RADAR: Benchmarking Language Models on
Imperfect Tabular Data

Ken Gu'%, Zhihan Zhang'**, Kate Lin'*, Yuwei Zhang'*, Akshay Paruchuri'*,
Hong Yu'*, Mehran Kazemi?, Kumar Ayush', A. Ali Heydari'!, Maxwell A Xu®,
Girish Narayanswamy'3, Yun Liu',Ming-Zher Poh', Yuzhe Yang', Mark Malhotra',
Shwetak Patel'-3, Hamid Palangi', Xuhai Xu', Daniel McDuff!, Tim Althoff':3, Xin Liu’

1Google Research  2Google DeepMind 3 University of Washington
TWork done during an internship at Google  *Equal contribution
kengu@cs.washington.edu, {dmcudff, althoff, xliucs}@google.com

Abstract

Language models (LMs) are increasingly being deployed to perform autonomous
data analyses. However, their data awareness—the ability to recognize, reason over,
and appropriately handle data artifacts such as missing values, outliers, and logical
inconsistencies—remains underexplored. These artifacts are especially common
in real-world tabular data and, if mishandled, can significantly compromise the
validity of analytical conclusions. To address this gap, we present RADAR, a
benchmark for systematically evaluating data-aware reasoning on tabular data. We
develop a framework to simulate data artifacts via programmatic perturbations to
enable targeted evaluation of model behavior. RADAR comprises 2980 table query
pairs, grounded in real-world data spanning 9 domains and 5 data artifact types. In
addition to evaluating artifact handling, RADAR systematically varies table size to
study how reasoning performance holds when increasing table size. Our evaluation
reveals that, despite decent performance on tables without data artifacts, frontier
models degrade significantly when data artifacts are introduced, exposing critical
gaps in their capacity for robust, data-aware analysis. Designed to be flexible and
extensible, RADAR supports diverse perturbation types and controllable table sizes,

offering a valuable resource for advancing tabular reasoning.'

1 Introduction

Language models (LMs) are increasingly deployed as
autonomous data science agents, capable of perform-
ing basic data analyses on tabular data, such as sum-
marizing trends, identifying relationships, and manip-
ulating data [42, 36, 62, 13]. But can we truly rely on
LMs for real-world data analysis? It remains unclear
whether they are merely repeating templated analyses or
engaging in genuine data-aware reasoning—making
decisions based on the actual state and structure of the
dataset, much like an experienced data scientist would
(Fig. 1). This distinction is critical in real-world settings,
where data artifacts such as missing values, outliers, and
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Figure 1: Reasoning over tabular data
containing data artifacts and correspond-
ing performance of language models.
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logical inconsistencies are ubiquitous, non-trivial to detect, and can significantly affect analysis and
interpretation [28, 27, 39, 23]. Understanding whether models can detect and appropriately respond
to such artifacts—without explicit instruction and across diverse schema and domain contexts—is
key to assessing their reliability.

In high-stakes settings, such errors can lead to harmful or misleading conclusions. For example,
a patient’s electronic health record might erroneously indicate a resting heart rate of 220 bpm
(an implausible value for an adult) due to a data entry mistake or sensor malfunction. If left
uncorrected, such an anomaly could trigger false automated alerts, lead to clinical misdiagnosis,
prompt unnecessary or risky interventions, or distort downstream clinical research.

Evaluating data awareness—the ability to detect, navigate the implications of, and correct data
artifacts—is both a practical necessity and a challenging reasoning task for language models. It
requires more than surface-level understanding of the data types or table structure; models must apply
nuanced reasoning over context (e.g., recognizing that 5 calories is implausible for a 60-minute run),
units (e.g., distinguishing between kilometers and miles), statistical expectations (e.g., identifying a
resting heart rate of 220 bpm as an outlier), and inter-column relationships (e.g., ensuring distance,
duration, and speed are consistent). To succeed, models must learn the table schema and inter-column
relationships, navigate long-context inputs in large tables, resist distractors, reason inductively from
examples, identify subtle anomalies such as outliers or missingness, and execute appropriate data
analysis and interpretation in the presence of data artifacts. Yet, despite its importance, data-aware
reasoning—and how it scales with larger, more complex tables—remains underexplored. Larger tables
require models to reason over longer contexts, filter irrelevant data, and track complex dependencies
across columns and rows. These demands compound the challenge of robust tabular reasoning.

Prior work has primarily focused on tabular reasoning or analysis execution over “clean” data tables,
where data awareness is neither required nor explicitly evaluated. While recent efforts have explored
structural perturbations—such as shuffling rows or columns [2, 74, 55], they do not require semantic
understanding of the table (e.g., a New York City borough column is mismatched with the borough
identifier column). Moreover, they often overlook key factors such as table size, leaving open
questions about how tabular reasoning scales with increasing input complexity. In contrast, real-world
analysis demands understanding the domain of the data to detect imperfections, adapting to noisy or
inconsistent inputs, and adjusting both interpretation and analysis strategies accordingly.

In this work, we introduce the Robust And Data Aware Reasoning (RADAR) benchmark (Fig. 2), an
evaluation framework that systematically assess the reasoning capabilities of models in the presence of
challenging data artifacts that demand semantic and schema-level understanding. RADAR assesses
the extent to which models can correctly recognize and handle specific types of data artifacts
and analyzes how this capability varies across different models, dataset sizes, and artifact types.
RADAR specifically addresses five types of data artifact common in real world data [43, 38, 16, 9, 25]:
1) Missing Data: Empty or null entries simulating incomplete information; 2) Bad Values: Clearly
erroneous or placeholder entries (e.g., -1, 9999, TEST, #REF!); 3) Outliers: Implausible extreme
values that distort analysis (e.g., 220 bpm resting heart rate); 4) Inconsistent Formatting: Variations
in representing the same value (e.g., 22 1bs, 22 pounds, weight = 22); and 5) Inconsistent
Logic: Cross-field contradictions violating common-sense logic (e.g., end time before start time).

To evaluate data-aware tabular reasoning in realistic settings, we constructed RADAR by crowdsourc-
ing 53 diverse datasets and queries from domains like education, health, and business, focusing on
large, complex tables (§3). We implemented 260 query-specific perturbation functions to inject realis-
tic, context-sensitive artifacts (e.g., an implausibly high calories burned for a short walk), ensuring
that naive computations on these modified tables lead to incorrect answers. This, in turn, supports
large-scale generation of verifiable, high-quality task instances. We benchmark language models
on RADAR under both direct prompting and code-agent settings (§4), revealing that while models
like o4-mini achieve 100% on clean tables aided with code execution, performance drops by 59% on
perturbed ones (§5), highlighting critical limitations in only evaluating on clean data. In summary,
RADAR provides a precise, scalable, objective, and systematic approach to automatically assessing
LM tabular reasoning. Our main contributions are:

1. A scalable framework for data-aware QA generation. We introduce a dataset-agnostic frame-
work for automatically synthesizing thousands of high-quality, rigorously verified table QA pairs
targeting artifact-sensitive reasoning. The framework is dataset-agnostic and extensible to new
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Figure 2: Overview of RADAR. Expert-written programmatic functions are used to: (1)

(via answer functions invariant to table dimensions), and (2) simulate data
artifacts by producing perturbed and recovered versions of the original table. We evaluate LMs
on perturbed tables by computing the ground-truth answer over the corresponding recovered table,
enabling a controlled and consistent evaluation across data artifact types and varying table sizes.

tables, larger data scales, and additional artifact types, enabling fine-grained and comprehensive
evaluation of data awareness.

2. A benchmark of expert-curated real-world data tables and expert-authored contextual
perturbations.
We construct RADAR, a suite of 53 table QA tasks comprising 2980 instances across 9 application
domains vetted by data science experts. Each task is paired with a library of hand-engineered
perturbation functions that inject five classes of data artifacts designed to precisely evaluate
models’ data awareness.

3. A large-scale analysis of LM data-aware reasoning uncovering implications for building real-
world data science agents. We perform a comprehensive study on how data artifacts and table size
influence the reasoning accuracy of language models. Our results uncover novel and systematic
failure modes, including pronounced brittleness to logically inconsistent entries. Consequently,
we provide concrete guidelines for developing more reliable LMs.

2 Background and Related Work

Tabular Reasoning in Language Models. Language models show promise in answering natural
language queries over structured data (i.e., table QA) [69, 61]. Existing benchmarks assess reasoning
over tabular data [69, 44, 8, 55], but typically assume clean, artifact-free tables. As a result, they
offer limited insight on how models handle imperfect real-world tables [19, 52, 43, 38]. Recent work
studied the robustness of LMs to table perturbations [2, 74, 40, 56, 68]. In the context of table QA,
these efforts largely involve structural modifications (e.g., row or column shuffling) or changes to
cells containing the answer. These works test whether models rely on the actual table content, or
lean on their parametric knowledge or position-based heuristics [75, 3, 34]. While valuable, these
evaluations do not focus on whether models identify and reason about data quality issues.

RADAR advances this line of research by introducing perturbations aimed at evaluating a challenging
and practically relevant notion of robustness: whether models can detect and appropriately handle
semantically-grounded table-informed data artifacts during analytical reasoning. For example, a
model should recognize that a taxi ride with a short duration but an extremely long distance is
implausible—and take appropriate action such as excluding it from a fare average calculation.” See
Appendix B.1 for additional task examples.

To support such evaluations, we crowdsource complex, domain-diverse tables and introduce schema-
aware perturbations that reflect the scale, messiness, and irregularities typical of real-world data.
Moreover, little is known about how model performance scales with table size, despite real-world data

2To support objective evaluation, we design tasks such that there is an objective correct action.



often spanning hundreds or thousands of rows and requiring long-context reasoning. Existing bench-
marks, however, typically use small tables and do not support control over table sizes. RADAR fills
this gap by enabling systematic variation in table size while holding task semantics and complexity
constant, drawing inspiration from recent long-context reasoning benchmarks [54, 72, 33, 20]. This
allows precise evaluation of how table size affects tabular reasoning performance.

Data Analysis with Language Models. Beyond table QA, LMs are increasingly being developed as
general-purpose data science agents, capable of writing code, using tools, and executing end-to-end
analyses [42, 36, 13, 62, 15], along with a wave of new benchmarks [70, 18, 21, 35, 73, 7]. However,
existing benchmarks often assume clean datasets and none systematically assess whether models are
resistant to data quality issues that precede any valid analysis, a foundational first step for reliable
inference and reproducibility [17, 58]. RADAR complements these efforts by introducing schema-
aware data imperfections—capturing real-world challenges such as missing data, outliers, formatting
irregularities, and logical inconsistencies. This enables a targeted evaluation of whether models are
truly data-aware: capable of detecting and responding to the kinds of imperfections that frequently
compromise real-world data analyses.

3 The RADAR Benchmark

We design RADAR around three core goals: (1) Enable objective evaluation—ensuring that model
performance is assessed reliably, transparently, and deterministically through unambiguous tasks
and objective evaluation criteria. This contrasts with language model based evaluation, which can
introduce stochasticity and undesirable biases [67, 30]; (2) Support realistic and challenging
tabular reasoning—designing tasks that reflect real-world data imperfections and are sufficiently
difficult to differentiate model capabilities and meaningfully measure progress; and (3) Isolate the
effects of table size and artifact type—enabling fine-grained analysis of how specific data artifacts
or table size impact reasoning, without introducing confounding factors. These goals are supported
by our task generation framework (§3.1) and rigorous data collection procedure (§3.2).

3.1 Data Artifact Generation and Evaluation Framework

Problem Definition. We evaluate the robustness of language models when answering data analysis
questions over perturbed tables containing realistic artifacts. To do so, we crowdsource high-quality,
complex data tables and create programmatic functions to introduce data artifacts (Fig. 2).

Let T denote a clean source table—unperturbed, logically consistent, and free from data artifacts.
From T', we derive a perturbed version T}, by introducing targeted artifacts, and a corresponding
cleaned (recovered) version T that reflects the intended correction of those artifacts. The set of
cleaning operations is denoted by AT = T}, — T}. and may involve dropping rows (e.g., removing a
row containing invalid values such as a negative fare) and/or overwriting cell values (e.g., recovering
a missing BMI value from the corresponding height and weight columns). During task construction,
we ensure that these are the only set of corrective actions. See Appendix B.2 for details.

Given a natural language query @ (e.g., “What is the average fare per mile?”’) and a table T, let
f:(Q,T) — A denote a programmatic function that computes the correct answer A by applying the
logical operations implied by ) over the contents of 7. We assume that () is clear, unambiguous,
and specifies an objective question whose answer can be deterministically computed from 7'.

The ground truth answer is defined as A = f(Q, T;-). We assess robustness by checking whether the
model’s prediction satisfies LM(Q,T,,) = A. In other words, obtaining the correct answer on T},
requires recognizing, reasoning over, and cleaning data artifacts (executing AT’) such that a model
could compute a correct answer over the recovered table ;. .

Programmatic Perturbations. Programmatic perturbations introduce the same type of data artifacts
across tables of varying sizes sharing the same schema. Combined with the answer function, this
enables automatic generation of many high-quality tasks with verifiable ground-truth answers, thus
allowing for controlled evaluation of how models’ data awareness reasoning varies with table sizes.

We define a programmatic perturbation function as g : (T, Q) — (T}, T,). Given a clean table T'
and a query (), the function g generates a perturbed table 7}, by introducing artifacts targeted with
respect to (), along with 7., the recovered table after handling the artifact. Each perturbation is



Original Table Missing Data Bad Values

RideID PickupTS Dropoff TS Distance Fare RideID PickupTS Dropoff TS Distance Fare RideID PickupTS Dropoff TS Distance Fare
ROO1  5/1508:15  5/1508:45 53 18.50 ROO1  5/1508:15  5/1508:45 53 18.50 ROO1  5/1508:15  5/1508:45 53 18.50
RO02  5/1514:30 5/15 15:10 82 25.00 RO02  5/1514:30 5/1515:10 25.00 RO02  5/1514:30  5/1599:99 82 25.00
RO0O3  5/1514:50  5/1515:40 70 2875 70 2875 RO0O3  5/1514:50  5/1515:40 70 -1.00

Outliers Inconsistent Formatting Inconsistent Logic

RideID PickupTS Dropoff TS Distance Fare RideID PickupTS Dropoff TS Distance Fare RideID PickupTS Dropoff TS Distance Fare
ROO1 5/15 08:15 5/15 08:45 53 18.50 ROO1 5/15 08:15 5/15 08:45 53 $18.50 ROO1 5/15 08:15 5/15 08:45 53 18.50
R0O02 5/1514:30 5/1515:10 8.2 25.00 R0O02 5/1514:30 5/1515:10 8.2 miles 25.00 RO02 5/1514:30 5/1515:10 82 25.00
RO03 5/15 14:50 5/15 16:40 70 228.35 RO03 5/15 14:50 l;;yol::‘h 70 28.75 ROO3 5/15 14:50 5/15 12:40 70 28.75

Figure 3: Data Artifact Types. Given a table T" without artifacts and a query Q (e.g., “What is the
average fare per mile?”), we perturb tables to simulate different data artifacts.

constructed so that directly applying f(Q,T,) yields an incorrect or undefined result (e.g., due to
execution errors), thus requiring the artifact to be addressed for correct reasoning.® For example, if Q
requires filtering for rides longer than 6 miles, the perturbation will ensure it affects at least rows
where the distance exceeds 6 miles.

Data Artifact Types. Using g, we programmatically introduce the following data artifact types:

1. Missing Data: Replacing valid cell entries with empty values (e.g., an empty string).

2. Bad Values: Injecting clearly erroneous or placeholder values that reflect data entry mistakes or
system artifacts (e.g., -1, 9999, TEST, #REF!).

3. Outliers: Inserting extreme, contextually implausible values into numeric fields (e.g., 220 bpm
for resting heart rate, or a taxi fare of 10,000 USD for a short ride).

4. Inconsistent Cell Formatting: Variations in units, formats, or styles (e.g., 22 1bs, 22 pounds,
weight = 22) or inconsistent dates/casing that represent the same data.

5. Inconsistent Logic: Introducing contradictions across table cells that violate internal consistency
(e.g., an end timestamp earlier than the start time, a mismatched BMI value given the height and
weight, or a runner’s rank that does not correspond with their finish time), requiring multi-column
and/or multi-row reasoning to detect.

In this work, we study data artifact types independently (e.g., Fig. 3). However, the answer and
perturbation functions (f and g¢) are flexible and can easily extend to incorporate additional artifact
types or combinations of artifact types within a single table.

Scalability Across Table Sizes. Task complexity may vary with table size as larger tables require
operating over a larger context. To support different table sizes, we define the core schema C as the
set of columns comprising (i) the fields required to answer the query (), and (ii) any auxiliary fields
used to introduce perturbations.

Both the perturbation function g and the answer function f are programmatically defined to operate
over tables with varying numbers of rows and columns, as long as the required fields in C are present.
Given a cleaned table T(™) with n rows and m columns (with m > |C]), g generates a perturbed

. < .
version 7\™"™ and a recovered counterpart 7,""<™"™). The function f computes the answer A
consistently across these variants, provided that C is preserved.

As a result, both the perturbations and corresponding ground truth function remain agnostic to table
size by design, as long as tables of sufficient size can be collected or generated. This scalability
enables data awareness evaluations to be systematically extended across diverse table sizes and
expanded schemas. In this setup, the perturbation logic remains fixed, and the primary axis of
variation is table size—whether in the number of rows or the number of auxiliary columns—allowing
for consistent and controlled evaluation across different table configurations.

3While our framework supports multiple cleaned tables to reflect different valid ways of handling a perturbed
table, we refer to a single cleaned table in our description for simplicity.



3.2 Constructing RADAR

Crowdsourced Data Tables. To build a challenging benchmark grounded in real-world data analysis
scenarios, we recruited 12 data science experts, each holding graduate degrees in computer science,
statistics, and related fields. Experts were encouraged to draw on their personal experiences to design
examples of logical inconsistencies and analytical failures that frontier LMs struggle with.

Next, experts curated clean, publicly available source tables, each denoted as T, containing at least
500 rows and 20 columns, along with an associated natural language query (). See Appendix A
for data collection instructions and dataset details. For each selected table, experts ensured that the
data was “clean”—free from pre-existing artifacts or inconsistencies. In many cases, this involved
manually cleaning, wrangling, and normalizing data to ensure a blank canvas before introducing
controlled perturbations. Each (T, Q) pair defines a unique task in RADAR and includes annotations
for the relevant core schema columns C.

Expert Written Programmatic Functions. For each Distribution of Task Domains
collected task, a dedicated team of experts authored the Education Transportation
corresponding answer functions (f) and perturbation Society 10.9%

functions (g), with one g defined for each data artifact  Eenvironment 75

type (e.g., missing data, outliers etc.), where applicable sTem o 145%  Entertainment
given the core schema C. Each perturbation function Business 3%

g is programmatically implemented in Python and af-
fects a minimum of one row or cell to ensure meaningful

20.0% 20.0%

change, but is limited to at most 10% of rows to pre- Health Sports

serve the overall integrity of the table and prevent more

significant changes to the original data distribution. All 1000, istribution of Table Rows

functions, tables, and annotations underwent multiple Mean: 122

rounds of expert code review and cross-validation to 800 m‘,’fg 81

ensure correctness and logical consistency across table  » 400 Max: 1132

sizes and perturbation instances. g Std: 124
g 400

Ensuring Objective Tasks. To ensure RADAR pro- * |

vides a robust evaluation of data awareness, we imple- 200 }

mented several safeguards. Each query-artifact pair was f

reviewed by multiple experts to ensure unambiguous 0o 20 teo 750 1000

recovery or discard behavior. Artifacts were only in- Number of Rows

cluded if multiple experts unanimously agreed that it
needed to be addressed because it contradicted internal
or commonsense logic, or clearly violated established
domain expectations. Furthermore, multiple rounds of code review and refinement were conducted to
confirm that all artifacts were objectively erroneous, unambiguous, and solvable. This process also
involved making assumptions explicit in the query or updating perturbation functions when necessary.
Perturbations were applied to a very small subset of rows (typically fewer than 5%), and only one
perturbation type was used per task instance to preserve a single, unambiguous corrective action.
Collectively, these measures position RADAR as an objective and reliable benchmark. We include
examples of our iterative task refinement process in Appendix B.2.

Figure 4: Data Statistics of RADAR.

Generating Tables and Task Instances.
To support controlled evaluation of data Dataset Tasks Instances Tokens (K) Cols

awareness across table sizes, we use RADAR 33 2,980  [2.4.8,16] [5,10,20]
our framework to generate table vari- RApAR-T 53 313 8 10

ants from each clean source table T5. RADAR-S 10 720 [2,4,8,16] [5,10,20]
We measure table size in token count o i

7 € 2K, 4K, 8K, 16K, using the Gemma Table 1: Summary of RADAR Dataset Splits.

3 tokenizer [14] applied to the CSV-

serialized form of the table.* To explore the

impact of table dimensions (i.e., row-to-column ratio), we additionally control the number of columns,
¢ € 5,10, 20. Given Ty, for each (7, ¢) combination, we select the number of rows R such that the re-
sulting table with ¢ columns, contains approximately 7 tokens (i.e., R = arg min, |[tok(Ts,r,c) — 7).

“Row and column counts miss variation in cell content, ranging from single-token integers to paragraphs.



Here, tok(T5, r, ¢) denotes the token count for a sub-sample of T with r rows and ¢ columns. All
generated tables from T have the same core schema C.

