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ABSTRACT

Predicting scalar outcomes from functional data is challenging when measure-
ments are sparse, irregular, and noisy, as in many scientific and clinical longi-
tudinal studies. We propose IDAT, a dual-attention Transformer that operates di-
rectly on masked sampling schedules and avoids ad-hoc imputation. IDAT couples
(i) time-point attention, which captures local and long-range temporal dynamics
together with the response relationship nonparametrically, with (ii) inter-sample
attention, which adaptively shares information across subjects with similar tra-
jectories to stabilize estimation under sparsity. These pathways complement one
another: time-point attention captures subject-specific dynamics, whereas inter-
sample attention leverages population structure to “borrow information” from
other subjects, echoing principles from random-effects model in longitudinal anal-
ysis. Under a random-effects framework that accounts for irregular sampling and
measurement noise, we prove prediction-error bounds and show that IDAT con-
sistently approaches the oracle solution. Across both simulations and real-world
applications, IDAT achieves the best overall performance among 19 baselines.
Only in the extremely dense case (> 80% observations) TabPFN (a recent method
published in Nature) achieve a slight advantage, while IDAT still significantly
outperforms all other baselines in this scenario. The learned attention weights are
interpretable, revealing predictive time domains and potential clusters. In con-
clusion, IDAT, an end-to-end sparsity-aware Transformer architecture, offers im-
provements both in predictive accuracy and interpretability for scalar-on-function
prediction.

1 INTRODUCTION

Longitudinal data consist of repeated measurements on the same subjects over time, often coupled
with time-varying covariates and subject-specific heterogeneity (Diggle et al., 2002; Fitzmaurice
et al., 2004; 2009). Such data are ubiquitous in biomedicine, environmental monitoring, and digital
health, where dynamic trajectories inform prognosis, treatment response, and risk stratification. It
is common to assume that the underneath dynamic trajectory of each subject is a smooth function
of time, while the observed longitudinal measurements may be noisy and measured at irregular and
subject-specific time points. This adopts a perspective in the field of functional data analysis (FDA)
(Wang et al., 2016; Ramsay & Silverman, 2005), where each trajectory is a realization of a latent
smooth process observed with noise. When the sampling plan is intensive, a nonparametric approach
is typically deployed to model such functional data; whereas a parametric approach, such as a mixed-
effect model (Laird & Ware, 1982b) was the norm to model sparse or irregularly sampled functional
data, until a nonparametric approach was proposed in (Yao et al., 2005a). Since longitudinal data
are discretely sampled functional data (possibly with noise/measurement error), we aim to develop
a unified nonparametric approach that handles a broad range of sampling schemes, whether they are
intensive, sparse, or in between, including irregular and subject-specific time schedules.

We address the scalar-on-function regression problem, where a functional covariate, possibly ob-
served on a sparse and irregular time schedule with noise, is used to predict a scalar outcome. The
method must learn an unspecified functional of the whole trajectories without restrictive paramet-
ric forms. Since accurate scalar prediction hinges on correctly capturing the trajectory–outcome
relationship in the presence of sparsity and noise, an effective model should therefore (i) accommo-
date irregular sampling and sparse data, (ii) encode temporal order and dependencies, (iii) borrow
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strength across similar subjects, and (iv) learn the trajectory–outcome relationship without restrictive
parametric assumptions.

Given that sparse and irregular longitudinal data are the most challenging type of functional data,
we introduce the Interpretable Dual-Attention Transformer (IDAT), a unified architecture inspired
by Transformers (Vaswani et al., 2017) that is tailored to handle high sparsity and irregular sam-
pling. Meanwhile, this approach is broadly applicable to any type of functional/longitudinal data.
In contrast to “sparse Transformers” that impose artificially designed sparse attention patterns for
computational efficiency (Jaszczur et al., 2021; Correia et al., 2019), our notion of “sparsity” refers
to sparsity arising from the sampling scheme. We discretize the time interval into a working grid and
use explicit sampling masks to encode each subject’s observation pattern. The model combines (i)
time-point attention, which serves as a data-adaptive functional encoder capturing smooth trajectory
structure, with (ii) inter-sample attention, which learns nearest-neighbor–like weights across sub-
jects via a learned similarity metric. A regressor layer then summarizes the learned representation
to deliver end-to-end scalar-on-function prediction.

1.1 MAIN CONTRIBUTIONS

End-to-end scalar-on-function regressors. We propose a dual-attention Transformer that pre-
dicts a scalar outcome from a sparse, irregular longitudinal trajectory in an end-to-end manner. The
model uses explicit sampling masks under supervised setup in the training stage, avoiding ad-hoc
imputation while respecting each subject’s observation pattern. The architecture jointly captures
within-trajectory structure and cross-subject similarity, yielding a trainable pipeline without restric-
tive parametric assumptions. Cross-subject information sharing is essential for longitudinal data due
to data sparsity, but is absent in existing longitudinal Transformer designs.

