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Abstract

This paper presents a set of experiments in001
the area of morphological modelling and pre-002
dictioning. We examine the tasks of segmen-003
tation and predictive text entry for two under-004
resourced and indigenous languages, K’iche’005
and Chukchi. We use different segmentation006
methods to make datasets for language mod-007
elling and then train models of different types:008
single-way segmented, which are trained us-009
ing data from one segmentor; two-way seg-010
mented, which are trained using concatenated011
data from two segmentors; and finetuned, which012
are trained on two datasets from different seg-013
mentors. We measure word and character level014
perplexities of the language models and find015
that single-way segmented models trained us-016
ing morphologically segmented data and fine-017
tuned models work the best. Finally, we test018
the language models on the task of predictive019
text entry using gold standard data and measure020
the average number of clicks per character and021
keystroke savings rate. We find that the models022
trained using morphologically segmented data023
work better, although with substantial room for024
improvement. At last, we propose the usage025
of morphological segmentation in order to im-026
prove the end-user experience while using pre-027
dictive text and we plan on testing this assump-028
tion by training other models and experimenting029
on more languages.030

1 Introduction031

Nowadays text prediction is widely used in different032

cases such as autocomplete, smart keyboards, etc.033

The underlying models are limited by resources, so034

they save only the top-N highest frequency words,035

which may work well with analytic languages, but036

when it comes to the synthetic languages the out-037

of-vocabulary (OOV) problem becomes more and038

more noticeable. In order to deal with it, words are039

usually segmented in constituent parts, so that more040

of them can be saved in the model vocabulary.041

The segmentation task is not new, there are many 042

algorithms with BPE (Gage, 1994) being the most 043

known and used for segmentation. Suchmethods do 044

not lean on linguistics but only on statistics. In this 045

paper, we tested whether morphological segmenta- 046

tion can improve language modelling and whether it 047

can compete against statistical segmentation meth- 048

ods in predictive text entry task. 049

We have a particular interest in developing text 050

prediction that is both effective and ergonomic. By 051

ergonomic wemean that made predictions should be 052

linguistically sound and intelligible for the end user. 053

For example, imagine an English word antidises- 054

tablishmentarianism. An ergonomic segmentation 055

would split the word into its constituent morphs 056

[anti, dis, establish, ment, arian, ism], or an al- 057

ternative [anti, dis, establishment, arianism]. An 058

unergonomic segmentation might be [antid, isestab, 059

lishme, ntarianism] or [an, tidises, tablishm, entari- 060

anism]. One of the issues with many current meth- 061

ods is that while they can produce segments that 062

are meaningful units, in many cases the segments 063

are not linguistically meaningful. We argue that 064

for the task of predictive text entry producing non- 065

linguistic units creates more cognitive load and so 066

would result in slower text entry than predicting the 067

same amount (or a greater number of) linguistic 068

units. 069

The remainder of the paper is laid out as follows: 070

in Section 2 we overview the languages we exper- 071

iment on, in Section 3 we discuss the works that 072

were an inspiration for this paper, in Section 4 we 073

describe the experiments we are doing, in Section 5 074

we review used segmentation methods, choose the 075

best morphological segmentor and do the segmen- 076

tation, in Section 6 we provide results of language 077

modelling, in Section 7 we speak about language 078

modelling evaluation task, in Section 8 we discuss 079

our thoughts on the results, in Section 9 we an- 080

nounce the planned future experiments. Examples 081

in this paper will be mostly given in K’iche’ and En- 082
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glish, but there will also be a couple of examples in083

Chukchi and Turkish. English examples, while En-084

glish being neither an agglutinative or polysynthetic085

language, are given in order for the reader to better086

understand the examples.087

2 Languages088

We performed the experiments using two languages:089

K’iche’ (ISO-639: quc), a Mayan language of090

Guatemala that is of the agglutinating type, and091

Chukchi (ISO-639: ckt), a Chukotko-Kamchatkan092

language of Siberia of the polysynthetic type. Both093

of these types are characterised by words consisting094

of a large number of individual morphs, surface rep-095

resentations of morphemes.096

The following examples in K’iche’ (1) and097

Chukchi (2) demonstrate this tendency.1098

(1) X-in-e’-ki-k’am-a’
CP-B1SG-MOV-A3PL-receive-DEP
‘They went to take me’

