

000 001 002 003 004 005 006 007 008 009 010 INTERPRETABLE TRANSFORMER REGRESSION FOR FUNCTIONAL AND LONGITUDINAL COVARIATES

005 **Anonymous authors**

006 Paper under double-blind review

ABSTRACT

011 Predicting scalar outcomes from functional data is challenging when measure-
012 ments are sparse, irregular, and noisy, as in many scientific and clinical longi-
013 tudinal studies. We propose IDAT, a dual-attention Transformer that operates di-
014 rectly on masked sampling schedules and avoids ad-hoc imputation. IDAT couples
015 (i) time-point attention, which captures local and long-range temporal dynamics
016 together with the response relationship nonparametrically, with (ii) inter-sample
017 attention, which adaptively shares information across subjects with similar tra-
018 jectories to stabilize estimation under sparsity. These pathways complement one
019 another: time-point attention captures subject-specific dynamics, whereas inter-
020 sample attention leverages population structure to “borrow information” from
021 other subjects, echoing principles from random-effects model in longitudinal anal-
022 ysis. Under a random-effects framework that accounts for irregular sampling and
023 measurement noise, we prove prediction-error bounds and show that IDAT con-
024 sistently approaches the oracle solution. Across both simulations and real-world
025 applications, IDAT achieves the best overall performance among 19 baselines.
026 Only in the extremely dense case ($> 80\%$ observations) TabPFN (a recent method
027 published in *Nature*) achieve a slight advantage, while IDAT still significantly
028 outperforms all other baselines in this scenario. The learned attention weights are
029 interpretable, revealing predictive time domains and potential clusters. In con-
030 clusion, IDAT, an end-to-end sparsity-aware Transformer architecture, offers im-
031 provements both in predictive accuracy and interpretability for scalar-on-function
032 prediction.

033 1 INTRODUCTION

034 Longitudinal data consist of repeated measurements on the same subjects over time, often coupled
035 with time-varying covariates and subject-specific heterogeneity (Diggle et al., 2002; Fitzmaurice
036 et al., 2004; 2009). Such data are ubiquitous in biomedicine, environmental monitoring, and digital
037 health, where dynamic trajectories inform prognosis, treatment response, and risk stratification. It
038 is common to assume that the underneath dynamic trajectory of each subject is a smooth function
039 of time, while the observed longitudinal measurements may be noisy and measured at irregular and
040 subject-specific time points. This adopts a perspective in the field of functional data analysis (FDA)
041 (Wang et al., 2016; Ramsay & Silverman, 2005), where each trajectory is a realization of a latent
042 smooth process observed with noise. When the sampling plan is intensive, a nonparametric approach
043 is typically deployed to model such functional data; whereas a parametric approach, such as a mixed-
044 effect model (Laird & Ware, 1982b) was the norm to model sparse or irregularly sampled functional
045 data, until a nonparametric approach was proposed in (Yao et al., 2005a). Since longitudinal data
046 are discretely sampled functional data (possibly with noise/measurement error), we aim to develop
047 a unified nonparametric approach that handles a broad range of sampling schemes, whether they are
048 intensive, sparse, or in between, including irregular and subject-specific time schedules.

049 We address the scalar-on-function regression problem, where a functional covariate, possibly ob-
050 served on a sparse and irregular time schedule with noise, is used to predict a scalar outcome. The
051 method must learn an unspecified functional of the whole trajectories without restrictive paramet-
052 ric forms. Since accurate scalar prediction hinges on correctly capturing the trajectory–outcome
053 relationship in the presence of sparsity and noise, an effective model should therefore (i) accommo-
date irregular sampling and sparse data, (ii) encode temporal order and dependencies, (iii) borrow

054 strength across similar subjects, and (iv) learn the trajectory–outcome relationship without restrictive
 055 parametric assumptions.
 056

057 Given that sparse and irregular longitudinal data are the most challenging type of functional data,
 058 we introduce the **Interpretable Dual-Attention Transformer** (IDAT), a unified architecture inspired
 059 by Transformers (Vaswani et al., 2017) that is tailored to handle high sparsity and irregular sam-
 060 pling. Meanwhile, this approach is broadly applicable to any type of functional/longitudinal data.
 061 In contrast to “sparse Transformers” that impose artificially designed sparse attention patterns for
 062 computational efficiency (Jaszczur et al., 2021; Correia et al., 2019), our notion of “sparsity” refers
 063 to sparsity arising from the sampling scheme. We discretize the time interval into a working grid and
 064 use explicit sampling masks to encode each subject’s observation pattern. The model combines (i)
 065 time-point attention, which serves as a data-adaptive functional encoder capturing smooth trajectory
 066 structure, with (ii) inter-sample attention, which learns nearest-neighbor-like weights across sub-
 067 jects via a learned similarity metric. A regressor layer then summarizes the learned representation
 068 to deliver end-to-end scalar-on-function prediction.

