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Abstract

This paper presents a set of experiments in
the area of morphological modelling and pre-
dictioning. We examine the tasks of segmen-
tation and predictive text entry for two under-
resourced and indigenous languages, K’iche’
and Chukchi. We use different segmentation
methods to make datasets for language mod-
elling and then train models of different types:
single-way segmented, which are trained us-
ing data from one segmentor; two-way seg-
mented, which are trained using concatenated
data from two segmentors; and finetuned, which
are trained on two datasets from different seg-
mentors. We measure word and character level
perplexities of the language models and find
that single-way segmented models trained us-
ing morphologically segmented data and fine-
tuned models work the best. Finally, we test
the language models on the task of predictive
text entry using gold standard data and measure
the average number of clicks per character and
keystroke savings rate. We find that the models
trained using morphologically segmented data
work better, although with substantial room for
improvement. At last, we propose the usage
of morphological segmentation in order to im-
prove the end-user experience while using pre-
dictive text and we plan on testing this assump-
tion by training other models and experimenting
on more languages.

1 Introduction

Nowadays text prediction is widely used in different
cases such as autocomplete, smart keyboards, etc.
The underlying models are limited by resources, so
they save only the top-N highest frequency words,
which may work well with analytic languages, but
when it comes to the synthetic languages the out-
of-vocabulary (OOV) problem becomes more and
more noticeable. In order to deal with it, words are
usually segmented in constituent parts, so that more
of them can be saved in the model vocabulary.

The segmentation task is not new, there are many
algorithms with BPE (Gage, 1994) being the most
known and used for segmentation. Such methods do
not lean on linguistics but only on statistics. In this
paper, we tested whether morphological segmenta-
tion can improve language modelling and whether it
can compete against statistical segmentation meth-
ods in predictive text entry task.

We have a particular interest in developing text
prediction that is both effective and ergonomic. By
ergonomic we mean that made predictions should be
linguistically sound and intelligible for the end user.
For example, imagine an English word antidises-
tablishmentarianism. An ergonomic segmentation
would split the word into its constituent morphs
[anti, dis, establish, ment, arian, ism], or an al-
ternative [anti, dis, establishment, arianism]. An
unergonomic segmentation might be [antid, isestab,
lishme, ntarianism] or [an, tidises, tablishm, entari-
anism]. One of the issues with many current meth-
ods is that while they can produce segments that
are meaningful units, in many cases the segments
are not linguistically meaningful. We argue that
for the task of predictive text entry producing non-
linguistic units creates more cognitive load and so
would result in slower text entry than predicting the
same amount (or a greater number of) linguistic
units.

The remainder of the paper is laid out as follows:
in Section 2 we overview the languages we exper-
iment on, in Section 3 we discuss the works that
were an inspiration for this paper, in Section 4 we
describe the experiments we are doing, in Section 5
we review used segmentation methods, choose the
best morphological segmentor and do the segmen-
tation, in Section 6 we provide results of language
modelling, in Section 7 we speak about language
modelling evaluation task, in Section 8 we discuss
our thoughts on the results, in Section 9 we an-
nounce the planned future experiments. Examples
in this paper will be mostly given in K’iche’ and En-



glish, but there will also be a couple of examples in
Chukchi and Turkish. English examples, while En-
glish being neither an agglutinative or polysynthetic
language, are given in order for the reader to better
understand the examples.

2 Languages

We performed the experiments using two languages:
K’iche’ (ISO-639: quc), a Mayan language of
Guatemala that is of the agglutinating type, and
Chukchi (ISO-639: ckt), a Chukotko-Kamchatkan
language of Siberia of the polysynthetic type. Both
of these types are characterised by words consisting
of a large number of individual morphs, surface rep-
resentations of morphemes.

The following examples in K’iche’ (1) and
Chukchi (2) demonstrate this tendency.

(1) X-in-e’-ki-k’am-a’
cP-B1sG-MOV-A3PL-receive-DEP
‘They went to take me’

Both languages exhibit polypersonal agreement
(both the subject and object arguments of transitive
verbs are encoded on the verb), and Chukchi, in ad-
dition, exhibits noun incorporation. As it can be
seen in example 2, the object mans /mane/ ‘money’
is incorporated, rendering intransitive the transitive
root eanjs /wanta/ ‘ask’.