099

Both languages exhibit polypersonal agreement100

(both the subject and object arguments of transitive101

verbs are encoded on the verb), and Chukchi, in ad-102

dition, exhibits noun incorporation. As it can be103

seen in example 2, the object манэ /mane/ ‘money’104

is incorporated, rendering intransitive the transitive105

root ванԓя /wanɬa/ ‘ask’.106

(2) Нэмыӄэй
neməqej
also

ны-манэ-ванԓя-сӄэв-ӄэна-т.
nə-mane-wanɬa-sqew-qena-t
ST-money-ask-MCP-ST.3SG-PL

‘They also came to ask for money’

107

Languages of these types are widespread across108

the Americas but infrequent in Europe and, as a re-109

sult, were less researched in terms of predictive text110

input.111

2.1 Data112

As K’iche’ and Chukchi are low-resource languages,113

the availability of large corpora is limited. We114

used data annotated for morphological segments115

and unannotated text as well. For Chukchi, the an-116

notated data came from the ChukLang2 corpus, we117

used a version that was extracted and converted to118

1Glossing symbols are from the original sources: CP ‘com-
pletive’, B1SG ‘absolutive 1st person singular’, MOV ‘movement
prefix’, A3PL ‘ergative 3rd person plural’, DEP ‘dependent status
suffix, ST ‘stative’, MCP ‘goal-oriented movement’, ST.3SG ‘3rd
person singular stative’, PL ‘plural’.

2https://chuklang.ru/

Unannotated Annotated
Sents Words Sents Words

K’iche’ 24,254 275,265 1,299 8,789
Chukchi 33,322 151,585 1,006 4,417

Table 1: Dataset sizes for the two languages measured
in sentences and words. Unannotated and annotated
datasets do not intersect. Annotation was donemanually.

Cyrillic orthography to make it compatible with the 119

unannotated corpus. The unannotated data came 120

from a collection of folklore and texts from the in- 121

ternet. 122

For K’iche’ we also used annotated and unan- 123

notated texts. The annotated texts were a hand- 124

segmented set of sentences used in constructing a 125

morphologically and syntactically annotated corpus 126

of K’iche’, these sentences were from a range of 127

sources including grammar-book and dictionary ex- 128

amples, stories and legal texts. 129

The second, unannotated, portion of the data was 130

obtained from the An Crúbadán project (Scannell, 131

2007) that collects corpora from the web for indige- 132

nous and marginalised languages. 133

Table 1 shows the amount of data available for 134

both languages. 135

2.2 Preprocessing 136

In order to segment the raw data using supervised 137

learning methods, the annotated data was split into 138

two disjoint subsets: train (50 percent) and test (50 139

percent). This ratio was chosen due to low anno- 140

tated data volume – we suppose that a choice of 141

a disbalanced ratio like 80 percent/20 percent can 142

lead to unreliable results. The automatically seg- 143

mented corpus was then used for language mod- 144

elling, while the test split of annotated data was used 145

for predictive text. 146

3 Related work 147

Being one of the latest works (Schwartz et al., 148

2020) on language modelling of indigenous lan- 149

guages, this paper proposed the usage of morpho- 150

logical segmentation in order to improve metrics 151

of language modelling. They compared different 152

segmentation methods, such as single words, divid- 153

ing into characters, BPE, Morfessor, Finite-state 154

transducers (FST). Even though FST is a good seg- 155

mentation method used for lots of languages (Mit- 156

tal, 2010; Hlaing and Mikami, 2014) and there are 157

even ones for K’iche’ (Richardson and Tyers, 2021) 158
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and Chukchi (Andriyanets and Tyers, 2018), we de-159