069 1.1 MAIN CONTRIBUTIONS

070 **End-to-end scalar-on-function regressors.** We propose a dual-attention Transformer that pre-
 071 dictes a scalar outcome from a sparse, irregular longitudinal trajectory in an end-to-end manner. The
 072 model uses explicit sampling masks under supervised setup in the training stage, avoiding ad-hoc
 073 imputation while respecting each subject’s observation pattern. The architecture jointly captures
 074 within-trajectory structure and cross-subject similarity, yielding a trainable pipeline without restric-
 075 tive parametric assumptions. Cross-subject information sharing is essential for longitudinal data due
 076 to data sparsity, but is absent in existing longitudinal Transformer designs.
 077

078 **Interpretable dual-attention Transformer.** The learned attention weights act as nonparametric
 079 regression coefficients along two axes. Time-point attention serves as a data-adaptive smoother,
 080 aggregating local and long-range temporal information to encode functional structure while propa-
 081 gating signal about Y . Inter-sample attention implements learned similarity over subjects, akin to
 082 nearest neighbors with a learned metric, stabilizing predictions for sparse and noisy data. Together,
 083 the embedding functions as an informative weighting mechanism rather than simple imputation,
 084 capable of revealing domain-relevant temporal windows and cluster structure.
 085

086 **Theoretical and numerical justification.** We derive prediction error bounds and show consis-
 087 tency under sparse, irregular sampling, where standard Transformer theory (which assumes fully
 088 observed or densely sampled inputs) does not apply. Extensive simulation and real data studies
 089 across a wide range of sparsity levels demonstrate robustness to diverse sampling schemes and
 090 superior accuracy relative to 19 baselines (ensemble methods, statistical/functional models, deep
 091 learning methods, tabular Transformers, and pre-trained models like TabPFN).
 092

093 1.2 RELATED WORK

094 Modeling longitudinal data, defined as repeated measurements over time that are often irregularly
 095 sampled and of varying length, poses challenges for representation learning and prediction. In
 096 biomedical settings (e.g., EHR), recent surveys document a rapid expansion of machine learning
 097 and deep learning approaches (Cascarano et al., 2023; Carrasco-Ribelles et al., 2023). Early neural
 098 models typically flatten a temporal history into fixed feature vectors for feedforward networks (e.g.,
 099 cardiovascular risk prediction (Zhao et al., 2019)), thereby discarding ordering information. To re-
 100 tain functional structure, Yao et al. (2021) propose a basis-learning layer in which hidden units act as
 101 adaptive basis functions, enabling end-to-end, task-specific basis for fully observed functional data.
 102

103 Convolutional neural networks (CNNs) capture local temporal structure via 1D convolutions and
 104 are competitive for time-series classification (Wang et al., 2017), but modeling long-range de-
 105 pendencies often requires very deep networks or large receptive fields. Recurrent architectures
 106 (RNNs/LSTMs) maintain hidden states that aggregate past information and naturally handle variable
 107 sequence lengths and missingness patterns, with applications in clinical prognosis (e.g., Alzheimer’s
 108 disease (Cui et al., 2019; Aghili et al., 2018)) and broader EHR modeling (Lipton et al., 2016).
 109 Nonetheless, their inherently sequential computation can be a bottleneck for long sequences.
 110

108 Transformers (Vaswani et al., 2017) replace the sequential recurrence approach in CNN, RNN, and
 109 LSTM by “self-attention” to relate all time points within a sequence, capturing both local and global
 110 dependencies and supporting parallel computation. Empirically, reviews report strong performance
 111 on longitudinal biomedical tasks (Siebra et al., 2024). Early EHR applications such as BEHRT
 112 encoded patient histories as sequences of medical concepts to learn contextualized representations
 113 for downstream prediction (Li et al., 2020), while general frameworks demonstrated effectiveness
 114 across multivariate time-series classification and regression (Zerveas et al., 2021). The architec-
 115 ture has also been adapted to domain-specific objectives, including survival modeling (Öğretir et al.,
 116 2024; Zhang et al., 2025). Beyond prediction, specialized self-attention modules have been proposed
 117 for functional data imputation: SAND (Hong et al., 2024) introduces attention weights on deriva-
 118 tives to promote smooth reconstructions under irregular sampling. More broadly, efficient attention
 119 variants (e.g., sparse or kernelized forms (Jaszczur et al., 2021; Lou et al., 2024; Correia et al., 2019;
 120 Chen et al., 2023)) have been explored to mitigate quadratic time/memory costs on long sequences,
 121 though their approximation properties in sparse/irregular regimes require careful validation.