Interpretable dual-attention Transformer. The learned attention weights act as nonparametric
regression coefficients along two axes. Time-point attention serves as a data-adaptive smoother,
aggregating local and long-range temporal information to encode functional structure while propa-
gating signal about Y . Inter-sample attention implements learned similarity over subjects, akin to
nearest neighbors with a learned metric, stabilizing predictions for sparse and noisy data. Together,
the embedding functions as an informative weighting mechanism rather than simple imputation,
capable of revealing domain-relevant temporal windows and cluster structure.

Theoretical and numerical justification. We derive prediction error bounds and show consis-
tency under sparse, irregular sampling, where standard Transformer theory (which assumes fully
observed or densely sampled inputs) does not apply. Extensive simulation and real data studies
across a wide range of sparsity levels demonstrate robustness to diverse sampling schemes and
superior accuracy relative to 19 baselines (ensemble methods, statistical/functional models, deep
learning methods, tabular Transformers, and pre-trained models like TabPFN).

1.2 RELATED WORK

Modeling longitudinal data, defined as repeated measurements over time that are often irregularly
sampled and of varying length, poses challenges for representation learning and prediction. In
biomedical settings (e.g., EHR), recent surveys document a rapid expansion of machine learning
and deep learning approaches (Cascarano et al., 2023; Carrasco-Ribelles et al., 2023). Early neural
models typically flatten a temporal history into fixed feature vectors for feedforward networks (e.g.,
cardiovascular risk prediction (Zhao et al., 2019)), thereby discarding ordering information. To re-
tain functional structure, Yao et al. (2021) propose a basis-learning layer in which hidden units act as
adaptive basis functions, enabling end-to-end, task-specific basis for fully observed functional data.

Convolutional neural networks (CNNs) capture local temporal structure via 1D convolutions and
are competitive for time-series classification (Wang et al., 2017), but modeling long-range de-
pendencies often requires very deep networks or large receptive fields. Recurrent architectures
(RNNs/LSTMs) maintain hidden states that aggregate past information and naturally handle variable
sequence lengths and missingness patterns, with applications in clinical prognosis (e.g., Alzheimer’s
disease (Cui et al., 2019; Aghili et al., 2018)) and broader EHR modeling (Lipton et al., 2016).
Nonetheless, their inherently sequential computation can be a bottleneck for long sequences.
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Transformers (Vaswani et al., 2017) replace the sequential recurrence approach in CNN, RNN, and
LSTM by “self-attention” to relate all time points within a sequence, capturing both local and global
dependencies and supporting parallel computation. Empirically, reviews report strong performance
on longitudinal biomedical tasks (Siebra et al., 2024). Early EHR applications such as BEHRT
encoded patient histories as sequences of medical concepts to learn contextualized representations
for downstream prediction (Li et al., 2020), while general frameworks demonstrated effectiveness
across multivariate time-series classification and regression (Zerveas et al., 2021). The architec-
ture has also been adapted to domain-specific objectives, including survival modeling (Öğretir et al.,
2024; Zhang et al., 2025). Beyond prediction, specialized self-attention modules have been proposed
for functional data imputation: SAND (Hong et al., 2024) introduces attention weights on deriva-
tives to promote smooth reconstructions under irregular sampling. More broadly, efficient attention
variants (e.g., sparse or kernelized forms (Jaszczur et al., 2021; Lou et al., 2024; Correia et al., 2019;
Chen et al., 2023)) have been explored to mitigate quadratic time/memory costs on long sequences,
though their approximation properties in sparse/irregular regimes require careful validation.

2 INTERPRETABLE DUAL-ATTENTION TRANSFORMER (IDAT)

The proposed method, IDAT, is a dual-attention (encoder-only) Transformer for scalar-on-function
regression. IDAT (Figure 2) is designed to handle sparse, irregular longitudinal inputs and is ap-
plicable to all longitudinal and functional data. Since latent trajectories of functional data are
infinite-dimensional, discretization is required for transforming the time domain into grid points.
Paired with positional encodings which captures temporal information between the grids to pre-
serve temporal ordering and proximity, we also apply sampling masks to respect the sparsity of the
sampling schedule. This produces a tabular-style input embedding, whose columns index time grid
locations, so each column at a time grid acts as a feature. The key difference from standard tabular
data is the heavy masking induced by sparse and irregular sampling and adjacent columns carry
strong temporal dependence through the underlying smooth trajectory.

The dual-attention Transformer block (omit normalization layers) is defined as

T B = FF1 ◦AI ◦ FF2 ◦AT . (1)

The time–point attention AT operates along the temporal axis within each sample. The inter-sample
attention AI applies attention across samples in the batch. The position-wise feed-forward layers
FF1,FF2 are two-layer ReLU MLPs. Together, the two attentions reinforce each other: time-
point attention captures subject-specific dynamics, while inter-sample attention leverages population
structure so trajectories borrow strength from similar subjects when per-subject data are scarce.
Stacking L dual-attention Transformer blocks yields the embedding T = T B◦L.

