M) and three large models (3B, 7B, and 13B). Notably, the total evaluation cost of these models is 6.76, which is below the budget, aligning with our theoretical result that the optimal design need not exhaust the budget.

In Figure 4, we compare the scaling predictions obtained by Base with those derived from the four models selected by Optimal. We report the predicted accuracy, its 95% confidence interval, and the

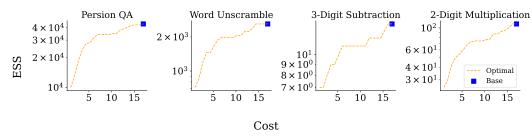


Figure 3: ESS by training on a subset of small OPT models selected by Optimal within a cost budget. Base uses all seven models. Optimal achieves a comparable ESS to Base under a significantly smaller cost.

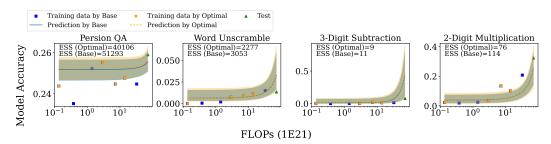


Figure 4: Predicted emergent performance and ESS on the test OPT model. Base uses all seven small OPT models and costs 16.25. Optimal chooses four models to fit the scaling law and costs 6.76. The shaded area is the 95% confidence interval. Optimal achieves nearly the same prediction result and ESS as Base.

ESS for each method. The result confirms our first observation that the scaling predictions based on Optimal closely match those of Base, while requiring substantially lower cost.

Moreover, the ESS values provide a clear indication of prediction reliability: tasks such as 3-Digit Subtraction and 2-Digit Multiplication exhibit extremely low ESS, signaling that their scaling predictions remain uncertain and may require direct evaluation of the target model or the inclusion of additional smaller models to improve stability.

In summary, these findings underscore that computing the ESS and selecting an appropriate subset allow practitioners to substantially reduce evaluation costs while preserving the reliability of scaling-law predictions; or, equivalently, to enhance reliability without increasing cost.

8 CONCLUSION AND FURTHER REMARKS

Our work introduces Equivalent Sample Size (ESS) as a principled metric for quantifying the uncertainty of scaling-based predictive evaluation of LLMs. By analyzing variance induced by extrapolation and proposing an active selection algorithm, we show that practitioners maximize prediction quality by optimally allocating evaluation resources across model sizes.

Despite these contributions, several limitations remain. First, our theoretical analysis assumes that the underlying scaling relationship is correctly specified; if this assumption is violated, predictions may become inaccurate, and the active selection result may be sub-optimal. Developing diagnostics that use ESS to detect model misspecification is therefore a promising direction for future research. Second, our active selection algorithm depends on approximate cost functions and may be sensitive to errors in those estimates, warranting further investigation into how cost-model inaccuracies affect its performance.

