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ABSTRACT

As large language models (LLMs) continue to scale to billions of parameters,
training them becomes increasingly expensive, making it infeasible to exhaus-
tively explore the vast design space including model architectures, parameter
sizes, and compute budgets. Scaling laws have therefore emerged as an essential
tool for predicting the performance of larger models by extrapolating from smaller
ones, enabling practitioners to make informed design choices without full-scale
training. However, existing approaches lack formal guarantees on the predicted
results and overlook the out-of-distribution nature of such extrapolation, leading
to instability and unreliable predictions. We address these challenges with three
key contributions. First, we introduce Equivalent Sample Size (ESS), a princi-
pled and interpretable metric that quantifies prediction uncertainty by translating
it into the number of test samples required for direct, in-distribution evaluation.
Second, we analyze how extrapolation amplifies prediction variance and develop
an efficient algorithm that optimally allocates smaller-model evaluations to maxi-
mize ESS under compute budgets. Third, experiments on both simulated and real
datasets show that ESS and our algorithm guide the design of scaling-law learning,
cut evaluation cost, and deliver reliable LLM performance predictions.

1 INTRODUCTION

The development of large language models (LLMs) has been driven by the intuition that scaling up
model size, data volume, and compute generally leads to better performance (Kaplan et al., 2020).
However, pre-training modern LLMs requires immense computational resources, often costing mil-
lions of dollars and weeks of training time across thousands of GPUs. As a result, blindly increasing
one dimension such as model size, has become increasingly inefficient and impractical. There is a
growing demand for principled tools that can guide pre-training decisions before these expensive
investments are made Touvron et al. (2023); Bi et al. (2024); Choshen et al. (2024).

A promising direction is the use of scaling laws, which posit power-law relationships between model
performance and key design variables such as model size and dataset size (Rosenfeld et al., 2019;
Kaplan et al., 2020; Hoffmann et al., 2022). These empirical laws enable predicting the performance
of a target large model by extrapolating from the observed performance of smaller models – a frame-
work that we referred to as scaling prediction through the paper. Scaling prediction can therefore
help prioritize architectures, optimize resource allocation, and reduce experimentation cost. Recent
studies have demonstrated that such predictions can be surprisingly accurate in practice (Ruan et al.,
2025; Chen et al., 2024; Zhang et al., 2024; Wu & Tang, 2024; Xu et al., 2025), reinforcing the value
of scaling laws as an essential tool for efficient LLM development.

While promising, scaling prediction faces two fundamental challenges that remain underexplored.
First, there is no guarantee on the accuracy or confidence of the predicted results. Existing methods
primarily employ regression fitting with small-scale model quantities and extrapolate performances
to large models. However, scaling prediction is intrinsically an out-of-distribution (OOD) prediction
problem Liu et al. (2021); Ye et al. (2021) (i.e., using data from small-scale regime to predict perfor-
mance in large-scale regimes) whose optimal learning requires very careful treatment. Second, as
we found, existing approaches of simply running regression on random samples suffer from inher-
ent instability due to its nature of extrapolation from small models to the large. Due to the test with
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OOD samples, small variations or noise in the observed data can lead to disproportionately large
uncertainty in the predictions (Hendrycks et al., 2021; Liu et al., 2021).

In this work, we make three contributions to address these challenges. First, we introduce a metric
coined Equivalent Sample Size (ESS) to quantify the quality of scaling prediction. ESS provides an
intuitive interpretation: it represents how many test examples would have been required via direct,
In-Distribution (ID) evaluation to achieve the same accuracy and confidence as that of the scaling
prediction. This unified quantification allows practitioners to compare prediction quality across dif-
ferent experimental setups using different model sizes. Second, we conduct a systematic study of the
scaling prediction uncertainty induced by extrapolation and solve for the optimal design of the sam-
ple regime (e.g., model sizes) that achieves the maximum ESS. Specifically, under computational
budget constraints, we develop a polynomial-time algorithm to determine which (smaller) model
sizes to evaluate to minimize prediction uncertainty, thereby maximizing ESS. This design ensures
that limited evaluation resources are used most effectively, enabling practitioners to decide whether
training additional small models is worthwhile to improve prediction quality. Third, we illustrate the
use of ESS and our algorithm by predicting model emergent capabilities. We find that using only
three models from the OPT family is sufficient to produce a prediction on a large target model with
accuracy and ESS comparable to that of using all seven available small models, leading to a sig-
nificant reduction in the compute cost. The ESS also reflects the prediction quality, thus delivering
reliable LLM performance predictions.

Taken together, these contributions offer a principled foundation for predictive evaluation of LLMs
via scaling prediction. By introducing ESS as a measure of prediction quality and developing algo-
rithms for optimal evaluation design, our framework leads to both more efficient scaling prediction
via optimized sample choice and more reliable predictions that are crucial for real-world deploy-
ment. We hope this framework will encourage both researchers and practitioners to rethink scaling
law not as a passive learning task but as a strategic resource allocation problem that can be opti-
mized to balance accuracy, cost, and confidence.

The rest of this paper is organized as follows. Section 2 reviews the related literature and Section 3
formulates the problem. Section 4 introduces ESS for uncertainty quantification. Section 5 reveals
that extrapolation inherently induces a high variance of scaling prediction, whiles Section 6 proposes
an algorithm to find the optimal design for fitting the scaling law. Section 7 includes experiment
results. Conclusion and further discussion are included in Section 8.

2 RELATED WORK

Scaling laws have emerged as a powerful tool for understanding and predicting the behavior of
LLMs. They reveal a consistent power-law relationship between an LLM’s pre-training loss or
downstream-task performance and its design factors, particularly compute measures such as training
FLOPs, dataset size, and model parameters (Cortes et al., 1993; Kaplan et al., 2020; Brown et al.,
2020; Hoffmann et al., 2022; Zhai et al., 2022; Bahri et al., 2024; Gadre et al., 2024). Early work
establishes these patterns empirically, e.g., Rosenfeld et al. (2019); Kaplan et al. (2020) shows that
increasing a single dimension can lead to a smaller training loss; Hoffmann et al. (2022) proposed
the Chinchilla laws to balance model size and data tokens for a fixed compute budget. More recent
efforts refines these insights and explore efficient and accurate scaling laws: Alabdulmohsin et al.
(2022); Caballero et al. (2022) extended beyond power-laws to more flexible functional forms; Gadre
et al. (2024); Owen (2024) studied scaling on downstream tasks; Polo et al. (2024); Ruan et al.
(2025) proposed scaling across model families; Choshen et al. (2024) proposed to reduce the training
cost of scaling laws by choosing models sizes and tokens, while Hägele et al. (2024) advocated
training models with a constant learning rate. These relationships enable researchers to forecast the
performance of larger, more expensive models by leveraging empirical observations from smaller
ones, thereby avoiding the prohibitive costs of direct training and evaluation.