AT operates along each subject’s time grid to learn both local and long-range temporal depen-
dencies, encoding trajectory structure while respecting order and smoothness. Unlike imputation
methods that reconstruct the entire trajectory without using the outcome, our model is trained with
a Y -token. During training, attention flows between covariate tokens and the response, providing
supervision that turns AT into a nonparametric weighting scheme over time (low weights mark un-
informative windows). At test time the Y -token is masked, so predictions rely solely on observed
covariates but still benefit from the supervision-shaped representation learned in training. AI acts
across the mini-batch at each time grid, assigning data-adaptive weights to subjects with similar
patterns, thereby sharing information across similar subjects and often revealing cluster structure.
This modular design couples time-point and inter-sample attentions, allows us to benefit from both
within-trajectory encoding and across-subjects contributions. The model prioritizes prediction over
imputation, learning attention weights end-to-end for regression rather than pure reconstruction.

Longitudinal data remain fundamentally different from tabular data, even after they have been dis-
cretized, due to the within-subject temporal correlations. Existing Transformers for longitudinal data
use only temporal attention and ignore cross-subject information sharing. This results in efficiency
loss, and the loss could be substantial when each subject has few observations. IDAT leverages the
inter-subject attention to improve the performance of transformers for longitudinal data. In addition,
longitudinal data are noisy and irregular measurements from a latent process that is often assumed to
be smooth. This smoothness assumption is needed for identifiability (Hall et al., 2006; Wang et al.,
2016; Li & Hsing, 2010) but often ignored by standard Transformer analyses, which assume dense
or fully observed inputs without noise, aka measurement errors. This not only distinguished the

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

approach of IDAT from standard Transformers’ but also has the implication that the theory for lon-
gitudinal data is substantially different from existing theory for tabular data. The following sections
introduce the setup and key theoretical results to highlight these theoretical differences and establish
consistency and generalization guarantees for IDAT in this challenging regime.

3 THEORETICAL SETUP

Without loss of generality, we assume all subjects have trajectories in the time interval I = [0, 1] with
latent smooth trajectories Xi(·), under contamination of measurement errors and irregular sampling
scheme, the observation times for subject i is t̃i = (ti1, . . . , ti,ni

) ⊂ I , and we observe

X∗
i (t̃i) = Xi(t̃i) + ηi(t̃i), ηi(t̃i)

iid∼ N(0, σ2
X). (2)

The scalar response is generated from the functional regression model with an unspecified F ,

Yi = F
(
Xi(·)

)
+ ϵi, ϵi

iid∼ N(0, σ2
Y ). (3)

We refer to ϵi as the label noise on Yi, in contrast to the measurement noise ηi on Xi.

Discretization, masking and positional encoding. Despite irregular measurement times and
varying ni across subjects, we align all observations to a shared fixed grid τ̃ = (τ1, . . . , τT ) ⊂ I ,

Mi(τj) = 1{τj ∈ t̃i}, X∗
i (τj) = X∗

i (ti,k)1{τj = ti,k}, (4)

and form the length-T + 1 vector Di = (X∗
i (τ̃)⊙Mi(τ̃), Yi) ∈ RT+1 with a mesh size defined by

∆ = maxj |τj+1 − τj |. Linear embeddings EX and EY from R to Rd are applied token–wise along
with sinusoidal positional encodings P (τ̃),

D̃i =
[
EX

(
X∗

i (τ̃)⊙Mi(τ̃)
)
+ P (τ̃), EY (Yi)

]
∈ Rd×(T+1). (5)

Dual–attention Transformer. Given a batch D̃ of size B, the dual-attention Transformer block is
defined in (1). Stacking L dual-attention Transformer blocks yields the embedding T = T B◦L.

Regression layer. Given the output of dual–attention Transformer T (D̃i) ∈ Rd×(T+1), which
contains the longitudinal covariate embeddings and the Y -token embedding. Each sequence is sum-
marized to a single d-vector via a trainable pooling map ϕ : Rd×T → Rd. The pooled representation
is then mapped to a scalar by a MLP g (e.g., two-layer ReLU), yielding the prediction

Ŷi = g
(
ϕ
(
[T (D̃i):,(1:T )]

))
. (6)

During training, we minimize the loss function ℓ
(
Ŷi, g([ZY ]i)

)
(e.g., MSE for regression), treating

the response embedding as an informative target. At test time, the Y token is masked (set to zero)
prior to encoding, so predictions depend solely on the covariate sequence.

4 KEY THEORETICAL RESULTS

IDAT is a unified approach that works for densely or sparsely recorded functional data, whether
the measurement schedule is regular or irregular, and whether the data exhibits clustering or het-
erogeneity, as long as training and testing data follow the same sampling mechanism and functional
relationship. For theoretical analysis, we assume the following setup. Let D̃ denote the discretized,
noisy, masked embedding, and S̃ the oracle embedding (without measurement and label errors).