REFERENCES

- Martin Arjovsky, Léon Bottou, Ishaan Gulrajani, and David Lopez-Paz. Invariant risk minimization. *arXiv preprint arXiv:1907.02893*, 2019.
- Yasaman Bahri, Ethan Dyer, Jared Kaplan, Jaehoon Lee, and Utkarsh Sharma. Explaining neural scaling laws. *Proceedings of the National Academy of Sciences*, 121(27):e2311878121, 2024.
 - Harold P Benson. Fractional programming with convex quadratic forms and functions. *European Journal of Operational Research*, 173(2):351–369, 2006a.
 - Harold P Benson. Maximizing the ratio of two convex functions over a convex set. *Naval Research Logistics (NRL)*, 53(4):309–317, 2006b.
 - Yangyi Chen, Binxuan Huang, Yifan Gao, Zhengyang Wang, Jingfeng Yang, and Heng Ji. Scaling laws for predicting downstream performance in llms. *Transaction of Machine Learning Research*, 2024.
 - Zhengxiao Du, Aohan Zeng, Yuxiao Dong, and Jie Tang. Understanding emergent abilities of language models from the loss perspective. *Advances in neural information processing systems*, 37:53138–53167, 2024.
 - Zishan Guo, Renren Jin, Chuang Liu, Yufei Huang, Dan Shi, Linhao Yu, Yan Liu, Jiaxuan Li, Bojian Xiong, Deyi Xiong, et al. Evaluating large language models: A comprehensive survey. *arXiv preprint arXiv:2310.19736*, 2023.
 - Dan Hendrycks, Steven Basart, Norman Mu, Saurav Kadavath, Frank Wang, Evan Dorundo, Rahul Desai, Tyler Zhu, Samyak Parajuli, Mike Guo, et al. The many faces of robustness: A critical analysis of out-of-distribution generalization. In *Proceedings of the IEEE/CVF international conference on computer vision*, pp. 8340–8349, 2021.
 - Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza Rutherford, Diego de las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, Tom Hennigan, Eric Noland, Katherine Millican, George van den Driessche, Bogdan Damoc, Aurelia Guy, Simon Osindero, Karen Simonyan, Erich Elsen, Oriol Vinyals, Jack William Rae, and Laurent Sifre. An empirical analysis of compute-optimal large language model training. In *Advances in Neural Information Processing Systems*, 2022.
 - Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child, Scott Gray, Alec Radford, Jeff Wu, and Dario Amodei. Scaling laws for neural language models. *ArXiv*, abs/2001.08361, 2020. URL https://api.semanticscholar.org/CorpusID:210861095.
 - Da Li, Yongxin Yang, Yi-Zhe Song, and Timothy Hospedales. Learning to generalize: Meta-learning for domain generalization. In *Proceedings of the AAAI conference on artificial intelligence*, volume 32, 2018.
 - Jiashuo Liu, Zheyan Shen, Yue He, Xingxuan Zhang, Renzhe Xu, Han Yu, and Peng Cui. Towards out-of-distribution generalization: A survey. *arXiv preprint arXiv:2108.13624*, 2021.
 - Jinjie Ni, Fuzhao Xue, Xiang Yue, Yuntian Deng, Mahir Shah, Kabir Jain, Graham Neubig, and Yang You. Mixeval: Deriving wisdom of the crowd from llm benchmark mixtures. *Advances in Neural Information Processing Systems*, 37:98180–98212, 2024.
 - Jonas Peters, Peter Bühlmann, and Nicolai Meinshausen. Causal inference by using invariant prediction: identification and confidence intervals. *Journal of the Royal Statistical Society Series B: Statistical Methodology*, 78(5):947–1012, 2016.
 - Yangjun Ruan, Chris J Maddison, and Tatsunori B Hashimoto. Observational scaling laws and the predictability of language model performance. *Advances in Neural Information Processing Systems*, 37:15841–15892, 2025.

- Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao, Abu Awal Shoeb, Abubakar Abid, Adam Fisch, Adam R Brown, Adam Santoro, Aditya Gupta, Adri Garriga-Alonso, et al. Beyond the imitation game: Quantifying and extrapolating the capabilities of language models. *Transactions on machine learning research*, 2023.
- Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani Yogatama, Maarten Bosma, Denny Zhou, Donald Metzler, et al. Emergent abilities of large language models. Transactions on machine learning research, 2022.
- Chuhan Wu and Ruiming Tang. Performance law of large language models. *arXiv preprint* arXiv:2408.09895, 2024.
- Chengyin Xu, Kaiyuan Chen, Xiao Li, Ke Shen, and Chenggang Li. Unveiling downstream performance scaling of llms: A clustering-based perspective. *arXiv* preprint arXiv:2502.17262, 2025.
- Haotian Ye, Chuanlong Xie, Tianle Cai, Ruichen Li, Zhenguo Li, and Liwei Wang. Towards a theoretical framework of out-of-distribution generalization. *Advances in Neural Information Processing Systems*, 34:23519–23531, 2021.
- Qinyuan Ye, Harvey Yiyun Fu, Xiang Ren, and Robin Jia. How predictable are large language model capabilities? a case study on big-bench. *arXiv* preprint arXiv:2305.14947, 2023.
- Qiyuan Zhang, Fuyuan Lyu, Xue Liu, and Chen Ma. Collaborative performance prediction for large language models. *arXiv preprint arXiv:2407.01300*, 2024.
- Han Zhao, Remi Tachet Des Combes, Kun Zhang, and Geoffrey Gordon. On learning invariant representations for domain adaptation. In *International conference on machine learning*, pp. 7523–7532. PMLR, 2019.