Once tables are selected across these configurations, we apply our perturbation functions (across data
artifact types) to create perturbed data tables. A task instance in RADAR is thus defined by a tuple
consisting of the task, token-based table size, column count, and data artifact type.

Dataset Summary. Figure 4 and Table | summarize our benchmark. RADAR comprises 53 expert-
curated tasks derived from 27 source tables spanning 9 domains such as education, STEM, and health
(details in Appendix A). Among 53 tasks, 6 table artifact variants (5 perturbed, 1 clean), 4 table sizes,
and 3 column counts (yielding 53 x 6 x 4 x 3 = 3816 possible combinations), RADAR includes
2,980 systematically generated task instances® and 260 expert-written perturbation functions.

To encourage adoption and enable more tractable evaluation while maintaining sufficient statistical
power to distinguish model performance, we curate two benchmark subsets, also used in our evaluation
(§4): (1) RADAR-T, focuses on capturing maximal variation across tasks and data artifacts; and
(2) RADAR-S which isolates the influence of table size and dimensionality. RADAR-T includes
all tasks and their associated data artifact variants, standardized to tables with 10 columns and
approximately 8K tokens. RADAR-S is a subset of 10 tasks with complete artifact variants and all
table size configurations.

4 Experiments

Models. We evaluate a range of models on data awareness including table-tuned models, open-source
models, and popular general-purpose and reasoning models. For models trained specifically for
data tables, we include TableGPT2-7B [59] and StructLM-7B [76]. For general-purpose models,
we include GPT-4.1, Gemini 2.5 Flash, Gemma 3 27B [14], and DeepSeek-V3 [11]. For reasoning
models, we include 03-mini, 04-mini,® Gemini 2.5 Flash with thinking on, Gemini 2.5 Pro, and
DeepSeek-R1 [12]. We evaluate all models on RADAR-T. To study the impact of table size on
performance, we evaluate Gemini 2.5 Flash, Gemini 2.5 Flash with thinking on, GPT-4.1, and 04-mini
on RADAR-S.

Baselines. We evaluate models using two zero-shot baseline approaches: direct prompting, where
LMs answer questions in a single turn via textual reasoning given the input prompt [2, 34], and
code agent, where LMs are equipped with a Python shell tool to interact with the data table and
observe execution outputs. The code agent is based on existing tool-use agents [71, 34]. Due to
StructLM’s specialized prompt format and authors noting it “not designed for agentic settings”,’
we test it only under direct prompting with their table format [76]. In our experiments, we limit
the number of interaction steps to five, following [34]. In practice, this constraint had negligible
impact, as the agent reached the step cap in only 2.7% of cases. Importantly, for both baselines
in the system prompt, we explicitly instruct the model to pay attention to all five data artifact
types during its reasoning but without referring to any specific table instance. The prompt also
describes the appropriate corrective actions, i.e., recovering flawed data when possible, and discarding
irrecoverable rows. The full table is serialized in CSV format and included in the prompt. Complete
prompts and baseline implementation details (including additional experiments) are in Appendix C.

Metrics. We primarily evaluate model performance using Exact Match (EM) accuracy. For most
experiments, a prediction is considered correct only if it exactly matches the ground truth: string,
integer, and list outputs must be identical, and floating-point values must fall within +1 unit of the
least significant decimal place of the ground truth value. If multiple answers are equally valid, we
include all acceptable options in the ground truth and count any match as correct. For example, in
weather-city-mixup (see Table 5 for all tasks), with query “What is the difference in temperature
between Australia’s warmest city and America’s warmest city in February?”, the ground truth is
any one of 15.1, 8.4, -15.1, -8.4, allowing for Fahrenheit/Celsius calculations and both subtraction
directions. We also accept values in the ranges [15.0,15.2], [8.3,8.5], [-15.2,-15.0], and [-8.5,-8.3] to
account for rounding.

Some combinations of artifact, table size, and column count were infeasible due to query/table constraints.
%04-mini and 03-mini are evaluated with reasoning effort set to high
"StructLM authors noted this during email correspondence



Direct Prompting Code Agent

Model Cln Miss Bad Out Fmt Log \ Cln Miss Bad Out Fmt Log
Table-tuned Models

StructLM 23 08 04 04 11 15 - - - - - -
TableGPT2 08 08 1.1 13 15 08 35 12 38 5 7.5 6
General-purpose Models

Gemma3 27B 1.9 38 19 0 19 18 755 208 94 83 151 143
DeepSeek-V3 1.9 57 38 42 38 00 962 358 415 312 547 250
Gemini 2.5 Flash 151 75 113 62 132 89 849 283 264 271 547 179
GPT-4.1 17.0 132 113 6.2 283 125 98.1 37.7 415 604 73.6 304

Reasoning Models
Gemini 2.5 Flash Thinking 39.6 17.0 20.8 229 22.6 16.1 88.7 415 358 562 472 35.7

DeepSeek-R1 340 22,6 321 250 321 19.6 849 396 472 646 0642 482
03-mini (high) 73.6 3777 377 188 66.0 179 755 434 434 333 792 250
Gemini 2.5 Pro 717 509 56.6 479 566 429 849 73.6 547 64.6 73.6 44.6
04-mini (high) 83.0 49.1 585 56.2 73.6 32.1 100 509 54.7 833 792 4l.1

Table 2: Zero-shot Performance by Data Artifacts. Values are Exact Match accuracy (%). Columns
are grouped by the direct prompting and code agent baselines. Cln=Clean, Miss=Missing Data,
Bad=Bad Values, Out=Outliers, Fmt=Inconsistent Formatting, Log=Inconsistent Logic.

In the case of table-tuned LMs, we observe that minor formatting inconsistencies (e.g., extra punctua-
tion or whitespace) can obscure otherwise correct reasoning. To ensure the metric reflects reasoning
quality rather than formatting errors, we adopt a relaxed matching criterion for these models: if any
ground truth answer appears within the output string, the prediction is counted as correct.

5 Results & Discussion 10CF)’erformanz:e Drop from Clean to Logically Inconsistent Tables
In this section, we discuss our primary results. ¢ 80
Additional results, including those with error  §
bars and further analyses are provided in Ap- 2 ®
pendix E. § 40
w [ Py [ ]
RQ1: How do models handle different types 20 — Direct Promoi Code A
of data artifacts? Table 2 summarizes the irect Prompting ode Agent

. Gemini 2.5 Flash Gemini2.5Pro  DeepSeek-R1 o4-mini
zero-shot exact match accuracy across differ- Thinking N=[41, 48] N=[20, 48] N=[47, 56]

ent artifact types. In direct prompting, most N=(22,50]
models struggle, with only the strongest reason-

Fi 5: Fronti dels st le with logicall
ing models—such as o4-mini and Gemini 2.5 Bure FOREE MOoge S SILSgTe Wit loglea 'y

p ) ) ine S0 1 inconsistent tables, despite clean-table success.
ro—consistently surpassing S0% accuracy. 04 pyact match scores on logically inconsistent tables

mini performs reasonably well on clean, unper-, y,qks where the model answered correctly on
turbed tables and artifacts involving bad values, the clean table (indicated by N).

outliers, and formatting inconsistencies, while

Gemini 2.5 Pro is comparatively better at han-

dling logical inconsistencies and missing values. General-purpose models, particularly open-source
ones, tend to perform less well—often scoring below 20% and 6%, respectively—highlighting the
overall difficulty of RADAR as a tabular reasoning benchmark.

Introducing code execution leads to performance gains across all models, particularly for general-
purpose models and those less effective with direct prompting. With access to code, all models
perform reasonably well on clean tables. However, significant performance gaps persist—especially
for general-purpose models—when faced with tables containing artifacts. This suggests data aware-
ness remains a core challenge even with code. Qualitative analysis shows that code execution enables
models to bypass deep understanding by applying generic routines (e.g., dropping rows with missing
data) without necessarily identifying the exact issues (see Appendix D for examples). These findings
reveal a persistent disparity in models’ ability to detect and recover from data artifacts, raising the
question whether analysis agents should incorporate elements of specialized reasoning models.

RQ2: Do models maintain performance on perturbed tables, even after succeeding on clean
ones? We investigate whether models can generalize their success from clean tables to perturbed
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Figure 6: Scaling Performance on Tables with Artifacts. Exact match scores for tables varying
in token and column count. In the direct prompting baseline (left), performance consistently drops
as table token count increases, though models tend to perform better on wider tables (with fewer
rows) with the same token count. In contrast, code agent performance (right) remains relatively stable
across different token and column counts.

versions of those same tables. Focusing on just logically inconsistent tables as an example, for
the strongest performing models, we select the subset of tasks it answers correctly on the clean
table variant and evaluate accuracy on the associated logically inconsistent table. Since clean-table
performance varies across models, each is evaluated on a different subset of examples. As shown in
Figure 5, performance consistently drops across all models. This trend holds for both direct prompting
and code agent baselines, suggesting that current models, even when equipped with code execution
capabilities, are not robust to subtle logical inconsistencies. We report performance degradation for
other artifact types in Appendix E.I.

RQ3: How does performance scale with table size? Figure 6

shows the exact match accuracy for both direct prompting and LM Output Tokens by Table Size
code agents for different table sizes, measured in token count as 30K. ® Direct Prompting

well as different number of columns given the same token count Code Agent

(i.e., wider vs. narrower tables). For direct prompting, we ob- & 25K

serve that performance decreases substantially as the table size 8 20k

increases and consistent across models. By 16K tokens, exact 3 .

match accuracy drops to nearly zero. Interestingly, performance 3 ; ’.
also declines as the number of columns decreases—that is, mod- 2 10K <

els perform better on wider tables (with fewer rows) at the same < sk . ’ 2
token count. Qualitative inspection of model reasoning traces A; &~

indicate that models tend to go row by row when inspecting Y o o " K

and performing calculations on the data table (see Appendix D
for examples). This means that the number of tokens used for
computation scales linearly with the number of rows (generally Figure 7: LM output tokens (com-
observed in Fig. 7). In contrast, code agents exhibit stable per- pletion + reasoning) on RADAR-S.
formance as table size and width vary. Their ability to offload Each point shows an LM on tables
computations and focus on intermediate reasoning allows them of a specific size (cols: 5, 10, or
to remain largely unaffected by table dimensions. These find- 20; tokens: 2K, 4K, 8K, or 16K to-
ings highlight the benefits of token-efficient schema abstraction kens). Output tokens increase with
and the need for programmatic strategies to surface data arti- table size for direct prompting and
facts. Without such mechanisms, even frontier language models remain stable for code agents.
struggle under the dual pressures of input scale and noise.

Input Table Size (In Tokens)

RQ4: How does model performance
vary across different types of table cor- Model Direct Prompting Code Agent
rection behaviors?

Derivation Row Drop Derivation Row Drop

To understand how well models handle  Gemini 2.5 Pro 50.5 47.1 56.2 624
different types of required corrections, ~DeepSeek-R1 22.9 26.5 314 66.7
we examine performance on RADAR-T, 03-mini 314 25.8 35.6 373

split into task instances that either (1) +mini 41.6 4.0 44.8 67.6

require the model to derive or replace
cell values based on information from

Table 3: Performance on Value Derivation vs. Row
h | . ludine i Dropping. Exact match (%) on RADAR-T instances
other rows or columns (i.e., excluding in- requiring either (1) deriving or replacing cell values (ex-

coqsistent formatting),. or .(2) (_irop TOWS  luding formatting data artifacts, N=102), or (2) dropping
entirely when such derivation is not pos- rows (N=105)

sible. Table 3 shows that among the top-



performing models under direct prompting, some perform slightly better on derivation tasks, while
others do better on row dropping, with no consistent trend. However, code agents lead to general
improvements in row drop performance compared to derivation. In contrast, value derivation tasks
remain challenging even for code agents, suggesting standardized code operations do not make it
substantially easier to surface multi-column/row logical inconsistencies.

RQS5: How does test-time compute

affect performance? (a) Performance by Output Tokens (b) Performance by Thinking Budget

60 o4-mini 40
We analyze the number of LM output
(completion + thinking) tokens and its g od4-mini 2
relationship to performance. Under di- § “° os-mini £ 40
rect prompting, models generally per- 2 o3-mini 2
form better with more test-time com- £ 20 £
pute (Fig. 8a). However, this is not a
direct relationship. 04-mini, for exam- oR o
ple, performs better then 03-mini and 0 5K 10K 15K 20K 25K  Low Medium High
Avg Output Tokens Thinking Budget

while using less tokens. In contrast,
when equipped with code, additional
output tokens offer less optimal gains.
This is observed in both the competi-

) Direct Prompting - Reasoning
Code Agent - Reasoning

Direct Prompting - General
Code Agent - General

Figure 8: Exact match accuracy (aggregated across perturbed

tive performance of general-purpose
models (Fig. 8a) and on 04-mini as we
increase thinking budget (Fig. 8b).

tables, N=260) on RADAR-T: (a) Accuracy as a function
of LM output (completion + reasoning) tokens. Each point
represents a specific model and baseline. (b) Accuracy on 04-

mini with increasing thinking budget (Low, Medium, High).
Developing systems that better coor-
dinate between text tabular reasoning
and code execution could significantly improve performance and efficiency under token constraints.

Limitations and Future Work. RADAR currently supports a fixed set of perturbation types, each
introduced independently to enable controlled and comprehensive evaluation. While these perturba-
tions reflect common data artifacts, they are not exhaustive (e.g., sampling bias artifacts). In addition,
to support objective answers, RADAR is scoped to a fixed set of operations for correctly handling
data artifacts with exact match as an evaluation. This design excludes scenarios where multiple
plausible corrections exist or where more complex reasoning is required [58]. Nevertheless, the
framework underlying RADAR—which leverages programmatic functions to generate perturbed and
corresponding recovered tables—is general and extensible to accommodate these limitations. The
framework can include additional artifact types and allows for the combination of multiple artifact
types within a single table. Future work can also build on this framework by expanding the space
of corrective actions—e.g., incorporating more flexible success criteria [18] or accepting a broader
range of valid recovered tables for a given perturbation.

6 Conclusion

We present RADAR, a benchmark for evaluating data-aware reasoning in language models across
varying table sizes. By programmatically injecting realistic data artifacts, RADAR exposes critical
gaps in model robustness. Our experiments show that while models perform well on clean tables,
their performance degrades substantially in the presence of data artifacts. Although code execution
can assist with certain computations, it is not a comprehensive solution. Our findings underscore the
importance of designing agents that balance token efficiency with robust, data-aware reasoning.
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NeurlIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

¢ You should answer [Yes] , ,or [NA] .

* [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

* Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to " ", itis perfectly acceptable to answer " " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
" "or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

* Delete this instruction block, but keep the section heading ‘“NeurIPS Paper Checklist",
¢ Keep the checklist subsection headings, questions/answers and guidelines below.
* Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We introduce a framework and accompanying dataset to assess language
models on data awareness tabular reasoning, supported by extensive experiments that reveal
their strengths and limitations.

Guidelines:
e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Justification: We discuss limitations in Section 5.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
Justification: The paper does not include theoretical results
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We release the dataset and prompts used in our experiments to ensure trans-
parency and reproducibility. All language models employed in our study are publicly
available, and we clearly document the settings in which each model was run. Full details
can be found in Appendix C.
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Guidelines:

» The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Our dataset is available at https://www.kaggle.com/datasets/
0757b931079767a72b0c08£2225e658419debccc437dbd98af6b76d3eacal83e. We
also provide code that is a pip install-able package to interface with the dataset.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.
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* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We include experiment details and dataset splits in Section 4. Additional
details are provided in Appendix C.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: We did not perform experiments of multiple random seeds due to resource
constraints.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

 For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

e If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer:
Justification: Experiments were conducted via publicly available LM APIs.

Guidelines:
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9.

10.

11.

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We have reviewed the NeurIPS Code of Ethics and our paper conforms with
every aspect, especially data-related concerns.

Guidelines:

» The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: We discuss this in the Appendix.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
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12.

13.

14.

Answer: [Yes]

Justification: All curated datasets are from trusty-worthy sources and have been manually
checked by experts during our collection process.

Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We include the details for data license in the Appendix.
Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: We document these details of our dataset in Appendix A.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects
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Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [Yes]
Justification: We include details of instructions for data collection in A.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer:
Justification: No study was conducted with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer:
Justification: LLM use was only for polishing writing.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Dataset Details

Data science experts were recruited from a large data-driven software company. Since one of our key
contributions is the corpus of tasks, we invited our experts to be co-authors of this paper. Table 4
summarizes the original source datasets in RADAR. Table 5 summarizes each task. Below, we provide
a simplified but complete version of the original task construction instructions. A second team
of experts manually reviewed all source tables and queries to ensure instructions were adequately
followed.

Instructions for Collecting Source Tables

Come up with a task involving a query, clean data table, and perturbed data table that frontier
language models would get wrong when the data is perturbed.
To construct a task instance in our benchmark, please follow these steps:

1. Dataset Selection
* Find a real-world tabular dataset (e.g., NBA Stats 2023-24).
* The data table should contain at least 500 rows and ideally at least 20 columns.

* With the data table you also need to identify a query on the data coupled with a note of a
logical inconsistency on the dataset.

2. Clean Data
* Explore and wrangle the dataset such that it is free of data artifacts. Data artifacts are ...

« If the original source table is less than 20 columns, generate relevant and consistent
additional columns until there are at least 20.

3. Return Data Sources
Return the following data which constitute a full task

* data.csv — cleaned table relevant to the query

* metadata.yaml — containing the query and other relevant metadata. See below example.

¢ Document any inconsistent logic perturbation in the logic_perturbation_note field.
Example metadata.yaml:

ST Tyaml

task_id: nba-player-least-3p-made

query: 'Among players averaging >= 10 PPG, who made the fewest 3-pointers?'’

query_cols: ['Player', '3P']

minimum_columns: ['3P', '2P', 'FT', 'PTS']

id_columns: ['Player']

dataset_source: 'https://www.kaggle.com/datasets/vivovinco/2023-2024-nba-player-
stats'’

logic_perturbation_note: 'Break consistency in 2%2P + 3%3P + FT != PTS for some
rows.'
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ID Dataset Src License

D01 2021 Green Taxi Trip Data [10] Public Domain
D02 2014-15 to 2017-19 NYC Regents Exam Results - Public [41] Public Domain
D03 Emissions from Industrial Facilities in Queensland - 2004  [45] CCBY 4.0

D04 Traffic Violations [37] Public Domain
D05 Tracking data, Subject (a) MC Motion [26] CCBY 4.0
D06 Fuel Economy Data [65] Public Domain
D07 Outpatient Illness and Viral Surveillance [6] Public Domain
D08 Movies Bechdel Test [46] CC01.0

D09 Registered Nurses [47] CC01.0

D10 Ultra Trail Running [48] CC01.0

D11 Board Games [49] CC01.0

D12 Hollywood Age Gaps [50] CCO0 1.0

D13 Olympics Athletes and Medals [51] CC01.0

D14  Ethnic group (England and Wales) 2011 [63] UK OGL

D15 Household Composition by Number of bedrooms 2011 [64] UK OGL

D16  Algal Pigment Concentrations in Ross Sea [4] CCBY 4.0
D17  Eelgrass Biomass and Diversity (ZEN) [5] CCBY 4.0
D18  Framingham Heart Study Dataset [24] CC01.0

D19 UAE Cancer Patient Dataset [31] MIT

D20 FitBit Fitness Tracker Data [1] CC01.0

D21 Smart Farming Sensor Data [57] Apache 2.0
D22 World’s Cities Temperature [22] CC01.0

D23 Udemy Finance Courses [29] CC01.0

D24 Sales Data [53] CC01.0

D25 IBM HR Analytics [60] DbCL v1.0
D26 Football Expected Goals [32] CCBY

D27 2023-2024 NBA Player Stats [66] CCBY 4.0

Table 4: Summary of Original Source Data. The main paper had a typo and it should be 27 sources.
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Task ID Task Summary Src

actor-age-gaps Age gap when male actor is 15+ years older D12
actor-couples-under-35 Movies with couples averaging < 35 years old D12
board-games-min-players Games requiring 2+ players, supporting 5+ DI11
board-games-min-playtime Avg min playtime of 2000s board games D11
board-games-num-trades Games with >4% trade intention rate DI11
car-co2 Avg CO2 emissions (2018-2023 models) D06
daily-activity-distance Mins per km during moderate activity D20
daily-activity Proportion of distance in moderate+ activity D20
employee-years Employees 35+ years old with 5+ tenure D25
england-wales-ethnicity 7th highest Black Caribbean population D14
england-wales-housing-bedroom-count Total bedroom count estimation D15
england-wales-housing Lone parents in 1-2 bedroom homes (%) D15
farming-crop-yield-growth-duration-2024  Soybean growth duration in days D21
football-european-league-goal-diff Expected vs actual goals difference (top teams) D26
football-european-league Total wins among top 5 teams D26
influenza-like-illness Median ILI cases (ages 25-64) D07
movies-intl-gross Avg gross for 5 longest movies D08
movies-rank-shift Budget rank changes (nominal vs adjusted) D08
movies-roi Avg return on investment ratio D08
nba-player-least-3p-made Fewest 3PT among 12+ PPG scorers D27
nba-players-avg-stocks Players averaging >1 steals+blocks D27
nba-players-best-shooters Top 5 in both shooting efficiency metrics D27
northern-hemisphere-eelgrass-habitats Total USA salinity measurements D17
nurses-hourly-salary Avg median hourly nurse salary D09
nurses-salary-difference 90th vs median salary difference D09
nurses-state-employees Avg nurses in high-wage states D09
nyc-green-taxis-passengers Total passenger count D01
nyc-green-taxis-rates Avg fare per mile DO1
nyc-green-taxis Trips during top duration hours D01
nyc-regents-exam-scores-2 High vs low score distribution difference D02
nyc-regents-exam-scores-borough Passing students in largest test borough D02
nyc-regents-exam-scores Passing students in most common school type D02
olympics-country Medals per Games for top team D13
olympics-gold-winners Avg age of gold medalists D13
olympics-medal-winners Highest medal point total D13
pet-respiratory-motion Avg velocity between timestamps D05
physical-health-exam-bmi Avg BMI of male non-smokers D18
physical-health-exam-rhr Low heart rate difference by age group D18
queensland-water-emissions Weighted facility location average D03
ross-sea-algal-pigment Chlorophyll c2 at median chlorophyll a D16
sales-2 Q4 total order quantity D24
sales Avg sales per order D24
traffic-violations-speeding Avg mph over limit for severe violations D04
traffic-violations Avg vehicle age in violations D04
uae-cancer-patient-death Non-deceased patient count D19
uae-cancer-patient Patients diagnosed in latter half-year D19
udemy-classes-price Highly discounted expensive courses D23
udemy-classes-rating Courses rated above 4.1 D23
udemy-classes Avg reviews for recent courses D23
ultra-trail-races-morning-finishers Racers finishing before noon D10
ultra-trail-races-rank Avg age of top 5 finishers D10
ultra-trail-races Avg finish time in minutes D10
weather-city-mixup Feb temp gap: warmest AU vs US cities D22

Table 5: Summary of Dataset Tasks
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B RADAR as a Necessary and Objective Benchmark

We include additional discussion on the considerations that make RADAR a necessary and objective
benchmark.