Mesh–size trade-off. For an α-Hölder trajectory, Lemma 3 bounds the error between the embed-
ded observed data D̃ to the oracle with high probability:

δ0 = ∥D̃− S̃∥∞ ≲ L∆α + σX

√
log(BT ) + σY

√
log(B),

where ∆ = maxj |τj+1 − τj | is the mesh size. The discretization bias scales as O(∆α): as the grid
refines (∆ → 0), the bias vanishes at rate ∆α, while noise terms remain controlled. Since T ≍ ∆−1,
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time-point attention incurs O(T 2d) time and O(T 2) memory per subject, so halving ∆ quadruples
computational cost while improving the bias by only 2−α. The inter-sample component scales
linearly in T , so a similar trade-off applies. In practice, ∆ must balance statistical accuracy (smaller
∆) against computational cost (larger ∆). This result is central to establishing consistency: with
appropriate smoothness assumptions and grid refinement, the discrete implementation converges to
the continuous functional relationship.

In training, the dual-attention block components are Lipschitz: time-point self-attention AT with
constant LT , feed-forward networks FF1,FF2 with constant LFF, and inter-sample attention AI

with constant LI (Lemmas 4, 8). They also admit uniform approximation on compact sets (Lem-
mas 5, 6, 7), yielding deterministic approximation errors εAT

, εFF, εAI
. The dual-attention block

TB is LTB
-Lipschitz (Lemma 8), ensuring stability: small perturbations in input embeddings prop-

agate in a controlled manner. Inter-sample attention reduces a stochastic embedding error εvar by
up to a B−1/2 factor (Lemma 9) with batch size B, showing that larger batches improve variance
reduction, though with diminishing returns. Together, these properties ensure that approximation
errors accumulate in a controlled way and that the embedding remains stable under discretization
and noise, which is essential for establishing consistency.

Variance reduction by inter–sample attention. When subject-level heterogeneity is not promi-
nent, queries/keys align across subjects and the inter-sample attention weights are nearly uniform
(≈ 1/B), yielding an OP(1/

√
B) reduction in embedding noise (Lemma 9). This variance contrac-

tion is orthogonal to deterministic approximation biases, so increasing B stabilizes the embedding
without changing those bias terms. MSE improves when the induced averaging does not introduce
substantial pooling bias, namely, when the attended neighbors are genuinely similar for the target.

Together, Theorem 1 establishes consistency of T : the IDAT embedding converges to the oracle
embedding obtained from a noiseless trajectory observed fully on the time grid.
Theorem 1 (Consistency of T ). Under the assumptions and notations of Lemmas 3-9, the oracle
mapping is H(S̃) = G ◦ fI ◦G ◦ fT(S̃). Let

εT B := LFF

(
εvar + εAI

+ LI

(
εFF + LFFεAT

))
+ εFF.

Then, with probability at least 1− δ,∥∥T B(D̃)−H(S̃)
∥∥
∞ ≤ εT B,

∥∥T (D̃)−H(S̃)
∥∥
∞ ≤ LL

T B (δ0 + εT B) := εT . (7)
In particular, if (i) the mesh shrinks ∆ → 0 so that δ0 → 0; (ii) the dual-attention Transformer
has sufficient capacity so that εFF, εAT

, εAI
, εvar → 0; and (iii) the block Lipschitz constant is

uniformly bounded with training size n and batch size B, i.e., supn,B LT B(n,B) < ∞ for fixed
depth L, then ∥∥T (D̃)−H(S̃)

∥∥
∞

P−→ 0,
i.e., the dual-attention Transformer T is consistent for the oracle mapping H .

This result is essential for IDAT as it shows that the dual-attention mechanism can recover func-
tional structure from discretized, sparse, noisy observations. Theorem 1 bounds the error between
the IDAT embedding T (D̃) and the oracle mapping H(S̃) by LL

TB
(δ0 + εTB

), where δ0 captures
input embedding discretization error and εTB

aggregates approximation errors from dual-attention
components, including variance reduction from inter-sample attention. The bound implies con-
sistency under three conditions: (1) mesh refinement (∆ → 0) to reduce discretization error, (2)
sufficient model capacity to drive approximation errors to zero, and (3) a uniformly bounded Lips-
chitz constant as training size and batch size grow, ensuring stability. Practically, this means using
finer time grids (balanced with computational cost), increasing model capacity, and leveraging larger
batches for variance reduction (with diminishing B−1/2 returns). Theoretically, this addresses iden-
tifiability: even with sparse, noisy observations, IDAT converges to the true functional relationship,
showing that attention mechanisms can handle sparse functional data (not just dense tabular data)
and that dual-attention is sufficient for consistency. This differs from standard Transformer theory,
which assumes dense inputs, and demonstrates that with mesh refinement and sufficient capacity,
IDAT resolves the identifiability issues inherent in sparse functional data.