cided that we will not use them because the cov-160

erage for Chukchi is too low and it is hard to do161

disambiguation with FST because it requires a huge162

tagged corpus. Unfortunately, the authors could not163

do the end-task evaluation of the trained models but164

suggested doing predictive text. While also having165

no access to native speakers we decided to emulate166

the user input in order to evaluate the models. It still167

is not as good as end-user testing though it is better168

than nothing.169

Another work (Boudreau et al., 2020) that gave170

us ideas on how to approach the language modelling171

task was devoted to Mi’kmaq language modelling172

evaluation. Mi’kmaq (ISO-639: mic), an Eastern173

Algonquian low-resourse polysynthetic language, is174

spoken primarily in Eastern Canada and has around175

8700 speakers. Not only did the authors work with176

indigenous language, but they also did the keystroke177

savings evaluation, which is pretty similar to the178

idea of predictive text evaluation described in the179

previous work.180

There are other works (Suhartono. et al., 2014;181

Yu et al., 2017) that describe keystroke savings182

evaluation. What is more important, the authors183

worked with agglutinative languages, Bahasa(ISO-184

639, ind), the official language of Indonesia, and185

Korean(ISO-639, kor), official and national lan-186

guage of both North Korea and South Korea (orig-187

inally Korea). Though we do not want to use188

the same language modelling technics as were de-189

scribed in the papers, we still find it inspiring there190

are works dedicated to this task.191

As we mentioned before, we assume that the us-192

age of morphs while doing text prediction will make193

it both effective and ergonomic. However, there194

was a research (Lane and Bird, 2020) on Kunwin-195

jku, a polysynthetic language of northern Australia,196

and Turkish, which states that morph-based auto-197

complete for polysynthetic languages can be trouble-198

some due to long words and sparse vocabularies of199

such languages. Moreover, dialectal variations and200

dealing with input errors using edit distance makes201

the next-morpheme predictioning even harder, so,202

as it is shown in the paper, Turkish may be a more203

attractive language for morph-based predictioning204

than Kunwinjku205

4 Tasks206

As mentioned previously, our experiments are split207

into four distinct tasks, from the more fundamen-208

tal to the more application-specific. In the follow- 209

ing sections we describe the methodology for these 210

tasks and the results obtained. 211

Morphological segmentation We train morpho- 212

logical segmentation models based on the corpora 213

outlined in Table 1 and evaluate them. Here to be 214

a correct segmentation models must match the ref- 215

erence sentence in the test set. The evaluation mea- 216

sure is F1 score. F1 score is defined using precision 217

and recall: 218

precision =
correct boundaries found
total boundaries found (1) 219

recall = number of found
total correct boundaries (2) 220

F1 = 2 ∗ precision ∗ recall
precision+ recall (3) 221

Language modelling We take the best morpho- 222

logical segmentation model and the statistical seg- 223

mentation ones in order to do language modelling. 224

Wedo 10-fold cross-validation in order to trainmod- 225

els for end-task evaluation. We also do experiments 226

using one fold investigating how the data volume in- 227

fluences the model training results. The evaluation 228

metric is word and character level perplexity. Al- 229

though the model we chose allows both character 230

and word level training, in this paper we do word 231

level training with subwords serving as words. 232

Predictive text entry We take the trained mod- 233

els from the former task and compare their perfor- 234

mance in the predictive text task. The task is to 235

predict the next linguistic unit of output for a given 236

input looking at the top-3 predictions. The evalua- 237

tion measure is average number of clicks per char- 238

acter and keystroke savings rate. The fewer clicks 239

per character the less the end-user has to type. It’s 240

important to mention that the first segment of each 241

word is always typed character by character; this is 242

caused by the model not having token <bos> (be- 243

ginning of the sentence) in its design and the fact 244

that we are doing word level training. As mentioned 245

above, we use the cross-validation models for this 246

task. 247

Significance testing As all of the tasks are done 248

using cross-validation, we have sets of results for 249

each model. These results can be tested in order 250

to say if some models are significantly better than 251
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the others. To implement this, first, we do the one-252