Existing scaling prediction methods mainly fall into two categories. The first category directly fits an
end-to-end scaling law, where model performance is expressed as a power-law function of compute
measures. Using observations from smaller models, the fitted curve is then extrapolated to predict
the behavior of larger target models (Wu & Tang, 2024; Du et al., 2024). This approach is simple
and popular due to its interpretability. However, its reliance on a single functional form (typically
log-linear) makes it highly sensitive to deviations from the assumed power law.
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The second category introduces an intermediate quantity that itself scales with compute and serves
as a bridge between raw resources and final performance. Examples of such intermediate quantity
include pre-training loss (Chen et al., 2024) and model capability scores (Ruan et al., 2025; Polo
et al., 2024). Once this intermediate variable is estimated via scaling laws, researchers then model its
relationship with downstream-task accuracy using flexible predictors such as logistic regression (Xu
et al., 2025; Ruan et al., 2025) or neural networks (Ye et al., 2023; Zhang et al., 2024). This two-stage
approach often improves prediction accuracy, as the intermediate quantity captures generalizable
patterns across tasks or model families.

In both approaches, the key step is extrapolating relationships fitted on small models into much
larger, unseen regimes. Such extrapolation is fundamentally unstable: while small estimation errors
may be tolerable in-distribution, they are amplified dramatically when extended out-of-distribution
to trillion-parameter LLMs. This limitation, further analyzed in Section 5, motivates the need for
systematic uncertainty quantification to make scaling prediction reliable for guiding the future LLM
evaluations.

On the technical side, our work is related to out-of-distribution (OOD) generalization. For a com-
prehensive review of OOD literature, we refer to Liu et al. (2021). Generally speaking, controlling
OOD generalization is fundamentally difficult, as the test data regime is unseen in the training data.
Common approaches typically assume certain relationship between OOD domain and training do-
main, such as causal learning (Peters et al., 2016), invariant learning (Arjovsky et al., 2019; Zhao
et al., 2019), and meta learning (Li et al., 2018). In contrast to these general OOD frameworks, scal-
ing prediction owns a unique structure of extrapolating from small size to large size through power
laws, hence allowing more efficient and tractable solutions.

3 THE SCALING PREDICTION PROBLEM AND SOURCES OF UNCERTAINTY

This section reviews the process of scaling prediction of model performance and demonstrates that
such prediction can be highly uncertain and hence unreliable, which is overlooked in this field.

Background. Suppose we have evaluated the performance of some small models {f1, . . . , fM}
on some tasks {T1, . . . , TK}, denoted as Pm,t,m = 1, . . . ,M, t = 1, . . . ,K. Without loss of
generality, we take P ∈ (0, 1), as any metric can be monotonically mapped to this range. Our goal
is to predict the performance of a large model f∗ from the same family on a task T ∈ T1, . . . , TK .

Scaling Prediction Process. We unify both end-to-end and intermediate scaling-law approaches
as the following process. Step 1: Extract a critical quantity (e.g., the capability score or model
performance) of training models as Y1, . . . , YM . For notation simplicity, we assume that the critical
quantity Y is a scalar, as the vector scenario can be analyzed in an analogous manner coordinate-
wise. Step 2: Fit a power-law model such that

Y = α+ βX + ϵ, (1)

where X ∈ Rp encodes design factors such as the logarithm of number of parameters, size of
training data, and FLOPs, ϵ is Gaussian noise, and α ∈ R, β ∈ Rp are coefficients. Eq. (1) explains
the name of scaling prediction, as one extrapolates the critical quantity Y from the small-model
regime to larger X . Step 3: Translate the critical quantity to model performance P as follows:

P = σ(ωY + b), (2)

where σ(·) is a monotone link function, e.g., σ(z) = 1/(1+e−z) corresponds to a logistic regression
model, and ω, b are coefficients. End-to-end scaling laws are recovered by taking σ(z) = z, ω = 1,
and b = 0. We discuss how our framework can be extended to broader and more realistic scenarios
by relaxing assumptions such as linearity and Gaussian noise in Appendix E.3.
Remark 1 (Unversality of the Link Function.). A nature principle in scaling prediction is that, while
the critical quantity Y can be family-specific, the relationship between Y and the final performance
P is largely universal across families. For example, a model’s accuracy on math problems depends
mostly on its underlying math capability, regardless of architecture or training dynamics; however,
the rate at which this capability grows with model size varies from family to family. Consequently,
the link function in Eq. (2) can often be well-estimated by leveraging performance data from other
model families (Chen et al., 2024; Ruan et al., 2025).
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Prediction Uncertainty. The final predictor P̂ involves two main sources of uncertainty. The first
stems from intrinsic random noise in the training data, represented by ϵ in Eq. (1). This noise arises
from measurement error and and randomness in the model training and lies largely beyond the
practitioner’s control. Nevertheless, this source can be accurately estimated given a well-specified
scaling model Eq.s (1) and (2).

As such, this work will focus on the second source: uncertainty introduced by extrapolation. Scaling
prediction fits Eq. (1) on small models and use it to predict the performance of much larger ones.
Because this applies patterns learned in a limited regime to an unseen region, even slight noise or
variation in the observed data can lead to disproportionately large uncertainty in the predictions.

To our knowledge, the uncertainty of scaling prediction has not been rigorously quantified in prior
work. We therefore propose a framework to quantify and reduce the uncertainty inherent to extrap-
olation in the following sections.
Remark 2 (Prediction Correctness v.s. Confidence). Under the well-specified model assumption
used in the main paper, high prediction confidence reliably indicates high prediction correctness.
However, when the model is mis-specified, the prediction may become biased, leading to situations
where the model is “confidently wrong.” In Appendix E.3, we discuss how the Equivalent Sample
Size (ESS) can be used as a diagnostic tool to detect such mis-specification.

4 UNCERTAINTY QUANTIFICATION VIA EQUIVALENT SAMPLE SIZE

In this section, we address the problem of quantifying the reliability of scaling prediction. We
introduce a measure called Equivalent Sample Size (ESS), which has a natural interpretation from a
cost–benefit perspective. Intuitively, ESS compares the information gained by fitting a scaling law
on smaller models to that obtained from directly evaluating the target model on an in-distribution
test dataset. It represents the number of test examples one would need in direct evaluation to achieve
the same level of accuracy and confidence as the scaling prediction.