2 INTERPRETABLE DUAL-ATTENTION TRANSFORMER (IDAT)

124 The proposed method, IDAT, is a dual-attention (encoder-only) Transformer for scalar-on-function
 125 regression. IDAT (Figure 2) is designed to handle sparse, irregular longitudinal inputs and is ap-
 126 plicable to all longitudinal and functional data. Since latent trajectories of functional data are
 127 infinite-dimensional, discretization is required for transforming the time domain into grid points.
 128 Paired with positional encodings which captures temporal information between the grids to pre-
 129 serve temporal ordering and proximity, we also apply sampling masks to respect the sparsity of the
 130 sampling schedule. This produces a tabular-style input embedding, whose columns index time grid
 131 locations, so each column at a time grid acts as a feature. The key difference from standard tabular
 132 data is the heavy masking induced by sparse and irregular sampling and adjacent columns carry
 133 strong temporal dependence through the underlying smooth trajectory.

134 The dual-attention Transformer block (omit normalization layers) is defined as

$$\mathcal{T}\mathcal{B} = \text{FF}_1 \circ A_I \circ \text{FF}_2 \circ A_T. \quad (1)$$

135 The *time-point attention* A_T operates along the temporal axis within each sample. The *inter-sample*
 136 *attention* A_I applies attention across samples in the batch. The position-wise feed-forward layers
 137 FF_1, FF_2 are two-layer ReLU MLPs. Together, the two attentions reinforce each other: time-
 138 point attention captures subject-specific dynamics, while inter-sample attention leverages population
 139 structure so trajectories borrow strength from similar subjects when per-subject data are scarce.
 140 Stacking L dual-attention Transformer blocks yields the embedding $\mathcal{T} = \mathcal{T}\mathcal{B}^{\circ L}$.

141 A_T operates along each subject’s time grid to learn both local and long-range temporal depen-
 142 dencies, encoding trajectory structure while respecting order and smoothness. Unlike imputation
 143 methods that reconstruct the entire trajectory without using the outcome, our model is trained with
 144 a Y -token. During training, attention flows between covariate tokens and the response, providing
 145 supervision that turns A_T into a nonparametric weighting scheme over time (low weights mark un-
 146 informative windows). At test time the Y -token is masked, so predictions rely solely on observed
 147 covariates but still benefit from the supervision-shaped representation learned in training. A_I acts
 148 across the mini-batch at each time grid, assigning data-adaptive weights to subjects with similar
 149 patterns, thereby sharing information across similar subjects and often revealing cluster structure.
 150 This modular design couples time-point and inter-sample attentions, allows us to benefit from both
 151 within-trajectory encoding and across-subjects contributions. The model prioritizes prediction over
 152 imputation, learning attention weights end-to-end for regression rather than pure reconstruction.

153 Longitudinal data remain fundamentally different from tabular data, even after they have been dis-
 154cretized, due to the within-subject temporal correlations. Existing Transformers for longitudinal data
 155 use only temporal attention and ignore cross-subject information sharing. This results in efficiency
 156 loss, and the loss could be substantial when each subject has few observations. IDAT leverages the
 157 inter-subject attention to improve the performance of transformers for longitudinal data. In addition,
 158 longitudinal data are noisy and irregular measurements from a latent process that is often assumed to
 159 be smooth. This smoothness assumption is needed for identifiability (Hall et al., 2006; Wang et al.,
 160 2016; Li & Hsing, 2010) but often ignored by standard Transformer analyses, which assume dense
 161 or fully observed inputs without noise, aka measurement errors. This not only distinguished the

162 approach of IDAT from standard Transformers' but also has the implication that the theory for lon-
 163 gitudinal data is substantially different from existing theory for tabular data. The following sections
 164 introduce the setup and key theoretical results to highlight these theoretical differences and establish
 165 consistency and generalization guarantees for IDAT in this challenging regime.

167 3 THEORETICAL SETUP

169 Without loss of generality, we assume all subjects have trajectories in the time interval $I = [0, 1]$ with
 170 latent smooth trajectories $X_i(\cdot)$, under contamination of measurement errors and irregular sampling
 171 scheme, the observation times for subject i is $\tilde{t}_i = (t_{i1}, \dots, t_{in_i}) \subset I$, and we observe

$$172 \quad X_i^*(\tilde{t}_i) = X_i(\tilde{t}_i) + \eta_i(\tilde{t}_i), \quad \eta_i(\tilde{t}_i) \stackrel{iid}{\sim} N(0, \sigma_X^2). \quad (2)$$

174 The scalar response is generated from the functional regression model with an unspecified \mathcal{F} ,

$$176 \quad Y_i = \mathcal{F}(X_i(\cdot)) + \epsilon_i, \quad \epsilon_i \stackrel{iid}{\sim} N(0, \sigma_Y^2). \quad (3)$$