way ANOVA3 with the null hypothesis being “all253

the means are the same”. In case the null hypothe-254

sis is rejected, we do pairwise Least Significant Dif-255

ference test (LSD-test)4 to group the models so that256

we can find the best performing ones which are not257

significantly different from each other. The LSD258

values for all the tasks are given in the appendix.259

5 Segmentation260

The idea to compare statistical and morphologi-261

cal segmentation was already tested (Pan et al.,262

2020); the results show that the usage of morpholog-263

ical segmentation significantly improves the BLEU264

and ChrF3 metrics in neural machine translation265

(NMT).266

In this paper we tried six segmentation models.267

Four of these are unsupervised: Byte-pair encoding268

(BPE; Gage, 1994), which was popularised by (Sen-269

nrich et al., 2016), Unigram (Kudo, 2018), Word-270

Piece (Schuster and Nakajima, 2012) and Morfes-271

sor (Virpioja et al., 2013). The other two are272

supervised: NeuralMorphemeSegmentation (NMS;273

Sorokin and Kravtsova, 2018) and NCRF++ (Yang274

and Zhang, 2018).275

Morfessor, NMS and NCRF++ are morphologi-276

cal segmentation models and they have to be trained277

and evaluated against a test subset. The remaining278

three do not require evaluation although they can be279

evaluated on a hold-out dataset.280

As an output format, we decided to use one of281

those in the mentioned work (Pan et al., 2020): we282

modified the stem with singular suffix strategy, so283

that all of the subwords are treated the same way:284

single-morpheme words remain unchanged, in com-285

posite words every morpheme except the last one286

ends with #, the last morpheme ends with $.287

5.1 Systems288

As we decided to compare statistical and morpho-289

logical segmentation, we also wanted to compare290

the models within each type. For this reason we291

chose BPE, Unigram and Wordpiece as statistical292

segmentation models. While choosing morpholog-293

ical segmentation models, we were looking for the294

ones that were tested not only on English and also295

3(2008) One-Way Analysis of Variance. In: The Concise
Encyclopedia of Statistics. Springer, New York, NY. https:
//doi.org/10.1007/978-0-387-32833-1_297

4(2008) Least Significant Difference Test. In: The Concise
Encyclopedia of Statistics. Springer, New York, NY. https:
//doi.org/10.1007/978-0-387-32833-1_226

Chukchi K’iche’
Morfessor 0.610 0.618
NMS 0.840 0.907
NCRF++ 0.821 0.874

Table 2: Best F1-score for morphological segmentation.
The neural morphological segmentation (NMS) model
outperforms both Morfessor and NCRF++ for both lan-
guages.

hadF1-score as a computedmetric. Thus, alongside 296

Morfessor, the best-known morphological segmen- 297

tor, we also chose NMS and NCRF++. 298

5.2 Results 299

We decided to choose the best segmentation model 300

out of Morfessor, NMS and NCRF++, because the 301

paper is not dedicated entirely to defining the best 302

morphological segmentation model being rather ex- 303

amining if it is better than statistical segmentation 304

in specific tasks. The results of morphological seg- 305

mentation are presented in Table 2 and the models 306

hyperparameters are included in the appendix. 307

While being designed for Russian, an inflec- 308

tive language, NMS outperformed Morfessor and 309

NCRF++. Though, since the small size of the avail- 310

able data the metrics are not stable, fluctuating be- 311

tween n – 0.3 and n + 0.3, where n is the F1-score 312

on evaluation data. Thus the second-best model, 313

NCRF++, was chosen to segment the whole corpus 314

and to be used while evaluating the language model. 315

Hence, 3 segmentation methods were used to 316

make datasets for the following experiments – 317

NCRF++, Unigram and Wordpiece. In order 318

to do Unigram segmentation we used a package 319

made by Google (Kudo and Richardson, 2018), 320

for Wordpiece we used BertWordPieceTokenizer 321

model from tokenizers package (Moi, 2021). Table 322

3 shows the same sentence being segmented with 323

different models. 324

6 Language modelling 325

In order to do the text prediction we decided 326

to choose the model that achieved state-of-the- 327

art word level perplexities on Penn treebank and 328

WikiText-2 (Merity et al., 2017). This model was 329

applied (Schwartz et al., 2020) to several indigenous 330

languages, including Chukchi, and showed good 331

performance. This model trains fast, allows to be 332

trained both on character level and word level, and 333
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Variant Example
Input text Xke’x ri nukinaq’

Canonical x# ke’x$ ri nu# kinaq’$
Morph. segmen. x# ke’x$ ri nu# kinaq’$
BPE xke# ’# x$ ri nukina# q’$
Unigram xke# ’# x$ ri nuki# na# q’$
WordPiece xk# e’x$ ri nuk# inaq’$