Motivation of ESS. Suppose that we want to evaluate the performance P of a target model f∗. Fol-
lowing Eq.s (1) and (2), scaling prediction induces a probability distribution over P . Alternatively,
one could evaluate f on a test dataset. Given n samples (Si, Ri), i = 1, . . . , n, where Si are prompts
and Ri are expected responses, the empirical performance is P̂n = n−1

∑n
i=1 ℓ(f(Si), Ri), where ℓ

is a loss function. For any bounded loss function ℓ, a valid (1− δ) confidence interval for P̂n can be
derived by applying Hoeffding’s inequality (Hoeffding, 1963) to the random variables ℓ(f(Si), Ri).
For example, under the zero-one loss, it yields [P̂n − ϵn, P̂n + ϵn], where ϵn =

√
ln(1/δ)/(2n).

Clearly, these two approaches achieve comparable accuracy if their CIs have the same length. No-
tably, confidence interval length alone does not capture the difficulty of evaluation, since the same
interval width may require dramatically different numbers of test samples depending on the un-
derlying variance. In contrast, ESS can faithfully quantify this difficulty by incorporating the full
predictive distribution, thereby providing a principled measure of the quality and practical value of
scaling prediction. We elaborate this point in Appendix B.

We formulate this idea as follows.
Definition 1 (Equivalent Sample Size). Let P̂n and P̃ denote the predictive distributions from direct
evaluation and scaling prediction, respectively. Let D̂n(δ) and D̃(δ) be the minimal lengths of
their (1 − δ) confidence intervals. We say that P̃ has (n, δ)-equivalent sample size if n satisfies
D̂n(δ) = D̃(δ). As a special case, we have D̂n(δ) =

√
2 ln(1/δ)/n when P̂n is the empirical

average.

The interpretation is straightforward: the scaling prediction achieves the same accuracy as directly
testing the target model on n test points. In what follows, we fix δ = 0.05 and refer to this quantity
simply as the effective sample size unless otherwise noted.

Practical Implications of ESS. ESS provides a principled way to compare scaling prediction with
direct evaluation under a fixed compute budget. A practitioner can either (i) allocate resources to
directly test f∗ on n samples, or (ii) evaluate a set of smaller models and fit a scaling law. ESS
quantifies the trade-off: if the ESS exceeds n, scaling prediction delivers higher accuracy per unit
cost. Based on this, the next section further explores how to select the number of models and their
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sizes to optimally learn the scaling law and improve efficiency. In addition, ESS can be estimated
before any large-scale evaluation, enabling informed decisions in advance.

Connection to Variance of Critical Quantity. ESS is tightly linked to the uncertainty in predicting
the critical quantity Y . In particular, a smaller variance of Y leads to a larger ESS, as formalized in
Proposition 4.1. This connection highlights that controlling the variance of Y is key to improving
the reliability of scaling predictions. Accordingly, the following sections focus on analyzing and
minimizing var(Y ). The complete proof of all propositions and theorems throughout the paper are
included in Appendix A.

Proposition 4.1. When the parameters of Eq. (2) are fixed, ESS increases monotonically as the
variance of the critical quantity Y decreases.

5 EXTRAPOLATION AMPLIFIES PREDICTION UNCERTAINTY

We now analyze how extrapolation inflates the variance of scaling predictions and, by Proposi-
tion 4.1, reduces ESS. For the illustration purpose, we use the logarithm of model size as the design
factor X , with X∗ corresponding to the target model f∗. Without loss of generality we assume
X ∈ [0,∞); otherwise, we can shift and rescale X to ensure non-negative.

We introduce the following notations before deriving var(Y ), the key to prediction uncertainty.
Recall the scaling model (1), we denote the variance of the noise ϵ as σ2. For M training models,
define sample means XM := 1

M

∑M
i=1 Xi and the empirical variance σ2

M := 1
M

∑M
i=1(Xi−XM )2.

Proposition 5.1 (Variance Characterization of Scaling Prediction). The variance of the critical
quantity obtained by sacling prediction model (1) is

var(Ŷ∗) =
σ2

M
· (X∗ −XM )2 + σ2

M

σ2
M

. (3)

Here, the factor σ2/M reflects the intrinsic random noise in the training data, while (X∗ −
XM )2/σ2

M captures how far the target model lies outside the training range. In an extrapola-
tion setting, X∗ is typically much larger than XM , so this term dominates the intrinsic noise and
leads to a large variance. In contrast, in classical interpolation where X∗ ≤ maxi Xi, we have
(X∗ − XM )2/σ2

M ≤ 1, keeping the variance comparable to the intrinsic noise level. This differ-
ence highlights the inherent instability of scaling predictions, which necessarily extrapolate to larger
models with X∗ > maxi Xi.

Example 1. Suppose a model with one million parameters corresponds to X = 0, and Xi’s follow
IID exponential distribution Exp(λ) so that P(Xi = x) = λe−λx, x ≥ 0. For a moderate or
large M , we have var(Ŷ∗) ≈ M−1σ2{1 + (λX∗ − 1)2}, since XM ≈ E(X) = 1/λ and σ2

M ≈
var(X) = 1/λ2. When λ = 1, predicting a model of 1,000 billion parameters (X∗ = 6) yields
var(Ŷ∗) = 26σ2/M. In contrast, predicting an in-distribution model (X∗ < E(X) = 1) gives at
most 2σ2/M. Thus, extrapolation inflates the variance roughly by a factor of (X∗ − 1)2.

Although derived under a linear regression model (1), this variance amplification phenomenon ex-
tends to a broad class of machine learning models, including polynomial regression, k-nearest neigh-
bors, and tree-based methods. These estimators face the same challenge: predicting far beyond the
observed range leaves few, if any, data points near X∗, inevitably increasing the variance of Ŷ∗.
In response, the next section develops a theory to find the optimal training design to reduce this
uncertainty and thereby improve the accuracy of scaling predictions.

6 UNCERTAINTY REDUCTION BY ACTIVE SELECTION

The variance bound in Eq. (3) shows that the distribution of design factors for the small models
largely determines prediction uncertainty. Moreover, Eq. (3) reveals that this variance can be re-
duced by (1) increasing the number of training points M , (2) evaluating models with larger Xi,
or (3) increasing the spread of the Xi, i.e., increasing their variance. However, evaluating more
or larger models quickly becomes prohibitively expensive. We therefore propose active selection:

5
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optimally allocating the compute budget across both the number and the sizes of the smaller models
to minimize prediction variance.