178 We refer to ϵ_i as the label noise on Y_i , in contrast to the measurement noise η_i on X_i .

179 **Discretization, masking and positional encoding.** Despite irregular measurement times and
 180 varying n_i across subjects, we align all observations to a shared fixed grid $\tilde{\tau} = (\tau_1, \dots, \tau_T) \subset I$,

$$182 \quad M_i(\tau_j) = \mathbf{1}\{\tau_j \in \tilde{t}_i\}, \quad X_i^*(\tau_j) = X_i^*(t_{i,k}) \mathbf{1}\{\tau_j = t_{i,k}\}, \quad (4)$$

184 and form the length- $T + 1$ vector $D_i = (X_i^*(\tilde{\tau}) \odot M_i(\tilde{\tau}), Y_i) \in \mathbb{R}^{T+1}$ with a mesh size defined by
 185 $\Delta = \max_j |\tau_{j+1} - \tau_j|$. Linear embeddings E_X and E_Y from \mathbb{R} to \mathbb{R}^d are applied token-wise along
 186 with sinusoidal positional encodings $P(\tilde{\tau})$,

$$187 \quad \tilde{D}_i = \left[E_X(X_i^*(\tilde{\tau}) \odot M_i(\tilde{\tau})) + P(\tilde{\tau}), E_Y(Y_i) \right] \in \mathbb{R}^{d \times (T+1)}. \quad (5)$$

189 **Dual-attention Transformer.** Given a batch $\tilde{\mathbf{D}}$ of size B , the dual-attention Transformer block is
 190 defined in (1). Stacking L dual-attention Transformer blocks yields the embedding $\mathcal{T} = \mathcal{T}\mathcal{B}^{\circ L}$.

192 **Regression layer.** Given the output of dual-attention Transformer $\mathcal{T}(\tilde{D}_i) \in \mathbb{R}^{d \times (T+1)}$, which
 193 contains the longitudinal covariate embeddings and the Y -token embedding. Each sequence is sum-
 194 marized to a single d -vector via a trainable pooling map $\phi : \mathbb{R}^{d \times T} \rightarrow \mathbb{R}^d$. The pooled representation
 195 is then mapped to a scalar by a MLP g (e.g., two-layer ReLU), yielding the prediction

$$197 \quad \hat{Y}_i = g(\phi([\mathcal{T}(\tilde{D}_i)_{:, (1:T)}])). \quad (6)$$

199 During training, we minimize the loss function $\ell(\hat{Y}_i, g([Z_Y]_i))$ (e.g., MSE for regression), treating
 200 the response embedding as an informative target. At test time, the Y token is masked (set to zero)
 201 prior to encoding, so predictions depend solely on the covariate sequence.

202 4 KEY THEORETICAL RESULTS

205 IDAT is a unified approach that works for densely or sparsely recorded functional data, whether
 206 the measurement schedule is regular or irregular, and whether the data exhibits clustering or het-
 207 erogeneity, as long as training and testing data follow the same sampling mechanism and functional
 208 relationship. For theoretical analysis, we assume the following setup. Let $\tilde{\mathbf{D}}$ denote the discretized,
 209 noisy, masked embedding, and $\tilde{\mathbf{S}}$ the oracle embedding (without measurement and label errors).

210 **Mesh-size trade-off.** For an α -Hölder trajectory, Lemma 3 bounds the error between the embed-
 211 ded observed data $\tilde{\mathbf{D}}$ to the oracle with high probability:

$$213 \quad \delta_0 = \|\tilde{\mathbf{D}} - \tilde{\mathbf{S}}\|_\infty \lesssim L\Delta^\alpha + \sigma_X \sqrt{\log(BT)} + \sigma_Y \sqrt{\log(B)},$$

215 where $\Delta = \max_j |\tau_{j+1} - \tau_j|$ is the mesh size. The discretization bias scales as $O(\Delta^\alpha)$: as the grid
 refines ($\Delta \rightarrow 0$), the bias vanishes at rate Δ^α , while noise terms remain controlled. Since $T \asymp \Delta^{-1}$,

time-point attention incurs $O(T^2d)$ time and $O(T^2)$ memory per subject, so halving Δ quadruples computational cost while improving the bias by only $2^{-\alpha}$. The inter-sample component scales linearly in T , so a similar trade-off applies. In practice, Δ must balance statistical accuracy (smaller Δ) against computational cost (larger Δ). This result is central to establishing consistency: with appropriate smoothness assumptions and grid refinement, the discrete implementation converges to the continuous functional relationship.