(2) H>wmbIEdH HBI-MaHY-BaHJA-CEIB-KDHA-T.
nemogej no-mane-wanta-sqew-gena-t
also sT-money-ask-Mcp-ST.3sG-PL
‘They also came to ask for money’

Languages of these types are widespread across
the Americas but infrequent in Europe and, as a re-
sult, were less researched in terms of predictive text
input.

2.1 Data

As K’iche’ and Chukchi are low-resource languages,
the availability of large corpora is limited. We
used data annotated for morphological segments
and unannotated text as well. For Chukchi, the an-
notated data came from the ChukLang? corpus, we
used a version that was extracted and converted to
!Glossing symbols are from the original sources: cp ‘com-
pletive’, B1sG ‘absolutive 1st person singular’, Mov ‘movement
prefix’, A3pL ‘ergative 3rd person plural’, bep ‘dependent status
suffix, st ‘stative’, Mcp ‘goal-oriented movement’, st.3sG 3rd
person singular stative’, pL ‘plural’.
*https://chuklang.ru/

Unannotated Annotated

Sents Words Sents Words
K’iche’ 24,254 275,265 1,299 8,789
Chukchi 33,322 151,585 1,006 4,417

Table 1: Dataset sizes for the two languages measured
in sentences and words. Unannotated and annotated
datasets do not intersect. Annotation was done manually.

Cyrillic orthography to make it compatible with the
unannotated corpus. The unannotated data came
from a collection of folklore and texts from the in-
ternet.

For K’iche’ we also used annotated and unan-
notated texts. The annotated texts were a hand-
segmented set of sentences used in constructing a
morphologically and syntactically annotated corpus
of K’iche’, these sentences were from a range of
sources including grammar-book and dictionary ex-
amples, stories and legal texts.

The second, unannotated, portion of the data was
obtained from the An Criibaddn project (Scannell,
2007) that collects corpora from the web for indige-
nous and marginalised languages.

Table 1 shows the amount of data available for
both languages.

2.2 Preprocessing

In order to segment the raw data using supervised
learning methods, the annotated data was split into
two disjoint subsets: train (50 percent) and test (50
percent). This ratio was chosen due to low anno-
tated data volume — we suppose that a choice of
a disbalanced ratio like 80 percent/20 percent can
lead to unreliable results. The automatically seg-
mented corpus was then used for language mod-
elling, while the test split of annotated data was used
for predictive text.

3 Related work

Being one of the latest works (Schwartz et al.,
2020) on language modelling of indigenous lan-
guages, this paper proposed the usage of morpho-
logical segmentation in order to improve metrics
of language modelling. They compared different
segmentation methods, such as single words, divid-
ing into characters, BPE, Morfessor, Finite-state
transducers (FST). Even though FST is a good seg-
mentation method used for lots of languages (Mit-
tal, 2010; Hlaing and Mikami, 2014) and there are
even ones for K’iche’ (Richardson and Tyers, 2021)


https://chuklang.ru/

and Chukchi (Andriyanets and Tyers, 2018), we de-
cided that we will not use them because the cov-
erage for Chukchi is too low and it is hard to do
disambiguation with FST because it requires a huge
tagged corpus. Unfortunately, the authors could not
do the end-task evaluation of the trained models but
suggested doing predictive text. While also having
no access to native speakers we decided to emulate
the user input in order to evaluate the models. It still
is not as good as end-user testing though it is better
than nothing.

Another work (Boudreau et al., 2020) that gave
us ideas on how to approach the language modelling
task was devoted to Mi’kmaq language modelling
evaluation. Mi’kmaq (ISO-639: mic), an Eastern
Algonquian low-resourse polysynthetic language, is
spoken primarily in Eastern Canada and has around
8700 speakers. Not only did the authors work with
indigenous language, but they also did the keystroke
savings evaluation, which is pretty similar to the
idea of predictive text evaluation described in the
previous work.

There are other works (Suhartono. et al., 2014,
Yu et al.,, 2017) that describe keystroke savings
evaluation. What is more important, the authors
worked with agglutinative languages, Bahasa(ISO-
639, ind), the official language of Indonesia, and
Korean(ISO-639, kor), official and national lan-
guage of both North Korea and South Korea (orig-
inally Korea). Though we do not want to use
the same language modelling technics as were de-
scribed in the papers, we still find it inspiring there
are works dedicated to this task.