B.1 RADAR as a Necessary Benchmark

Prior benchmarks have studied the robustness of tabular reasoning with respect to structural pertur-
bations (e.g., all perturbation types in [56] and one of three in [68]). Structural perturbations (i.e.,
shuffling rows, merging columns), however, do not require models to understand semantics of the
table. In contrast, grounded in data analysis, RADAR focuses on perturbations that demand semantic
and schema-level understanding, such as:

* Rows where a New York City borough column is mismatched with the borough identifier
column (nyc-regents-exam-scores-borough)

* Rows where number of users trading a given board game should be less than the number of
users owning the board game (board-games-num-trades)

The data artifacts in RADAR are non-trival, require domain-specific reasoning, understanding multi-
column relationships, and are underexplored in existing benchmarks.

B.2 RADAR as an Objective Benchmark

What counts as an objectively bad data artifact? Designing for clarity in expected behavior was
a core goal. From a data science perspective, an objectively bad data artifact is one that, if left
unaddressed, would compromise the validity of a calculation or the conclusions drawn from the
data. Practically, it is a case where multiple data scientists would unanimously agree that the data
artifact must be addressed because it contradicts internal or commonsense logic, or clearly violates
expectations (e.g., based on established domain knowledge). As a result, to ensure data artifacts
were objectively erroneous, unambiguous, and solvable, all tasks underwent multiple rounds of code
review and refinement (§3.2).

For example, in actor-age-gaps, an age gap of 56 years between actor couples might be debated
as an outlier. One of our expert annotators actually pointed this out: “Is this enough? I mean you
could have a 80 years old male actor like Morgan Freeman or lan McKellen, and 18 female actor.”
However, an age gap of 86 years would be universally seen as erroneous and would be removed or
flagged by any reasonable practitioner.

Similarly, for inconsistent logic artifacts, we scoped perturbations which broke relationships between
columns that were common sense and representable by clear equations (e.g., start_time < end_time,
bmi = weight/ height?). We explicitly avoided more ambiguous logic that lacks a well-defined
formulaic relationship (e.g., a heavy package with a low shipping fee when other lighter packages in
the dataset have a higher shipping fee), since these could lead to subjective interpretations.

Additional examples include:

* In nyc-green-taxis-passengers, we perturb rows so that dropoff_time <
pickup_time, clearly violating temporal order.

* In employee-years, we set YearsAtCompany > TotalWorkingYears, which contra-
dicts the schema logic.

* Inuae-cancer-patient, diagnosis_date > treatment_start_date violates a real-world
clinical timeline.

e Inultra-trail-races-morning-finishers: finish time is altered by +12 hours, mak-
ing it inconsistent with the known start time and derived duration column.

How do we avoid unfairly penalizing “data-aware” models? One way we avoid penalizing data-
ware models is to not only define unambiguous queries but also introduce objectively erroneous data
artifacts. This approach is paired with carefully designed perturbations, ensuring that the corrective
actions are narrowly scoped to overwriting cells or removing rows. During task construction, we
iteratively refined the query or perturbation definition to satisfy these goals.

For example, in nurses-hourly-salary, we originally expected models to infer hourly wage from
annual salary using the formula hourly_wage = annual_salary/(40hours/week - 52weeks/year)
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which was consistent in the table. An annotator reasonably questioned whether this conversion could
be assumed: “Don’t some people work overtime sometimes etc? I don’t know if I can confidently
recover this as a human.” Based on this, we revised the query to explicitly state that wages assume a
standard full-time schedule, starting with: “The dataset contains nurses’ wages assuming a standard
full-time work schedule (i.e., 40 hours per week and 52 weeks per year)”.

All our considerations ensure that models are not being penalized for drawing conclusions from
ambiguous or underspecified inputs. In addition, we reiterate the expected behavior in the evaluation
prompts themselves (§C), so that models are guided toward appropriate corrective actions.

What is the boundary between solvable and irrecoverably broken data? The exact boundary
between potentially recoverable and irrecoverably broken data is likely ambiguous and somewhat
subjective. However, RADAR takes multiple, intentional steps to exclusively focus on well-defined
tasks. The first of which is to define unambiguously bad perturbations with clear corrective actions
discussed above. In addition, we make sure:

* Perturbations were applied to a very small subset of rows (i.e., < 5% in most cases).

* Only one perturbation type was applied per task instance as mixing perturbation types can
make the unambiguous corrective action hard to define.

* To instruct annotators to be vigilant for tasks that are underspecified, ambiguous, or out of
scope of the expected corrective actions.

While one could reasonably argue that more significant perturbations and combinations thereof
are reasonable to evaluate, we calibrated our benchmark dataset in this way, because this level of
perturbations already leads to low model performance. While our benchmark dataset could be trivially
expanded to include more challenging perturbations, we posit that focusing on simpler cases that
clearly fail will help our community meaningfully evaluate progress step by step.

C Prompts and Experiment Details

C.1 Main Paper Experiments

For our main paper experiments conducted in May 2025, we evaluate all models with a tem-
perature of 0 and default settings, unless otherwise specified. Our evaluation includes Ope-
nAl models 04-mini-2025-04-16, 03-mini-2025-01-31, and gpt-4.1-2025-04-14. We
also assess gemini-2.5-flash-preview-04-17, both with and without "thinking" enabled, and
gemini-2.5-pro-preview-05-06.

For the direct prompting baseline, we follow [55], adding instructions that encourage the model
to produce a clearly extractable final answer. For the code agent baseline, we adopt the high-level
tool design principles of [71], introducing two commands: python for executing code and done for
submitting the final answer. We use Langfun® to interface with language model APIs and execute
generated code. Below, we include prompts used for both direct prompting and code agent baselines.

Direct Prompting Baseline

System prompt:

You are an expert-level data scientist. Your job is to answer a data analysis question in rigorous manner
given a data table. In your analysis:

* Carefully address

1) Missing data: empty or null entries simulating incomplete information.

2) Bad values: clearly erroneous or placeholder entries (e.g., -1, 9999, TEST, #REF!, etc.).

3) Outliers: implausible extreme values that distort analysis (e.g., 220 breathing rate per minute).
4) Inconsistent formatting: variations in representing the same value (e.g., 22 1bs, 22 pounds,

weight = 22).
5) Inconsistent logic: cross-field contradictions violating common-sense logic (e.g., end time before
start time).
N J

$https://github.com/google/langfun
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* Attempt to safely recover or correct flawed data when reasonable based on the existing data. If data is
irrecoverable or suspect, discard the row.
* Do NOT write or execute any code. Focus purely on logical reasoning and analytical judgment.

You must conclude with your most reasonable answer.

When you provide the final answer, please use the prefix "The answer is:" without any modification, and
provide the answer directly, with no formatting, no bolding, and no markup. For instance: "The answer
is: 42" or "The answer is: yes". If the question asks for a list of values, then the answer should be a
comma-separated list of values, without any formatting, no bolding, and no markup. For instance: "The
answer is: 42, 43, 44" or "The answer is: yes, no".

® User:

Data:

EXAMPLE TABLE

race_year_id,race,time,time_in_seconds,runner
68140,Millstone 100,26H 35M 255,95725.0,VERHEUL Jasper
68140 ,Millstone 100,27H OM 29S5,97229.0,MOULDING JON

68140 ,Millstone 100,28H 49M 7S,103747.0,RICHARDSON Phill
68140 ,Millstone 100,30H 53M 37S,111217.0,DYSON Fiona

68140 ,Millstone 100,32H 46M 21S,117981.0,FRONTERAS Karen
68140 ,Millstone 100,32H 46M 40S,118000.0,THOMAS Leigh

68140 ,Millstone 100,33H 30M 1S5,120601.0,SHORT Deborah

68140 ,Millstone 100,33H 33M 23S5,120803.0,CROSSLEY Catharine
68140 ,Millstone 100,34H 54M 16S,125656.0,BUTCHER Kent

68140 ,Millstone 100,34H 59M 39S5,125979.0,Hendry Bill

68140 ,Millstone 100,34H 59M 445,125984.0,Barnard Andrew
68140 ,Millstone 100,35H 19M 525,127192.0,PAGE Mark

68140 ,Millstone 100,35H 34M 33S,128073.0,0 'DONOGHUE Katie
71873 ,ElbrusWorldRace,29H 36M 14S,106574.0,ROSTOVTSEV Artem

Based on the given table, answer the following question:

EXAMPLE QUESTION

In this dataset of ultra trail running race results, what is the average finishing time in minutes
across all rows in the dataset? Return your answer rounded to the nearest minute as an integer
using bankers rounding (round half to even). Examples: round(2.5) — 2, round(3.5) — 4,
round(4.3) — 4, round(4.7) — 5.

Code Agent Baseline

System prompt:

SETTING:

You are an expert-level data scientist. Your job is to answer a data analysis question in rigorous manner
given a data table. In your analysis:

* Carefully address

1) Missing data: empty or null entries simulating incomplete information.

2) Bad values: clearly erroneous or placeholder entries (e.g., -1, 9999, TEST, #REF!, etc.).

3) Outliers: implausible extreme values that distort analysis (e.g., 220 breathing rate per minute).

4) Inconsistent formatting: variations in representing the same value (e.g., 22 1bs, 22 pounds,
weight = 22).

5) Inconsistent logic: cross-field contradictions violating common-sense logic (e.g., end time before
start time).

* Attempt to safely recover or correct flawed data when reasonable based on the existing data. If data is
irrecoverable or suspect, discard the row.

You will be working within a Python shell and can use the following commands to answer the question.

AVAILABLE COMMANDS:
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python:
docstring: Execute Python code within a persistent Python shell. The shell
maintains
state across executions, so variables and imports from previous runs remain
available.
When first using this command, the data table is provided as a global variable
named “df°, and “pandas® has already been imported as “pd’.
arguments:
- name: code
arg_type: str
description: The Python code to execute.
required: true
demonstration:
done:
docstring: Indicate that we arrived at the final answer and provide the answer.
Use this command only when you have arrived at the final answer.
arguments:
- name: answer
arg_type: str
description: The final answer to the question. Do not apply any formatting,

\ncommand: python\nkwargs:\n code: <arg value>\n"~

bolding,
or markup. If the question asks for a list of values, then the answer should
be a comma-separated list of values (e.g., '42, 43, 44')
required: true
demonstration: " "\ncommand: done\nkwargs:\n answer: <arg value>\n~ "~

RESPONSE_FORMAT:
Each response must include:
1) A DISCUSSION field — where you will methodically break down the reasoning process,
illustrating how you arrive at conclusions and decide what to do next.

2) A command field — properly formatted YAML within triple backticks and following the structure
from COMMANDS.

Important rules:

- Always include exactly one DISCUSSION and one command block.

- Ensure the command block is properly formatted YAML with proper indents and newlines (see the
example below).

For example, given a question asking for the average income. You might respond:

DISCUSSION

Let’s think step by step. We need to first find the average income of the population. We can do this by
summing up the income column and dividing by the number of rows.

T T yaml
command: "python
kwargs:
code: |-
income_avg = df['income'].sum() / len(df)

income_avg

) User:

Begin!

Data table (stored in a pandas dataframe named ‘df*):
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EXAMPLE TABLE

RideID,payment_type,lpep_pickup_datetime,lpep_dropoff_datetime,passenger_count,
trip_distance,tolls_amount,mta_tax,start_day_of_week,store_and_fwd_flag

239022,2.0,04/10/2021 11:11:55 AM,04/10/2021 11:18:14 AM,1.0,1.1,0.0,0.5,Saturday,N
926728,1.0,11/27/2021 01:13:13 PM,11/27/2021 01:21:26 PM,1. 0.0,0.5,Saturday,N
761139,1.0,10/06/2021 12:13:08 AM,10/06/2021 12:36:37 AM,1. ,0.0,0.5,Wednesday,N
701071,2.0,09/24/2021 05:03:11 PM,09/24/2021 05:33:50 PM,1. 0.0,0.5,Friday,N
700330,1.0,09/24/2021 12:32:02 PM,09/24/2021 01:01:23 PM,1.0, ,0.0,0.5,Friday,N
676804,1.0,09/13/2021 03:12:04 PM,09/13/2021 03:25:17 PM,17.0,2.23,0.0,0.0,Monday,N
245344,1.0,04/14/2021 06:00:15 PM,04/14/2021 06:07:14 PM,1.0,1.45,0.0,0.5,Wednesday,N
763937,1.0,10/07/2021 08:52:44 AM,10/07/2021 09:18:10 AM,1.0,2.38,0.0,0.5,Thursday,N
906875,1.0,11/19/2021 08:13:35 AM,11/19/2021 08:25:17 AM,32.0,1.3,0.0,0.5,Friday,N
452863,1.0,06/30/2021 07:48:41 AM,06/30/2021 07:58:07 AM,1.0,1.4,0.0,0.5,Wednesday,N
799361,2.0,10/21/2021 08:11:35 PM,10/21/2021 08:25:35 PM,1.0,2.7,0.0,0.5, Thursday,N
778926,1.0,10/13/2021 04:48:46 PM,10/13/2021 05:04:11 PM,1.0,1.94,0.0,0.5,Wednesday,N
701648,2.0,09/24/2021 09:41:56 PM,09/24/2021 09:46:04 PM,1.0,0.68,0.0,0.5,Friday,N
658773,1.0,09/03/2021 06:04:46 PM,09/03/2021 06:31:10 PM,1.0,6.81,6.55,0.5,Friday,N
1011851,1.0,12/16/2021 08:04:25 PM,12/16/2021 08:17:31 PM,1.0,2.61,6.55,0.5, Thursday,N
798988,1.0,10/21/2021 06:38:26 PM,10/21/2021 06:49:36 PM,2.0,1.9,0.0,0.5, Thursday,N

1041391,1.0,12/30/2021 09:26:36 PM,12/30/2021 09:46:14 PM,32.0,8.38 0,0.
150322,2.0,03/07/2021 01:46:05 PM,03/07/2021 01:58:56 PM,1.0,2.78,0.0,0.5,Sunday,N
1042470,2.0,12/31/2021 02:16:09 PM,12/31/2021 02:23:56 PM,1.0,1.1,0.0,0.5,Friday,N
320608,1.0,05/06/2021 04:00:07 PM,05/06/2021 04:13:59 PM,2.0,1.8,0.0,0.5,Thursday,N
101586,1.0,02/21/2021 11:54:04 AM,02/21/2021 11:59:48 AM,17.0,0.89,0.0,0.5, Sunday,N
802662,2.0,10/23/2021 08:09:51 AM,10/23/2021 08:21:26 AM,1.0,5.13,0.0,0.5,Saturday,N
536010,2.0,07/30/2021 08:24:30 PM,07/30/2021

5, Thursday,N

B
s

0.
0
0

All cells in the ‘df* are ‘object® data type, regardless of their appearance.
Question:

EXAMPLE QUESTION
How many total passengers were there from the trips in the dataset?

- J

C.1.1 Details for Table-tuned LMs

Initial experiments on TableGPT?2 on the code agent baseline revealed failure modes with respect to
instruction following. Thus to make instructions clearer, we add the the following text to the system
prompt for the code agent:

Table-tuned Code Agent System Prompt Postfix This is an iterative process where you write python
code, observe the shell outputs, and decided whether to run more code or be done with. You will return
one command at a time. Once you have arrived at the final answer, you will use the "done" command to
indicate that you have completed the task.

In addition, initial testing showed both StructLM and TableGPT?2 struggle at with output formatting.
Thus, we use a fuzzy match metric: an answer is correct if any ground truth answer appears as
a substring in the final LM output. For the code agent baseline, we treat LM responses with
““‘python. ..’ snippets as execution commands, and if no final output is parsed within the steps,
we return the last code output as the answer.

C.2 Additional Rebuttal Experiments

We conduct additional experiments as part of the rebuttal phase, occurring in July 2025. In partic-
ular, we evaluate gemini-2.5-flash (stable version) both with and without "thinking" enabled,
gemini-2.5-pro (stable version), GPT-4.1, and o4-mini.

To account for both model randomness and data sampling variability, we reran each model five times
with different random seeds. For each run, we generated bootstrap samples by subsampling 80% of
the data. We then pooled all bootstrap means across runs and reported the 95% confidence interval.
We do this all additional rebuttal experiments. We include these additional results in Appendix E.2.

In addition, to observe performance when not explicitly prompted with knowledge of perturbations
and perturbation types, we compare the original (direct prompting and code agent) prompts to naive
prompt without mentioning perturbations. We include these prompts below.
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Naive Direct Prompting Prompt

System prompt:

You are an expert-level data scientist. Your job is to answer a data analysis question in rigorous manner
given a data table.

Do NOT write or execute any code. Focus purely on logical reasoning and analytical judgment.

You must conclude with your most reasonable answer.

When you provide the final answer, please use the prefix "The answer is:" without any modification, and
provide the answer directly, with no formatting, no bolding, and no markup. For instance: "The answer
is: 42" or "The answer is: yes". If the question asks for a list of values, then the answer should be a
comma-separated list of values, without any formatting, no bolding, and no markup. For instance: "The
answer is: 42, 43, 44" or "The answer is: yes, no".

) User:

Data:

EXAMPLE TABLE

race_year_id,race,time,time_in_seconds,runner

68140 ,Millstone 100,26H 35M 25S,95725.0,VERHEUL Jasper

68140 ,Millstone 100,27H OM 29S5,97229.0,MOULDING JON

68140 ,Millstone 100,28H 49M 7S,103747.0,RICHARDSON Phill
68140 ,Millstone 100,30H 53M 37S,111217.0,DYSON Fiona

68140 ,Millstone 100,32H 46M 21S,117981.0,FRONTERAS Karen
68140 ,Millstone 100,32H 46M 40S,118000.0, THOMAS Leigh

68140 ,Millstone 100,33H 30M 1S,120601.0,SHORT Deborah

68140 ,Millstone 100,33H 33M 23S,120803.0,CROSSLEY Catharine
68140 ,Millstone 100,34H 54M 16S,125656.0,BUTCHER Kent

68140 ,Millstone 100,34H 59M 39S,125979.0,Hendry Bill

68140 ,Millstone 100,34H 59M 44S,125984.0,Barnard Andrew
68140 ,Millstone 100,35H 19M 525,127192.0,PAGE Mark

68140 ,Millstone 100,35H 34M 33S,128073.0,0 DONOGHUE Katie
71873 ,ElbrusWorldRace,29H 36M 14S,106574.0,ROSTOVTSEV Artem
71873 ,ElbrusWorldRace,33H 6M 455,119205.0,Yakimov Semyon
71873 ,ElbrusWorldRace ,36H 18M 2S5,130682.0,Bolomozhnov Maksim
71873 ,ElbrusWorldRace,38H 4M 32S,137072.0,KUPRYUKHIN Denis
71873 ,ElbrusWorldRace,38H 4M 32S,137072.0,MITUSOV Viktor
71873 ,ElbrusWorldRace,40H 2M 34S,144154.0,0GURTSOV Aleksandr

Based on the given table, answer the following question:

EXAMPLE QUESTION

In this dataset of ultra trail running race results, what is the average finishing time in minutes
across all rows in the dataset? Return your answer rounded to the nearest minute as an integer
using bankers rounding (round half to even). Examples: round(2.5) — 2, round(3.5) — 4,
round(4.3) — 4, round(4.7) — 5.

Naive Code Agent Prompt

System prompt:
SETTING:

You are an expert-level data scientist. Your job is to answer a data analysis question in rigorous manner
given a data table.

You will be working within a Python shell and can use the following commands to answer the question.

AVAILABLE COMMANDS:
python:
docstring: Execute Python code within a persistent Python shell. The shell
maintains
state across executions, so variables and imports from previous runs remain
available.