In training, the dual-attention block components are Lipschitz: time-point self-attention A_T with constant L_T , feed-forward networks FF_1, FF_2 with constant L_{FF} , and inter-sample attention A_I with constant L_I (Lemmas 4, 8). They also admit uniform approximation on compact sets (Lemmas 5, 6, 7), yielding deterministic approximation errors $\varepsilon_{A_T}, \varepsilon_{FF}, \varepsilon_{A_I}$. The dual-attention block \mathcal{T}_B is $L_{\mathcal{T}_B}$ -Lipschitz (Lemma 8), ensuring stability: small perturbations in input embeddings propagate in a controlled manner. Inter-sample attention reduces a stochastic embedding error ε_{var} by up to a $B^{-1/2}$ factor (Lemma 9) with batch size B , showing that larger batches improve variance reduction, though with diminishing returns. Together, these properties ensure that approximation errors accumulate in a controlled way and that the embedding remains stable under discretization and noise, which is essential for establishing consistency.

Variance reduction by inter-sample attention. When subject-level heterogeneity is not prominent, queries/keys align across subjects and the inter-sample attention weights are nearly uniform ($\approx 1/B$), yielding an $O_p(1/\sqrt{B})$ reduction in embedding noise (Lemma 9). This variance contraction is orthogonal to deterministic approximation biases, so increasing B stabilizes the embedding without changing those bias terms. MSE improves when the induced averaging does not introduce substantial pooling bias, namely, when the attended neighbors are genuinely similar for the target.

Together, Theorem 1 establishes consistency of \mathcal{T} : the IDAT embedding converges to the oracle embedding obtained from a noiseless trajectory observed fully on the time grid.

Theorem 1 (Consistency of \mathcal{T}). *Under the assumptions and notations of Lemmas 3-9, the oracle mapping is $H(\tilde{\mathbf{S}}) = G \circ f_I \circ G \circ f_T(\tilde{\mathbf{S}})$. Let*

$$\varepsilon_{\mathcal{T}B} := L_{FF}(\varepsilon_{var} + \varepsilon_{A_I} + L_I(\varepsilon_{FF} + L_{FF}\varepsilon_{A_T})) + \varepsilon_{FF}.$$

Then, with probability at least $1 - \delta$,

$$\|\mathcal{T}B(\tilde{\mathbf{D}}) - H(\tilde{\mathbf{S}})\|_\infty \leq \varepsilon_{\mathcal{T}B}, \quad \|\mathcal{T}(\tilde{\mathbf{D}}) - H(\tilde{\mathbf{S}})\|_\infty \leq L_{\mathcal{T}B}^L(\delta_0 + \varepsilon_{\mathcal{T}B}) := \varepsilon_{\mathcal{T}}. \quad (7)$$

In particular, if (i) the mesh shrinks $\Delta \rightarrow 0$ so that $\delta_0 \rightarrow 0$; (ii) the dual-attention Transformer has sufficient capacity so that $\varepsilon_{FF}, \varepsilon_{A_T}, \varepsilon_{A_I}, \varepsilon_{var} \rightarrow 0$; and (iii) the block Lipschitz constant is uniformly bounded with training size n and batch size B , i.e., $\sup_{n,B} L_{\mathcal{T}B}(n, B) < \infty$ for fixed depth L , then

$$\|\mathcal{T}(\tilde{\mathbf{D}}) - H(\tilde{\mathbf{S}})\|_\infty \xrightarrow{\mathbb{P}} 0,$$

i.e., the dual-attention Transformer \mathcal{T} is consistent for the oracle mapping H .

This result is essential for IDAT as it shows that the dual-attention mechanism can recover functional structure from discretized, sparse, noisy observations. Theorem 1 bounds the error between the IDAT embedding $\mathcal{T}(\tilde{\mathbf{D}})$ and the oracle mapping $H(\tilde{\mathbf{S}})$ by $L_{\mathcal{T}B}^L(\delta_0 + \varepsilon_{\mathcal{T}B})$, where δ_0 captures input embedding discretization error and $\varepsilon_{\mathcal{T}B}$ aggregates approximation errors from dual-attention components, including variance reduction from inter-sample attention. The bound implies consistency under three conditions: (1) mesh refinement ($\Delta \rightarrow 0$) to reduce discretization error, (2) sufficient model capacity to drive approximation errors to zero, and (3) a uniformly bounded Lipschitz constant as training size and batch size grow, ensuring stability. Practically, this means using finer time grids (balanced with computational cost), increasing model capacity, and leveraging larger batches for variance reduction (with diminishing $B^{-1/2}$ returns). Theoretically, this addresses identifiability: even with sparse, noisy observations, IDAT converges to the true functional relationship, showing that attention mechanisms can handle sparse functional data (not just dense tabular data) and that dual-attention is sufficient for consistency. This differs from standard Transformer theory, which assumes dense inputs, and demonstrates that with mesh refinement and sufficient capacity, IDAT resolves the identifiability issues inherent in sparse functional data.