A MISSING PROOFS

Proof of Proposition 4.1.

Proof. When ω and b are fixed, any $(1-\delta)$ -CI of Y, denoted by $[Y_l,Y_u]$, induces a corresponding $(1-\delta)$ -CI of P, given by $[P_l,P_u]$ where $P_l=\sigma(\omega Y_l+b)$ and $P_u=\sigma(\omega Y_u+b)$. Since the predicted Y is Gaussian, a smaller variance of Y yields a tighter interval $|Y_u-Y_l|$. By the monotonicity of $\sigma(\cdot)$, this translates to a narrower confidence interval $[P_l,P_u]$. According to the definition of ESS, a smaller confidence interval corresponds to a larger ESS, as it reflects the number of test samples needed to achieve the same level of precision through direct evaluation.

Proof of Proposition 5.1

Proof. By classic learning theory, the least-squares estimates of coefficients in Eq. (1) are

$$\widehat{\alpha}_M = \overline{Y}_M - \widehat{\beta}_M \overline{X}_M, \quad \widehat{\beta}_M = \frac{\overline{XY}_M - \overline{X}_M \overline{Y}_M}{\overline{X^2}_M - \overline{X}_M^2}.$$

Therefore, the predicted critical quantity at X_* is $\widehat{Y}_*=\widehat{\alpha}_M+\widehat{\beta}_MX_*$, whose variance is

$$\operatorname{var}(\widehat{Y}_*) = \mathbb{E}(\widehat{\alpha}_M + \widehat{\beta}_M X_* - \alpha + \beta X_*)^2 = \frac{\sigma^2}{M} \cdot \frac{(X_* - \overline{X}_M)^2 + \overline{\sigma}_M^2}{\overline{\sigma}_M^2}.$$

Proof of Theorem 6.1.

Proof. The original optimization problem can be rewritten as

$$\min_{k \text{ and } X_{M+j}, j=1, \dots, k} R(k, X_{M+1}, \dots, X_{M+k}; X_1, \dots, X_M, x_l, x_u)
:= \int_{[x_l, x_u]} \frac{\sigma^2}{M+k} \cdot \frac{(x - \overline{X}_{M+k})^2 + \overline{\sigma}_{M+k}^2}{\overline{\sigma}_{M+k}^2} dW(x)
= \frac{\sigma^2}{(M+k)\overline{\sigma}_{M+k}^2} \cdot \left[\{ \overline{X}_{M+k} - \mathbb{E}_W(X_*) \}^2 + \underset{W}{\text{var}}(X_*) + \overline{\sigma}_{M+k}^2 \right], \quad (5)$$
s.t.
$$\sum_{j=1}^k c(X_{M+j}) \le C,
X_{M+j} \ge 0, j = 1, \dots, k.$$

where $\mathbb{E}_W(X_*)=\int_{[x_l,x_u]}xdW(x)$ and $\mathrm{var}_W(X_*)=\int_{[x_l,x_u]}(x-E_W(X))^2dW(x)$.

We first show that the optimal design contains at most three different scales.

Step 1: Conditioning. We denote $z_j := X_{M+j}, j=1,\ldots,k$. For any fixed k, let $z_j^*, j=1,\ldots,k$ be any optimal solution and $Z^* = \sum_{i=1}^k z_j^*$ be their sum. Consider a variant of Optimization Problem (1) – more specifically, a simplified version – in which both k and Z^* values are pre-given and fixed; hence the goal is simplified to identify the optimal $z_1^*, z_2^* \cdots, z_k^*$ that minimizes the objective of (1) subject to given condition $\sum_{i=1}^k z_j = Z^*$. The advantage of considering this simplified version is that the enumerator now becomes a constant, hence the objective is now equivalent to

maximize its denominator. Specifically, given a fixed k and Z^* , we have

$$\min_{k;X_{M+1},\dots,X_{M+k}} R(k,X_{M+1},\dots,X_{M+k};X_1,\dots,X_M,x_l,x_u)$$