Generalization bounds for T B and T are given in Lemmas 10 and 11. Define the predictor with
Lϕ-Lipschitz pooling function ϕ and Lg-Lipschitz MLP (excluding the Y -token),

Ŷ (L)(D̃) = g
(
ϕ(T (D̃):,:,(1:T ))

)
.
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Theorem 2 (Training MSE generalization and consistency). Let T = T B◦L be the L-block encoder,
and set p := B d (T + 1). Assume (i) Boundedness: ∥D̃∥∞ ≤ Rin, |Ŷ (L)(D̃)| ≤ Rout, and
|Y | ≤ Mf almost surely with Lℓ := 2(Rout + Mf ). (ii) Optimization: a stable SGD regime in
which the empirical risk approaches its minimum (within the hypothesis class) with high probability
(Hardt et al., 2016). (iii) supn LT (n) < ∞ for fixed depth L and (iv) p/n → 0. Let MSEtrain

n be
the training MSE over n samples. Then, for any δ ∈ (0, 1), with probability at least 1− δ,∣∣∣MSEtrain

n − E
(
Ŷ (L)(D̃)− Y

)2∣∣∣ ≤ 2Lℓ Lg Lϕ LT Rin

√
2p
n + 3

√
ln(2/δ)

2n .

Moreover, if the regressor approximation error vanishes as capacity grows (Hornik, 1991; Stinch-
combe, 1999; Cybenko, 1989; Hornik et al., 1989; Yarotsky, 2017) and T is consistent (Theorem 1),
the population training MSE is consistent.

Theorem 2 provides a generalization bound connecting training MSE to population error, where
p = Bd(T + 1) is the effective dimension. The bound has two terms: a complexity term scaling
as

√
p/n (depending on Lipschitz constants and input bounds) and a concentration term scaling

as
√

ln(1/δ)/n. Under standard conditions, training MSE converges to population MSE. Com-
bined with Theorem 1, this establishes consistency of the population training MSE when approx-
imation error vanishes. Practically, this means balancing model complexity (p) with sample size:
larger batches, embedding dimensions, or time grids require more data. Theoretically, this provides
finite-sample generalization guarantees, the training procedure generalizes well and establishes both
consistency and generalization for IDAT.

During training, the final token carries the response embedding to learn the X → Y relation.
By Lemma 12, masking the Y -token at test time induces an approximation perturbation scaled by
LY = ∥EY ∥op. To reduce train-test mismatch, one can randomly mask the Y -token during training:
draw di ∼ Bernoulli(q) and feed Z̃Y = diEY Yi with a mask-reweighted loss. The training-phase
embedding error remains bounded, with the fully masked case serving as a worst-case upper bound.

Masking Y -token. Lemma 12 bounds the error between the test embedding T (D̃∗) (with
masked Y -token) and the oracle embedding H(S̃) as ∥T (D̃∗) − H(S̃)∥∞ ≤ LT LY (Mf +

σY

√
2 ln(2N/δ)) + εT , decomposing into (1) a train-test mismatch term scaling with LT LY and

response magnitude/noise, and (2) the training embedding error εT from Theorem 1. This shows
that test-time predictions remain consistent when training is consistent, with the bound growing
logarithmically with test sample size. It also provides a quantitative bound on the train-test gap
(perturbation) controlled by the product of Lipschitz constants and expected response magnitude.

Theorem 13 further bounds the pointwise and uniform test errors and controls the population test
MSE by the training MSE plus a Rademacher term and an expectation bridge; the empirical test MSE
adds an extra concentration term. If the training MSE is consistent and the Y -token embedding is
scaled so that LY → 0, the bridge term vanishes then both population and empirical test MSE are
consistent asymptotically (Corollary 14). Details of the theoretical part are listed in the Appendix.

5 EXPERIMENTS

We compare our method against a diverse set of 19 baselines that collectively cover statistical, func-
tional, attention-based tabular, deep learning methods and ensemble approaches, each adapted to ir-
regular and sparse longitudinal inputs. The statistical and/or functional baselines comprise ordinary
linear regression (LR), functional linear regression (FLR) (Yao et al., 2005a; Cai & Hall, 2006), and
functional principal components analysis followed by a regression neural layer (FPCA+NN) (Yao
et al., 2005b; Wang et al., 2016).

For deep learning and tabular Transformer methods, we provide mean-imputed inputs on a fixed
grid, where each feature corresponds to a time point. Compared methods include SAINT (Somepalli
et al., 2021), FTTransformer (Gorishniy et al., 2021), TabNet (Arik & Pfister, 2021), AutoInt (Song
et al., 2019), and a vanilla Transformer trained solely on covariates without a Y -token followed by
a regression neural layer (VT+NN). We also include the most recent state-of-the-art tabular model
published in Nature, TabPFN (Hollmann et al., 2022; 2025), a generative Transformer-based foun-
dation model pretrained on millions of synthetic datasets. To assess the value of end-to-end training
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relative to decoupled imputation, we also evaluate SAND (Hong et al., 2024) augmented with a pre-
diction multilayer perceptron (SAND+NN)1, thereby testing how well a learned imputer performs
when the regression layer is trained separately. Other deep learning approaches including multilayer
perceptron (MLP) and ResNet (He et al., 2016) are considered. As well as AdaFNN (Yao et al.,
2021), a basis-specified neural method tailored to completely observed functional data.