Generalization bounds for $\mathcal{T}B$ and \mathcal{T} are given in Lemmas 10 and 11. Define the predictor with L_ϕ -Lipschitz pooling function ϕ and L_g -Lipschitz MLP (excluding the Y -token),

$$\hat{Y}^{(L)}(\tilde{\mathbf{D}}) = g(\phi(\mathcal{T}(\tilde{\mathbf{D}})_{:, :, (1:T)})).$$

270 **Theorem 2** (Training MSE generalization and consistency). *Let $\mathcal{T} = \mathcal{T}\mathcal{B}^{\circ L}$ be the L -block encoder, 271 and set $p := Bd(T + 1)$. Assume (i) *Boundedness*: $\|\tilde{D}\|_\infty \leq R_{\text{in}}$, $|\widehat{Y}^{(L)}(\tilde{D})| \leq R_{\text{out}}$, and 272 $|Y| \leq M_f$ almost surely with $L_\ell := 2(R_{\text{out}} + M_f)$. (ii) *Optimization*: a stable SGD regime in 273 which the empirical risk approaches its minimum (within the hypothesis class) with high probability 274 (Hardt et al., 2016). (iii) $\sup_n L_{\mathcal{T}}(n) < \infty$ for fixed depth L and (iv) $p/n \rightarrow 0$. Let $\text{MSE}_n^{\text{train}}$ be 275 the training MSE over n samples. Then, for any $\delta \in (0, 1)$, with probability at least $1 - \delta$,*

$$277 \quad \left| \text{MSE}_n^{\text{train}} - \mathbb{E}(\widehat{Y}^{(L)}(\tilde{D}) - Y)^2 \right| \leq 2L_\ell L_g L_\phi L_{\mathcal{T}} R_{\text{in}} \sqrt{\frac{2p}{n}} + 3\sqrt{\frac{\ln(2/\delta)}{2n}}.$$

278 Moreover, if the regressor approximation error vanishes as capacity grows (Hornik, 1991; Stinchcombe, 1999; Cybenko, 1989; Hornik et al., 1989; Yarotsky, 2017) and \mathcal{T} is consistent (Theorem 1), 279 the population training MSE is consistent. 280

282 Theorem 2 provides a generalization bound connecting training MSE to population error, where 283 $p = Bd(T + 1)$ is the effective dimension. The bound has two terms: a complexity term scaling 284 as $\sqrt{p/n}$ (depending on Lipschitz constants and input bounds) and a concentration term scaling 285 as $\sqrt{\ln(1/\delta)/n}$. Under standard conditions, training MSE converges to population MSE. Combined 286 with Theorem 1, this establishes consistency of the population training MSE when approximation 287 error vanishes. Practically, this means balancing model complexity (p) with sample size: 288 larger batches, embedding dimensions, or time grids require more data. Theoretically, this provides 289 finite-sample generalization guarantees, the training procedure generalizes well and establishes both 290 consistency and generalization for IDAT.

291 During training, the final token carries the response embedding to learn the $X \rightarrow Y$ relation. 292 By Lemma 12, masking the Y -token at test time induces an approximation perturbation scaled by 293 $L_Y = \|E_Y\|_{\text{op}}$. To reduce train-test mismatch, one can randomly mask the Y -token during training: 294 draw $d_i \sim \text{Bernoulli}(q)$ and feed $\tilde{Z}_Y = d_i E_Y Y_i$ with a mask-reweighted loss. The training-phase 295 embedding error remains bounded, with the fully masked case serving as a worst-case upper bound. 296

297 **Masking Y -token.** Lemma 12 bounds the error between the test embedding $\mathcal{T}(\tilde{\mathbf{D}}^*)$ (with 298 masked Y -token) and the oracle embedding $H(\tilde{\mathbf{S}})$ as $\|\mathcal{T}(\tilde{\mathbf{D}}^*) - H(\tilde{\mathbf{S}})\|_\infty \leq L_{\mathcal{T}} L_Y (M_f + 299 \sigma_Y \sqrt{2 \ln(2N/\delta)}) + \varepsilon_{\mathcal{T}}$, decomposing into (1) a train-test mismatch term scaling with $L_{\mathcal{T}} L_Y$ and 300 response magnitude/noise, and (2) the training embedding error $\varepsilon_{\mathcal{T}}$ from Theorem 1. This shows 301 that test-time predictions remain consistent when training is consistent, with the bound growing 302 logarithmically with test sample size. It also provides a quantitative bound on the train-test gap 303 (perturbation) controlled by the product of Lipschitz constants and expected response magnitude. 304