$$\Leftrightarrow \min_{z_j,j=1,\dots,k:\sum z_j=Z^*} \frac{\sigma^2}{(M+k)\overline{\sigma}_{M+k}^2} \cdot \left[\{\overline{X}_{M+k} - \mathbb{E}_W(X_*)\}^2 + \operatorname{var}(X_*) + \overline{\sigma}_{M+k}^2 \right]$$

$$\Leftrightarrow \min_{z_j,j=1,\dots,k:\sum z_j=Z^*} \frac{1}{\overline{\sigma}_{M+k}^2} \Leftrightarrow \max_{z_j,j=1,\dots,k:\sum z_j=Z^*} \overline{\sigma}_{M+k}^2$$

$$\Leftrightarrow \max_{z_j,j=1,\dots,k:\sum z_j=Z^*} \sum_{i=1}^M (X_i - \overline{X}_{M+k})^2 + \sum_{j=1}^k (z_j - \overline{X}_{M+k})^2$$

$$\Leftrightarrow \max_{z_j,j=1,\dots,k:\sum z_j=Z^*} \sum_{j=1}^k z_j^2,$$

since $\overline{X}_{M+k} = (\sum_{i=1}^M X_i + \sum_{j=1}^k z_j)/(M+k)$ is a constant.

As a result, optimizing (5) is equivalent to maximizing the variance of additional points z_j 's. The argument above leads to the following re-formulation of OP (5), by conditioning it on the constraint $Z^* = \sum_{j=1}^k z_i^*$:

$$\max_{k \text{ and } z_1, \dots, z_k} \qquad \sum_{i=1}^k z_i^2$$

$$\text{subject to} \qquad \sum_{i=1}^k c(z_i) \le C,$$

$$\sum_{i=1}^k z_i = Z^*,$$

$$z_i > 0, \forall i = 1, \dots, k.$$

$$(6)$$

Notably, despite its simplification, OP (6) is still challenging to solve because its objective is to maximize a convex function which generally is NP-hard. Nevertheless, we show that for any given Z^* and any k value, any optimal solution to OP (6) must be able to be expressed as $z_1^* = z_2^* \cdots = z_{k_1}^* = 0$, $z_{k_1+1}^* = z_{k_1+2}^* \cdots = z_{k_2}^* = \alpha$ and $z_{k_2+1}^* = z_{k_2+2}^* = \cdots z_k^* = \beta$ for some $0 < \alpha < \beta$ and $0 \le k_1 \le k_2 \le k$.

Step 2: Proving by contradiction. Suppose the claim above is not true, then there must exist three non-zero z_i^* 's with varied values. Without loss of generality, let these three variables be $0 < z_1^* < z_2^* < z_3^*$. Next we argue that, in such cases, there must exist a way to strictly increase the objective value without violating the constraints, hence contradicting their optimality.

Our argument employs the variational methods. Consider new variables $z_1=z_1^*-\epsilon_1, z_2=z_2^*+\epsilon_2$ and $z_3=z_3^*-\epsilon_3$ for some arbitrarily small $\epsilon_1,\epsilon_2,\epsilon_3>0$ such that

$$-c'(z_1^*)\epsilon_1 + c'(z_2^*)\epsilon_2 - c'(z_3^*)\epsilon_3 = 0$$
(7)

$$-\epsilon_1 + \epsilon_2 - \epsilon_3 = 0 \tag{8}$$

Specifically, these two constraints ensures that the new variables z_1, z_2, z_3 remain feasible for OP (6) when $\epsilon_1, \epsilon_2, \epsilon_3$ are arbitrarily small since their relations expressed above guarantee the variation between z_1, z_2, z_3 and z_1^*, z_2^*, z_3^* to be 0 for all constraints. However, we argue that the variation of the objective of OP (6) between z_1, z_2, z_3 and z_1^*, z_2^*, z_3^* is strictly positive, i.e., z_1, z_2, z_3 achieves higher/better objective. Equality (8) implies $\epsilon_2 = \epsilon_1 + \epsilon_3$. Substituting ϵ_2 in Equality (7), we obtain