As we mentioned before, we assume that the us-
age of morphs while doing text prediction will make
it both effective and ergonomic. However, there
was a research (Lane and Bird, 2020) on Kunwin-
jku, a polysynthetic language of northern Australia,
and Turkish, which states that morph-based auto-
complete for polysynthetic languages can be trouble-
some due to long words and sparse vocabularies of
such languages. Moreover, dialectal variations and
dealing with input errors using edit distance makes
the next-morpheme predictioning even harder, so,
as it is shown in the paper, Turkish may be a more
attractive language for morph-based predictioning
than Kunwinjku

4 Tasks

As mentioned previously, our experiments are split
into four distinct tasks, from the more fundamen-

tal to the more application-specific. In the follow-
ing sections we describe the methodology for these
tasks and the results obtained.

Morphological segmentation We train morpho-
logical segmentation models based on the corpora
outlined in Table 1 and evaluate them. Here to be
a correct segmentation models must match the ref-
erence sentence in the test set. The evaluation mea-
sure is F score. F score is defined using precision
and recall:

correct boundaries found

TS 1

precision total boundaries found M
number of found

1= 2

reca total correct boundaries 2)

F =2+ precision * recall 3)

precision + recall

Language modelling We take the best morpho-
logical segmentation model and the statistical seg-
mentation ones in order to do language modelling.
We do 10-fold cross-validation in order to train mod-
els for end-task evaluation. We also do experiments
using one fold investigating how the data volume in-
fluences the model training results. The evaluation
metric is word and character level perplexity. Al-
though the model we chose allows both character
and word level training, in this paper we do word
level training with subwords serving as words.

Predictive text entry We take the trained mod-
els from the former task and compare their perfor-
mance in the predictive text task. The task is to
predict the next linguistic unit of output for a given
input looking at the top-3 predictions. The evalua-
tion measure is average number of clicks per char-
acter and keystroke savings rate. The fewer clicks
per character the less the end-user has to type. It’s
important to mention that the first segment of each
word is always typed character by character; this is
caused by the model not having token <bos> (be-
ginning of the sentence) in its design and the fact
that we are doing word level training. As mentioned
above, we use the cross-validation models for this
task.

Significance testing As all of the tasks are done
using cross-validation, we have sets of results for
each model. These results can be tested in order
to say if some models are significantly better than



the others. To implement this, first, we do the one-
way ANOVA? with the null hypothesis being “all
the means are the same”. In case the null hypothe-
sis is rejected, we do pairwise Least Significant Dif-
ference test (LSD-test)* to group the models so that
we can find the best performing ones which are not
significantly different from each other. The LSD
values for all the tasks are given in the appendix.

5 Segmentation

The idea to compare statistical and morphologi-
cal segmentation was already tested (Pan et al.,
2020); the results show that the usage of morpholog-
ical segmentation significantly improves the BLEU
and ChrF3 metrics in neural machine translation
(NMT).

In this paper we tried six segmentation models.
Four of these are unsupervised: Byte-pair encoding
(BPE; Gage, 1994), which was popularised by (Sen-
nrich et al., 2016), Unigram (Kudo, 2018), Word-
Piece (Schuster and Nakajima, 2012) and Morfes-
sor (Virpioja et al., 2013). The other two are
supervised: NeuralMorphemeSegmentation (NMS;
Sorokin and Kravtsova, 2018) and NCRF++ (Yang
and Zhang, 2018).

Morfessor, NMS and NCRF++ are morphologi-
cal segmentation models and they have to be trained
and evaluated against a test subset. The remaining
three do not require evaluation although they can be
evaluated on a hold-out dataset.

As an output format, we decided to use one of
those in the mentioned work (Pan et al., 2020): we
modified the stem with singular suffix strategy, so
that all of the subwords are treated the same way:
single-morpheme words remain unchanged, in com-
posite words every morpheme except the last one
ends with #, the last morpheme ends with $.

5.1 Systems

As we decided to compare statistical and morpho-
logical segmentation, we also wanted to compare
the models within each type. For this reason we
chose BPE, Unigram and Wordpiece as statistical
segmentation models. While choosing morpholog-
ical segmentation models, we were looking for the
ones that were tested not only on English and also

3(2008) One-Way Analysis of Variance. In: The Concise
Encyclopedia of Statistics. Springer, New York, NY. https:
//doi.org/10.1007/978-0-387-32833-1_297

4(2008) Least Significant Difference Test. In: The Concise
Encyclopedia of Statistics. Springer, New York, NY. https:
//doi.org/10.1007/978-0-387-32833-1_226

Chukchi K’iche’
Morfessor 0.610 0.618
NMS 0.840 0.907
NCRF++ 0.821 0.874

Table 2: Best Fi-score for morphological segmentation.
The neural morphological segmentation (NMS) model
outperforms both Morfessor and NCRF++ for both lan-
guages.

had F}-score as a computed metric. Thus, alongside
Morfessor, the best-known morphological segmen-
tor, we also chose NMS and NCRF++.