305 Theorem 13 further bounds the pointwise and uniform test errors and controls the population test 306 MSE by the training MSE plus a Rademacher term and an expectation bridge; the empirical test MSE 307 adds an extra concentration term. If the training MSE is consistent and the Y -token embedding is 308 scaled so that $L_Y \rightarrow 0$, the bridge term vanishes then both population and empirical test MSE are 309 consistent asymptotically (Corollary 14). Details of the theoretical part are listed in the Appendix. 310

311 5 EXPERIMENTS

312 We compare our method against a diverse set of 19 baselines that collectively cover statistical, 313 functional, attention-based tabular, deep learning methods and ensemble approaches, each adapted to 314 irregular and sparse longitudinal inputs. The statistical and/or functional baselines comprise ordinary 315 linear regression (LR), functional linear regression (FLR) (Yao et al., 2005a; Cai & Hall, 2006), and 316 functional principal components analysis followed by a regression neural layer (FPCA+NN) (Yao 317 et al., 2005b; Wang et al., 2016).

318 For deep learning and tabular Transformer methods, we provide mean-imputed inputs on a fixed 319 grid, where each feature corresponds to a time point. Compared methods include SAINT (Somepalli 320 et al., 2021), FTTTransformer (Gorishniy et al., 2021), TabNet (Arik & Pfister, 2021), AutoInt (Song 321 et al., 2019), and a vanilla Transformer trained solely on covariates without a Y -token followed by 322 a regression neural layer (VT+NN). We also include the most recent state-of-the-art tabular model 323 published in Nature, TabPFN (Hollmann et al., 2022; 2025), a generative Transformer-based foun- 324 dation model pretrained on millions of synthetic datasets. To assess the value of end-to-end training 325

relative to decoupled imputation, we also evaluate SAND (Hong et al., 2024) augmented with a prediction multilayer perceptron (SAND+NN)¹, thereby testing how well a learned imputer performs when the regression layer is trained separately. Other deep learning approaches including multilayer perceptron (MLP) and ResNet (He et al., 2016) are considered. As well as AdaFNN (Yao et al., 2021), a basis-specified neural method tailored to completely observed functional data.

Finally, we benchmark strong ensemble and tree-based systems, including AutoGluon (Erickson et al., 2020), which automatically trains, tunes, and stacks diverse models on tabular tasks. Gradient-boosted approaches, including XGBoost (Chen & Guestrin, 2016), LightGBM (Ke et al., 2017), CatBoost (Prokhorenkova et al., 2018), and NODE (Popov et al., 2019) are included. We also evaluate xRFM (Beaglehole et al., 2025), a very recent method that combines random-feature (kernel-style) learning with tree-based partitioning. These 19 existing models are compared with our proposed dual-attention method (IDAT) and a variant without inter-sample attention (IDAT w/o A_I).

5.1 SIMULATION

Without loss of generality, we consider functions on the unit interval $\mathcal{I} = [0, 1]$ generated as follows. In all simulations, the time grid has length $T = 100$. For subject i in group $g \in \{1, \dots, G\}$, the (noise-free) latent trajectory is

$$X_i(t) = \mu_g(t) + \sum_{k=1}^{20} [a_{i,k}^s \sin(2\pi kt) + a_{i,k}^c \cos(2\pi kt)] / k, \quad t \in \mathcal{I},$$

where μ_g is a group-specific mean function and $\{a_{i,k}^s, a_{i,k}^c\}$ are Fourier coefficients with smoothness controlled by the decay rate of k^{-1} . To induce smooth but heavy-tailed trajectories (beyond the sub-Gaussian assumption), these coefficients are independently drawn from a zero-mean exponential distribution. The response is generated by a functional operator $Y_i = \mathcal{F}(X_i) + \varepsilon_i$ with $\varepsilon_i \stackrel{iid}{\sim} N(0, 1)$.

Case I: Functional linear regression. Set $\mu_g \equiv 0$. Let $\mathcal{F}(X) = \int_0^1 \beta_1(t) X(t) dt$ with

$$\beta_1(t) = (3 - 6t) \mathbf{1}\{t \leq 0.5\} + (2t - 1) \mathbf{1}\{t > 0.5\}.$$

Case II: Nonlinear model. Set $\mu_g \equiv 0$. Define

$$\mathcal{F}(X) = \int_0^1 \beta_2(t) X(t) dt + \left(\int_0^1 \beta_3(t) X(t) dt \right)^2,$$

with $\beta_2(t) = (4 - 16t) \mathbf{1}\{t \leq 0.25\}$ and $\beta_3(t) = (4 - 16|t - 0.5|) \mathbf{1}\{0.25 \leq t \leq 0.75\}$. Here, time points $t > 0.75$ are non-informative; the interval just beyond $t = 0.25$ contributes weakly.