When first using this command, the data table is provided as a global variable
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named “df°, and “pandas® has already been imported as “pd~
arguments:
- name: code
arg_type: str
description: The Python code to execute.
required: true
demonstration:
done:
docstring: Indicate that we arrived at the final answer and provide the answer.
Use this command only when you have arrived at the final answer.
arguments:
- name: answer
arg_type: str
description: The final answer to the question. Do not apply any formatting,

\ncommand: python\nkwargs:\n code: <arg value>\n~

bolding,
or markup. If the question asks for a list of values, then the answer should
be a comma-separated list of values (e.g., '42, 43, 44')

required: true
demonstration:

\ncommand: done\nkwargs:\n answer: <arg value>\n~

RESPONSE_FORMAT:
Each response must include:
1) A DISCUSSION field — where you will methodically break down the reasoning process,
illustrating how you arrive at conclusions and decide what to do next.

2) A command field — properly formatted YAML within triple backticks and following the structure
from COMMANDS.

Important rules:

- Always include exactly one DISCUSSION and one command block.
- Ensure the command block is properly formatted YAML with proper indents and newlines (see the
example below).
For example, given a question asking for the average income. You might respond:

DISCUSSION

Let’s think step by step. We need to first find the average income of the population. We can do this by
summing up the income column and dividing by the number of rows.

T Tyaml
command: "python
kwargs:
code: |-
income_avg = df['income'].sum() / len(df)

income_avg

) User:

Begin!

Data table (stored in a pandas dataframe named ‘df*):
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EXAMPLE TABLE

RideID,payment_type,lpep_pickup_datetime,lpep_dropoff_datetime,passenger_count,
trip_distance,tolls_amount,mta_tax,start_day_of_week,store_and_fwd_flag

239022,2.0,04/10/2021 11:11:55 AM,04/10/2021 11:18:14 AM,1.0,1.1,0.0,0.5,Saturday,N
926728,1.0,11/27/2021 01:13:13 PM,11/27/2021 01:21:26 PM,1.0,1.77,0.0,0.5,Saturday,N
761139,1.0,10/06/2021 12:13:08 AM,10/06/2021 12:36:37 AM,1.0,4.59,0.0,0.5,Wednesday,N
701071,2.0,09/24/2021 05:03:11 PM,09/24/2021 05:33:50 PM,1.0,3.67,0.0,0.5,Friday,N
700330,1.0,09/24/2021 12:32:02 PM,09/24/2021 01:01:23 PM,1.0,6.43,0.0,0.5,Friday,N
676804,1.0,09/13/2021 03:12:04 PM,09/13/2021 03:25:17 PM,17.0,2.23,0.0,0.0,Monday,N
245344,1.0,04/14/2021 06:00:15 PM,04/14/2021 06:07:14 PM,1.0,1.45,0.0,0.5,Wednesday,N
763937,1.0,10/07/2021 08:52:44 AM,10/07/2021 09:18:10 AM,1.0,2.38,0.0,0.5, Thursday,N
906875,1.0,11/19/2021 08:13:35 AM,11/19/2021 08:25:17 AM,32.0,1.3,0.0,0.5,Friday,N
452863,1.0,06/30/2021 07:48:41 AM,06/30/2021 07:58:07 AM,1.0,1.4,0.0,0.5,Wednesday,N
799361,2.0,10/21/2021 08:11:35 PM,10/21/2021 08:25:35 PM,1.0,2.7,0.0,0.5, Thursday,N
778926,1.0,10/13/2021 04:48:46 PM,10/13/2021 05:04:11 PM,1.0,1.94,0.0,0.5,Wednesday,N
701648,2.0,09/24/2021 09:41:56 PM,09/24/2021 09:46:04 PM,1.0,0.68,0.0,0.5,Friday,N
658773,1.0,09/03/2021 06:04:46 PM,09/03/2021 06:31:10 PM,1.0,6.81,6.55,0.5,Friday,N
1011851,1.0,12/16/2021 08:04:25 PM,12/16/2021 08:17:31 PM,1.0,2.61,6.55,0.5, Thursday,N
798988,1.0,10/21/2021 06:38:26 PM,10/21/2021 06:49:36 PM,2.0,1.9,0.0,0.5, Thursday,N
1041391,1.0,12/30/2021 09:26:36 PM,12/30/2021 09:46:14 PM,32.0,8.38,0.0,0.5, Thursday,N
150322,2.0,03/07/2021 01:46:05 PM,03/07/2021 01:58:56 PM,1.0,2.78,0.0,0.5,Sunday,N
1042470,2.0,12/31/2021 02:16:09 PM,12/31/2021 02:23:56 PM,1.0,1.1,0.0,0.5,Friday,N

320608,1.0,05/06/2021 04:00:07 PM,05/06/2021 04:13:59 PM,2.0,1.8,0.
101586,1.0,02/21/2021 11:54:04 AM,02/21/2021 11:59:48 AM,17.0,0.89
802662,2.0,10/23/2021 08:09:51 AM,10/23/2021 08:21:26 AM,1.0,5.13,

.5, Thursday ,N
0.5, Sunday,N
,Saturday,N

OOO"
coo
o So-
m (S ]

536010,2.0,07/30/2021 08:24:30 PM,07/30/2021 08:36:58 PM,5.0,1.48, ,Friday,N
1014944,2.0,12/17/2021 11:21:29 PM,12/17/2021 11:28:04 PM,1.0,1.1, 5 ,Friday,N
683930,1.0,09/16/2021 10:55:54 PM,09/16/2021 11:21:57 PM,1.0,6.7,0. 0,0 5,Thursday N
776498,1.0,10/12/2021 05:46:33 PM,10/12/2021 06:01:26 PM,2.0,2.2,0.0,0.5,Tuesday,N

All cells in the ‘df* are ‘object‘ data type, regardless of their appearance.

Question:

EXAMPLE QUESTION

How many total passengers were there from the trips in the dataset?
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D Case Studies of Model Outputs

In this section, we present case studies of full traces from models using the direct prompting and code
agent baselines on RADAR-T, highlighting qualitative patterns of both success and failure on RADAR.

D.1 Direct Prompting Baseline

Failure Case 1: General-purpose Model Cannot Perform the Entire Calculation. The following
example shows GPT-4.1 on the nyc-green-taxis-rates for the clean data table. The 8K token
table contains 171 rows. Due to the extensive computation required, the model is unable to perform
an exact calculation and instead resorts to an educated guess. This highlights a clear gap in the
computational capabilities of general-purpose models, which limits their ability to succeed on RADAR.

Direct Prompting Failure Example: GPT-4.1 — Clean Table

System prompt:
{{ code_agent_system_prompt }}

® User:
Begin!
Data table (stored in a pandas dataframe named ‘df*):

NYC-GREEN-TAXIS-RATES IN RADAR-T

RideID, fare_amount,extra,mta_tax,improvement_surcharge,tolls_amount,tip_amount,
congestion_surcharge,total_amount,trip_distance
674307,15.0,0.0,0.5,0.3,0.0,0.0,0.0,15.8,3.88

972435,8.0,0.0,0.5,0.3,0.0,1.0,0.0,9.8,1.53
3491,4.0,0.0,0.5,0.3,0.0,0.0,0.0,4.8,0.7
347559,53.5,0.5,0.5,0.3,0.0,0.0,0.0,54.8,16.79
790539,7.0,0.0,0.5,0.3,0.0,0.0,0.0,7.8,1.31
488047,10.0,0.0,0.0,0.3,0.0,2.06,0.0,12.36,0.7
754566,8.5,0.5,0.5,0.3,0.0,0.0,2.75,12.55,2.01
1492,13.0,0.0,0.5,0.3,0.0,0.0,0.0,13.8,2.23
987303,7.5,0.5,0.5,0.3,0.0,0.0,0.0,8.8,1.79
92108,12.5,0.0,0.5,0.3,0.0,2.65,0.0,15.95,2.5
807589,9.5,0.0,0.5,0.3,0.0,0.0,0.0,10.3,1.78
711031,9.5,0.0,0.5,0.3,0.0,2.06,0.0,12.36,1.64
143246,13.5,0.0,0.5,0.3,0.0,0.0,2.75,17.05,3.17
661900,10.5,0.5,0.5,0.3,0.0,2.36,0.0,14.16,2.24
400335,10.5,0.0,0.5,0.3,0.0,1.13,0.0,12.43,1.67
171290,21.0,0.0,0.5,0.3,0.0,0.0,0.0,21.8,6.79
337233,33.0,0.0,0.5,0.3,0.0,8.45,0.0,42.25,11.13
751249,27.5,1.0,0.5,0.3,0.0,0.0,0.0,29.3,2.15
527855,7.0,0.0,0.5,0.3,0.0,0.0,0.0,7.8,1.13
84135,19.5,2.75,0.5,0.3,0.0,6.92,2.75,32.72,5.7
360347,5.0,0.0,0.5,0.3,0.0,1.45,0.0,7.25,0.49
712703,15.5,0.5,0.5,0.3,0.0,3.2,0.0,20.0,4.24
436044,10.0,0.5,0.5,0.3,0.0,2.0,0.0,13.3,2.16
87030,8.0,0.0,0.5,0.3,0.0,0.0,0.0,8.8,1.1
761837,10.0,0.0,0.5,0.3,0.0,2.71,2.75,16.26,1.97
355368,19.5,0.0,0.5,0.3,0.0,0.0,0.0,20.3,2.28
428744,4.5,1.0,0.5,0.3,0.0,2.0,0.0,8.3,0.5
668057,11.5,0.0,0.5,0.3,0.0,0.0,0.0,12.3,2.5
1006770,9.5,0.0,0.5,0.3,0.0,2.06,0.0,12.36,1.81
313620,7.0,0.0,0.5,0.3,0.0,0.0,0.0,7.8,1.22
1008141,7.5,0.0,0.5,0.3,0.0,2.49,0.0,10.79,1.01
109464,10.5,1.0,0.5,0.3,0.0,2.46,0.0,14.76,1.58
890390,6.5,1.0,0.5,0.3,0.0,1.7,0.0,10.0,0.71
356763,6.5,0.0,0.5,0.3,0.0,0.0,0.0,7.3,1.29
345981,8.0,0.0,0.5,0.3,0.0,1.76,0.0,10.56,1.87
896055,8.5,0.5,0.5,0.3,0.0,0.0,0.0,9.8,1.92
236323,44.0,1.0,0.5,0.3,0.0,0.0,0.0,45.8,12.72
,2.75,0.5,0.3,0.0,0.0,2.75,17.8,1.9

Based on the given table, answer the following question:

What is the average total amount per mile (total_amount / trip_distance)? Total amount is
calculated from the other columns. Return your answer rounded to 2 decimal places.
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B Assistant:
To answer the question, I need to calculate the average of (" total_amount” / " trip_distance" ) for all
valid rows, where " total_amount" is the sum of " fare_amount”, “extra’, *mta_tax",
" improvement_surcharge”, " tolls_amount", " tip_amount", and " congestion_surcharge" .
Step-by-step reasoning:

1. **Missing Data**: I scan the table for any empty or null entries. There are no missing values
in the provided data.

2. **Bad Values**: I look for placeholder or clearly erroneous values (e.g., -1, 9999, TEST,
#REF!). There are no such values in the data.

3. **Qutliers**: I check for implausible values. The " trip_distance" ranges from 0.26 to 18.28,
which is plausible for NYC taxi rides. The "total_amount™ ranges from 4.3 to 73.8, which is
also plausible. Very small " trip_distance” values could inflate the per-mile cost. For example,
the smallest value, 0.26 (RideID 970305), yields a total of 4.3, which is still plausible. No
values are discarded.

4. **Inconsistent Formatting**: All values are numeric and consistently formatted.

5. **Inconsistent Logic**: T check if *total_amount™ matches the sum of its components.
Example 1 (RideID 674307): 15.0 + 0.0 + 0.5 + 0.3 + 0.0 + 0.0 + 0.0 = 15.8 — matches
Example 2 (RideID 972435): 8.0 + 0.0 + 0.5 + 0.3 + 0.0 + 1.0 + 0.0 = 9.8 — matches
Example 3 (RideID 488047): 10.0 + 0.0 + 0.0 + 0.3 + 0.0 + 2.06 + 0.0 = 12.36 — matches
I check a few more, and all values match.

Next, I compute " total_amount” / " trip_distance” for each row, ensuring no zero distances
(minimum is 0.26).
Sample per-row calculations:
* 15.8/3.88 =4.07
* 9.8/1.53=0641
* 48/0.7=6.86
* 54.8/16.79 =3.26
* 7.8/1.31=5095
* 12.36/0.7=17.66
* 12.55/2.01 =6.25
* 13.8/223=6.19
* 8.8/1.79=492
* 15.95/2.5=6.38
These range mostly between 4 and 7, with outliers expected for very short trips.

Estimated average from sample: (4.07 + 6.41 + 6.86 + 3.26 + 595 + 17.66 + 6.25 + 6.19 + 4.92 +
6.38)/10=67.95/10=6.80

Considering the overall distribution and influence of high per-mile values on short trips, the final
answer is:

The answer is: 7.13
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Failure Case 2: Overlooking Inconsistencies Across Columns. This example highlights a fail-
ure of 03-mini on ultra-trail-races-morning-finishers, where the table contains logical
inconsistencies. In particular, some rows with valid morning finish times are incorrectly offset by an
additional 12 hours. For instance, for COLLINS Gavin (race_year_id 70168), there is a logically
incorrect finish_time value that is offset by 12 hours, reporting 21:31:15+1 instead of a morning
time. While the time and time_in_seconds columns correctly reflect a duration of 91,875 seconds
(25h 31m 15s), computing from the erroneous finish_time yields 135,075 seconds (37h 31m 15s).

Despite the discrepancy in finish_time, the time and time_in_seconds columns consistently
reflect the correct finishing time. A model with stronger data consistency checks should detect such
misalignments. However, 03-mini proceeds with its standard computation pipeline, failing to flag or
adjust for these inconsistencies—ultimately omitting correct answers. This underscores a limitation
in the model’s data-awareness, especially in tasks requiring cross-column validation.

Direct Prompting Failure Example: 03-mini (high) — Table with Inconsistent Logic

System prompt:
{{ code_agent_system_prompt }}

® User:

Begin!
Data table (stored in a pandas dataframe named ‘df*):

ULTRA-TRAIL-RACES-MORNING-FINISHERS IN RADAR-T

Data:

Data table (stored in a pandas dataframe named “df’):

race_year_id,race,runner,date,start_time,finish_time,time,time_in_seconds,event,
elevation_loss

68140,Millstone 100,VERHEUL Jasper,2021-09-03,19:00:00,21:35:25+1,26H 35M 2585,95725.0,
Peak District Ultras, -4520

68140,Millstone 100,MOULDING JON,2021-09-03,19:00:00,22:00:29+1,27H OM 29S5,97229.0,Peak
District Ultras, -4520

68140,Millstone 100,RICHARDSON Phill,2021-09-03,19:00:00,23:49:07+1,28H 49M 75,103747.0,
Peak District Ultras, -4520

68140,Millstone 100,DYSON Fiona,2021-09-03,19:00:00,01:53:37+2,30H 53M 37S,111217.0,Peak
District Ultras, -4520

70168 ,Wendover Woods 100,BETOURET Sebastien,2021-07-09,08:00:00,05:53:51+1,21H 53M 5185,
78831.0,Centurion Wendover Woods 100, -6600

70168 ,Wendover Woods 100,SAWYER Tom,2021-07-09,08:00:00,07:45:46+1,23H 45M 46S,85546.0,
Centurion Wendover Woods 100, -6600

70168 ,Wendover Woods 100,WARREN James,2021-07-09,08:00:00,09:20:26+1,25H 20M 265,91226.0
,Centurion Wendover Woods 100, -6600

70168 ,Wendover Woods 100,COLLINS Gavin,2021-07-09,08:00:00,21:31:15+1,25H 31M 158,
91875.0,Centurion Wendover Woods 100, -6600

70168, Wendover Woods 100,Mckillop Andrew,2021-07-09,08:00:00,09:55:42+1,25H 556M 428,
93342.0,Centurion Wendover Woods 100, -6600

Based on the given table, answer the following question:

Using the dataset of ultra trail running race results, how many participants had a finish time
between 00:00:00 (midnight, inclusive) and 12:00:00 PM (noon, exclusive)?

B Assistant:
Analyzing the " finish_time" column, we must consider only the clock-time portion (ignoring the
“+n” day offsets) and count those rows where the time is at or after 00:00:00 and strictly before
12:00:00. For example, a " finish_time" of “01:53:37+2” qualifies because 01:53:37 is after
midnight and before noon, while “12:18:02+1” does not qualify since 12:18:02 is after noon.

Going through the rows by race:

1. For the Millstone 100 race (" race_year_id 68140") there are 13 rows. The first three finish
times (“21:35:25+17, “22:00:29+17, “23:49:07+1”) are after noon, while the remaining 10
rows have finish times between 01:53:37 and 06:34:33 which all lie in the proper window. (10
participants)
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2. For the ElbrusWorldRace (" race_year_id 71873") there are 9 rows. Only the first two finish
times (“05:36:14+1” and “09:06:45+1") are in the interval; the rest have times starting at
12:18:02 and later. (2 participants)
3. For the Wendover Woods 100 (" race_year_id 70168 ) there are 18 rows. The finish times that
fall before noon are “05:53:51+17, “07:45:46+1”, “09:20:26+17, “09:55:42+1”, “10:12:12+1”,
“10:43:37+17, “11:05:27+17, “11:28:00+1”, and “11:33:35+1”. That gives 9 participants.
4. For the “160 Km (100 Mile)” race (" race_year_id 67118") there are 2 rows and both finish
times (“03:07:05+2” and “08:51:15+2”) are in the range. (2 participants)
5. For the 160K race (" race_year_id 67402") there are 45 rows. From these, the " finish_times"
before noon are:
“SIMPANEN Juuso” at “04:44:11+17,
“Kaufmann Gerhard” at “07:07:22+1”,
“SODERLUND Emil” at “08:54:59+1”,
“PRZYBYLSKI LUKASZ” at “09:28:17+1”,
“VAISANEN Matti” at “10:27:43+1”,
“LEPPANEN Simo” at “11:28:13+1”, and
“HALME Kiristo” at “11:52:01+1".

That adds 7 participants.

Summing the qualifying counts from all groups gives:
10 (Millstone 100) + 2 (ElbrusWorldRace) + 9 (Wendover Woods 100) + 2 (160 Km (100 Mile)) +
7 (160K) = 30.

The answer is: 30
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Success Case: Extended Thinking with Reasoning Model. Here is an example where Gemini 2.5
Pro successfully solves the actor-age-gaps task on the table with outliers using direct prompting.
As reflected in its thinking token output, a substantial number of tokens are allocated to numerical
computation, allowing the model to compute the correct answer. Notably, the model approaches the
task by systematically analyzing the table row by row. Consequently, one can expect the number of
thinking tokens used to increase linearly with the number of rows in the table.

Direct Prompting Success Example: Gemini 2.5 Pro — Table with Outliers

System prompt:
{{ code_agent_system_prompt }}

User:
Begin!

Data table (stored in a pandas dataframe named ‘df*):

ACTOR-AGE-GAPS IN RADAR-T

movie_id,movie_name,actor_1_name,actor_2_name,character_1_gender,character_2_gender,
release_year,age_difference,actor_1_birth_year,actor_2_birth_year

MO729,A Most Violent Year,Jessica Chastain,Oscar Isaac,woman,man,2014,2,1977,1979

M0234,My Life,Michael Keaton,Nicole Kidman,man,woman, 1993,16,1951,1967

M0103,0ctopussy,Roger Moore,Kristina Wayborn,man,woman,1983,23,1927,1950

M0263,Serena,Bradley Cooper,Jennifer Lawrence,man,woman,2014,15,1975,1990

M0658,La Dolce Vita,Marcello Mastroianni,Yvonne Furneaux,man,woman, 1960,4,1924,1928

M0155,Training Day,Denzel Washington,Eva Mendes,man,woman,b2001,20,1954,1974

M0037,Arbitrage,Susan Sarandon,Richard Gere,woman,man,2012,3,1946,1949

M0378,The Great Gatsby,Robert Redford,Mia Farrow,man,woman,1974,9,1936,1945

M0628,Tag, Jeremy Renner,Leslie Bibb,man,woman,2018,3,1971,1974

M0492,Proof of Life,David Morse,Meg Ryan,man,woman,2000,8,1953,1961

M0308,Red Notice,Dwayne Johnson,Gal Gadot,man,woman,2021,13,1972,1985

M0278 ,Fifty Shades of Black,Marlon Wayans,Kali Hawk,man,woman,2016,14,1972,1986

M0128,Licence to Kill,Timothy Dalton,Talisa Soto,man,woman,1989,21,1946,1967

M0126,Just Go with It,Adam Sandler,Jennifer Aniston,man,woman,2011,3,1966,1969

M0029,A View to a Kill,Roger Moore,Grace Jones,man,woman,1985,21,1927,1948

M0803,Rumble Fish,Matt Dillon,Diane Lane,man,woman,1983,1,1964,1965

M0612,Elizabethtown,Orlando Bloom,Kirsten Dunst,man,woman,2005,5,1977,1982

MO745,Friends with Benefits,Justin Timberlake,Mila Kunis,man,woman,2011,2,1981,1983

M0734,Anger Management,Marisa Tomei,Adam Sandler,woman,man,2003,2,1964,1966

M0545, "Me, Myself & Irene',Jim Carrey,Renee Zellweger,man,woman,b2000,7,1962,1969

M0724,The Vow,Scott Speedman,Rachel McAdams,man,woman,2012,3,1975,1978

M0589,The Age of Adaline,Blake Lively,Anthony Ingruber,woman,man,2015,3,1987,1990

M0067 ,The Color of Money,Paul Newman,Helen Shaver,man,woman,1986,26,1925,1951

M0456 ,The Good Shepherd,Martina Gedeck,Matt Damon,woman,man,2006,9,1961,1970

M0041,The Departed,Matt Damon,Vera Farmiga,man,woman,2006,3,1970,1973

M0301,Feeling Minnesota,Keanu Reeves,Cameron Diaz,man,woman,1996,8,1964,1972

M0361,Indiana Jones and the Temple of Doom,Harrison Ford,Kate Capshaw,man,woman,1984,11,
1942,1953

M0386,Year One,Jack Black,June Diane Raphael,man,woman,2009,11,1969,1980

M0269,The Reader,Kate Winslet,David Kross,woman,man,2008,15,1975,1990

M0659,Leap Year,Adam Scott,Amy Adams,man,woman,2010,1,1973,1974

M0416 ,Sweet Home Alabama,Patrick Dempsey,Reese Witherspoon,man,woman,2002,10,1966,1976

M0390,Big Daddy,Jon Stewart,Leslie Mann,man,woman,1999,10,1962,1972

M0046,Crazy Heart,Jeff Bridges,Maggie Gyllenhaal,man,woman,2009,28,1949,1977

M0295,Aloha,Bradley Cooper,Emma Stone,man,woman,2015,13,1975,1988

M0418,The Aviator,Kate Beckinsale,Leonardo DiCaprio,woman,man,2004,1,1973,1974

M0143,Killer Joe,Matthew McConaughey,Juno Temple,man,woman,2011,20,1969,1989

Based on the given table, answer the following question:

In this dataset of movie couple real-world age gaps, ages are based on the birth year of the actor
and the release year of the movie. What is the average absolute age difference between the male
and female actor when the male actor is at least 15 years ( >= 15) older than the female actor?
Return the answer rounded to the nearest 2 decimal places.