5.2 Results

We decided to choose the best segmentation model
out of Morfessor, NMS and NCRF++, because the
paper is not dedicated entirely to defining the best
morphological segmentation model being rather ex-
amining if it is better than statistical segmentation
in specific tasks. The results of morphological seg-
mentation are presented in Table 2 and the models
hyperparameters are included in the appendix.

While being designed for Russian, an inflec-
tive language, NMS outperformed Morfessor and
NCRF++. Though, since the small size of the avail-
able data the metrics are not stable, fluctuating be-
tween n — 0.3 and n + 0.3, where n is the F}-score
on evaluation data. Thus the second-best model,
NCRF++, was chosen to segment the whole corpus
and to be used while evaluating the language model.

Hence, 3 segmentation methods were used to
make datasets for the following experiments —
NCRF++, Unigram and Wordpiece. In order
to do Unigram segmentation we used a package
made by Google (Kudo and Richardson, 2018),
for Wordpiece we used BertWordPieceTokenizer
model from tokenizers package (Moi, 2021). Table
3 shows the same sentence being segmented with
different models.

6 Language modelling

In order to do the text prediction we decided
to choose the model that achieved state-of-the-
art word level perplexities on Penn treebank and
WikiText-2 (Merity et al., 2017). This model was
applied (Schwartz et al., 2020) to several indigenous
languages, including Chukchi, and showed good
performance. This model trains fast, allows to be
trained both on character level and word level, and


https://doi.org/10.1007/978-0-387-32833-1_297
https://doi.org/10.1007/978-0-387-32833-1_297
https://doi.org/10.1007/978-0-387-32833-1_226
https://doi.org/10.1007/978-0-387-32833-1_226

Variant Example

Input text Xke'x ri nukinaq’
Canonical x# ke’x$ ri nu# kinaq’$
Morph. segmen.  x# ke’x$ ri nu# kinaq’$
BPE xke# # x$ ri nukina# q’$
Unigram xke# ’# x$ ri nuki# na# q'$
WordPiece xk# e’x$ ri nuk# inaq’$

Table 3: Segmentation variants for the K’iche’ sen-
tence Xkex ri nukinaq’ “My beans were ground”. The
canonical segmentation corresponds to /cp-grind.pass’
the poss.1sG-bean/. The hash symbol, #, indicates that
there is a segment after the current one and the dollar
symbol, $, indicates the last segment in a multi-segment
word.

also is good dealing with overfitting, which is essen-
tial while working with low-resource languages.

Although BERT (Devlin et al., 2019) has
been successfully used for low-resource languages
(Ngoc Le and Sadat, 2020; Wang et al., 2020), mod-
els based on BERT models usually have hundreds of
millions of parameters and as such are not efficient
enough in terms of space for existing mobile phones.
This is not suitable for us as our main goal is to use
the model for a phone keyboard in order to do pre-
dictive text.

The data for language modelling was at first split
into modelling (80 percent) and test (20 percent)
subsets. Then for the 10-fold cross-validation the
modelling subset was split into train (75 percent)
and validation (25 percent) subsets. The folds were
made using ShuffleSplit® with the same seed as the
one used while language modelling. The dictionar-
ies for the embeddings consist of all the subwords
of train dataset plus the <unk> token; the validation
subset is used to calculate perplexity in the end of
each epoch. The models were trained until 5 epochs
without perplexity improvement on a validation sub-
set.

In order to investigate how the volume of data in-
fluences the model perplexity we decided to do lan-
guage modelling increasing the data volume from
10 percent to 100 percent with a 10 percent step.
The data is shuffled using the same seed as in other
tasks and then we take the first n percent of lines.
Thus we can be sure that two-way segmented mod-
els won’t get the data only from one segmentor. We

*https://scikit-learn.org/0.24/modules/
generated/sklearn.model_selection.ShuffleSplit.
html

did these experiments using only one fold as we did
not intend to show that a certain amount of data lets
us train a better model.

The training hyperparameters are included in the
appendix.