Finally, we benchmark strong ensemble and tree-based systems, including AutoGluon (Erickson
et al., 2020), which automatically trains, tunes, and stacks diverse models on tabular tasks. Gradient-
boosted approaches, including XGBoost (Chen & Guestrin, 2016), LightGBM (Ke et al., 2017), Cat-
Boost (Prokhorenkova et al., 2018), and NODE (Popov et al., 2019) are included. We also evaluate
xRFM (Beaglehole et al., 2025), a very recent method that combines random-feature (kernel-style)
learning with tree-based partitioning. These 19 existing models are compared with our proposed
dual-attention method (IDAT) and a variant without inter-sample attention (IDAT w/o AI ).

5.1 SIMULATION

Without loss of generality, we consider functions on the unit interval I = [0, 1] generated as follows.
In all simulations, the time grid has length T = 100. For subject i in group g ∈ {1, . . . , G}, the
(noise-free) latent trajectory is

Xi(t) = µg(t) +

20∑
k=1

[
asi,k sin(2πkt) + aci,k cos(2πkt)

]
/k, t ∈ I,

where µg is a group-specific mean function and {asi,k, aci,k} are Fourier coefficients with smoothness
controlled by the decay rate of k−1. To induce smooth but heavy-tailed trajectories (beyond the
sub-Gaussian assumption), these coefficients are independently drawn from a zero-mean exponential
distribution. The response is generated by a functional operator Yi = F(Xi)+εi with εi

iid∼ N(0, 1).

Case I: Functional linear regression. Set µg ≡ 0. Let F(X) =
∫ 1

0
β1(t)X(t) dt with

β1(t) = (3− 6t)1{t ≤ 0.5} + (2t− 1)1{t > 0.5}.

Case II: Nonlinear model. Set µg ≡ 0. Define

F(X) =

∫ 1

0

β2(t)X(t) dt +
(∫ 1

0

β3(t)X(t) dt
)2

,

with β2(t) = (4− 16t)1{t ≤ 0.25} and β3(t) = (4− 16|t− 0.5|)1{0.25 ≤ t ≤ 0.75}. Here, time
points t > 0.75 are non-informative; the interval just beyond t = 0.25 contributes weakly.

Case III: Cluster analysis. Let G = 2 and with F(X) =
∫ 1

0
0.5 tX(t) dt,

µ1(t) = 1 + 4(t− 0.5)1{t ≥ 0.5}, µ2(t) = −6(t− 0.5)1{t ≥ 0.5}.

This scenario is explicitly designed to demonstrate the clustering ability, where group-specific mean
shifts create separable subpopulations that inter-sample attention can cluster.

In addition to Cases I-III, we also add measurement error on the functional covariate2. We set the
signal-to-noise ratio to SNR =

(∫ 1

0
Xi(t)

2 dt
)
/Var(ηi) = 2. Across the six simulation cases,

we evaluate five observation regimes at various levels of sparsity, where the observed percentage of
data is provided (in the parentheses): ssparse (10%), vsparse (20%), sparse (50%), dense (80%),
and full (100%). The mean squared errors (MSE) of test samples for all 30 settings are reported
in Tables 4–9, evaluating predictive accuracy and computational efficiency across the full spectrum
of sampling scenarios. As Table 1 shows, IDAT is the jl:[ What does consistent mean? ] cj:[best-
performing] overall (Top1 11/30, Top3 26/30), especially in non-dense regimes (≤ 50% of the data
are observed). TabPFN emerges as the main competitor as sparsity decreases, its pre-trained prior

1SAND is an imputation method and is not applied when the covariates are 100% observed.
2Cases with measurement errors are denoted by Case I*, II* and III*
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favors simple, additive, and near-linear relationships, allowing it to fit dominant trends in dense
settings. Intuitively, inter–sample attention lowers the variance by borrowing strength from “sim-
ilar” subjects. However, in the presence of measurement errors, the similarity can be inaccurately
estimated and borrowing from mismatched neighbors raises the bias. When the increase in bias
outweighs variance reduction, the time–point–only variant (no AI ) can prevail, though the dual-
attention model still outperforms other baselines. Empirically, IDAT delivers the largest gains in
sparse settings with clear cluster structure (Table 3). In practice, we recommend the dual-attention
model by default to detect/exploit clustering, with the AT -only variant as a pragmatic fallback if the
learned attention maps appear diffuse or uniform across subjects.

Table 1: Overall comparison on the simulation study across 6 cases and 5 sparsity levels. Top1/Top3
count how often a method ranks 1st or within the top 3 in terms of smallest test MSE. Efficiency
is measured as average inference time per sample (ms) and model size (#Params in thousands).
Preprocessing (imputation) costs are excluded from inference time.