B Assistant (Thinking):

The user wants to calculate the average absolute age difference between male
and female actors for a specific subset of movies.

The subset is defined by movies where the male actor is at least 15 years
older than the female actor.
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The

age difference is already provided in the “age_difference”™ column. I need
to determine which actor is older based on the “character_1_gender ",
character_2_gender”~, “actor_1_birth_year”, and “actor_2_birth_year"
columns.

Here's a plan:

o

Let
The
The

Let

**Understand the data**: Review the columns and their meanings.

* "movie_id " : Unique identifier for the movie.

* "movie_name " : Name of the movie.

* “actor_1_name”, “actor_2_name : Names of the two lead actors.

* “character_1_gender ~, “character_2_gender ": Gender of the characters
played by actor_1 and actor_2.

* “release_year  : Year the movie was released.

* “age_difference : Absolute difference in birth years between actor_1
and actor_2.

* “actor_1_birth_year , “actor_2_birth_year : Birth years of actor_1 and

actor_2.

**xData Cleaning and Validation*x*:

* **Missing Datax**: Check for empty or null values in relevant columns
(‘character_l_gender‘, “character_2_gender ", “release_year ",
age_difference™, “actor_1_birth_year ", ‘actor_2_birth_year‘).

* **Bad Values**: Check for placeholder or erroneous values in these
columns. Birth years and release year should be numeric. Genders
should be 'man' or 'woman'. “age_difference ™ should be non-negative.

* **0utliersx**:

* “age_difference : The question specifies a condition based on this
, but I should look for extremely large or small (negative, if not
already handled) values that might indicate errors.

* “actor_1_birth_year”, “actor_2_birth_year ™, “release_year " : Check
for implausible years (e.g., year 0, future years for birth if
release year is past).

* **Inconsistent Formattingx**:
* Gender: Ensure 'man' and 'woman' are consistently used.
* Years: Ensure they are all 4-digit numbers.
* **Inconsistent Logic**:
* “age_difference”™ vs. “actor_1_birth_year”~ and “actor_2_birth_year"

Verify that “age_difference  is indeed “abs(actor_1_birth_year -
actor_2_birth_year) .
* Actor's age at release: "release_year - actor_birth_year ™ should
be a reasonable age for an actor (e.g., > 10, < 100).

**Filtering*x*:

* Identify the male actor and the female actor in each pair.
* Calculate the age of the male actor at release:
male_actor_age_at_release = release_year - male_actor_birth_year .
* Calculate the age of the female actor at release:
female_actor_age_at_release = release_year - female_actor_birth_year ™.
* The question states: "male actor is at least 15 years ( >= 15) older
than the female actor". This refers to their actual ages, not just
birth year difference.
* So, “(release_year - male_actor_birth_year) - (release_year -
female_actor_birth_year) >= 157,
* This simplifies to “female_actor_birth_year -
male_actor_birth_year >= 15°.
* This means the female actor was born at least 15 years *after* the
male actor.
* Or, "male_actor_birth_year <= female_actor_birth_year - 15°.

**Calculation*x*:

* For the filtered rows, the “age_difference ™ column already represents
the absolute difference in birth years. Since the filter ensures the
male actor is older, this “age_difference ™ is “female_actor_birth_year

- male_actor_birth_year" (if male is actor 1 and older) or °
male_actor_birth_year - female_actor_birth_year™ (if male is actor 1
and younger - wait, this is confusing).

s re-evaluate the "age difference' context.

column “age_difference”™ is ‘abs(actor_l_birth_year - actor_2_birth_year)‘.
question asks for "average absolute age difference between the male and
female actor". This is exactly what “age_difference ™ represents for each

pair *if* one is male and one is female.

s refine the filtering condition: male actor is at least 15 years ( >=
15) older than the female actor

This means:

“Age_Male_Actor - Age_Female_Actor >= 157

“(Release_Year - Birth_Year_Male) - (Release_Year - Birth_Year_Female) >= 15°
"Release_Year - Birth_Year_Male - Release_Year + Birth_Year_Female >= 15°
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"Birth_Year_Female - Birth_Year_Male >= 15°

So, we need to:
a. Identify which actor is male and which is female for each row.

b. Find "Birth_Year_Male ™ and “Birth_Year_Female ~.

c. Filter rows where "Birth_Year_Female - Birth_Year_Male >= 15°.

d. For these filtered rows, take the “age_difference ™ value (which is ~abs
(Birth_Year_Actorl - Birth_Year_Actor2) ). This is the value we need

to average.
Let's go through the data validation and cleaning process meticulously.
Columns: “movie_id, movie_name, actor_1_name, actor_2_name, character_1_gender
, character_2_gender, release_year, age_difference, actor_1_birth_year,

actor_2_birth_year "

**Step 1: Initial Data Check and Parsingx**

* All columns seem present in each row.

* “movie_name can have commas (e.g., Me, Myself & Irene', Six Days, Seven
Nights", "I, Tonya"). This is handled by CSV parsing; the data is already
provided as a table.

* Numeric columns: “release_year , “age_difference”, “actor_1_birth_year ™, ~

actor_2_birth_year ~.

* String columns: "movie_id~, “movie_name”, “actor_1_name , “actor_2_name",

“character_1_gender ", "“character_2_gender ".

**xStep 2: Detailed Data Validation*x*

Let's examine each row for issues.

*xRow by Row Analysis (Spot Checks and then Systematic Checks):*x*

* **Missing Data**: Assume no empty strings are truly missing data for now,
unless they lead to calculation errors. Visually scan for "null", "NA", or

empty cells if this were raw text. The provided format seems to have
values for all key fields.

&3 **Bad Valuesx**:
* “character_1_gender ~, “character_2_gender ~: Should be man or woman
* Years: Should be integers.
* “age_difference : Should be non-negative integer.
* *x0utliersx**:
* “age_difference : MO159 (An American in Paris) has “age_difference =

1057 . Actor 1 (Gene Kelly, 1912), Actor 2 (Leslie Caron, 1931). ~1931
- 1912 = 19°. So, “age_difference™ of 105 is an error. It should be ~
abs (1912 - 1931) = 19°.

* M0217 (Rock of Ages) has “age_difference = 102 . Actor 1 (Tom Cruise,
1962), Actor 2 (Malin Akerman, 1978). ~1978 - 1962 = 16°. So,
age_difference ™ of 102 is an error. It should be “abs(1962 - 1978) =
16° .

* M0096 (Surrogates) has “age_difference = 110 . Actor 1 (Bruce Willis,
1955), Actor 2 (Rosamund Pike, 1979). ~1979 - 1955 = 24°. So, °
age_difference”~ of 110 is an error. It should be “abs (1955 - 1979) =
24" .

* M0192 (Runaway Bride) has “age_difference = 104" . Actor 1 (Richard
Gere, 1949), Actor 2 (Julia Roberts, 1967). ~1967 - 1949 = 18 . So,
age_difference”~ of 104 is an error. It should be ~abs (1949 - 1967) =
18°.

* M0216 (Raging Bull) has “age_difference = 103°. Actor 1 (Robert De
Niro, 1943), Actor 2 (Cathy Moriarty, 1960). ~1960 - 1943 = 17°. So,
age_difference ™ of 103 is an error. It should be “abs(1943 - 1960) =

17°.
* **Inconsistent Formattingx**:
* Gender values: man ', woman'. Looks consistent.
* Years: Seem to be 4-digit integers.
* **Inconsistent Logic*x*:
* “age_difference”™ vs. birth years: For each row, “age_difference”

should equal “abs(actor_l_birth_year - actor_2_birth_year)‘. We 've
already found cases where this is not true (the outliers above). These
need to be corrected. For these rows, I will re-calculate
age_difference " .
* Actor ages at release: “release_year - birth_year . Should be positive
and reasonable.
* M0159: Gene Kelly (1912) in 1951 -> age 39. Leslie Caron (1931) in
1951 -> age 20. Seems OK.
* Duplicate "movie_id’ s:
* M0176 (Thunderball) appears twice.
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* Row 1: Roger Moore, Lois Chiles (this is M0094 Moonraker
actors, not Thunderball). Ah, the “movie_id~ is MO0176, but
actor_1_name is Sean Connery for Thunderball.

* M0176 , Thunderball,Sean Connery,Luciana Paluzzi,man,woman, 1965,
7,1930,1937 -> “abs(1930-1937)=7". Correct.

* M0176 ,Thunderball,Adolfo Celi,Claudine Auger,man,woman, 1965,19
,1922,1941 -> “abs(1922-1941)=19°. Correct. These are
different actor pairs for the same movie. This is acceptable
as they represent different "couples

* M0223 (The Girl on the Train) appears twice.

* Row 1: Justin Theroux, Haley Bennett, 2016, 17, 1971, 1988 ->
Tabs (1971-1988)=17". Correct.

* Row 2: Justin Theroux, Rebecca Ferguson, 2016, 12, 1971, 1983
-> “abs(1971-1983)=12". Correct. Different pairs.

* M0031 (For Your Eyes Only) appears twice.

* Row 1: Chaim Topol, Cassandra Harris, 1981, 13, 1935, 1948 ->
“abs (1935-1948)=13". Correct.

* Row 2: Roger Moore, Carole Bouquet, 1981, 30, 1927, 1957 -> ~
abs (1927-1957)=30". Correct. Different pairs.

* M0011 (Indiana Jones and the Last Crusade) appears twice.

* Row 1: Harrison Ford, Alison Doody, 1989, 24, 1942, 1966 -> ~
abs (1942-1966)=24". Correct.

* Row 2: Sean Connery, Alison Doody, 1989, 36, 1930, 1966 -> ~
abs (1930-1966)=36". Correct. Different pairs.

* M0367 (Pride & Prejudice) appears twice.

* Row 1: Rosamund Pike, Simon Woods, 2005, 1, 1979, 1980 -> "abs
(1979-1980)=1". Correct.

* Row 2: Matthew Macfadyen, Keira Knightley, 2005, 11, 1974,
1985 -> “abs(1974-1985)=11". Correct. Different pairs.

* M0507 (A Walk on the Moon) appears twice.

* Row 1: Viggo Mortensen, Diane Lane, 1999, 7, 1958, 1965 -> ~
abs (1958-1965)=7". Correct.

* Row 2: Diane Lane, Liev Schreiber, 1999, 2, 1965, 1967 -> ~abs
(1965-1967)=2". Correct. Different pairs.

* M0488 (P.S. I Love You) appears twice.

* Row 1: Gerard Butler, Hilary Swank, 2007, 5, 1969, 1974 -> ~
abs (1969-1974)=5". Correct.

* Row 2: Jeffrey Dean Morgan, Hilary Swank, 2007, 8, 1966, 1974
-> “abs (1966-1974)=8". Correct. Different pairs.

* M0456 (The Good Shepherd) appears twice.

* Row 1: Martina Gedeck, Matt Damon, 2006, 9, 1961, 1970 -> ~abs
(1961-1970)=9°. Correct.

* Row 2: Matt Damon, Angelina Jolie, 2006, 5, 1970, 1975 -> “abs
(1970-1975)=5". Correct. Different pairs.

* M0126 (Just Go with It) appears twice.

* Row 1: Adam Sandler, Jennifer Aniston, 2011, 3, 1966, 1969 ->
“abs (1966-1969)=3". Correct.

* Row 2: Adam Sandler, Brooklyn Decker, 2011, 21, 1966, 1987 ->
Tabs (1966-1987)=21". Correct. Different pairs.

* M0656 (Juno) appears twice.

* Row 1: Jason Bateman, Jennifer Garner, 2007, 3, 1969, 1972 ->
“abs (1969-1972)=3". Correct.

* Row 2: J.K. Simmons, Allison Janney, 2007, 4, 1955, 1959 -> ~
abs (19556-1959)=4". Correct. Different pairs.

* M0041 (The Departed) appears twice.

* Row 1: Matt Damon, Vera Farmiga, 2006, 3, 1970, 1973 -> “abs
(1970-1973)=3". Correct.

* Row 2: Jack Nicholson, Kristen Dalton, 2006, 29, 1937, 1966 ->

Tabs (1937-1966) =29 . Correct. Different pairs.

* Gender combinations: The question is about "male and female actor'. We
need to filter out pairs that are not man/woman.

* M0469 : Blue Is The Warmest Color", Lea Seydoux, Adele
Exarchopoulos, woman, woman. This row should be excluded from the
analysis of male-female actor pairs.

* M0621 : Monster'", Charlize Theron, Christina Ricci, woman, woman.
This row should also be excluded.

Are there any man/man pairs? A quick scan suggests most are man/woman
or woman/man. I will explicitly filter for one 'man' and one
woman

**xData Correction and Preparation Table:x*

I will iterate through each row, validate, correct “age_difference ™ if needed,
and determine “Birth_Year_Male~, “Birth_Year_Female .

Corrected “age_difference ™ values:
* M0159: “age_difference”™ from 105 to “abs (1912 - 1931) = 19°.
* M0217: “age_difference”™ from 102 to “abs (1962 - 1978) 16°.

42




* M0096: “age_difference ™ from 110 to ~abs (1955 - 1979) = 24°.
* M0192: “age_difference”™ from 104 to “abs (1949 - 1967) = 18°.
* M0216: ~age_difference”™ from 103 to “abs (1943 - 1960) = 17" .

Let's process each row:

For each row:

1. Check if “character_1_gender ~ and “character_2_gender  are one man and
one 'woman'. If not, discard the row. (e.g., M0469, M0621).

2. Identify "male_birth_year”~ and “female_birth_year .

* If “character_1_gender ™ is man and “character_2_gender  is woman
"male_birth_year = actor_1_birth_year"
“female_birth_year = actor_2_birth_year"
* If “character_1_gender~ is woman and “character_2_gender  is man
“male_birth_year = actor_2_birth_year"
“female_birth_year = actor_1_birth_year"”
&o Verify “age_difference”™ column. It should be ‘abs(actor_l_birth_year -
actor_2_birth_year)“. If not, correct it. I've identified 5 such rows; for
these, I will use the re-calculated “age_difference”™. For others, I
assume the provided “age_difference” is correct if it matches ~abs(
actor_1_birth_year - actor_2_birth_year) . Let's re-verify all of them as
I go.

The problem states "In this dataset of movie couple real-world age gaps,
ages are based on the birth year of the actor and the release year of
the movie." and then provides “age_difference”. It's safer to re-
calculate “age_difference” for all rows as ~“abs(actor_1_birth_year -
actor_2_birth_year)~ to ensure consistency, especially since errors
were found. This re-calculated value is the one to average.

Let's call the re-calculated absolute birth year difference
corrected_age_difference ~.

4. Apply the filter: “female_birth_year - male_birth_year >= 15°. This means
the male actor is older by at least 15 years (his birth year is smaller).

B If the row passes the filter, add its “corrected_age_difference™ to a list
for averaging.

Let's make a table for processing (subset of columns):
“movie_id, cl_gender, c2_gender, al_byear, a2_byear, original_ad, corrected_ad
, male_byear, female_byear, female_minus_male_byear_diff"

1. M0729: woman, man, 1977, 1979. “corrected_ad = abs(1977-1979) = 2 . (
Matches original_ad)

“male_byear = 19797, ~female_byear = 1977 .
“female_minus_male_byear_diff = 1977 - 1979 = -2 . (Male is younger). Not
>= 15.

2. M0234: man, woman, 1951, 1967. “corrected_ad = abs(1951-1967) = 16°. (

Matches)

"male_byear = 1951°, ~female_byear = 1967 .

“female_minus_male_byear_diff = 1967 - 1951 = 16°. This is >= 15. Add 16
to list.

3. MO0103: man, woman, 1927, 1950. “corrected_ad = abs (1927-1950) = 23°. (

Matches)

"male_byear = 1927°, “female_byear = 1950°.

“female_minus_male_byear_diff = 1950 - 1927 = 23°. This is >= 15. Add 23
to list.

4. M0263: man, woman, 1975, 1990. ~“corrected_ad = abs(1975-1990) = 15°. (

Matches)

"male_byear = 19757, “female_byear = 1990°.

“female_minus_male_byear_diff = 1990 - 1975 = 15°. This is >= 15. Add 15
to list.

5. M0658: man, woman, 1924, 1928. “corrected_ad = abs(1924-1928) = 4°. (
Matches)
"male_byear = 1924°, “~female_byear = 1928°.
“female_minus_male_byear_diff = 1928 - 1924 = 4°. Not >= 15.

6. M0155: man, woman, 1954, 1974. “corrected_ad = abs(1954-1974) = 20°. (

Matches)

"male_byear = 19547, “~female_byear = 1974°.

“female_minus_male_byear_diff = 1974 - 1954 = 20°. This is >= 15. Add 20
to list.

7. MO0O037: woman, man, 1946, 1949. “corrected_ad = abs(1946-1949) = 3. (

Matches)
"male_byear = 1949°, “female_byear = 1946°.
“female_minus_male_byear_diff = 1946 - 1949 = -3°. Not >= 15.
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This process needs to be applied to all rows.

Let's re-evaluate the "age_difference" column. The problem states: "In this
dataset of movie couple real-world age gaps, ages are based on the birth
year of the actor and the release year of the movie." and then refers to
the “age_difference”™ column.

The question asks for "the average absolute age difference". This strongly
suggests using the values from the “age_difference ™ column, after
correcting the identified outliers.

If “age_difference ™ is generally “abs(actor_1_birth_year - actor_2_birth_year)
", then my correction for outliers is good. For the other rows, if ~
age_difference ™ column matches this calculation, I can use it. If it doesn

t, I should use the calculated one. To be safe, I will always use “abs (
actor_1_birth_year - actor_2_birth_year)" as the true absolute age
difference for averaging.

Let's list the rows that satisfy the criteria: “female_birth_year -
male_birth_year >= 15°7.
And the “corrected_age_difference ™ for these rows.

**Data Processing Loop (Conceptual):*x*
“valid_age_differences_for_averaging = []°

For each row in the dataset:
1. Parse “actor_1_birth_year” (alby), “actor_2_birth_year” (a2by),
character_1_gender ~ (clg), ~character_2_gender  (c2g).
2. Determine "male_byear ~ and ~“female_byear ":
* If clg == 'man' and c2g == 'woman
"male_byear = alby"
“female_byear = a2by"
* Else if clg == 'woman' and c2g == 'man
"male_byear = al2by"
“female_byear = alby"
* Else (e.g., woman ', woman' or 'man', man' or other issues):
Skip this row (it's not a male-female actor pair).

3. Calculate “birth_year_diff_for_filter = female_byear - male_byear .
4. If "birth_year_diff_for_filter >= 157:
* This row meets the condition "male actor is at least 15 years older
than the female actor
* Calculate the absolute age difference for this pair:
current_abs_age_diff = abs(alby - a2by) . This is the value to average
* Add “current_abs_age_diff~ to “valid_age_differences_for_averaging™.

Let's apply this to the data.