6.1 Modelling type

All the models we trained can be divided into three
types: single-way segmented, two-way segmented
and finetuned models.

In order to distinguish a language model from a
segmentation method the model names will be given
in bold e.g. Unigram is a segmentation model while
Unigram is a model trained on data processed by
the corresponding segmentation model.

6.1.1 Single-way segmented

Models of this type — Morph. segm., BPE, Un-
igram, Wordpiece — were trained using single
datasets we got in Section 5.

6.1.2 Two-way segmented

Models of this type — MS+BPE, MS+Unigram,
MS+Wordpiece — were trained using two datasets
we got in Section 5 combined together. The idea
behind this modelling type is that we want to see
if having data processed by different segmentation
methods can help us solve both evaluation tasks on
a high level.

6.1.3 Finetuning

As it was proposed in one of the related works
(Boudreau et al., 2020), pretrained embeddings can
be used in order to improve the performance of
the language models. We decided to try finetuning
though we chose to pretrain not only embeddings
but also RNN layers.

Models of this type — BPE2MS, Unigram2MS,
Wordpiece2MS — were at first trained using the
Unigram/Wordpiece data and then morphologically
segmented data was used to finetune the trained
model. It’s important to mention that while train-
ing models of this type either datasets volumes were
step-by-step increased by 10 percent e.g. the first
Unigram2MS model was trained on 10 percent of
Unigram data and then on 10 percent of morpho-
logically segmented data. Looking ahead we should
also mention that it turned out there is no need to
lower the learning rate of the model while finetun-
ing it — the perplexity of the model in the end of
training is the same while epoch count (and, accord-
ingly, the training time) becomes approximately 10
times higher.
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6.2 Results

As we can see in Table 4, the best models for K’iche’
and Chukchi according to perplexity are Morph.
segm. and finetuning models.

K’iche’ Chukchi
wd Ch Wwd Ch
MS 3259 7.57 176.56 27.04
BPE 3853 895 2553.62 391.11
Uni 3529 820 46443 71.13
WP 148.24 3445 2745.33 420.48
BPE2MS 34.03 791 166.58 25.51
Uni2MS 3432 797 163.58 25.05
WP2MS 3206 745 16590 2541
MS+BPE 3546 824 500.85 76.75
MS+Uni 3410 792 265.67 40.71
MS+WP 5427 12.61 52428 80.34

Table 4: Word (Wd) level and character (Ch) level per-
plexities for the models (mean scores of 10-fold cross-
validation). MS stands for Morph. segm., Uni stands
for Unigram, WP stands for Wordpiece. We do not
give subword level perplexities as they are not compara-
ble. The best scores are in bold being significantly better
according to ANOVA than the others but not outperform
each other.

The two-way segmented models show lower
scores than Morph. segm. ones, though they are
better than the models trained on data of the sec-
ond origin (BPE, Unigram, Wordpiece segmentors).
It does seem like the usage of morphologically seg-
mentated data allows us to improve the performance
of the models.

It is worth saying that perplexity scores for differ-
ent segmentations can’t be compared to each other
as is due to the dictionary sizes of all the models be-
ing different. This is why we computed the word
and character perplexities using the subword ones
(Mielke, 2019). Basically, it is just a normalisation
of metrics in order to be able to compare them cor-
rectly. To do that, we computed the negative log-
likelihood of the strings:

nll = log ppl®* x (Csy + k) 4)

where nll is negative log-likehood, ppl®* is the
computed subword level perpelxity, C,, is the total
count of subwords in the set and & is the total count
of lines in the set that stands for the count of <eos>
tokens which the model also predicted.

Then we computed word level and character level

perplexities using the negative log-likehood we got
on a previous step:

nll
v — = 5
D exp ot k ©)
nll
— 6
p exp C 1k (6)

where ppl" is word level perplexity, ppl€ is char-
acter level perplexity, nll is negative log-likehood,
C 1s the total count of words in the set, C, is the
total count of characters in the set and k is the total
count of lines in the set.

As we also did the modelling of one fold using
different data volumes, we decided to look at the de-
pendency of the finetuning metrics on the data vol-
ume and to compare them to the results of Morph.
segm.. As we can see at Figure 1, 40 percent of data
is a threshold at which the most models epoch count
starts getting lower and the Morph. segm. model
perplexity starts becoming smooth; the perplexity
is rising due to the growing count of tokens in data.
Moreover, the epoch count while doing the finetun-
ing is lower than when training the Morph. segm.,
while the perplexity scores are being close to each
other after the 40 percent threshold, so we can con-
firm our conclusion that finetuning works well.