Sampling density (# cases) Efficiency measures

all (30) ≤ 50% (18) > 50% (12) inference time #Params

Method Top1 Top3 Top1 Top3 Top1 Top3 (ms/sample) (1K)

LR 3 7 0 1 3 6 0.005 0.1
FLR 0 0 0 0 0 0 19.71 0.5

FPCA+NN 0 0 0 0 0 0 24.433 13
TabNet 0 0 0 0 0 0 0.058 12
SAINT 0 0 0 0 0 0 17.870 125000

FTTransformer 0 0 0 0 0 0 8.501 123
AutoInt 0 0 0 0 0 0 22.179 619
TabPFN 9 25 4 13 5 12 1713.843 11000
VT+NN 0 0 0 0 0 0 28.093 333

SAND+NN 0 0 0 0 0 0 28.030 333
MLP 0 0 0 0 0 0 7.485 549

ResNet 0 0 0 0 0 0 6.597 568
AdaFNN 1 7 0 1 1 6 1.481 603

NODE 0 3 0 2 0 1 14.733 6800
CatBoost 1 2 0 0 1 1 0.067 190
XGBoost 0 2 0 1 0 1 0.014 2

LightGBM 0 0 0 0 0 0 0.021 9
AutoGluon 2 10 1 3 1 7 1.734 ≈ 2000

xRFM 0 4 0 4 0 0 0.070 180

IDAT 11 26 9 17 2 9 3.085 180
IDAT w/o AI 11 24 7 15 4 8 1.655 144

5.2 REAL DATA

National Child Development Study: We analyze data from the 1958 National Child Develop-
ment Study (NCDS)3. The task is to predict BMI at age 62 from prior BMI trajectories observed
at ages 11, 16, 23, 33, 42, 44, 46, 50 and 55. The cohort is relatively homogeneous, including
individuals born in Great Britain during a single week in 1958, reducing potential confounding by
ethnicity. All models are adjusted for baseline covariates measured at age 7: sex, baseline BMI, and
an early-life social adversity index computed as the average of 13 binary indicators (e.g., housing
problems, financial hardship, parental divorce, unemployment, illness, disability, or death) (Flèche
et al., 2021). We fit sex-stratified models and compare the mean squared error (MSE) and mean
absolute error (MAE) of two imputation pipelines for BMI trajectories: (i) mean imputation (a sim-
ple but commonly used approach in tabular workflows) and (ii) multiple imputation by chained
equations (MICE) (van Buuren & Groothuis-Oudshoorn, 2011). The n = 4952 longitudinal BMI

3University College London, UCL Social Research Institute, Centre for Longitudinal Studies (2024)

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

series exhibit substantial missingness (mean 25%, range 8–96%), spanning dense to super-sparse
regimes. On average, subjects have 6.2 observations (SD 0.9) across the sweeps (Figure 7). Across
both imputation settings, IDAT consistently outperforms all competing models, while requiring no
imputation or preprocessing and operating directly on sparse and irregular inputs.

Synthetic HIV Dataset (Health Gym Project): We use the HIV dataset from the Health Gym
project (Kuo et al., 2022), a public collection of synthetic yet realistic clinical datasets, and focus
exclusively on the HIV cohort. Since the measurements are monthly and equally spaced, alongside
mean imputation and MICE, we also evaluate the last-observation-carried-forward (LOCF) method
(Lachin, 2016; Woolley et al., 2009) and report accuracy and F1 score in Table 12. The binary
response label indicates whether a patient achieves viral suppression (VL< 200 copies/mL) at any
time during the prediction window (months 20–30). For each patient, we use VL measurements from
the first 20 months as longitudinal covariates and include sex as a baseline covariate. The n = 8683
VL series in the feature window is very sparse (mean missingness 65%, range 47–88%). Subjects
receive a mean of 5.8 observations (SD 1.8) during the 20-month covariate interval (Figure 9).

Table 2: Performance on real-world tasks. For NCDS BMI (regression), we report MSE/MAE under
mean and MICE imputation. For Synthetic HIV (classification), we report F1 under mean, MICE,
and LOCF imputation. The best method is in bold and the top three are in italics. Only a subset of
the 19 baselines is shown here for readability; see Tables 11 and 12 for the full comparison.

NCDS BMI (MSE/MAE) Synthetic HIV (F1)

Method mean imputed MICE mean MICE LOCF

SAINT 9.7213 2.3524 9.4844 2.3231 0.9751 0.9745 0.9752
TabPFN 8.5794 2.1621 8.5164 2.1503 0.9722 0.9734 0.9758

MLP 9.4439 2.3142 9.2378 2.3191 0.9751 0.9727 0.9764
NODE 9.6511 2.2955 8.6911 2.2528 0.9727 0.9751 0.9769

AutoGluon 9.0408 2.2623 8.9595 2.2543 0.9746 0.9745 0.9751

IDAT 8.0061 2.1728 8.0061 2.1728 0.9752 0.9752 0.9752
IDAT w/o AI 8.1177 2.1966 8.1177 2.1966 0.9752 0.9752 0.9752

6 CONCLUSION

Across datasets and simulations with diverse sparsity, our end-to-end dual-attention Transformer
IDAT, consistently performs the best when less or equal to 50% of time points are observed, a
regime typical of many longitudinal applications, and remains competitive as sparsity decreases.
In practice, sparsity varies widely across cohorts, time windows, and variables; thus, robustness
across sampling densities is essential. By adaptively leveraging inter-sample attention to borrow
strength when data are scarce and emphasizing time-point structure as coverage improves, IDAT
offers a unified solution across the full sparsity spectrum, while yielding interpretable dual-attention
patterns that clarify when and where each mechanism contributes.