Objective Function. Formally, we consider a general problem of predicting the performance of
any target model with design factor X∗ ∈ [xl, xu]. Let W (x) denote the importance weight for
each target scale x, and c(x) the cost of evaluating a model of size x. Beyond the M existing
models, suppose we can spend a total compute budget C to evaluate k additional models with fac-
tors XM+1, . . . , XM+k. Our goal is to choose k and these new XMj

’s to minimize the following
weighted prediction variance:

min
k and XM+j ,j=1,...,k

R(k,XM+1, . . . , XM+k;X1, . . . , XM , xl, xu)

:=

∫
[xl,xu]

var(Ŷ∗)dW (X∗) (4)

s.t.
k∑

j=1

c(XM+j) ≤ C, XM+j ≥ 0, j = 1, . . . , k,

where var(Ŷ∗) is the prediction variance given all M + k training points. The special case xl = xu

recovers the single-target scenario where Eq. (4) reduces to Eq. (3). We also allow M = 0, where
no prior evaluations exist and the entire learning trajectory must be designed from scratch. In this
scenario, one selects the sizes of the small models to create the performance scaling law itself, an
idea that motivates the title of our work.

Optimal Solution. Solving Eq. (4) is highly non-trivial, as it is a non-convex constrained optimiza-
tion problem, a class that is typically NP-hard (Benson, 2006b;a). Interestingly, the objective (4) has
a special structure: it can be expressed as the ratio of two quadratic functions of Xi’s. Exploiting
this structure, we derive a key property of the optimal solution that significantly simplify the opti-
mization. Specifically, we show that the optimal design turns out to always evaluate at most three
different model scales, though each chosen scale may be sampled multiple times.

Before presenting the main result, we introduce a natural assumption. Without loss of generality, let
XM+1 ≤ XM+2 ≤ · · · ≤ XM+k.

Assumption 1. The cost function c(x) and its second order derivative are non-negative and mono-
tonically increasing, i.e., c(α) > c(β) ≥ 0 and c′′(α) > c′′(β) ≥ 0 for all α > β ≥ 0.

Assumption 1 captures the practical reality that evaluation becomes rapidly more expensive as model
size grows. For example, when x is the logarithm of model size, a cost that grows linearly or
quadratically in size can be written as c(x) = ea+bx for some constants a ∈ R, b > 0. It can be
verified that Assumption 1 holds for such cost functions.

Theorem 6.1. Under Assumption 1, optimal learning of the scaling law under a given computation
budget needs not to use more than two non-zero model scales. Formally, the optimal solution of
Eq. (4) must exhibit one of the following two properties:

(1) 0 = X∗
M+1 = · · · = X∗

M+k1
< X∗

M+k1+1 = · · ·X∗
M+k2

< X∗
M+k2+1 · · · = X∗

M+k, and∑k
j=1 c(X

∗
M+k) = C, where k1, k2 are non-negative integers such that 0 ≤ k1 < k2 < k; or

(2) 0 = X∗
M+1 = · · · = X∗

M+k1
< X∗

M+k1+1 = · · · = X∗
M+k.

We illustrate the intuition behind Theorem 6.1 by examining the special case of predicting a sin-
gle target model. In this setting, optimizing (4) reduces to minimizing (3) under a convex budget
constraint. A natural strategy is to fix the number of additional models k and then determine their
optimal sizes. The key step is to “break” the ratio structure in (3) by conditioning on the average
model size XM+k. This renders the numerator constant, so the problem reduces to maximizing the
empirical variance. Using variational analysis, we show that any optimal solution contains at most
two non-zero scales; otherwise, reallocating budget from mid-size to larger models would yield a
smaller variance.
Remark 3 (Budget Need Not Be Exhausted). Theorem 6.1 implies that the budget is fully used only
when the optimal solution involves two nonzero scales. Notably, when the budget is small, it can be
optimal to leave part of it unused. Intuitively, with a small budget it is better to reduce variance by
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replicating small models rather than paying for larger ones, so the optimal design may deliberately
underspend. For instance, suppose we already have four models of sizes 0.5, 1, 1.5, 2, and a cost
function c(x) = 0.3ex. If the budget is C = 1, the optimal solution adds three new models of size
0 for a total cost of 0.9 < C. Increasing the budget to C = 3 changes the optimal solution to four
models of size 0 plus one medium-scale model of size 1.8.

Implication on Efficient Optimization. Theorem 6.1 not only reveals an interesting property of
the optimal solution, but also hints at an efficient polynomial time algorithm for solving the non-
convex problem (4) since the characterization of the optimal solution helps drastically reduce the
search space. In particular, if the optimal solution only features two model scales, we only need to
optimize the single nonzero scale. For an optimal solution with two nonzero scales, the additional
constraint

∑k
j=1 c(X

∗
M+j) = C again reduces the problem to a single-variable search. Thus, solving

(4) reduces to enumerating all feasible triples 0 ≤ k1 ≤ k2 ≤ k ≤ C/c(0) and optimizing a one-
dimensional Lipschitz-continuous objective. Pseudo-code of this procedure is in Appendix C.

How ESS and Active Selection Guide LLM Pre-training Decisions. The ESS characterizes uncer-
tainty in scaling prediction. A small ESS indicates high variance in the predicted results, suggesting
that the current scaling curve lacks stability. In such cases, pre-training teams are advised to gather
additional data from smaller models before committing to the costly training of a large model. Con-
versely, a large ESS signifies high confidence in the fitted scaling relationship, enabling teams to
make informed decisions about resource investment.

In addition, Theorem 6.1 offers theoretical guidance for proactively planning the architecture and
size of future models within an LLM family. Specifically, it establishes the optimal model size
allocation strategy that maximizes the ESS under compute constraints, minimizing prediction un-
certainty by Proposition 4.1. Theorem 6.1 thus helps pre-training teams design more effective ex-
ploration campaigns, accelerating the development of high-performing models with reduced risk.

7 EXPERIMENTS

We evaluate our approach on both simulated and real-world data to show that (1) Equivalent Sample
Size (ESS) effectively quantifies and interprets scaling prediction uncertainty, and (2) our active
selection algorithm reduces prediction uncertainty under a fixed cost budget, providing practical
guidance for optimal experimental design and thus facilitating the learning of performance scaling
laws. Additional experiments and full details are provided in Appendix D.

7.1 SIMULATED STUDY

Our first experiment predicts the performance of target models with size X∗ ∈ (4, 7). Following
Ruan et al. (2025), we focus on the LLAMA-2 family and its emergent capabilities (Srivastava et al.,
2023; Wei et al., 2022) on four tasks: word unscramble, Persian QA, 3-digit subtraction, and 2-digit
multiplication.

Data Generation. For illustration, consider the LLAMA-2 family on the word-unscramble task.
We take the coefficients of scaling models (1) and (2) from Ruan et al. (2025). The critical quantity
and model size (in logarithm) follow Y = 0.52X − 0.9 + ϵ, where ϵ is a standard Gaussian noise
with standard deviation equal to 0.2. Model performance P is linked to Y by P = σ(2Y − 6.11),
where σ(z) = 1/(1 + e−z) is the standard logistic function. The evaluation cost grows with size as
C(x) = 0.3ex.