$$\epsilon_1[c'(z_2^*) - c'(z_1^*)] = \epsilon_3[c'(z_3^*) - c'(z_2^*)]$$

The mean value theorem implies that there exists $u_1 < u_2$ such that $\epsilon_1 c''(u_1)[z_2^* - z_1^*] = \epsilon_3 c''(u_2)[z_3^* - z_2^*]$ By our assumption, all terms are positive and $0 \le c''(u_1) < c''(u_2)$, hence we must have

$$\epsilon_1[z_2^* - z_1^*] > \epsilon_3[z_3^* - z_2^*].$$

This implies the variation of the objective under z_1, z_2, z_3 and z_1^*, z_2^*, z_3^* is strictly positive, i.e.,

$$\begin{array}{rcl} \Delta & = & -2z_1^*\epsilon_1 + 2z_2^*\epsilon_2 - 2z_3^*\epsilon_3 \\ & = & -2z_1^*\epsilon_1 + 2z_2^*(\epsilon_1 + \epsilon_3) - 2z_3^*\epsilon_3 \\ & = & 2[z_2^* - z_1^*]\epsilon_1 - 2[z_3^* - z_2^*]\epsilon_3 \\ & > & 0. \end{array}$$

This contradicts the optimality of z_1^*, z_2^*, z_3^* , as desired.

Next, we show that the optimal design must satisfy $\sum_{j=1}^k c(z_j) = C$ when there are three scales, namely when $k_1 < k_2 < k$. We prove by constructing a contradiction. Suppose $z_j^*, j = 1, \ldots, k$ is an optimal design of OP (6) such that $\sum_{j=1}^k c(z_j^*) < C$ and there are three different scales. WLOG, we can let $0 = z_1^* < z_2^* < z_3^*$. Now, let $z_2 = z_2^* - \epsilon$, $z_3 = z_3^* + \epsilon$, and $z_j = z_j^*$ for $j \neq 2, 3$, where ϵ is a postive constant. Since $\sum_{j=1}^k c(z_j^*) < C$, there exists a sufficiently small ϵ such that z_i 's is a valid solution to OP (6). However, the corresponding objective is

$$\sum_{j=1}^{k} z_j^2 = \sum_{j=1}^{k} (z_j^*)^2 + 2\epsilon(z_3^* - z_2^*) + 2\epsilon^2 > \sum_{j=1}^{k} (z_j^*)^2,$$

which is a contradiction. We thus completes the proof.

B EXTENSIONS OF ESS

The ESS definition is not tied to Hoeffding-based confidence intervals. Any valid CI construction for direct evaluation can be substituted. The Hoeffding bound is distribution-free and conservative, as it does not exploit properties of f^* . In this section, we discuss a Bayesian formulation that can yield tighter ESS estimates.

We use zero-one loss as the loss function. For direct evaluation, we construct the distribution of \widehat{P}_n through a Bayesian approach. In particular, we assign a uniform distribution as \widehat{P}_0 , which serves as a non-information prior distribution. After evaluating each test point, we update the posterior distribution \widehat{P}_n by the Bayesian theorem. As a result, the posterior distribution will follow a Beta distribution $Beta(\alpha,\beta)$, where α and β can be interpreted as the number of zeros and ones in the evaluation results, respectively. We can therefore match the distribution of \widetilde{P} and $Beta(\alpha,\beta)$ as follows. Let $m_1 = \mathbb{E}(\widetilde{P})$ and $m_2 = \mathrm{var}(\widetilde{P})$. We can solve α and β from the following moment equations:

$$m_1 = \alpha/(\alpha + \beta),$$

 $m_2 = \frac{\alpha\beta}{(\alpha + \beta)^2(\alpha + \beta + 1)}.$

In particular, we have the close-form solution

$$\begin{split} &\alpha = m_1[\{m_1(1-m_1)\}/m_2-1],\\ &\beta = (1-m_1)[\{m_1(1-m_1)\}/m_2-1]. \end{split}$$

Consequently, the scaling prediction has an ESS equals \widetilde{n} , where $\widetilde{n} := \alpha + \beta = \{m_1(1-m_1)\}/m_2 - 1$. We note that \widetilde{n} is guaranteed to be non-negative as $m_2 = \text{var}(\widetilde{P}) = \mathbb{E}(\widetilde{P}^2) - \{\mathbb{E}(\widetilde{P})\}^2 \le m_1 - (m_1)^2$, where the last step is due to $P \in [0,1]$.