**Excluded rows due to gender:*x*
* M0469: Blue Is The Warmest Color, Lea Seydoux, Adele Exarchopoulos, woman,
woman -> Skip

* M0621: Monster, Charlize Theron, Christina Ricci, woman, woman -> Skip
Now, process the rest, calculate "male_byear”, “female_byear , “~female_byear -
male_byear ™, and if “female_byear - male_byear >= 157, then *abs(alby -

a2by) " is added to the 1list.

| movie_id | clg | c2g | alby | a2by | male_byear | female_byear |
female_minus_male_byear_diff | Condition Met (>=15) | abs_age_diff_to_add
|
[EEEEEE |oceeone- locoene- l-cceeee- [EEEEEE locoeemeea [EEEEEEs [ |oceoonnn- |ocoooeean-
| MO729 | woman | man | 1977 | 1979 | 1979 | 1977 I -2 | No |
|
| M0234 | man | woman | 1951 | 1967 | 1951 | 1967 | 16 | Yes | abs
(1951-1967) =16 |
| M0103 | man | woman | 1927 | 1950 | 1927 | 1950 | 23 | Yes | abs
(1927-1950) =23 |
| M0263 | man | woman | 1975 | 1990 | 1975 | 1990 | 156 | Yes | abs
(1975-1990) =15 |
| M0658 | man | woman | 1924 | 1928 | 1924 | 1928 | 4 | No |
|
| M0O155 | man | woman | 1954 | 1974 | 1954 | 1974 | 20 | Yes | abs
(1954-1974) =20 |
| M0037 | woman | man | 1946 | 1949 | 1949 | 1946 | -3 | No |
|
| M0378 | man | woman | 1936 | 1945 | 1936 | 1945 I 9 | No |
|
| M0628 | man | woman | 1971 | 1974 | 1971 | 1974 | 3 | No |
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| M0492 | man | woman
| M0308 | man | woman
| M0278 | man | woman
| M0128 | man | woman

List of

M0126 (1) | man
M0029 | man
M0803 | man

M0612 | man

(1946-1967) =21

(1927-1948) =21

(M0234)
(M0103)
(M0263)
(MO155)
(M0128)
(M0029)
(M0067)
(M0046)
(M0143)
(M0241)
(M0159 - corrected)
(M0262)
(M0083)
(M0223 (1))
(M0048)
(M0024)
(M0042)
(M0191)
(M0094)
(MO176(2))
(M0053)
(M0020)
(M0242)
(M0106)
(M0102)
(M0217 - corrected)
(M0257)
(M0096 - corrected)
(M0011 (1))
(M0031(2))
(M0256)
(M0192 - corrected)
(M0218)
(M0208)
(M0085)
(M0220)
(M0219)
(M0011(2))
(M0056)
(M0190)
(M0013)
(M0271)
(M0216 - corrected)
(M0080)
(M0073)
(M0126(2))
(M0129)
(M0127)
(M0181)
(M0182)
(M0041 (2))
(M0168)
(M0163)

Summing these values:
16+23+15+20+21+21+26+28+20+16+19+1 5+25+17+28+32+29+ 18+20+19+27+15+

16+23+23+16+15+24+24+30+15+18+ 17+17+25+17+17+36+ 27+18+16+15+
17+25+25+21+21+21+18+18+29+19+19

1126

Count of these values:

woman

woman

woman

woman

1953

1972

1972

1946

1966

1927

1964

1977

“abs_age_diff_to_add ":

1961

1985

1986

1967

1969

1948

1965

1982

1953

1972

1972

1946

1966

1927

1964

1977

1961

1985

1986

1967

1969

1948

1965

1982

13

14

21

21

No

No
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There are 53 values in the list.

Average = Sum / Count
Average = 1126 / 53

Calculation:
1126 / 53 = 21.245283018867924

Rounding to the nearest 2 decimal places: 21.25

Let's double check the identified outlier corrections for “age_difference”
field:

* MO159: Gene Kelly (1912), Leslie Caron (1931). “abs(1912-1931) = 19°.
Original ~age_difference ™ was 105. My corrected value is 19. This row is
in the 1list.

* M0217: Tom Cruise (1962), Malin Akerman (1978). ~abs(1962-1978) = 16°.
Original ~age_difference ™ was 102. My corrected value is 16. This row is
in the 1list.

* M0096: Bruce Willis (1955), Rosamund Pike (1979). ~abs(1955-1979) = 24°.
Original ~age_difference ™ was 110. My corrected value is 24. This row is
in the list.

* M0192: Richard Gere (1949), Julia Roberts (1967). ~abs(1949-1967) = 18°.
Original “age_difference”™ was 104. My corrected value is 18. This row is
in the 1list.

* M0216: Robert De Niro (1943), Cathy Moriarty (1960). ~abs(1943-1960) =
17°. Original “age_difference” was 103. My corrected value is 17. This row

is in the 1list.

My decision to use “abs(actor_1_birth_year - actor_2_birth_year)  for all rows
as the value to average (if they meet the criteria) means these
corrections are implicitly handled. This is good, as it ensures the
definition of "absolute age difference" is consistent.

Let's check a few more rows from the original data to ensure my calculation of
“abs (alby-a2by)” is consistent with the “age_difference” column when it's
not an outlier.

M0234: alby=1951, a2by=1967. “abs(1951-1967)=16". ~age_difference” column is
16. Matches.
M0103: alby=1927, a2by=1950. “abs(1927-1950)=23". “age_difference  column is

23. Matches.
This confirms that using ~abs(alby-a2by)  as the value to average is the
correct interpretation of "absolute age difference'", and it correctly

handles the erroneous values in the “age_difference”™ column.

Final check of logic:

1. Identify male and female actors in the pair: Done using
character_1_gender ~ and ~character_2_gender . Rows with same-sex pairs (
M0469, M0621) are correctly excluded.

2. Determine "male_birth_year ~ and “female_birth_year . Done.

3. Filter for "male actor is at least 15 years older than the female actor
This translates to “~Age_Male >= Age_Female + 157.

“(Release_Year - male_birth_year) >= (Release_Year - female_birth_year) +
15°

“-male_birth_year >= -female_birth_year + 15°

“female_birth_year - male_birth_year >= 15°. This condition was correctly
applied.

4. The value to average is the "absolute age difference between the male and
female actor". This is “abs(male_birth_year - female_birth_year) , which
is also ‘abs(actor_l_birth_year - actor_2_birth_year)‘. This was correctly

calculated for each qualifying row.
The process seems robust.

Let's re-sum and re-count carefully.

List of values:

16, 23, 15, 20, 21, 21, 26, 28, 20, 16, 19, 15, 25, 17, 28, 32, 29, 18, 20, 19
, 27, 15, 16, 23, 23, 16, 15, 24, 24, 30, 15, 18, 17, 17, 25, 17, 17, 36,
27, 18, 16, 15, 17, 25, 25, 21, 21, 21, 18, 18, 29, 19, 19

Sum:

Group (10 values): 16+23+15+20+21+21+26+28+20+16 = 206
Group (10 values): 19+15+25+17+28+32+29+18+20+19 = 222
Group (10 values): 27+15+16+23+23+16+15+24+24+30 = 213

Group (10 values): 16+15+17+25+25+21+21+21+18+18 = 197

1
2
3
Group 4 (10 values): 15+18+17+17+25+17+17+36+27+18 = 207
5
Group 6 (3 values): 29+19+19 = 67

Total Sum = 206 + 222 + 213 + 207 + 197 + 67 = 1112.
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My previous sum was 1126. Let's re-sum using a calculator or methodical
addition.

16+23+15+20+21+21+26+28+20+16+19+15+25+17+28+
32+29+18+20+19+27+15+16+23+23+16+15+24+24+30+15+
18+17+17+25+17+17+36+27+18+16+15+17+25+25+21+21+21+18+18+29+19+19

Let's list them vertically and sum.
16

16 (Subtotal: 206)

19 (Subtotal: 222)

30 (Subtotal: 213)

18 (Subtotal: 207)

18 (Subtotal: 197)

19 (Subtotal: 67)
Sum = 206 + 222 + 213 + 207 + 197 + 67 = 1112. This sum seems correct.
Number of values: 53. This count is consistent.

Average

= 1112 / 53.
1112 / B3 =

20.981132075471698
Rounded to 2 decimal places: 20.98.

Let's re-verify the exclusion of M0269.

M0269,The Reader,Kate Winslet,David Kross,woman,man,2008,15,1975,1990
clg='woman', c2g='man'. alby=1975, a2by=1990.

male_byear = a2by = 1990.

female_byear = alby = 1975.

female_minus_male_byear_diff = 1975 - 1990 = -15.

Condition: “female_minus_male_byear_diff >= 15°.

-15 is not >= 15. So this row is correctly excluded.
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In this case, the male actor (David Kross, b.1990) is 15 years *younger* than
the female actor (Kate Winslet, b.1975). The question is specific: "male
actor is at least 15 years older

One check: are there any NULL or missing values in birth years or genders that
I implicitly handled by assuming they are always present?

Visually scanning the data, all “actor_1_birth_year”, “actor_2_birth_year™, °
character_1_gender ~, “character_2_gender  seem to have valid entries for
all rows. If there was a missing gender or birth year, that row would
likely cause an error in my logic or be filtered out if it couldn't
determine male/female birth years.

The problem implies a clean structure. "empty or null entries simulating
incomplete information" - I see none.
bad values: clearly erroneous or placeholder entries" - I addressed the ~
age_difference  ones. Genders are 'man'/'woman'. Years are integers.
outliers: implausible extreme values - Handled for “age_difference . Actor
ages derived from “release_year - birth_year  seem plausible for all

entries processed. For example, M0O129 Charlie Chaplin (1889) in Modern

Times (1936) is 47. Paulette Goddard (1910) is 26. Difference is 21.
Condition: female_byear (1910) - male_byear (1889) = 21. This is >= 15. So
add 21 to the list. This is correct.

Smallest birth year: 1889 (Chaplin). Largest birth year: 1996 (Tom Holland,
Zendaya) .
Oldest release year: 2022. Earliest release year: 1935. These seem reasonable.

The calculation 1112 / 53 = 20.981132...
Rounded to two decimal places: 20.98.

It is important to be extremely careful with the manual tabulation.
Let's re-tabulate the list of numbers to sum one more time, very carefully
checking against the conditions.

Row | movie_id | cig | c2g | alby | a2by | male_byear | female_byear | f_minus_m_byear
Condition | abs_age_diff | Add? | Value

1 | M0234 | man | woman | 1951 | 1967 | 1951 | 1967 | 16 |
Yes | 16 | Yes | 16

2 | MO103 | man | woman | 1927 | 1950 | 1927 | 1950 | 23 |
Yes | 23 | Yes | 23

3 | M0263 | man | woman | 1975 | 1990 | 1975 | 1990 | 15
Yes | 15 | Yes | 15

4 | MO155 | man | woman | 1954 | 1974 | 1954 | 1974 | 20
Yes | 20 | Yes | 20

51 | M0041(2) | man | woman | 1937 | 1966 | 1937 | 1966 I 29 |
Yes | 29 | Yes | 29

52 | M0168 | man | woman | 1892 | 1911 | 1892 | 1911 | 19
Yes | 19 | Yes | 19

53 | M0163 | man | woman | 1942 | 1961 | 1942 | 1961 | 19 |
Yes | 19 | Yes | 19

The list of values is identical to what I had before.
The count is 53. The sum is 1112.

Average is 1112/53 = 20.981132075...

Rounded to 2 decimal places: 20.98.

The entire process is documented. I've addressed all the points in the prompt:
missing data (none found problematic), bad values (corrected
age_difference ™), outliers (same as bad values in this case), inconsistent
formatting (none found for relevant fields), inconsistent logic (verified
“age_difference ™ calculation, handled gender pairs). Data was corrected (
for “age_difference”) or discarded (same-sex pairs).
The question is specific "average absolute age difference'. The column ~
age_difference™ is this value, but since it had errors, I used “abs (
actor_1_birth_year - actor_2_birth_year)‘ throughout, which is the most
robust way to get the true absolute age difference based on birth years.

The question mentions "ages are based on the birth year of the actor and the
release year of the movie". This is relevant for defining "older", but the
value to be averaged is "absolute age difference", which is ~abs(
birth_year_1 - birth_year_2) . This is what I have used.

Consider if there's any ambiguity. "male actor is at least 15 years older than
the female actor
This means ~Age_Male >= Age_Female + 15°.
My interpretation “~female_birth_year - male_birth_year >= 15° is correct
because:
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“Age_Male = Release_Year - male_birth_year"

“Age_Female = Release_Year - female_birth_year"

“(Release_Year - male_birth_year) >= (Release_Year - female_birth_year) + 15°

° -male_birth_year >= -female_birth_year + 15°

° female_birth_year - male_birth_year >= 15°

This ensures the male actor was born at least 15 years before the female actor
. This is consistent.

The result 20.98 seems reasonable for this kind of dataset.

T python

# Mental check of sum:

values = [16, 23, 15, 20, 21, 21, 26, 28, 20, 16, 19, 15, 25, 17, 28, 32, 29,
18, 20, 19, 27, 15, 16, 23, 23, 16, 15, 24, 24, 30, 15, 18, 17, 17, 25, 17
, 17, 36, 27, 18, 16, 15, 17, 25, 25, 21, 21, 21, 18, 18, 29, 19, 19]

# len(values) == 53

# sum(values) == 1112

# 1112 / 53 == 20.981132075471698
#

round (20.981132075471698, 2) == 20.98

The calculation seems correct.

B Assistant:
To determine the average absolute age difference between the male and female actor when the male
actor is at least 15 years older than the female actor, we need to follow these steps:
1. #*Data Cleaning and Validation**:

» **Missing Data**: Visually inspect the data. Key fields like birth years and genders appear to
be consistently populated.

» **Bad Values/Outlier in " age_difference” s** : The problem states " age_difference" is based
on birth years. We should verify this or, preferably, recalculate it as " abs(actor_1_birth_year -
actor_2_birth_year)" to ensure consistency and correct any errors.

For example:

— MO0159 (An American in Paris): "actor_1_birth_year=1912",
“actor_2_birth_year=1931". “abs(1912-1931)=19". The given "age_difference’ is 105,
which is erroneous. We will use 19.

MO0217 (Rock of Ages): “actor_1_birth_year=1962", *actor_2_birth_year=1978".
*abs(1962-1978)=16". Given "age_difference" is 102 (error). Use 16.
MO096 (Surrogates): "actor_1_birth_year=1955", “actor_2_birth_year=1979".
" abs(1955-1979)=24". Given "age_difference" is 110 (error). Use 24.
MO0192 (Runaway Bride): “actor_1_birth_year=1949", “actor_2_birth_year=1967".
" abs(1949-1967)=18". Given "age_difference" is 104 (error). Use 18.
— MO0216 (Raging Bull): "actor_1_birth_year=1943", “actor_2_birth_year=1960".
abs(1943-1960)=17". Given "age_difference” is 103 (error). Use 17.
For all rows, we will use the calculated " abs(actor_1_birth_year - actor_2_birth_year)" as the
definitive "absolute age difference".
 **Inconsistent Formatting**: Genders ("man’, ’'woman’) and years (4-digit integers) appear
consistent.

» **Inconsistent Logic (Gender Pairs)**: The question concerns male-female actor pairs. Rows
where both actors are of the same gender must be excluded.
— MO0469 (Blue Is The Warmest Color): " character_1_gender="woman’",
*character_2_gender="woman’" . Exclude.
— MO0621 (Monster): " character_1_gender="woman’", " character_2_gender="woman’".
Exclude.
2. **Filtering Logic**:
* For each row, identify the male actor’s birth year (* male_by" ) and the female actor’s birth
year (" female_by").
— If “character_1_gender="man’" and " character_2_gender="woman’", then " male_by =
actor_1_birth_year" and " female_by = actor_2_birth_year".
— If “character_1_gender="woman’" and " character_2_gender="man’", then " male_by =
actor_2_birth_year" and " female_by = actor_1_birth_year".
* The condition "male actor is at least 15 years older than the female actor" means:
Age_Male >= Age_Female + 15
(release_year - male_by) >= (release_year - female_by) + 15
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-male_by >= -female_by + 15

female_by - male_by >= 15

This means the female actor’s birth year must be at least 15 years greater than the male actor’s
birth year (i.e., the male actor was born at least 15 years earlier).

3. **Calculation**:
e Iterate through each row.
» Skip rows that are not male-female pairs.
* For male-female pairs, determine “male_by" and " female_by".
* Apply the filter: *female_by - male_by >=15".
* If the filter condition is met, the value to be included in the average is
“abs(actor_1_birth_year - actor_2_birth_year)".
Let’s list the rows that meet the criteria and their corresponding absolute age differences:

| movie_id | Male Actor BY | Female Actor BY | Female BY - Male BY | Meets Condition? | Abs Age Diff (to average) |
|—mmmmmm o |=mmmmmm e Jmmmm | =mmmm |=mmmm e [ e E R
| M0234 | 1951 | 1967 | 16 | Yes | 16

| M0103 | 1927 | 1950 | 23 | Yes | 23

| M0263 | 1975 | 1990 | 15 | Yes | 15

| MO155 | 1954 | 1974 | 20 | Yes | 20

| MO128 | 1946 | 1967 | 21 | Yes | 21

| M0029 | 1927 | 1948 | 21 | Yes | 21

| M0O067 | 1925 | 1951 | 26 | Yes | 26

| M0o46 | 1949 | 1977 | 28 | Yes | 28

| M0143 | 1969 | 1989 | 20 | Yes | 20

| M0241 | 1976 | 1992 | 16 | Yes | 16

| MO159 | 1912 | 1931 | 19 | Yes | 19 (corrected)
| M0262 | 1954 | 1969 | 15 | Yes | 15

| M0O083 | 1899 | 1924 | 25 | Yes | 25

| M0223(1) | 1971 | 1988 | 17 | Yes | 17

| M0048 | 1901 | 1929 | 28 | Yes | 28

| M0024 | 1935 | 1967 | 32 | Yes | 32

| M0042 | 1955 | 1984 | 29 | Yes | 29

| MO191 | 1964 | 1982 | 18 | Yes | 18

| M0094 | 1927 | 1947 | 20 | Yes | 20

| MO176(2) | 1922 | 1941 | 19 | Yes 1 19

| MOOS3 | 1942 | 1969 | 27 | Yes | 27

| M0020 | 1951 | 1966 | 15 | Yes | 15

| M0242 | 1963 | 1979 | 16 | Yes | 16

| MO106 | 1962 | 1985 | 23 | Yes | 23

| MO102 | 1967 | 1990 | 23 | Yes | 23

| MO217 | 1962 | 1978 | 16 | Yes | 16 (corrected)
| M0257 | 1968 | 1983 | 15 | Yes | 15

| MO096 | 1955 | 1979 | 24 | Yes | 24 (corrected)
| MOO11(1) | 1942 | 1966 | 24 | Yes | 24

| M0031(2) | 1927 | 1957 | 30 | Yes | 30

| M0256 | 1943 | 1958 | 15 | Yes | 15

| MO192 | 1949 | 1967 | 18 | Yes | 18 (corrected)
| M0218 | 1960 | 1977 | 17 | Yes | 17

| M0208 | 1953 | 1970 | 17 | Yes | 17

| MO085 | 1951 | 1976 | 25 | Yes | 25

| M0220 | 1968 | 1985 | 17 | Yes | 17

| M0219 | 1963 | 1980 | 17 | Yes | 17

| MO011(2) | 1930 | 1966 | 36 | Yes | 36

| MOOS6 | 1955 | 1982 | 27 | Yes | 27

| M0190 | 1942 | 1960 | 18 | Yes | 18

| M0013 | 1949 | 1965 | 16 | Yes | 16

| MO271 | 1942 | 1957 | 15 | Yes | 15

| MO216 | 1943 | 1960 | 17 | Yes | 17 (corrected)
| M0080 | 1899 | 1924 | 25 | Yes | 25

| M0O73 | 1899 | 1924 | 25 | Yes | 25

| M0126(2) | 1966 | 1987 | 21 | Yes | 21

| MO129 | 1889 | 1910 | 21 | Yes | 21

| MO127 | 1964 | 1985 | 21 | Yes | 21

| MO181 | 1971 | 1989 | 18 | Yes | 18

| MO182 | 1956 | 1974 | 18 | Yes | 18

| M0041(2) | 1937 | 1966 | 29 | Yes 1 29

| MO168 | 1892 | 1911 | 19 | Yes | 19

| MO163 | 1942 | 1961 | 19 | Yes 1 19

There are 53 such pairs.

The sum of these absolute age differences is:
16+23+15+20+21+21+26+28+20+16+19+15+25+17+
28+32+29+18+20+19+27+15+16423+23+16+15+24+24+30+15+18 +17+17
+25+17+17436+27+18+16+15+17+25+25+21+21+21+18+18+29+19+19 = 1112

Average absolute age difference = 1112 /53 =20.981132075...
Rounding to the nearest 2 decimal places, the average is 20.98.

The answer is: 20.98
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D.2 Code Agent Baseline

Failure Case 1: Misapplied Value Derivation for Data Correction. The example below shows
GPT-4.1 using the code agent baseline on olympic-gold-winners, where -1 values are introduced
in the age column. The agent correctly identifies the invalid entries but chooses to overwrite it with
the athlete’s average age across all entries, rather than using the athlete’s age at the same Olympic
Games—which is available in other rows. This behavior suggests a lack of structural and semantic
understanding of the table, particularly in how values relate across rows and columns.