Methods. We compare two methods, Base and Optimal, in terms of their predicted model perfor-
mance measured by ESS. Base represents the standard practice of fitting the scaling law in (1) using
training models whose sizes are not deliberately chosen (Chen et al., 2024; Ruan et al., 2025; Xu
et al., 2025). In our experiment, Base samples M = 10 models to fit the scaling law, which are IID
from a truncated exponential distribution truncExp(λ = 1, b = 3), where b is the upper bound of
the truncation.

Subject to the same total evaluation cost as Base, Optimal employs our active selection algorithm to
choose model sizes that minimize prediction variance, and thereby maximize ESS. We expect Op-
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Figure 1: Box-plot of the equivalent sample size (ESS) at
varied model size by classic scaling-law-based approach
(‘Base’) and our proposed adaptive selection algorithm
(‘Optimal’) under the same budget. ESS of prediction by
models selected by Optimal is significantly higher than that
by Base, indicating that Optimal efficiently allocates the
budget for maximally improving the reliability of scaling
prediction.
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Figure 2: A typical realization of
training points and predicted perfor-
mance curves by classic scaling-law-
based approach (‘Base’) and our pro-
posed adaptive selection algorithm
(‘Optimal’). ‘Oracle’ is the true
model performance. Optimal stabi-
lizes the curve fit and improves pre-
diction by strategically selecting a few
key models that expanding the size
range.

timal to achieve substantially higher ESS than Base because it strategically allocates the evaluation
budget to reduce the uncertainty inherent in scaling predictions.

Results and Findings. We ran 20 replicates and present a box-plot of ESS versus target model
size in Figure 1. The figure shows that Optimal consistently achieves a much higher ESS than
Base, especially for large models. For example, in the word unscramble task, the median ESS at
X = 4 increases from about 500 (Base) to 3000 (Optimal), which is a six-fold gain. It means that
the prediction error and uncertainty are significantly reduced by properly selecting training models,
aligning with our theoretical findings.

Figure 2, which depicts a typical simulation run, illustrates the reason behind: Base samples mostly
small models (blue squares), whereas Optimal strategically selects a few key models (yellow crosses,
two around size 2.2 and four near size 0) to expand the size range and stabilize the scaling-law fit.

Moreover, ESS effectively reflects the scaling prediction quality. As shown in Figure 1, ESS remains
very low for the 2-Digit Multiplication task, equivalent to only a few dozen test points, indicating
that the prediction can be inaccurate and non-confident. We further confirm this implication of ESS
by analyzing the prediction error in Appendix D.

7.2 REAL-WORLD APPLICATION: PREDICTING EMERGENT CAPABILITIES

In our simulation studies, the proposed active select algorithm identifies the optimal number and
sizes of training models for a given cost budget. In the subsequent real-world experiment, however,
model sizes cannot be freely chosen because we cannot access or evaluate new models of arbitrary
size. Instead, we must work with the set of models already available to fit the scaling law. Under this
constraint, we show that prediction variance can still be reduced, and ESS increased, by applying
our active-selection algorithm to choose a subset of the available models that minimizes Eq. (4).

Dataset Collection. We evaluate four emergent LLM capabilities of LLMs: word unscramble,
Persian QA, 3-digit subtraction and 2-digit multiplication. We use 72 publicly available models
drawn from families such as LLaMA2, Qwen1.5, Falcon, GPT-Neo, OPT, Bloom, and Pythia. Their
benchmark performance on datasets including MMLU, HellaSwag, GSM8K, and HumanEval is
used to extract the critical quantity Y , following Ruan et al. (2025). We also collect their ground-
truth performance on the four emergent tasks and estimate the link function in Eq. (2).

8
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Figure 3: ESS by training on a subset of small OPT models selected by Optimal within a cost budget.
Base uses all seven models. Optimal achieves a comparable ESS to Base under a significantly
smaller cost.

For the target family, we choose OPT because it offers sufficient models to fit a performance scal-
ing law. Specifically, it has eight models with 125M, 350M, 1.3B, 3B, 7B, 13B, 30B, and 66B
parameters. We designate the 66B model as the prediction target, while the remaining seven can
be evaluated on the emergent tasks for training. Compute measure X is log-FLOPs calculated as
X = log(6N ·D) (Kaplan et al., 2020), where N is the model size and D = 0.18 is the pre-training
data size. Because all OPT models share the same D, X is linearly correlated with model size. The
evaluation cost is c(x) = 0.3ex.

Methods. We compare the ESS of scaling prediction using the same two methods as in the sim-
ulation studies: Base and Optimal. In this real-world experiment, Base fits the power law in (1)
using all seven smaller OPT models, while Optimal applies our active selection algorithm to choose
a cost-constrained subset of available models for fitting the power law. In the experiment, the cost
budget of Optimal is varied from 1 to 16.25, where 16.25 is the total cost of evaluating all models.
Full details of the scaling-law fitting procedure are provided in Appendix D. We anticipate that
Optimal will deliver predictions of accuracy comparable to Base while requiring substantially lower
evaluation cost.

Results and Findings. Figure 3 displays the ESS v.s. cost curve for Optimal and the ESS by Base.
We have the following key observations from this result. First, Figure 3 demonstrates that a small,
well-chosen subset can provide scaling predictions comparable to those obtained from the full set.
Across all four tasks, halving the cost budget to C = 8 lowers ESS by less than 20%, indicating
only a minor loss in predictive power.

Second, we find that four models are consistently selected by our algorithm under a cost budget
of C = 8: one small model (125M) and three large models (3B, 7B, and 13B). Notably, the total
evaluation cost of these models is 6.76, which is below the budget, aligning with our theoretical
result that the optimal design need not exhaust the budget.

In Figure 4, we compare the scaling predictions obtained by Base with those derived from the four
models selected by Optimal. We report the predicted accuracy, its 95% confidence interval, and the
ESS for each method. The result confirms our first observation that the scaling predictions based on
Optimal closely match those of Base, while requiring substantially lower cost.

Moreover, the ESS values provide a clear indication of prediction reliability: tasks such as 3-Digit
Subtraction and 2-Digit Multiplication exhibit extremely low ESS, signaling that their scaling pre-
dictions remain uncertain and may require direct evaluation of the target model or the inclusion of
additional smaller models to improve stability.

In summary, these findings underscore that computing the ESS and selecting an appropriate subset
allow practitioners to substantially reduce evaluation costs while preserving the reliability of scaling-
law predictions; or, equivalently, to enhance reliability without increasing cost.