Table 3: Segmentation variants for the K’iche’ sen-
tence Xke’x ri nukinaq’ “My beans were ground”. The
canonical segmentation corresponds to /CP-grind.PASS5
the POSS.1SG-bean/. The hash symbol, #, indicates that
there is a segment after the current one and the dollar
symbol, $, indicates the last segment in a multi-segment
word.

also is good dealing with overfitting, which is essen-334

tial while working with low-resource languages.335

Although BERT (Devlin et al., 2019) has336

been successfully used for low-resource languages337

(Ngoc Le and Sadat, 2020;Wang et al., 2020), mod-338

els based on BERTmodels usually have hundreds of339

millions of parameters and as such are not efficient340

enough in terms of space for existing mobile phones.341

This is not suitable for us as our main goal is to use342

the model for a phone keyboard in order to do pre-343

dictive text.344

The data for language modelling was at first split345

into modelling (80 percent) and test (20 percent)346

subsets. Then for the 10-fold cross-validation the347

modelling subset was split into train (75 percent)348

and validation (25 percent) subsets. The folds were349

made using ShuffleSplit6 with the same seed as the350

one used while language modelling. The dictionar-351

ies for the embeddings consist of all the subwords352

of train dataset plus the <unk> token; the validation353

subset is used to calculate perplexity in the end of354

each epoch. The models were trained until 5 epochs355

without perplexity improvement on a validation sub-356

set.357

In order to investigate how the volume of data in-358

fluences the model perplexity we decided to do lan-359

guage modelling increasing the data volume from360

10 percent to 100 percent with a 10 percent step.361

The data is shuffled using the same seed as in other362

tasks and then we take the first n percent of lines.363

Thus we can be sure that two-way segmented mod-364

els won’t get the data only from one segmentor. We365

6https://scikit-learn.org/0.24/modules/
generated/sklearn.model_selection.ShuffleSplit.
html

did these experiments using only one fold as we did 366

not intend to show that a certain amount of data lets 367

us train a better model. 368

The training hyperparameters are included in the 369

appendix. 370

6.1 Modelling type 371

All the models we trained can be divided into three 372

types: single-way segmented, two-way segmented 373

and finetuned models. 374

In order to distinguish a language model from a 375

segmentationmethod themodel names will be given 376

in bold e.g. Unigram is a segmentation model while 377

Unigram is a model trained on data processed by 378

the corresponding segmentation model. 379

6.1.1 Single-way segmented 380

Models of this type – Morph. segm., BPE, Un- 381

igram, Wordpiece – were trained using single 382

datasets we got in Section 5. 383

6.1.2 Two-way segmented 384

Models of this type – MS+BPE, MS+Unigram, 385

MS+Wordpiece – were trained using two datasets 386

we got in Section 5 combined together. The idea 387

behind this modelling type is that we want to see 388

if having data processed by different segmentation 389

methods can help us solve both evaluation tasks on 390

a high level. 391

6.1.3 Finetuning 392

As it was proposed in one of the related works 393

(Boudreau et al., 2020), pretrained embeddings can 394

be used in order to improve the performance of 395

the language models. We decided to try finetuning 396

though we chose to pretrain not only embeddings 397

but also RNN layers. 398

Models of this type – BPE2MS, Unigram2MS, 399

Wordpiece2MS – were at first trained using the 400

Unigram/Wordpiece data and then morphologically 401

segmented data was used to finetune the trained 402

model. It’s important to mention that while train- 403

ing models of this type either datasets volumes were 404

step-by-step increased by 10 percent e.g. the first 405

Unigram2MS model was trained on 10 percent of 406

Unigram data and then on 10 percent of morpho- 407

logically segmented data. Looking ahead we should 408

also mention that it turned out there is no need to 409

lower the learning rate of the model while finetun- 410

ing it – the perplexity of the model in the end of 411

training is the same while epoch count (and, accord- 412

ingly, the training time) becomes approximately 10 413

times higher. 414
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6.2 Results415