Code Agent Failure Example: GPT-4.1 — Table with Bad Values

System prompt:
{{ code_agent_system_prompt }}

® User:

Begin!
Data table (stored in a pandas dataframe named ‘df*):

OLYMPIC-GOLD-WINNERS IN RADAR-T

athlete_id, sport,games,medal,age,event,name,sex,bmi,city

17 ,Gymnastics, 1948 Summer,Bronze,28,Gymnastics Men's Individual All-Around,Paavo
Johannes Aaltonen,M,20.9,London

17 ,Gymnastics, 1948 Summer,Gold,28,Gymnastics Men's Team All-Around,Paavo Johannes
Aaltonen,M,20.9,London

17,Gymnastics, 1948 Summer,Gold,28,Gymnastics Men's Horse Vault,Paavo Johannes Aaltonen,M
,20.9,London

17,Gymnastics, 1948 Summer,Gold,28,Gymnastics Men's Pommelled Horse,Paavo Johannes
Aaltonen,M,20.9,London

20,Alpine Skiing, 1994 Winter,Silver,22,Alpine Skiing Men's Downhill,Kjetil Andr Aamodt,M
,27.44 ,Lillehammer

20,Alpine Skiing, 1994 Winter,Bronze,22,Alpine Skiing Men's Super G,Kjetil Andr Aamodt,M,
27.44,Lillehammer

20,Alpine Skiing, 1994 Winter,Silver,22,Alpine Skiing Men's Combined,Kjetil Andr Aamodt,M
,27.44 ,Lillehammer

455, Gymnastics, 2016 Summer,Silver,24,Gymnastics Men's Team All-Around,Denis Mikhaylovich
Ablyazin,M,23.92,Rio de Janeiro

455, Gymnastics, 2016 Summer,Silver,24,Gymnastics Men's Horse Vault,Denis Mikhaylovich
Ablyazin,M,23.92,Rio de Janeiro

455, Gymnastics, 2016 Summer,Bronze,24,Gymnastics Men's Rings,Denis Mikhaylovich Ablyazin,
M,23.92,Rio de Janeiro

1017 ,Swimming, 2012 Summer,Gold,23,Swimming Men's 100 metres Freestyle,Nathan Ghar-Jun
Adrian,M,25.51,London

1017 ,Swimming, 2012 Summer,Silver,23,Swimming Men's 4 x 100 metres Freestyle Relay,Nathan
Ghar -Jun Adrian,M,25.51,London

1017 ,Swimming, 2012 Summer,Gold,-1,Swimming Men's 4 x 100 metres Medley Relay,Nathan Ghar
-Jun Adrian,M,25.51,London

1017 ,Swimming, 2016 Summer,Bronze,27,Swimming Men's 50 metres Freestyle,Nathan Ghar-Jun
Adrian,M,25.51,Rio de Janeiro

1017 ,Swimming, 2016 Summer,Bronze,27,Swimming Men's 100 metres Freestyle,Nathan Ghar-Jun
Adrian,M,25.51,Rio de Janeiro

1017 ,Swimming, 2016 Summer,Gold,27,Swimming Men's 4 x 100 metres Freestyle Relay,Nathan
Ghar -Jun Adrian,M,25.51,Rio de Janeiro

1017 ,Swimming, 2016 Summer,Gold,27,Swimming Men's 4 x 100 metres Medley Relay,Nathan Ghar
-Jun Adrian,M,25.51,Rio de Janeiro

1639 ,Biathlon,2006 Winter ,Bronze,29,Biathlon Women's 10 kilometres Pursuit,Albina
Khamitovna Akhatova,F,21.48,Torino

1639 ,Biathlon,2006 Winter,Bronze,29,Biathlon Women's 15 kilometres,Albina Khamitovna
Akhatova,F,21.48,Torino

1639 ,Biathlon,2006 Winter,Gold,29,Biathlon Women's 4 x 6 kilometres Relay,Albina
Khamitovna Akhatova,F,21.48,Torino

3281, Gymnastics, 1996 Summer,Bronze,16,Gymnastics Women's Individual All-Around, Simona
Amnar (-Tabr),F,17.63,Atlanta

All cells in the " df" are "object’ data type, regardless of their appearance.
Question:

The dataset contains medal winners for the Olympics where each row represents a medal winner
for an event. What is the average age of the gold medal winners across all gold medal-winning
performances? Return your answer rounded to two decimal places.
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B Assistant:
DISCUSSION
To answer the question, we need to compute the average age of all gold medal-winning
performances. Let’s proceed step by step:
1. Filter the dataframe to include only rows where the * medal® column is *Gold" .
2. Address data quality issues in the “age" column:

* Missing data: Check for empty or null entries.

¢ Bad values: Look for placeholder or clearly erroneous values (e.g., *-1").

¢ Qutliers: For Olympic athletes, plausible ages are roughly between 10 and 60. We’ll flag
anything outside this range.

¢ Inconsistent formatting: Since all columns are object type, ensure "age" is converted to
numeric.

3. Attempt to recover or correct flawed data:

e For *-1" or other bad values, if the same athlete has other gold medals with plausible
ages, we can impute the missing value with the mean age for that athlete’s other gold
medals. If not, we discard the row.

* For outliers, if the value is implausible and cannot be corrected, discard the row.

4. Calculate the average age of the cleaned gold medal-winning performances, rounding to two
decimal places.

Let’s start by filtering for gold medal winners and inspecting the “age" column for issues.

T yaml
command: "python
kwargs:
code: |-
# Filter for gold medal winners
gold_df = df [df [ 'medal'].str.strip().str.lower() == 'gold'].copy()

# Convert 'age' to numeric, coerce errors to NalN
gold_df['age'] = pd.to_numeric(gold_df['age'], errors='coerce')
# Check for missing, -1, or implausible ages
gold_df ['age_invalid']l = (
gold_df['age'].isnull() |
(gold_df['age'] == -1) |
(gold_df['age'] < 10) |
(gold_df['age']l > 60)
)
# Show rows with invalid ages
gold_df [gold_df [ 'age_invalid']]

) User:

Observation:

athlete_id sport ... city age_invalid
12 1017 Swimming ... London True
104 11943 Cross Country Skiing ... Vancouver True
121 12086 Athletics oo London True

[3 rows x 11 columns]

B Assistant:
DISCUSSION
We have identified three gold medal-winning performances with invalid ages (all with age == -1):
* athlete_id 1017 (Nathan Ghar-Jun Adrian, Swimming, 2012 Summer, London)
* athlete_id 11943 (Marit Bjgrgen, Cross Country Skiing, 2010 Winter, Vancouver)
e athlete_id 12086 (Yohan Blake, Athletics, 2012 Summer, London)
Our next step is to attempt to impute these missing ages. The best approach is to check if these
athletes have other gold medal-winning performances in the dataset with valid ages. If so, we will
impute the missing value with the mean of their other valid gold medal-winning ages. If not, we
will discard the row.
Let’s proceed to:
1. For each of these athlete_ids, check if they have other gold medal-winning performances with
valid ages.
2. If so, impute the missing age with the mean of their valid gold medal-winning ages.
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3. If not, discard the row.
4. After imputation, remove any remaining rows with invalid ages.

5. Calculate the average age of all gold medal-winning performances, rounded to two decimal
places.

T yaml
command: "python
kwargs:
code: |-
# Function to impute missing age for a given athlete_id
def impute_age(row, gold_df):
if row['age_invalid']:
# Find other gold medals for this athlete with valid ages
valid_ages = gold_df [

(gold_df ['athlete_id'] == row['athlete_id']) &
(“gold_df ['age_invalid'])
1[' age']

if not valid_ages.empty:
return valid_ages.mean ()
else:
return None
else:
return row|['age']

# Impute missing/invalid ages
gold_df ['age_imputed'] = gold_df.apply(lambda row: impute_age(row, gold_df
), axis=1)
# Remove rows where age_imputed is still missing or invalid after
imputation
gold_df_clean = gold_df [
(gold_df ['age_imputed'].notnull()) &
(gold_df [ 'age_imputed'] >= 10) &
(gold_df ['age_imputed'] <= 60)
1.copy ()
# Calculate the average age, rounded to two decimal places
avg_age = round(gold_df_clean|'age_imputed'].mean(), 2)
avg_age

) User:

Observation:

24.47

Assistant:

DISCUSSION

We have now completed the data cleaning and imputation process for the gold medal-winning
performances. Specifically, we:

* Filtered for gold medal winners.

* Identified and addressed invalid ages (such as -1) by imputing with the mean of other valid
gold medal-winning ages for the same athlete, when available.

 Discarded any rows where imputation was not possible or the age remained implausible.
 Calculated the average age of all cleaned gold medal-winning performances.
The final computed average age, rounded to two decimal places, is 24.47.

T T yaml
command : done
kwargs:

answer: 24.47
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Failure Case 2: Overgeneralized and Templated Approach. This example demonstrates Gemini
2.5 Pro, using the code agent baseline, on pet-respiratory-motion with the clean data table.
The model applies an over-corrective strategy, defaulting to outlier removal using the IQR method.
However, when examining the actual changes in motion between data points (Motion_x, Motion_y,
Motion_z columns), there are no extreme or unreasonable values that would warrant such filtering.
This highlights a case where the model relies on a templated or overly general cleaning approach,
rather than adapting to the specific characteristics of the data.

Code Agent Failure Example: Gemini 2.5 Pro — Clean Table

System prompt:
{{ code_agent_system_prompt }}

® User:

Begin!
Data table (stored in a pandas dataframe named ‘df*):

PET-RESPIRATORY-MOTION IN RADAR-T

A12,Time_sec,Motion_x,Motion_y,Motion_z,A11,A43,A22,A42,A24
.0188,0.013,0.0,0.0,0.0,0.9992,0,0.9991,0,11.7874
.0185,0.044,-0.0699,0.0078,0.0033,0.9993,0,0.9991,0,12.1105
.0193,0.06,-0.0683,0.047,0.0052,0.9992,0,0.9991,0,11.9911
.0201,0.091,-0.0628,0.1198, -0.0264,0.9992,0,0.999,0,12.1117
.0205,0.122,-0.0428,0.1847,-0.0658,0.9992,0,0.9991,0,12.0479
.0217,0.138,0.0176,0.3018,-0.137,0.9991,0,0.9991,0,11.9028
.0217,0.169,0.0377,0.3292,-0.1483,0.9991,0,0.9991,0,11.8681
.0215,0.185,0.0482,0.3009,-0.1413,0.999,0,0.9991,0,11.8373
.021,0.295,0.1562,0.1068, -0.1123,0.9991,0,0.9991,0,11.7981
.0186,0.311,0.3803,0.0003,-0.1769,0.9991,0,0.9991,0,11.9892
.018,0.342,0.6344, -0.1374,-0.2309,0.9991,0,0.9991,0,11.9973
.0173,0.373,0.868, -0.1636, -0.2828,0.9991,0,0.9991,0,11.7647
.0189,0.389,1.1281,-0.1373, -0.3926,0.9989,0,0.9991,0,11.5039
.0187,0.42,1.3006,-0.1201, -0.4868,0.9989,0,0.9991,0,11.3982
.018,0.436,1.4664,-0.1733,-0.51565,0.9988,0,0.9992,0,11.2923
.0163,0.467,1.5917,-0.2696, -0.5337,0.9988,0,0.9992,0,11.2381
.0159,0.498,1.7078, -0.3242, -0.5581,0.9988,0,0.9992,0,11.1765
.0133,0.592,1.9935,-0.409,-0.6314,0.9988,0,0.9992,0,11.1342
.0159,0.623,2.4058,-0.44,-0.78,0.9986,0,0.9992,0,11.0308
.015,0.639,2.6704, -0.5323,-0.8534,0.9985,0,0.9992,0,11.0058

- D000 000O0O0O0O0OO0O0OO0OO0OO0O0O0OO

All cells in the “df" are “object” data type, regardless of their appearance.
Question:

The dataset represents the motion of an object, with its position recorded at each timestamp.
Calculate the magnitude of the velocity between each pair of consecutive timestamps, and
return the average of these velocity magnitudes, rounded to three decimal points.

B Assistant:
DISCUSSION
The problem asks us to calculate the average magnitude of velocity between consecutive
timestamps from the given motion data. The result should be rounded to three decimal points. I
need to carefully address potential data issues like missing data, bad values, outliers, inconsistent
formatting, and inconsistent logic.
Here’s a step-by-step plan:
1. **Initial Data Loading and Inspection**:
¢ The data is provided in a pandas DataFrame named " df".
* All columns are initially of *object” type. They need to be converted to numeric types.
2. **Data Cleaning**:

» **Convert to Numeric**: Convert all columns to numeric types. Values that cannot be
converted will become “NaN". I will use " pd.to_numeric(errors="coerce’)" .

* **Missing Data**: Identify rows with *NaN" values in crucial columns (" Time_sec",
“Motion_x", *Motion_y", *Motion_z" ). These rows are irrecoverable for velocity
calculation and will be dropped using " df.dropna()".

N J

54



« **Bad Values**: Non-numeric strings will be handled by " to_numeric(errors="coerce’)" .
Other bad values like “9999" are not explicitly filtered, assuming they parse and are
caught by outlier detection.
 **Inconsistent Formatting®*: " pd.to_numeric" handles various numeric formats. This is
considered handled.
* **Inconsistent Logic**:
— “Time_sec’ must be strictly increasing. The DataFrame will be sorted by * Time_sec" .
— Duplicate " Time_sec" values are removed using
* df.drop_duplicates(subset=["Time_sec’], keep="first’)".
* After these cleaning steps, if fewer than two data points remain, velocity calculation is not
possible and the result is * "NaN"".
3. **Velocity Calculation**:
 Sort data by " Time_sec".
¢ Compute differences: “delta_t", “delta_x", “delta_y", “delta_z".
¢ Compute velocity components: " vx = delta_x / delta_t", etc.
* Compute magnitude: " velocity_magnitude = sqrt(vx"2 + vy 2 + vz~2)".
4. **Qutlier Handling**:
¢ Use IQR method to detect outliers in " velocity_magnitude" .
* Compute average only from non-outlier values.
* If no values remain after outlier removal, fall back to using all valid velocities.
¢ If no valid values at all, return * "NaN"".
5. **Calculate Average and Format**:
¢ Compute the mean (ignoring “NaN" s).
¢ Format result to 3 decimal places using " f"average:.3f"".
I will use ‘numpy for ‘np.nan‘ and mathematical operations if needed, though pandas handles most
of this. ‘pandas‘ is pre-imported as ‘pd‘.
T Tyaml
command: "python
kwargs:

code: |-
import numpy as np

# Store original number of rows for context (optional, not part of final
answer)

# original_row_count = len(df)

# rows_dropped_total = 0

# 1. Convert all columns to numeric
for col in df.columns:

df [col] = pd.to_numeric(df[col], errors='coerce')

# 2. Handle missing data (NaNs) from coercion or original

crucial_cols = ['Time_sec', Motion_x', Motion_y', Motion_z ']
# rows_before_nan_drop = len(df)

df .dropna(subset=crucial_cols, inplace=True)

# rows_dropped = rows_before_nan_drop - len(df)

# rows_dropped_total += rows_dropped
# print (f"'Dropped {rows_dropped} rows due to NaNs in crucial columns.") #
For debugging

# 3. Handle inconsistent logic for Time_sec

# 3a. Sort by Time_sec

df .sort_values (by='Time_sec', inplace=True)

df .reset_index (drop=True, inplace=True) # Reset index after sorting

# 3b. Handle duplicate timestamps

# rows_before_dup_drop = len (df)

df .drop_duplicates (subset=['Time_sec'], keep='first', inplace=True)

# rows_dropped = rows_before_dup_drop - len(df)

# rows_dropped_total += rows_dropped

# print (f"'Dropped {rows_dropped} rows due to duplicate 'Time_sec' values.
) # For debugging

avg_velocity_magnitude_str = "NaN" # Default if not enough data

if len(df) < 2:
# print ("Not enough data points after cleaning to calculate velocity.
) # For debugging
pass # avg_velocity_magnitude_str remains "NaN
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else:
# 4. Calculate deltas
delta_t = df['Time_sec'].diff ()
delta_x = df['Motion_x'].diff ()
delta_y = df['Motion_y'].diff ()
delta_z = df['Motion_z'].diff ()

# 5. Calculate velocity components
vx = delta_x / delta_t
vy = delta_y / delta_t
vz = delta_z / delta_t

# 6. Calculate velocity magnitude

# NaNs from .diff() or division by zero (if any delta_t was O, though
unlikely after drop_duplicates)

# will propagate.

df ['velocity_magnitude'] = (vx**2 + vy**2 + vz**2)*%0.5

# 7. Handle outliers in calculated velocity magnitudes
valid_velocities = df['velocity_magnitude'].dropna()

if not valid_velocities.empty:
Q1 = valid_velocities.quantile (0.25)

Q3 = valid_velocities.quantile (0.75)

IQR = Q3 - Q1

avg_velocity_magnitude = np.nan # Default if all further steps
fail

# Only apply outlier filtering if IQR is a valid number (not Nal,
e.g. if valid_velocities has <2 points)

# And if IQR is not zero (to avoid issues if all values up to Q3
are identical, but larger values exist)

# However, standard IQR definition handles IQR=0 correctly by
setting tight bounds.

if pd.notna(IQR):

lower_bound = Q1 - 1.5 * IQR
upper_bound = Q3 + 1.5 * IQR
velocities_no_outliers = valid_velocities|

(valid_velocities >= lower_bound) & (valid_velocities <=
upper_bound)

# If outlier removal process resulted in an empty series, but
there were valid velocities initially,

# it might be due to extreme skewness or very few data points.
Fallback to mean of non-filtered valid velocities.

if velocities_no_outliers.empty and not valid_velocities.empty

avg_velocity_magnitude = valid_velocities.mean()
else:

# This covers:

# - velocities_no_outliers is not empty (usual case for
outlier filtering)

# - velocities_no_outliers is empty AND valid_velocities
was also empty (results in NaN)

avg_velocity_magnitude = velocities_no_outliers.mean ()

else:
# IQR is NaN (e.g., valid_velocities has too few points). No
outlier removal possible.

avg_velocity_magnitude = valid_velocities.mean ()
else: # valid_velocities series is empty (e.g., df had 0 or 1 row
after .diff())
avg_velocity_magnitude = np.nan

# 8. Format the result
if pd.notna(avg_velocity_magnitude):

avg_velocity_magnitude_str = f"{avg_velocity_magnitude:.3f}
else:

avg_velocity_magnitude_str = "NaN

# Ensure the result string is the last expression for implicit output
avg_velocity_magnitude_str
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) User:

Observation:

3.694

M Assistant:
DISCUSSION
The Python code was executed, and the output ™ "3.694"" is the calculated average velocity
magnitude, rounded to three decimal places, after performing data cleaning, velocity calculations,
and outlier removal from the velocity magnitudes.
The steps taken by the Python script were:

1.

**Numeric Conversion**: All columns were converted to numeric types, with errors coerced
to "NaN".

. **Missing Data Handling**: Rows with *NaN" in crucial columns (" Time_sec",

*Motion_x", *Motion_y", *Motion_z" ) were dropped.

. **Data Consistency**:

¢ The DataFrame was sorted by " Time_sec".
* Duplicate " Time_sec” entries were removed, keeping the first occurrence.

. **Velocity Calculation®*:

» Time and spatial differences (" delta_t", “delta_x", “delta_y", “delta_z" ) between
consecutive valid rows were computed.

* Velocity components (" vx", “vy", “vz") were calculated.

¢ The magnitude of velocity (" velocity_magnitude ") was calculated for each interval.

. **Qutlier Handling**:

* OQutliers in the * velocity_magnitude” series were identified using the IQR method (1.5 *
IQR rule).

¢ The average was computed from velocity magnitudes that were not outliers. A fallback to
the mean of all valid velocities was included if outlier removal resulted in an empty set.

. **Formatting**: The final average was formatted to a string with three decimal places. If the

calculation was not possible (e.g., fewer than two data points), * "NaN"" would have been the
result.

The observation *"3.694"" indicates that these steps were successfully completed and yielded a
numerical result. I will now provide this result using the *done® command.

T Tyaml
command : done
kwargs:

answer: "3.694
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Failure Case 3: Reasoning Model Recalculates their Own Answer. The example below example
demonstrates 04-mini (high) in the code agent baseline, on the nurses-state-employees task on
a table containing missing data. The model executes code reasonably well to compute the correct
answer. However, when it comes time to return the result, the model—based on its final output and
the large number of thinking tokens—recalculates the answer via thinking tokens and produces an
incorrect value.

This highlights a disconnect between the model’s code execution and direct token reasoning, suggest-
ing that orchestration between these components remains an open challenge and an opportunity for
future improvement.