7 Predictive text input

Another task to evaluate language models is pre-
dictive text input. The idea is that we emulate a
person using a smart keyboard while it is offer-
ing some predictions, which have to be meaning-
ful. The meaningfulness is important because we
assume that the typing person would like to choose
from real words/morphs and not some artificial sub-
words that make at best no sense and in a worst case
scenario they may mean something totally wrong
(3). The example is given in Turkish because it il-
lustrates the problem really good.

(3) a. araba-m-a
‘into my car’

b. arab-am-a
‘arab into *vulgar word*’

While evaluating, we look through top 3 model
predictions and compare them to the subword we
are currently predicting. If they are similar, that pre-
diction is chosen, otherwise we look at the next one.
If none of the predictions were correct, we consider
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Figure 1: Best epochs and word level perplexity scores

for finetuned models. Best epochs are the numbers of
latest best epochs.

that the user will have to input the word to end char-
acter by character. The input for the model is built
up using the remaining morphemes.

7.1 Results

As we can see in Table 5, for K’iche’ the best model
is MS+Wordpiece and for Chuckhi the best ones
are Morph. segm, BPE2MS, Wordpiece2MS
and MS+Unigram. We also decided to include the
keystroke savings rate used in the Mi’kmaq paper
(Boudreau et al., 2020) in order to be able to com-
pare the results. The group of models which are the
best for Chukchi is the second best for K’iche’.

Predictive text metrics do correlate with
language-modelling  metrics; even though
MS+Wordpiece performs the best for K’iche’, the
group of Morph. segm, BPE2MS and Word-
piece2MS has both best perplexity and clicks per
character scores. We suppose that the models con-
nected with morphological segmentation perform
better in this task because the language model,
while not being trained on the evaluation data, got
resembling training data.

The results for Chukchi are worse than the re-
sults for Ki’che’. The reason may be that gold stan-
dard for Chukchi is in telgep Chukchi, while the cor-
pus used for training is in standard Chukchi. An-
other reason may be that words in Ki’che’ evalua-
tion data are shorter both segmentwise and charac-
terwise than the Chukchi words. In case a model can
not predict a correct morph, we penalize it by mak-
ing the whole word be typed character-by-character,
so the longer the word is, the more significant mis-
takes become.

Another issue that may influence the results is that
the first subword of each word is typed character by
character. We plan to get rid of it in the future in
order to be able to evaluate the results better.

8 Discussion

As we can see, the evaluation shows that different
models are good at different tasks which paves the
way for a discussion if we can say that one model is
better than another or not. While not being able to
tell the correct answer for this question, we would
recommend to try morphological segmentation as it
can be used with a statistical one (alongside or by
finetuning).

Morphological segmentation can also improve
the model performance in predictive text task and
other tasks, which were not discussed in this pa-



K’iche’ Chukchi

CpC KSR CpC KSR
No prediction 1.00 0.00 1.00 0.00
Morph. segm. 096 3.03 099 0.78
BPE 098 1.69 0.99 0.27
Unigram 098 146 099 0.26
Wordpiece 097 235 099 0.20
BPE2MS 096 345 099 0.77
Unigram2MS 096 349 099 0.69
Wordpiece2MS 096 3.53 0.99 0.79
MS+BPE 096 335 0.99 0.62
MS+Unigram 096 353 099 0.73
MS+Wordpiece 0.95 4.26 0.99 0.68

Table 5: Predictive keyboard metrics, the number of
clicks per character (CpC) and keystroke savings rate
(KSR) for each of the methods. ‘No prediction’ means
that the user has to input all the words character by char-
acter including spaces, serving as baseline. The best
scores are in bold being significantly better according to
ANOVA than the others but not than each other.

per. What is important to mention is that there is
no need in training models using morphologically
segmented data from scratch, the existing models
can be finetuned and the results will not differ sig-
nificantly from the ones of Morph. segm. while
the training time will be much lower as shown on
Figures 1c and 1a.

As we can see, in all the tasks K’iche’ models have
better performance than Chukchi models. While
we do not know the particular reason for this, we
assume that the polysynthetic language complexity
may be hindering the model from training. In the
mentioned above paper (Lane and Bird, 2020) the
authors also reported that polysynthetic languages
have their special challenges such as high word
length, complexity, etc.