C PSEUDO-CODE OF THE ACTIVE SELECTION ALGORITHM

The active selection algorithm for solving (4) is summarized in Algorithm 1, with Algorithm 2 serving as a subroutine that computes the optimal solution for each fixed pair (k_1, k_2) .

Algorithm 1 Active Selection

Require: The budget C, cost function $c(\cdot)$, and target region $[x_l, x_u]$

- 1: **for** $k = 1, 2, \dots$ **do**
- 2: Let $R_k, X_1, \dots, X_k \leftarrow \text{BestDesign}(k)$
- Stop if the smallest cost of evaluating k models exceeds C
- 4: end for

5: Return the design with the smallest R_k

Output: The optimal design X_1, \ldots, X_k .

Algorithm 2 Best Design with a Fixed Number of Models

Require: The budget C, cost function $c(\cdot)$, number of points k, and target region $[x_l, x_u]$ and its distribution W.

- 1: **for** $0 \le k_1 \le k_2 \le k$ **do**
- 2: Let $X_1, \ldots, X_{k_1} = 0, X_{k_2+1}, \ldots, X_k = x$
- 3: Let $X_{k_1+1}, \ldots, X_{k_2} = v$, where v is determined by $\sum_{j=1}^k c(X_j) = C$.
- 4: Solve x that minimizes Eq. (4), and let R_{k_1,k_2} be the minimum
- 5: end for
- 6: Return the design with the smallest R_{k_1,k_2}

Output: The optimal design X_1, \ldots, X_k .

D EXPERIMENT DETAILS AND ADDITIONAL RESULTS.

D.1 SCALING PREDICTION WITH REAL WORLD DATASET

For the Base method, we follow the procedure described in (Ruan et al., 2025). First, we fit the link function in Eq. (2) using the performance of all models **excluding** the target family (LLaMA2) on the emergent benchmark. The link function is specified as

$$\sigma(x) = h + (1 - h)/(1 + e^{-\omega Y - b}),$$

where $h \in [0, 1]$ and $\omega, b \in \mathbb{R}$ are coefficients.

Next, we fit the scaling law in Eq. (1) using the training OPT models. The critical quantity Y for each model is extracted by applying PCA to the imputed performance matrix B. Here, each entry of B is the standardized performance of a training model on a benchmark such as MMLU. The final predicted performance is obtained by plugging the extrapolated critical quantity Y of the target model into Eq. (2).

For Optimal, all steps remain the same except that only a subset of OPT models selected by our active selection algorithm (along with models from other families) are included in the training set.

The $(1-\delta)$ -confidence interval (CI) is constructed as follows. We first compute a $(1-\delta/2)$ -CI for \widehat{Y} using Eq. (3). Then, we obtain a $(1-\delta/2)$ -CI for the link function (2) via bootstrapping. Finally, we combine these results through a plug-in procedure to produce the overall $(1-\delta)$ -CI.

D.2 SIMULATED STUDIES

In addition to ESS, we report the predicted performance of both Base and Optimal in Figure 5. The figure shows that Optimal achieves both lower prediction error and smaller variance than Base, mirroring the ESS improvements observed in Figure 1. This consistency reinforces that ESS reliably captures the quality of scaling predictions and serves as an intuitive measure of their reliability.

E THE USE OF LARGE LANGUAGE MODELS STATEMENT

Large language models were used solely as a writing aid. Their use was limited to minor language editing, such as correcting grammar, improving clarity, and polishing the phrasing, without altering the substantive content or analysis of the article.

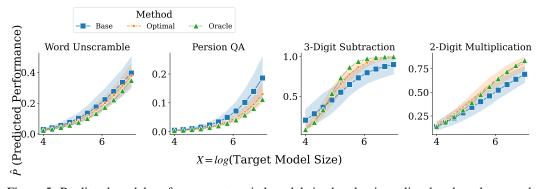


Figure 5: Predicted model performance at varied model size by classic scaling-law-based approach ('Base') and our proposed adaptive selection algorithm ('Optimal'). The true model performance is denoted as 'Oracle'.