8 CONCLUSION AND FURTHER REMARKS

Our work introduces Equivalent Sample Size (ESS) as a principled metric for quantifying the uncer-
tainty of scaling-based predictive evaluation of LLMs. By analyzing variance induced by extrapo-
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Figure 4: Predicted emergent performance and ESS on the test OPT model. Base uses all seven
small OPT models and costs 16.25. Optimal chooses four models to fit the scaling law and costs
6.76. The shaded area is the 95% confidence interval. Optimal achieves nearly the same prediction
result and ESS as Base.

lation and proposing an active selection algorithm, we show that practitioners maximize prediction
quality by optimally allocating evaluation resources across model sizes.

Despite these contributions, several limitations remain. First, our theoretical analysis assumes that
the underlying scaling relationship is correctly specified; if this assumption is violated, predictions
may become inaccurate, and the active selection result may be sub-optimal. Developing diagnostics
that use ESS to detect model misspecification is therefore a promising direction for future research.
Second, our active selection algorithm depends on approximate cost functions and may be sensitive
to errors in those estimates, warranting further investigation into how cost-model inaccuracies affect
its performance.
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Alex Hägele, Elie Bakouch, Atli Kosson, Leandro Von Werra, Martin Jaggi, et al. Scaling laws
and compute-optimal training beyond fixed training durations. Advances in Neural Information
Processing Systems, 37:76232–76264, 2024.

Dan Hendrycks, Steven Basart, Norman Mu, Saurav Kadavath, Frank Wang, Evan Dorundo, Rahul
Desai, Tyler Zhu, Samyak Parajuli, Mike Guo, et al. The many faces of robustness: A criti-
cal analysis of out-of-distribution generalization. In Proceedings of the IEEE/CVF international
conference on computer vision, pp. 8340–8349, 2021.

Wassily Hoeffding. Probability inequalities for sums of bounded random variables. Journal of the
American statistical association, 58(301):13–30, 1963.

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch, Elena Buchatskaya, Trevor Cai, Eliza
Rutherford, Diego de las Casas, Lisa Anne Hendricks, Johannes Welbl, Aidan Clark, Tom Henni-
gan, Eric Noland, Katherine Millican, George van den Driessche, Bogdan Damoc, Aurelia Guy,
Simon Osindero, Karen Simonyan, Erich Elsen, Oriol Vinyals, Jack William Rae, and Laurent
Sifre. An empirical analysis of compute-optimal large language model training. In Advances in
Neural Information Processing Systems, 2022.

Thomas Hofmann, Bernhard Schölkopf, and Alexander J Smola. Kernel methods in machine learn-
ing. Annals of Statistics, 2008.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B. Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeff Wu, and Dario Amodei. Scaling laws for neural language
models. ArXiv, abs/2001.08361, 2020. URL https://api.semanticscholar.org/
CorpusID:210861095.

Da Li, Yongxin Yang, Yi-Zhe Song, and Timothy Hospedales. Learning to generalize: Meta-learning
for domain generalization. In Proceedings of the AAAI conference on artificial intelligence, vol-
ume 32, 2018.

Jiashuo Liu, Zheyan Shen, Yue He, Xingxuan Zhang, Renzhe Xu, Han Yu, and Peng Cui. Towards
out-of-distribution generalization: A survey. arXiv preprint arXiv:2108.13624, 2021.

David Owen. How predictable is language model benchmark performance? arXiv preprint
arXiv:2401.04757, 2024.
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A MISSING PROOFS

Proof of Proposition 4.1.

Proof. When ω and b are fixed, any (1 − δ)-CI of Y , denoted by [Yl, Yu], induces a corresponding
(1−δ)-CI of P , given by [Pl, Pu] where Pl = σ(ωYl+b) and Pu = σ(ωYu+b). Since the predicted
Y is Gaussian, a smaller variance of Y yields a tighter interval |Yu − Yl|. By the monotonicity of
σ(·), this translates to a narrower confidence interval [Pl, Pu]. According to the definition of ESS,
a smaller confidence interval corresponds to a larger ESS, as it reflects the number of test samples
needed to achieve the same level of precision through direct evaluation.

Proof of Proposition 5.1

Proof. We define Y M and XY M , and X2
M analogously to XM . By classic learning theory, the

least-squares estimates of coefficients in Eq. (1) are

α̂M = Y M − β̂MXM , β̂M =
XY M −XMY M

X2
M −X

2

M

.

Therefore, the predicted critical quantity at X∗ is Ŷ∗ = α̂M + β̂MX∗, whose variance is

var(Ŷ∗) = E(α̂M + β̂MX∗ − α+ βX∗)
2 =

σ2

M
· (X∗ −XM )2 + σ2

M

σ2
M

.

Proof of Theorem 6.1.

Proof. The original optimization problem can be rewritten as

min
k and XM+j ,j=1,...,k

R(k,XM+1, . . . , XM+k;X1, . . . , XM , xl, xu)

:=

∫
[xl,xu]

σ2

M + k
·
(x−XM+k)

2 + σ2
M+k

σ2
M+k

dW (x)

=
σ2

(M + k)σ2
M+k

·
[
{XM+k − EW (X∗)}2 + var

W
(X∗) + σ2

M+k

]
, (5)

s.t.
k∑

j=1

c(XM+j) ≤ C,

XM+j ≥ 0, j = 1, . . . , k.

where EW (X∗) =
∫
[xl,xu]

xdW (x) and varW (X∗) =
∫
[xl,xu]

(x− EW (X))2dW (x).

We first show that the optimal design contains at most three different scales.

Step 1: Conditioning. We denote zj := XM+j , j = 1, . . . , k. For any fixed k, let z∗j , j = 1, . . . , k

be any optimal solution and Z∗ =
∑k

i=1 z
∗
j be their sum. Consider a variant of Optimization Prob-

lem (1) – more specifically, a simplified version – in which both k and Z∗ values are pre-given and
fixed; hence the goal is simplified to identify the optimal z∗1 , z

∗
2 · · · , z∗k that minimizes the objec-

tive of (1) subject to given condition
∑k

i=1 zj = Z∗. The advantage of considering this simplified
version is that the enumerator now becomes a constant, hence the objective is now equivalent to
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maximize its denominator. Specifically, given a fixed k and Z∗, we have

min
k;XM+1,...,XM+k

R(k,XM+1, . . . , XM+k;X1, . . . , XM , xl, xu)

⇔ min
zj ,j=1,...,k:

∑
zj=Z∗

σ2

(M + k)σ2
M+k

·
[
{XM+k − EW (X∗)}2 + var

W
(X∗) + σ2

M+k

]
⇔ min

zj ,j=1,...,k:
∑

zj=Z∗

1

σ2
M+k

⇔ max
zj ,j=1,...,k:

∑
zj=Z∗

σ2
M+k

⇔ max
zj ,j=1,...,k:

∑
zj=Z∗

M∑
i=1

(Xi −XM+k)
2 +

k∑
j=1

(zj −XM+k)
2

⇔ max
zj ,j=1,...,k:

∑
zj=Z∗

k∑
j=1

z2j ,

since XM+k = (
∑M

i=1 Xi +
∑k

j=1 zj)/(M + k) is a constant.