As we referenced the Mi’kmaq (Boudreau et al.,
2020), it seems reasonable to compare the results of
their experiments with the results of ours. The re-
sults of the evaluation cannot be compared easily be-
cause our task was to predict linguistic units, not any
kind of units, while in the Mi’kmaq paper words and
BPE segments were being predicted; though if we
do compare the results, we can see that the best KSR
score for Mi’kmagq is 3.81, while the best score for
Ki’che’ is 4.26. At the same time, the best Chukchi
KSR is much worse that the Mi’kmagq score being
only 0.79.

Alongside the metrics computed while experi-

menting there is also a metric which cannot be mea-
sured without end-user testing — the sanity check.
As mentioned before, the issue with statistical seg-
mentation is that subwords predicted and offered to
the user may have no sense for the user or, what is
much worse, may carry the wrong meaning. We do
suppose that this alone can be a reason to choose
morphological segmentation over the regular one
because segmentation task is not done in isolation
— it serves a purpose in a larger scheme of things.
We think that in case the language model will be
used in predictive text settings, where the user expe-
rience and user reaction is highly relevant, morpho-
logical segmentation should be chosen as a subword
tokenization method, while statistical segmentation
may be chosen while doing machine translation, for
example.

9 Future work

We are planning to test several other language mod-
els and language modelling metrics in order to find
out what correlates best with text prediction scores.

We find it reasonable to experiment on other lan-
guages, for example, Turkish, Nahuatl and Yupik,
in order to get a better understanding when the use
of morphological segmentation is reasonable.

Another task to do is to run an end-user evalua-
tion of multiple segmentations and determine which
units are preferred. In order to do this, we would
also need to solve the problem of predictive text
evaluation that the user has to input the first word
character by character. In order to do this, we will
possibly have to combine word level and character
level based models.
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A Hyperparameters

Here we provide hyperparameter values for the var-
ious models to aid in reproduction of the results.

A.1 Morphological segmentation

In this section we describe the best hyperparameter
settings that we found for the various tasks.

A.1.1 Morfessor

The best results for both K’iche” and Chukchi were
achieved with this hyperparameters:

A.1.2 NeuralMorphemeSegmentation

The best results for K’iche’ were achieved with this
hyperparameters:
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Parameter Value
learning algorithm recursive
training type based

Table 6: Morfessor hyperparameters.

Parameter Value
convolutional layers 3
window size 3-4
filters 96
dense output users 64
context dropout 0.3
memorize morphemes no
memorize ngram counts. no

Table 7: NMS hyperparameters (K’iche’).

The best results for Chukchi were achieved with
this hyperparameters:

Parameter Value
convolutional layers 3
window size 4-6
filters 96
dense output users 20
context dropout 0.3
memorize morphemes no
memorize ngram counts. no

Table 8: NMS hyperparameters (Chuckhi).

A.1.3 NCRF++
The best results for K’iche’ were achieved with this

hyperparameters:
Parameter Value
char. embedding dim 200
char. hidden vector dum 200
optimizer Adagrad
convolutional layers 4
use CRF layer yes
use char. sequence layer yes
use CNN to train for chars yes
use CNN to train for words yes

Table 9: NCRF++ hyperparameters (K’iche’).
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The best results for Chukchi were achieved with

this hyperparameters:

Parameter Value
char. embedding dim 400
char. hidden vector dum 400
optimizer Adagrad
convolutional layers 16
use CRF layer yes
use char. sequence layer yes
use CNN to train for chars yes
use CNN to train for words yes

Table 10: NCRF++ hyperparameters (Chukchi).

A.2 Least Significant Deviation values

The LSD-test results for language modelling and

predictive text tasks:

Task K’iche’ Chukchi
language modelling 1.494 17.806
predictive text 14.22e-4  6.779%e-4

Table 11: LSD values

A.3 Language modelling

All the models were built results for Chukchi were

achieved with this hyperparameters:

Parameter Value
LSTM layers 3
embedding dim 256
hidden units per layer 3000
use regularization no
layers dropout 0.4
RNN layers dropout 0.1
embeddings dropout 0.1
remove words from embeddings dropout 0.0
sequence length 100
optimizer Adam
learning rate le-3
weight decay 1.2e-6
seed 1111

Table 12: Awd-Istm hyperparameters.
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Table 13: Text prediction by single-way segmented mod-

els(K’iche’).
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