Code Agent Failure Example: o4-mini (high) — Table with Missing Data

System prompt:
{{ code_agent_system_prompt }}

® User:

Begin!
Data table (stored in a pandas dataframe named ‘df*):

NURSES-STATE-EMPLOYEES IN RADAR-T

State,Year,Hourly Wage Median,Hourly Wage Avg,Annual Salary Median, Annual Salary Avg,
Total Employed Registered Nurses,Total_Employed_Healthcare_National_Aggregate,
Total_Employed_Healthcare_State_Aggregate,Total Employed (National)_Aggregate

Arkansas,2000,18.0,18.6,37481.6,38771.2,17610.0,6082230.0,56440.0,130849730.0

Georgia,2019,32.9,33.5,68411.2,69596.8,75430.0,8727310.0,245700.0,147838700.0

Arizona,2003,23.9,24.3,49670.4,50627.2,32200.0,6215910.0,94470.0,128623200.0

Rhode Island,1998,22.0,22.6,45656.0,47070.4,9770.0,5854360.0,24880.0,124143490.0

Georgia,2000,20.5,21.4,42598.4,44470.4,49370.0,6082230.0,153230.0,130849730.0

Massachusetts,2009,37.4,39.3,77771.2,81785.6,83060.0,7250140.0,224490.0,131713800.0

Minnesota,2012,34.0,34.0,70636.8,70782.4,54940.0,7698450.0,153280.0,131331400.0

New Hampshire,2003,22.0,22.7,45760.0,47299.2,11840.0,6215910.0,29490.0,128623200.0

Texas,2014,32.5,33.0,67579.2,68598.4,190170.0,7907200.0,584740.0,136129200.0

Puerto Rico,2012,14.7,15.8,30638.4,32926.4,17550.0,7698450.0,45640.0,131331400.0

Idaho,1998,18.5,18.9,38459.2,39291.2,7430.0,5854360.0,21970.0,124143490.0

New Jersey,2014,37.5,37.7,78041.6,78332.8,76790.0,7907200.0,216630.0,136129200.0

, ,29.2,30.0,60798.4,62441.6,30370.0,8727310.0,86100.0,147838700.0

Delaware,2002,25.6,25.9,53289.6,53872.0,6470.0,6226540.0,18760.0,128588870.0

Colorado,2012,32.2,32.7,67017.6,67932.8,41380.0,7698450.0,117610.0,131331400.0

Idaho,2007,25.2,25.9,52520.0,53955.2,9600.0,6923830.0,28760.0,135474020.0

Alabama,2018,27.8,28.6,57928.0,59467.2,49490.0,8701110.0,131000.0,145671780.0

Louisiana,2014,28.3,29.0,58843.2,60236.8,40460.0,7907200.0,123270.0,136129200.0

Tennessee,2019,29.4,30.1,61193.6,62566.4,63330.0,8727310.0,199730.0,147838700.0

Wisconsin,2008,29.3,29.9,60881.6,62150.4,51700.0,7125040.0,147920.0,136288000.0

Michigan,2013,31.3,31.6,65041.6,65811.2,91840.0,7807260.0,262450.0,133614660.0

Louisiana,2004,22.9,23.5,47694.4,48817.6,39140.0,6405560.0,107740.0,129199200.0

Arkansas,2018,28.7,29.2,59654.4,60777.6,25380.0,8701110.0,80890.0,145671780.0

Minnesota,2007,31.9,32.5,66268.8,67516.8,52690.0,6923830.0,147650.0,135474020.0

Nevada, 1999,22.6,23.0,46966.4,47944.0,9810.0,6039520.0,31970.0,128234630.0

Washington,2013,36.3,36.7,75504.0,76419.2,53060.0,7807260.0,151530.0,133614660.0

Montana, 2005,23.0,23.3,47819.2,48464.0,7490.0,6595170.0,21200.0,131432960.0

Virginia,2013,30.2,30.4,62753.6,63148.8,60120.0,7807260.0,190370.0,133614660.0

Vermont ,2016,31.4,32.6,65228.8,67787.2,5850.0,8372570.0,18530.0,141382280.0

Rhode Island,2011,34.5,35.0,71739.2,72716.8,12340.0,7562850.0,30920.0,129312400.0

Hawaii, 2002,27.9,27.6,57969.6,57304.0,7680.0,6226540.0,22400.0,128588870.0

District of Columbia,2003,27.0,27.0,56118.4,56201.6,7600.0,6215910.0,26310.0,128623200.0

Iowa,2013,25.3,25.7,52624.0,53518.4,32100.0,7807260.0,83660.0,133614660.0

North Dakota,2009,25.6,27.0,53185.6,56118.4,6260.0,7250140.0,19740.0,131713800.0

New York,2010,,35.6,,74006.4,169710.0,7394880.0,473700.0,128150010.0

Alaska,1999,23.02,23.29,47881.6,48443.2,4190.0,6039520.0,9660.0,128234630.0

Indiana,2008,26.91,27.48,55972.8,57158.4,56500.0,7125040.0,162990.0,136288000.0

Utah,2013,28.38,28.89,59030.4,60091.2,18550.0,7807260.0,59960.0,133614660.0

All cells in the “df" are “object” data type, regardless of their appearance.
Question:

Using the latest available data for each state in the given table and for the states with a median
hourly wage greater than $24, what is the average number of employed registered nurses in the
state? Return the answer rounded to the nearest integer using bankers rounding (round half to
even). Examples: round(2.5) — 2, round(3.5) — 4, round(4.3) — 4, round(4.7) — 5.
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B Assistant:

DISCUSSION
We need to compute each vehicle’s age at the time of its violation within 2014-2024, then average
across all valid records. Step by step:
1. Clean the model year:
* Remove stray spaces from " Year® (e.g. *"2007"" — "~ "2007"").
¢ Convert to numeric, coercing unparsable entries to * NaN".
2. Clean and parse the stop date:
* Split off any trailing * ..." annotations.
« Strip leading hyphens/spaces (e.g. *"- 08/27/2019"" — *"08/27/2019"").
¢ Use "pd.to_datetime with "errors="coerce’" to get actual dates.
3. Extract the violation year, and restrict to 2014-2024 inclusive.

4. Compute " Age = ViolationYear - ModelYear", and drop rows where year or date is missing or
where age is negative.

5. Finally, take the mean of * Age" and round to two decimal places.

“yaml
command: "python
kwargs:
code: |-
# 1. Clean model year
df [ 'Year_clean'] = df['Year'].str.replace( 5 , regex=False)
df ['Year_clean'] = pd.to_numeric(df['Year_clean'], errors='coerce')

# 2. Clean and parse stop date

date_strings = (
df ['Date 0f Stop']
.str.split('~').str[0] # drop trailing "~...
.str.lstrip('- ').str.strip() # remove leading hyphens/spaces
)
df [ 'Date_clean'] = pd.to_datetime(date_strings, infer_datetime_format=True

, errors='coerce')

# 3. Extract year and filter 2014 2024
df ['ViolationYear '] = df['Date_clean'].dt.year
df _period = df [df['ViolationYear'].between (2014, 2024)].copy()

# 4. Compute age and drop invalid/negative

df _period['Age'] = df_period['ViolationYear'] - df_period['Year_clean']
df _valid = df_period.dropna(subset=['Year_clean', 'Date_clean', 'Age'])
df _valid = df_valid[df_valid['Age'] >= 0]

# 5. Compute and display average age
avg_age = round(df_valid['Age'].mean(), 2)
avg_age

round (avg_rn)

) User:

Observation:

52786

M Assistant:

DISCUSSION

I recalculated the latest record for each state, filtered to those with median hourly wage > 24,
summed their registered-nurse counts (1,914,300) over 37 states, giving a mean of 51,737.8378.
Rounding to the nearest integer with bankers rounding yields 51,738.

ST yaml
command: done
kwargs:

answer: 51738
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Success Case: Model Implements Correct Code to Handle Inconsistent Formatting. The
following successful example shows DeepSeek-V3 on movies-roi for the table with inconsistent
formatting (i.e., some cell values have dollars or $ added to them for the intgross and budget_2013
columns). The model implements the correct logic to extract the numbers from these cells and
performs the write calculations using code.

Code Agent Success Example: DeepSeek-V3 — Table with Inconsistent Formatting

System prompt:
{{ code_agent_system_prompt }}

® User:

Begin!
Data table (stored in a pandas dataframe named ‘df*):

MOVIES-ROI IN RADAR-T

title,response,intgross,intgross_2013,budget,budget_2013,year,domgross_2013,released,
clean_test

Nacho Libre,True,99296462.0,114766488.0,32000000,36985483,2006,92692547.0,16 Jun 2006,
nowomen

Harry Potter and the Deathly Hallows: Part 2,True,1328111219.0,1375512553.0,125000000,
129461348,2011,394609809.0,15 Jul 2011,notalk

Crossroads, True,57000000.0,73825215.0,12000000,15542151,2002,48165989.0,15 Feb 2002, 0k

High Heels and Low Lifes,True,226792.0,298423.0,10000000,13158460,2001,298423.0,20 Jul
2001, ok

American Psycho,True,28674417.0,38793859.0,8000000,"$10,823,267 2013 adjusted dollars',
2000,20388715.0,14 Apr 2000,notalk

Home on the Range,True,76482461.0,94317626.0,110000000,135651216,2004,61692142.0,02 Apr

2004, ok

Far from Heaven,True,29027914.0,37596351.0,13500000,17484919,2002,20595744.0,12 Mar 2003
, 0k

White House Down,True,205440387.0,205440387.0,150000000,150000000,2013,73103784.0,28 Jun
2013, men

Alice in Wonderland, True, 1024391110.0,1094287202.0,200000000,213646368,2010,356993585.0,
05 Mar 2010, 0k

Liar Liar,True,302710615.0,439305185.0,45000000,65305716,1997,263270001.0,21 Mar 1997,
notalk

Kick-Ass,True,97527535.0,104182018.0,28000000,29910492,2010,51351297.0,16 Apr 2010,
notalk

Crank, True, 43924923.0,50768266.0,12000000, 13869556 ,2006,32175530.0,01 Sep 2006,nowomen

The Matrix Revolutions,True,424259759.0,537149747.0,110000000,139269565,2003,176314964.0
,056 Nov 2003, 0k

Akeelah and the Bee,True,18959424.0,21913233.0,8000000,9246371,2006,21784947.0,28 Apr

2006, ok

The Losers,True,26714018.0,28536765.0,25000000,26705796,2010,25201119.0,23 Apr 2010,
notalk

Vanilla Sky,True,202726605.0,266756984.0,70000000,92109217,2001,132393654.0,14 Dec 2001,
notalk

Super 8,True,260095987.0,269379017.0,50000000,51784539,2011,131537058.0,10 Jun 2011, o0k

Twelve Monkeys,True, 168841459.0,258121354.0,29000000,44334604,1995,87356689.0,05 Jan
1996 ,notalk

Bug, True,7006708.0,8098328.0,4000000,4623185,2006,8098328.0,25 May 2007,0k

Hard Candy, True,8267066.0,9862884.0,950000,1133381,2005,1222429.0,12 May 2006, ok

Ted, True, 549444574.0 dollars,557487654.0,50000000,50731928,2012,221866693.0,29 Jun 2012,
men

Straw Dogs,True,11253821.0,11655479.0,25000000,25892270,2011,10692928.0,16 Sep 2011,0k

All cells in the “df" are “object” data type, regardless of their appearance.
Question:

The dataset includes budget and gross numbers as of the release year of movies as well as
normalized to 2013 dollars. What is the average ROI where ROI = (intgross - budget) / budget?
Return your answer as a float rounded to the nearest 3 decimal places.

B Assistant:
DISCUSSION
Let me analyze this step by step to calculate the average ROI.

1. First, we need to identify and handle data quality issues:
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* Some budget values contain text like "$10,823,267 2013 adjusted dollars" which need
cleaning.
* Some intgross values have "dollars" appended (e.g. "549444574.0 dollars").
* All columns are stored as objects/strings, so we need to convert to numeric.
* We should use the non-adjusted values (budget and intgross) since ROI should be
calculated using original values.
2. Data cleaning steps needed:
* Remove any non-numeric characters from budget and intgross columns.
¢ Convert cleaned strings to numeric values.
* Calculate ROI for each movie.
* Handle any missing/invalid values that may result.
3. Calculation approach:
* ROI = (intgross - budget) / budget
* We’ll calculate this for each movie, then take the average.
* Round final result to 3 decimal places.

ST T yaml
command: "python
kwargs:
code: |-
import pandas as pd
import numpy as np

# Clean budget column - remove dollar signs and text

df [ 'budget_clean'] = df['budget'].str.replace(r'[~\d.]"', , regex=True)
df [ 'budget_clean'] = pd.to_numeric(df[ ' budget_clean'], errors='coerce')

# Clean intgross column - remove 'dollars' text

df [ 'intgross_clean'] = df['intgross'].str.replace(' dollars', )

df [ 'intgross_clean'] = pd.to_numeric(df['intgross_clean'], errors='coerce

)

# Calculate ROI only for rows with valid numbers

valid_rows = df [df['budget_clean'].notna() & df['intgross_clean'].notna()
& (df['budget_clean'] > 0)]

valid_rows['roi'] = (valid_rows['intgross_clean'] - valid_rows|[
budget_clean']) / valid_rows['budget_clean']

# Calculate average ROI and round
avg_roi = round(valid_rows['roi'].mean(), 3)
avg_roi

) User:

Observation:

2.753

B Assistant:
DISCUSSION
Let me verify and refine the calculation to ensure we’re getting the most accurate average ROI.
1. Reviewing the previous result of 2.753, this seems plausible but let’s double-check:
¢ The ROI calculation appears correct: (gross - budget)/budget
* We’re properly handling non-numeric values and zero/negative budgets
* The cleaning process removes text annotations while preserving numeric values
2. Potential improvements:
 Verify we’re using the correct columns (original values, not 2013-adjusted)
* Ensure we’re not accidentally including any invalid rows
* Check if any extreme outliers might be skewing the average
3. Additional validation steps:
¢ Count how many valid rows we have after cleaning
* Check the distribution of ROI values
* Verify the calculation with a manual check on a few sample movies
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T Tyaml

command: "python
kwargs:
code: |-
# Re-run cleaning to ensure consistency
df [ 'budget_clean'] = df['budget'].str.replace(r'[~\d.]"', , regex=True)
df [ 'budget_clean'] = pd.to_numeric(df['budget_clean'], errors='coerce')

df [ 'intgross'].str.replace(' dollars', )
pd.to_numeric(df[ intgross_clean'], errors='coerce

f['intgross_clean']
intgross_clean']

# Filter valid rows

valid = df [df [ 'budget_clean'].notna() &
df ['intgross_clean'].notna() &
(df [ 'budget_clean'] > 0)].copy()

# Calculate ROI
valid['roi'] = (valid['intgross_clean'] - valid['budget_clean']) / validl[
budget_clean']

# Verify stats
print (f"Valid movies: {len(valid)}/{len(df)}")
print (£ "ROI stats:\n{valid['roi'].describe()}")

# Recalculate average and round
round (valid['roi'].mean(), 3)

) User:

Observation:

2.753

M Assistant:
DISCUSSION
Let me analyze the final result and provide the conclusion.
1. After carefully cleaning and validating the data:
* We properly handled text annotations in numeric fields
¢ Removed non-numeric characters and converted to proper numeric types
* Filtered out invalid or missing data points
* Calculated ROI correctly as (intgross - budget)/budget
2. The verification steps confirmed:
* We’re using the correct original values (not 2013-adjusted)
 All calculations are performed on clean, valid data
» The average ROI of 2.753 is consistent across multiple runs
 This means on average, movies returned ~2.75 times their budget
3. Final considerations:
 The result is rounded to 3 decimal places as requested
* We’ve validated the calculation methodology
¢ The answer is ready to be finalized

T yaml
command : done
kwargs:
answer: 2.753
- )

E Additional Results

We present two sets of additional results. The first set (§E.1) includes our main experiments ran in
May 2025 (details in §C.1). The second set (§E.2) includes results from additional experiments ran
in July 2025 (details in §C.2).
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E.1 Additional Main Paper Results

For our main experiments, figure 9 presents additional scaling results on RADAR-S for Gemma 3
27B and o4-mini. Larger tables—measured by token count—consistently lead to poorer performance
under direct prompting, with even the strongest models struggling on 16K-token tables. Conversely,
wider tables—those with more columns and fewer rows—tend to be easier across all evaluated
language models. Notably, the performance of code agent baselines remains relatively stable across
varying table sizes.

Figure 10 illustrates performance degradation on tasks where the model initially succeeded on the
clean table, across missing data, bad values, outliers, and inconsistent formatting data artifacts.
Similar to the trends observed with inconsistent logic, these artifacts cause widespread performance
declines. While the results are drawn from different subsets of tasks, there is no consistent evidence
(across models or artifact types) when assuming they can solve the clean version, that direct prompting
or code agent baselines outperform the other when handling tables with such artifacts.

Figure 11 breaks down performance on the RADAR-T split by task. Although performance varies
across tasks and models, those that perform well overall generally maintain non-zero exact match
rates across most tasks. While the code agent baseline often outperforms direct prompting, this is not
always the case. For instance, Gemini 2.5 Pro performs better with direct prompting on specific tasks
such as uae-cancer-patient and traffic-violations-speeding. Finally, some tasks appear consistently
challenging (though not unsolvable), as indicated by the darker rows in the figure.
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Figure 9: Scaling Performance on Tables with Artifacts. Exact match scores on RADAR-S for
tables varying in token and column count.
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Figure 10: Performance Drop from Clean Tables to Tables With Artifacts. Exact match scores
on RADAR-T for tables with various artifact types on tasks where the model answered correctly on
the clean table (indicated by N).
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Direct Prompting Code Agent

actor-couples-under-35
board-games-min-player:
board-games-min-playtim

board-games-num-trades

daily-activity
daily-activity-distanc
employee-year
england-wales-ethnicity -l
england-wales-housin
england-wales-housing-bedroom-coun
farming-crop-yield-growth-duration-2024
football-european-league -l
football-european-league-goal-diff
influenza-like-illnes
movies-intl-gross
movies-rank-shift il
movies-roi il
nba-player-least-3p-mad
nba-players-avg-stock:
nba-players-best-shooters
northern-hemisphere-eelgrass-habitats il
nurses-hourly-salary
nurses-salary-differenc
nurses-state-employee:
nyc-green-taxi
nyc-green-taxis-passenger
nyc-green-taxis-rate
nyc-regents-exam-score:
nyc-regents-exam-scores-.
nyc-regents-exam-scores-boroug
olympics-countr
olympics-gold-winners
olympics-medal-winners il
pet-respiratory-motion il
physical-health-exam-bm
physical-health-exam-rhi
queensland-water-emissions
ross-sea-algal-pigment -Jil
|

-100

80

60

Task
Exact Match (%)

40

20

ultra-trail-races-morning-finishers
ultra-trail-races-rank il

weather-city-mixup ----

GPT-4

Gemini 2.5 Flash Thinking I
DeepSeek-R1 I

03-mini (high)l

Gemini 2.5 Pro-

||
[ |
||
||
||
[ |
||
[ |
||
||
||
||
||
=
o
~
~N
o
©
£
£
()
o

o4-mini (high) I
03-mini (high)l

Gemma 3 27B
DeepSeek-V3
Gemini 2.5 Flash

Gemini 2.5 Flash Thinking I
Gemini 2.5 Pro

Model

Figure 11: Performance by Task. Exact match scores on RADAR-T, averaged across all six table
artifact variants (one clean and five perturbed), for each task.
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Direct Prompting Code Agent

Model Cln Miss Bad Out Fmt Log ‘ ClIn Miss Bad Out Fmt Log
Table-tuned Models

StructLM 2.3 048 0.8 10241 0.4 10241 04026 1.11048 1.5024 - - - - - -
TableGPT2 0.8 0241 0.8 0241 1.110241 1.3 1053 1.51024 0.8 10241 | 35 n9as1 12 ws2n 3.8 0711 Spoazr 7.5 pasor 6021
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GPT-4.1 20 (14209 16 05211 14 o510 8.7 2ete” 21 4201 8.7 0,141 |99 posiioo; 39 31asy” 42 pas2” 53 wse” 78 e9s6 31 121381"
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99 15,1000 54 se2” 54 psen” 76 s’ 79 (eossy” 37 120451

Gemini-2.5-Pro 63 (ss711 43 p3s2” 47 01”54 psen’” 65 57711 34 pass”

04-mini (high) 81 on 49 peso” 48 pesn” 56 s’ 72 jeass” 28 p193s”
Table 6: Zero-shot Performance with 95% Confidence Intervals by Data Artifacts. Values
show mean accuracy (%) with 95% Cls in [brackets]. = indicates significant drop vs. clean baseline
(p < 0.05, one-sided paired ¢-test).

E.2 Additional Rebuttal Experiment Results

Table 6 includes additional results on models with confidence intervals. Note that the numbers
here may be different than Table 2 as API versions changed between the different experiments runs
(detailed in §C.1 and §C.2). These additional experiments do not affect any conclusions drawn in the
main paper version. Specifically, for nearly every data artifact type across all models and baseline
settings (including all cases for the code agent setting) we observe models perform significantly
worse on the perturbed versions of the tables.

Figure 12 shows the performance difference when using the naive prompt (§C.2) compared to the
original prompt (§C.1). Across all artifact types, models consistently underperform when perturbation
cues are omitted. Notably, all models perform substantially worse on tables with outliers even with
code execution. While our main paper prompts aimed to give models as much relevant context for
a fair evaluation, these results emphasize current data-awareness gaps and real-world deployment
implications. LMs cannot recognize issues in the data, and this is even worse in realistic scenarios in
which explicit instructions are not given.
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Figure 12: Performance drop from the naive prompt (without mentioning perturbations) relative
to the original prompt. Bolded values indicate statistically significant degradations under naive
prompting.
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F Broader Impacts Statement

Language models are increasingly used in domains like healthcare, finance, and science, where they
are expected to perform autonomous analyses of tabular data. However, our findings underscore that
current models are not reliably robust to common data imperfections pervasive in real-world datasets.
This vulnerability can lead to misleading conclusions or biased decisions, potentially amplifying
harms in high-stakes applications.

RADAR aims to address this by providing a structured benchmark for evaluating how well models
handle these real-world data artifacts. By simulating a range of data imperfections and varying table
sizes, it helps surface critical failure modes and guide the development of more robust, data-aware
systems. However, we caution against overreliance on benchmark performance as a stand-in for
real-world readiness. While RADAR enables controlled evaluation, optimizing solely for benchmark
success may produce brittle models that struggle in more complex or nuanced scenarios. We advocate
using it as a diagnostic tool, extending the framework to encompass broader data scenarios, and
pairing it with real-world testing and human evaluation. Overall, we hope this work promotes more
reliable and transparent use and evaluation of language models in data-driven tasks, while fostering
awareness of the limitations and risks involved.
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