As a result, optimizing (5) is equivalent to maximizing the variance of additional points zj’s. The
argument above leads to the following re-formulation of OP (5), by conditioning it on the constraint
Z∗ =

∑k
j=1 z

∗
i :

max
k and z1,··· ,zk

k∑
i=1

z2i

subject to
k∑

i=1

c(zi) ≤ C, (6)

k∑
i=1

zi = Z∗,

zi ≥ 0,∀i = 1, · · · , k.

Notably, despite its simplification, OP (6) is still challenging to solve because its objective is to
maximize a convex function which generally is NP-hard. Nevertheless, we show that for any given
Z∗ and any k value, any optimal solution to OP (6) must be able to be expressed as z∗1 = z∗2 · · · =
z∗k1

= 0, z∗k1+1 = z∗k1+2 · · · = z∗k2
= α and z∗k2+1 = z∗k2+2 = · · · z∗k = β for some 0 < α < β and

0 ≤ k1 ≤ k2 ≤ k.

Step 2: Proving by contradiction. Suppose the claim above is not true, then there must exist three
non-zero z∗i ’s with varied values. Without loss of generality, let these three variables be 0 < z∗1 <
z∗2 < z∗3 . Next we argue that, in such cases, there must exist a way to strictly increase the objective
value without violating the constraints, hence contradicting their optimality.

Our argument employs the variational methods. Consider new variables z1 = z∗1 − ϵ1, z2 = z∗2 + ϵ2
and z3 = z∗3 − ϵ3 for some arbitrarily small ϵ1, ϵ2, ϵ3 > 0 such that

−c′(z∗1)ϵ1 + c′(z∗2)ϵ2 − c′(z∗3)ϵ3 = 0 (7)
−ϵ1 + ϵ2 − ϵ3 = 0 (8)

Specifically, these two constraints ensures that the new variables z1, z2, z3 remain feasible for OP
(6) when ϵ1, ϵ2, ϵ3 are arbitrarily small since their relations expressed above guarantee the variation
between z1, z2, z3 and z∗1 , z

∗
2 , z

∗
3 to be 0 for all constraints. However, we argue that the variation of

the objective of OP (6) between z1, z2, z3 and z∗1 , z
∗
2 , z

∗
3 is strictly positive, i.e., z1, z2, z3 achieves

higher/better objective. Equality (8) implies ϵ2 = ϵ1 + ϵ3. Substituting ϵ2 in Equality (7), we obtain

ϵ1[c
′(z∗2)− c′(z∗1)] = ϵ3[c

′(z∗3)− c′(z∗2)]

The mean value theorem implies that there exists u1 < u2 such that ϵ1c
′′(u1)[z

∗
2 − z∗1 ] =

ϵ3c
′′(u2)[z

∗
3 − z∗2 ] By our assumption, all terms are positive and 0 ≤ c′′(u1) < c′′(u2), hence

we must have
ϵ1[z

∗
2 − z∗1 ] > ϵ3[z

∗
3 − z∗2 ].
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This implies the variation of the objective under z1, z2, z3 and z∗1 , z
∗
2 , z

∗
3 is strictly positive, i.e.,

∆ = −2z∗1ϵ1 + 2z∗2ϵ2 − 2z∗3ϵ3

= −2z∗1ϵ1 + 2z∗2(ϵ1 + ϵ3)− 2z∗3ϵ3

= 2[z∗2 − z∗1 ]ϵ1 − 2[z∗3 − z∗2 ]ϵ3

> 0.

This contradicts the optimality of z∗1 , z
∗
2 , z

∗
3 , as desired.

Next, we show that the optimal design must satisfy
∑k

j=1 c(zj) = C when there are three scales,
namely when k1 < k2 < k. We prove by constructing a contradiction. Suppose z∗j , j = 1, . . . , k is
an optimal design of OP (6) such that

∑k
j=1 c(z

∗
j ) < C and there are three different scales. WLOG,

we can let 0 = z∗1 < z∗2 < z∗3 . Now, let z2 = z∗2 − ϵ, z3 = z∗3 + ϵ, and zj = z∗j for j ̸= 2, 3, where
ϵ is a postive constant. Since

∑k
j=1 c(z

∗
j ) < C, there exists a sufficiently small ϵ such that zi’s is a

valid solution to OP (6). However, the corresponding objective is
k∑

j=1

z2j =

k∑
j=1

(z∗j )
2 + 2ϵ(z∗3 − z∗2) + 2ϵ2 >

k∑
j=1

(z∗j )
2,

which is a contradiction. We thus completes the proof.

B EXTENSIONS OF ESS

The ESS definition is not tied to Hoeffding-based confidence intervals. Rather, ESS can leverage the
*entire predictive distribution* produced by scaling prediction. The Hoeffding bound is distribution-
free and conservative, as it does not exploit properties of f∗. In this section, we discuss a Bayesian
formulation that can yield tighter ESS estimates.

We use zero-one loss as the loss function for the illustration purpose. For direct evaluation, we
construct the distribution of P̂n through a Bayesian approach. In particular, we assign a uniform
distribution as P̂0, which serves as a non-information prior distribution. After evaluating each test
point, we update the posterior distribution P̂n by the Bayesian theorem. As a result, the posterior
distribution will follow a Beta distribution Beta(α, β), where α and β can be interpreted as the
number of zeros and ones in the evaluation results, respectively. We can therefore match the distri-
bution of P̃ and Beta(α, β) as follows. Let m1 = E(P̃ ) and m2 = var(P̃ ). We can solve α and β
from the following moment equations:

m1 = α/(α+ β),

m2 =
αβ

(α+ β)2(α+ β + 1)
.

In particular, we have the close-form solution

α = m1[{m1(1−m1)}/m2 − 1],

β = (1−m1)[{m1(1−m1)}/m2 − 1].

Consquently, the scaling prediction has an ESS equals ñ, where ñ := α+β = {m1(1−m1)}/m2−
1. We note that ñ is guaranteed to be non-negative as m2 = var(P̃ ) = E(P̃ 2) − {E(P̃ )}2 ≤
m1 − (m1)

2, where the last step is due to P ∈ [0, 1].