Domain detection with time–point attention. Time-point attention learns a data-driven weight-
ing scheme over time, highlighting the segments of a trajectory that are most predictive. As shown
in Figures 1a and 8b, when portions of the time axis are not informative for the response, the learned
weights shrink toward (near) zero in those intervals, effectively performing time domain selection.
This behavior mirrors the known informative window in the simulation and is corroborated by ex-
ternal domain knowledge in the real cohort as shown in Figure 8.

Clustering with inter–sample attention. Inter–sample attention acts as a learned, end-to-end
nearest-neighbor mechanism: it computes attention across data points (rows) within a batch using
a learned similarity and aggregates information from the most relevant samples. This cross-sample
sharing of information is particularly helpful for sparse or noisy features. In clustered data, it pro-
duces cluster-specific attention profiles that better align with the regression signal. Figure 1b illus-
trates a two-group setting with different group mean functions: the clusters display clearly distinct
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attention patterns4. This demonstrates the clustering capability of the dual-attention mechanism. In
contrast, removing inter-sample attention (Figure 6) makes profiles of the two clusters much more
similar, differing only slightly in the early trajectory. This highlights that time-point and inter-sample
attention provide complementary and additive gains in predictive performance.

(a) Domain detection (case II). (b) Clustering (case III).

Figure 1: Interpretable dual-attention. All the attention weights are are scaled by a factor of 1000.

DISCUSSION

In IDAT, temporal patterns benefit from similar subjects identified by inter-sample attention. At the
same time, attention better captures subject similarity by leveraging temporal relationships learned
in time-point attention. This mutual reinforcement is especially important when per-subject data
are scarce. Unlike hierarchical or two-stage architectures, where temporal and relational modeling
are decoupled and processed sequentially or in separate stages, IDAT differs from existing atten-
tion architectures by jointly modeling temporal and inter-sample dependencies in a single encoder.
These hierarchical or two-stage architectures are problematic in sparse and irregular settings, be-
cause sparse data makes decoupled modeling unstable. Moreover, IDAT extends beyond the re-
gression setting. On real data (Table 2), replacing the regression layer with a classification layer
while keeping dual-attention unchanged shows seamless adaptation to classification. IDAT can also
include time-independent covariates via simple concatenation (without positional encodings), al-
lowing the model to jointly learn their relationships with longitudinal covariates and the outcome.
For multi-dimensional functional input, an intra-functional attention layer can capture cross-channel
relations. To balance the variance reduction and pooling bias under measurement noise, a possible
extension is to introduce a learnable, data-adaptive gate λ ∈ [0, 1]: T B(λ) = [λAT+(1−λ)AI ]◦FF.

LIMITATIONS

Absolute sinusoidal positional encodings enable universal approximation on fixed maximum se-
quence lengths (Yun et al., 2019) but may not extrapolate well beyond the training horizon T
or to unseen temporal spacings, and are suboptimal when prediction depends on relative timing
(e.g., calendar/seasonal features). Alternative encodings from time-series forecasting or continuous-
time/relative encodings (Zhou et al., 2021; Woo et al., 2022) may better capture temporal structure.
Practical deployments require the tuning of T and B to balance accuracy and efficiency, larger
B and T improve predictions but drive up computation. Computing AT requires O(T 2) in mem-
ory and O(dT 2) computation times per subject; whereas for AI , we need O(B2) in memory and
O(dB2) computation times for each token. Sparsified or local attentions could possibly be more ef-
ficient, yet dual-attention scheme still becomes computationally expensive for very long sequences
or large batches. Nevertheless, Table 1 shows IDAT remains relatively fast compared to existing
Transformer-based methods.

4Group 1 assigns negative weights in the first third of the trajectory and near-zero weights in the last third,
whereas Group 2 shows near-zero weights early and coherent within-cluster structure thereafter.
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models using artificial intelligence and longitudinal data from electronic health records: a sys-
tematic methodological review. Journal of the American Medical Informatics Association, 30
(12):2072–2082, 2023.

Anna Cascarano, Ilaria D’Aloisio, Giusy Guastamacchia, and Francesca Ieva. Machine and deep
learning for longitudinal biomedical data: a review of methods and applications. Artificial Intel-
ligence Review, 56(Suppl 2):1711–1771, 2023.

Centers for Disease Control and Prevention. Hiv diagnoses, deaths, and preva-
lence, April 2025. URL https://www.cdc.gov/hiv-data/nhss/
hiv-diagnoses-deaths-prevalence.html. Accessed: 2025-09-12.

Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In Proceedings of the
22nd acm sigkdd international conference on knowledge discovery and data mining, pp. 785–794,
2016.

Xiang Chen, Hao Li, Mingqiang Li, and Jinshan Pan. Learning a sparse transformer network for
effective image deraining. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pp. 5896–5905, 2023.
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