As we can see in Table 4, the best models for K’iche’416

and Chukchi according to perplexity are Morph.417

segm. and finetuning models.418

K’iche’ Chukchi
Wd Ch Wd Ch

MS 32.59 7.57 176.56 27.04
BPE 38.53 8.95 2553.62 391.11
Uni 35.29 8.20 464.43 71.13
WP 148.24 34.45 2745.33 420.48
BPE2MS 34.03 7.91 166.58 25.51
Uni2MS 34.32 7.97 163.58 25.05
WP2MS 32.06 7.45 165.90 25.41
MS+BPE 35.46 8.24 500.85 76.75
MS+Uni 34.10 7.92 265.67 40.71
MS+WP 54.27 12.61 524.28 80.34

Table 4: Word (Wd) level and character (Ch) level per-
plexities for the models (mean scores of 10-fold cross-
validation). MS stands for Morph. segm., Uni stands
for Unigram, WP stands for Wordpiece. We do not
give subword level perplexities as they are not compara-
ble. The best scores are in bold being significantly better
according to ANOVA than the others but not outperform
each other.

The two-way segmented models show lower419

scores than Morph. segm. ones, though they are420

better than the models trained on data of the sec-421

ond origin (BPE, Unigram, Wordpiece segmentors).422

It does seem like the usage of morphologically seg-423

mentated data allows us to improve the performance424

of the models.425

It is worth saying that perplexity scores for differ-426

ent segmentations can’t be compared to each other427

as is due to the dictionary sizes of all the models be-428

ing different. This is why we computed the word429

and character perplexities using the subword ones430

(Mielke, 2019). Basically, it is just a normalisation431

of metrics in order to be able to compare them cor-432

rectly. To do that, we computed the negative log-433

likelihood of the strings:434

nll = log pplsw ∗ (Csw + k) (4)435

where nll is negative log-likehood, pplsw is the436

computed subword level perpelxity, Csw is the total437

count of subwords in the set and k is the total count438

of lines in the set that stands for the count of <eos>439

tokens which the model also predicted.440

Then we computed word level and character level441

perplexities using the negative log-likehood we got 442

on a previous step: 443

pplw = exp nll

Cw + k
(5) 444

pplc = exp nll

Cc + k
(6) 445

where pplw is word level perplexity, pplc is char- 446

acter level perplexity, nll is negative log-likehood, 447

Cw is the total count of words in the set, Cc is the 448

total count of characters in the set and k is the total 449

count of lines in the set. 450

As we also did the modelling of one fold using 451

different data volumes, we decided to look at the de- 452

pendency of the finetuning metrics on the data vol- 453

ume and to compare them to the results ofMorph. 454

segm.. As we can see at Figure 1, 40 percent of data 455

is a threshold at which the most models epoch count 456

starts getting lower and the Morph. segm. model 457

perplexity starts becoming smooth; the perplexity 458

is rising due to the growing count of tokens in data. 459

Moreover, the epoch count while doing the finetun- 460

ing is lower than when training theMorph. segm., 461

while the perplexity scores are being close to each 462

other after the 40 percent threshold, so we can con- 463

firm our conclusion that finetuning works well. 464

7 Predictive text input 465

Another task to evaluate language models is pre- 466

dictive text input. The idea is that we emulate a 467

person using a smart keyboard while it is offer- 468

ing some predictions, which have to be meaning- 469

ful. The meaningfulness is important because we 470

assume that the typing person would like to choose 471

from real words/morphs and not some artificial sub- 472

words that make at best no sense and in a worst case 473

scenario they may mean something totally wrong 474

(3). The example is given in Turkish because it il- 475

lustrates the problem really good. 476

(3) a. araba-m-a
‘into my car’

477

b. arab-am-a
‘arab into *vulgar word*’

478

While evaluating, we look through top 3 model 479

predictions and compare them to the subword we 480

are currently predicting. If they are similar, that pre- 481

diction is chosen, otherwise we look at the next one. 482

If none of the predictions were correct, we consider 483
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(a) K’iche’ models best epochs.

(b) K’iche’ models word level perplexity.

(c) Chukchi models best epochs.

(d) Chukchi models word level perplexity.