To illustrate the benefit of ESS, consider a model family with very poor accuracy. In this case,
direct evaluation requires only a small number of test samples: the observed outputs are consis-
tently incorrect, the empirical variance is low, and the confidence interval quickly becomes narrow.
Scaling prediction reflects this by producing a predictive distribution highly concentrated near low
performance, which leads to a **small ESS**, thereby accurately capturing the low evaluation cost
needed in practice.

Now consider a model family with moderate accuracy (e.g., 5̃0%). Direct evaluation requires many
more samples to obtain a confidence interval of the same width. In this scenario, ESS appropriately
increases, reflecting the greater sample size needed to reliably estimate performance.
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In summary, ESS can faithfully quantify the evaluation difficulty by incorporating the full predictive
distribution, thereby providing a principled measure of the quality and practical value of scaling
prediction.

C PSEUDO-CODE OF THE ACTIVE SELECTION ALGORITHM

The active selection algorithm for solving (4) is summarized in Algorithm 1, with Algorithm 2
serving as a subroutine that computes the optimal solution for each fixed pair (k1, k2).

Algorithm 1 Active Selection

Require: The budget C, cost function c(·), and target region [xl, xu]
1: for k = 1, 2, . . . do
2: Let Rk, X1, . . . , Xk ← BestDesign(k)
3: Stop if the smallest cost of evaluating k models exceeds C
4: end for
5: Return the design with the smallest Rk

Output: The optimal design X1, . . . , Xk.

Algorithm 2 Best Design with a Fixed Number of Models

Require: The budget C, cost function c(·), number of points k, and target region [xl, xu] and its
distribution W .

1: for 0 ≤ k1 ≤ k2 ≤ k do
2: Let X1, . . . , Xk1

= 0, Xk2+1, . . . , Xk = x

3: Let Xk1+1, . . . , Xk2
= v, where v is determined by

∑k
j=1 c(Xj) = C.

4: Solve x that minimizes Eq. (4), and let Rk1,k2
be the minimum

5: end for
6: Return the design with the smallest Rk1,k2

Output: The optimal design X1, . . . , Xk.

D EXPERIMENT DETAILS AND ADDITIONAL RESULTS.

D.1 SCALING PREDICTION WITH REAL WORLD DATASET

For the Base method, we follow the procedure described in (Ruan et al., 2025). First, we fit the link
function in Eq. (2) using the performance of all models excluding the target family (LLaMA2) on
the emergent benchmark. The link function is specified as

σ(x) = h+ (1− h)/(1 + e−ωY−b),

where h ∈ [0, 1] and ω, b ∈ R are coefficients.

Next, we fit the scaling law in Eq. (1) using the training OPT models. The critical quantity Y for
each model is extracted by applying PCA to the imputed performance matrix B. Here, each entry
of B is the standardized performance of a training model on a benchmark such as MMLU. The
final predicted performance is obtained by plugging the extrapolated critical quantity Y of the target
model into Eq. (2).

For Optimal, all steps remain the same except that only a subset of OPT models selected by our
active selection algorithm (along with models from other families) are included in the training set.

The (1− δ)-confidence interval (CI) is constructed as follows. We first compute a (1− δ/2)-CI for
Ŷ using Eq. (3). Then, we obtain a (1− δ/2)-CI for the link function (2) via bootstrapping. Finally,
we combine these results through a plug-in procedure to produce the overall (1− δ)-CI.
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Figure 5: Predicted model performance at varied model size by classic scaling-law-based approach
(‘Base’) and our proposed adaptive selection algorithm (‘Optimal’). The true model performance is
denoted as ‘Oracle’.

D.2 SIMULATED STUDIES

In addition to ESS, we report the predicted performance of both Base and Optimal in Figure 5.
The figure shows that Optimal achieves both lower prediction error and smaller variance than Base,
mirroring the ESS improvements observed in Figure 1. This consistency reinforces that ESS reliably
captures the quality of scaling predictions and serves as an intuitive measure of their reliability.

E RELAXATION OF TECHNICAL ASSUMPTIONS

While our theoretical analysis is built on simplified assumptions to derive clean results, the under-
lying ideas and optimization pipeline of our framework are general and can be extended to more
complex and practical scenarios. Below, we outline several promising directions for such general-
izations.

E.1 RELAXATION OF THE LINEAR MODEL ASSUMPTION

The simple linear model in Eq. (1) serves as a starting point, but our framework is not limited to this
form:

• Multi-variable linear regression. By allowing a multi-variate input X , the model can
naturally incorporate multiple explanatory factors, such as model size, training dataset size,
learning rate, and other architectural or training hyperparameters.

• Interaction effects. Cross-factor terms (e.g., the product of model size and dataset size)
can be included in X to capture interaction effects, enabling richer modeling while retain-
ing linearity in parameter space.

• Nonlinear feature expansion. Using the kernel trick Hofmann et al. (2008), especially
polynomial kernels, we can effectively work in high- or infinite-dimensional feature spaces
that include all polynomial combinations of base factors.

• Approximate linearity. Many real-world relationships are well approximated by poly-
nomial or piecewise linear functions, making linear modeling a reasonable and practical
simplification in many cases.

Model mis-specification. In scenarios where the true relationship deviates significantly from our
assumed linear form, the predictions may become biased. While this challenge is inherent to all
model-based prediction, our framework provides a safeguard: the Equivalent Sample Size (ESS) can
be computed on training points to assess the reliability of the model (e.g., using cross validation).
A large discrepancy may indicate model misspecification, and how to adaptively refine the model
based on such feedback is a promising direction for future work.
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E.2 RELAXATION OF THE NOISE DISTRIBUTION ASSUMPTION

Our analysis assumes Gaussian noise primarily for technical convenience. However, the prediction
variance in Eq. (3) remains valid under broader settings as long as the noise has bounded variance,
which is a standard assumption in learning theory. This implies that the core optimization ob-
jective (4) remains largely unaffected. Nevertheless, constructing valid confidence intervals under
non-Gaussian noise requires calibration, which can be addressed through methods such as bootstrap
resampling or empirical estimation based on the residuals.

E.3 RELAXATION OF THE LINK FUNCTION ASSUMPTION

We allow the link function σ(·) in Eq. (2) to be an arbitrary and possibly unknown function. When
σ(·) is unknown, non-parametric regression methods such as kernel smoothing or k-nearest neigh-
bors can be used to estimate σ(·) from the training data. Bootstrapping techniques can then be
used to construct prediction intervals, allowing our framework to remain statistically grounded even
without strong assumptions on the link function.

F THE USE OF LARGE LANGUAGE MODELS STATEMENT

Large language models were used solely as a writing aid. Their use was limited to minor language
editing, such as correcting grammar, improving clarity, and polishing the phrasing, without altering
the substantive content or analysis of the article.
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