Figure 1: Best epochs and word level perplexity scores
for finetuned models. Best epochs are the numbers of
latest best epochs.

that the user will have to input the word to end char- 484

acter by character. The input for the model is built 485

up using the remaining morphemes. 486

7.1 Results 487

As we can see in Table 5, for K’iche’ the best model 488

is MS+Wordpiece and for Chuckhi the best ones 489

are Morph. segm, BPE2MS, Wordpiece2MS 490

andMS+Unigram. We also decided to include the 491

keystroke savings rate used in the Mi’kmaq paper 492

(Boudreau et al., 2020) in order to be able to com- 493

pare the results. The group of models which are the 494

best for Chukchi is the second best for K’iche’. 495

Predictive text metrics do correlate with 496

language-modelling metrics; even though 497

MS+Wordpiece performs the best for K’iche’, the 498

group of Morph. segm, BPE2MS and Word- 499

piece2MS has both best perplexity and clicks per 500

character scores. We suppose that the models con- 501

nected with morphological segmentation perform 502

better in this task because the language model, 503

while not being trained on the evaluation data, got 504

resembling training data. 505

The results for Chukchi are worse than the re- 506

sults for Ki’che’. The reason may be that gold stan- 507

dard for Chukchi is in telqep Chukchi, while the cor- 508

pus used for training is in standard Chukchi. An- 509

other reason may be that words in Ki’che’ evalua- 510

tion data are shorter both segmentwise and charac- 511

terwise than the Chukchi words. In case amodel can 512

not predict a correct morph, we penalize it by mak- 513

ing the whole word be typed character-by-character, 514

so the longer the word is, the more significant mis- 515

takes become. 516

Another issue thatmay influence the results is that 517

the first subword of each word is typed character by 518

character. We plan to get rid of it in the future in 519

order to be able to evaluate the results better. 520

8 Discussion 521

As we can see, the evaluation shows that different 522

models are good at different tasks which paves the 523

way for a discussion if we can say that one model is 524

better than another or not. While not being able to 525

tell the correct answer for this question, we would 526

recommend to try morphological segmentation as it 527

can be used with a statistical one (alongside or by 528

finetuning). 529

Morphological segmentation can also improve 530

the model performance in predictive text task and 531

other tasks, which were not discussed in this pa- 532
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K’iche’ Chukchi
CpC KSR CpC KSR

No prediction 1.00 0.00 1.00 0.00
Morph. segm. 0.96 3.03 0.99 0.78
BPE 0.98 1.69 0.99 0.27
Unigram 0.98 1.46 0.99 0.26
Wordpiece 0.97 2.35 0.99 0.20
BPE2MS 0.96 3.45 0.99 0.77
Unigram2MS 0.96 3.49 0.99 0.69
Wordpiece2MS 0.96 3.53 0.99 0.79
MS+BPE 0.96 3.35 0.99 0.62
MS+Unigram 0.96 3.53 0.99 0.73
MS+Wordpiece 0.95 4.26 0.99 0.68

Table 5: Predictive keyboard metrics, the number of
clicks per character (CpC) and keystroke savings rate
(KSR) for each of the methods. ‘No prediction’ means
that the user has to input all the words character by char-
acter including spaces, serving as baseline. The best
scores are in bold being significantly better according to
ANOVA than the others but not than each other.

per. What is important to mention is that there is533

no need in training models using morphologically534

segmented data from scratch, the existing models535

can be finetuned and the results will not differ sig-536

nificantly from the ones of Morph. segm. while537

the training time will be much lower as shown on538

Figures 1c and 1a.539

Aswe can see, in all the tasks K’iche’ models have540

better performance than Chukchi models. While541

we do not know the particular reason for this, we542

assume that the polysynthetic language complexity543

may be hindering the model from training. In the544

mentioned above paper (Lane and Bird, 2020) the545

authors also reported that polysynthetic languages546

have their special challenges such as high word547

length, complexity, etc.548

As we referenced the Mi’kmaq (Boudreau et al.,549

2020), it seems reasonable to compare the results of550

their experiments with the results of ours. The re-551

sults of the evaluation cannot be compared easily be-552

cause our task was to predict linguistic units, not any553

kind of units, while in theMi’kmaq paper words and554

BPE segments were being predicted; though if we555

do compare the results, we can see that the best KSR556

score for Mi’kmaq is 3.81, while the best score for557

Ki’che’ is 4.26. At the same time, the best Chukchi558

KSR is much worse that the Mi’kmaq score being559

only 0.79.560

Alongside the metrics computed while experi-561

menting there is also a metric which cannot be mea- 562

sured without end-user testing – the sanity check. 563

As mentioned before, the issue with statistical seg- 564

mentation is that subwords predicted and offered to 565

the user may have no sense for the user or, what is 566

much worse, may carry the wrong meaning. We do 567

suppose that this alone can be a reason to choose 568

morphological segmentation over the regular one 569

because segmentation task is not done in isolation 570

– it serves a purpose in a larger scheme of things. 571

We think that in case the language model will be 572

used in predictive text settings, where the user expe- 573

rience and user reaction is highly relevant, morpho- 574

logical segmentation should be chosen as a subword 575

tokenization method, while statistical segmentation 576

may be chosen while doing machine translation, for 577

example. 578

9 Future work 579

We are planning to test several other language mod- 580

els and language modelling metrics in order to find 581

out what correlates best with text prediction scores. 582

We find it reasonable to experiment on other lan- 583

guages, for example, Turkish, Nahuatl and Yupik, 584

in order to get a better understanding when the use 585

of morphological segmentation is reasonable. 586

Another task to do is to run an end-user evalua- 587

tion of multiple segmentations and determine which 588

units are preferred. In order to do this, we would 589

also need to solve the problem of predictive text 590

evaluation that the user has to input the first word 591

character by character. In order to do this, we will 592

possibly have to combine word level and character 593

level based models. 594
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A Hyperparameters 697

Here we provide hyperparameter values for the var- 698

ious models to aid in reproduction of the results. 699

A.1 Morphological segmentation 700

In this section we describe the best hyperparameter 701

settings that we found for the various tasks. 702

A.1.1 Morfessor 703

The best results for both K’iche’ and Chukchi were 704

achieved with this hyperparameters: 705

A.1.2 NeuralMorphemeSegmentation 706

The best results for K’iche’ were achieved with this 707

hyperparameters: 708
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Parameter Value
learning algorithm recursive
training type based

Table 6: Morfessor hyperparameters.

Parameter Value
convolutional layers 3
window size 3 – 4
filters 96
dense output users 64
context dropout 0.3
memorize morphemes no
memorize ngram counts. no

Table 7: NMS hyperparameters (K’iche’).

The best results for Chukchi were achieved with709

this hyperparameters:

Parameter Value
convolutional layers 3
window size 4–6
filters 96
dense output users 20
context dropout 0.3
memorize morphemes no
memorize ngram counts. no

Table 8: NMS hyperparameters (Chuckhi).
710

A.1.3 NCRF++711

The best results for K’iche’ were achieved with this712

hyperparameters:713

Parameter Value
char. embedding dim 200
char. hidden vector dum 200
optimizer Adagrad
convolutional layers 4
use CRF layer yes
use char. sequence layer yes
use CNN to train for chars yes
use CNN to train for words yes

Table 9: NCRF++ hyperparameters (K’iche’).

The best results for Chukchi were achieved with 714

this hyperparameters: 715

Parameter Value
char. embedding dim 400
char. hidden vector dum 400
optimizer Adagrad
convolutional layers 16
use CRF layer yes
use char. sequence layer yes
use CNN to train for chars yes
use CNN to train for words yes

Table 10: NCRF++ hyperparameters (Chukchi).

A.2 Least Significant Deviation values 716

The LSD-test results for language modelling and 717

predictive text tasks: 718

Task K’iche’ Chukchi
language modelling 1.494 17.806
predictive text 14.22e-4 6.779e-4

Table 11: LSD values

A.3 Language modelling 719

All the models were built results for Chukchi were 720

achieved with this hyperparameters:

Parameter Value
LSTM layers 3
embedding dim 256
hidden units per layer 3000
use regularization no
layers dropout 0.4
RNN layers dropout 0.1
embeddings dropout 0.1
remove words from embeddings dropout 0.0
sequence length 100
optimizer Adam
learning rate 1e-3
weight decay 1.2e-6
seed 1111

Table 12: Awd-lstm hyperparameters.
721
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Table 13: Text prediction by single-way segmented mod-
els(K’iche’).
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