Case III: Cluster analysis. Let $G = 2$ and with $\mathcal{F}(X) = \int_0^1 0.5t X(t) dt$,

$$\mu_1(t) = 1 + 4(t - 0.5)\mathbf{1}\{t \geq 0.5\}, \quad \mu_2(t) = -6(t - 0.5)\mathbf{1}\{t \geq 0.5\}.$$

This scenario is explicitly designed to demonstrate the clustering ability, where group-specific mean shifts create separable subpopulations that inter-sample attention can cluster.

In addition to Cases I-III, we also add measurement error on the functional covariate². We set the signal-to-noise ratio to $\text{SNR} = \left(\int_0^1 X_i(t)^2 dt \right) / \text{Var}(\eta_i) = 2$. Across the six simulation cases, we evaluate five observation regimes at various levels of sparsity, where the observed percentage of data is provided (in the parentheses): *ssparse* (10%), *vsparse* (20%), *sparse* (50%), *dense* (80%), and *full* (100%). The mean squared errors (MSE) of test samples for all 30 settings are reported in Tables 4–9, evaluating predictive accuracy and computational efficiency across the full spectrum of sampling scenarios. As Table 1 shows, IDAT is the [jl:\[What does consistent mean? \]](#) [cj:\[best-performing\]](#) overall (Top1 11/30, Top3 26/30), especially in non-dense regimes ($\leq 50\%$ of the data are observed). TabPFN emerges as the main competitor as sparsity decreases, its pre-trained prior

¹SAND is an imputation method and is not applied when the covariates are 100% observed.

²Cases with measurement errors are denoted by Case I*, II* and III*

378 favors simple, additive, and near-linear relationships, allowing it to fit dominant trends in dense
 379 settings. Intuitively, inter-sample attention lowers the variance by borrowing strength from “simi-
 380 lar” subjects. However, in the presence of measurement errors, the similarity can be inaccurately
 381 estimated and borrowing from mismatched neighbors raises the bias. When the increase in bias
 382 outweighs variance reduction, the time-point-only variant (no A_I) can prevail, though the dual-
 383 attention model still outperforms other baselines. Empirically, IDAT delivers the largest gains in
 384 sparse settings with clear cluster structure (Table 3). In practice, we recommend the dual-attention
 385 model by default to detect/exploit clustering, with the A_T -only variant as a pragmatic fallback if the
 386 learned attention maps appear diffuse or uniform across subjects.

387
 388 Table 1: Overall comparison on the simulation study across 6 cases and 5 sparsity levels. Top1/Top3
 389 count how often a method ranks 1st or within the top 3 in terms of smallest test MSE. Efficiency
 390 is measured as average inference time per sample (ms) and model size (#Params in thousands).
 391 Preprocessing (imputation) costs are excluded from inference time.

Method	Sampling density (# cases)						Efficiency measures	
	all (30)		$\leq 50\%$ (18)		$> 50\%$ (12)		inference time (ms/sample)	#Params (1K)
	Top1	Top3	Top1	Top3	Top1	Top3		
LR	3	7	0	1	3	6	0.005	0.1
FLR	0	0	0	0	0	0	19.71	0.5
FPCA+NN	0	0	0	0	0	0	24.433	13
TabNet	0	0	0	0	0	0	0.058	12
SAINT	0	0	0	0	0	0	17.870	125000
FTTransformer	0	0	0	0	0	0	8.501	123
AutoInt	0	0	0	0	0	0	22.179	619
TabPFN	9	25	4	13	5	12	1713.843	11000
VT+NN	0	0	0	0	0	0	28.093	333
SAND+NN	0	0	0	0	0	0	28.030	333
MLP	0	0	0	0	0	0	7.485	549
ResNet	0	0	0	0	0	0	6.597	568
AdaFNN	1	7	0	1	1	6	1.481	603
NODE	0	3	0	2	0	1	14.733	6800
CatBoost	1	2	0	0	1	1	0.067	190
XGBoost	0	2	0	1	0	1	0.014	2
LightGBM	0	0	0	0	0	0	0.021	9
AutoGluon	2	10	1	3	1	7	1.734	≈ 2000
xRFM	0	4	0	4	0	0	0.070	180
IDAT	11	26	9	17	2	9	3.085	180
IDAT w/o A_I	11	24	7	15	4	8	1.655	144

5.2 REAL DATA

421 **National Child Development Study:** We analyze data from the 1958 National Child Develop-
 422 ment Study (NCDS)³. The task is to predict BMI at age 62 from prior BMI trajectories observed
 423 at ages 11, 16, 23, 33, 42, 44, 46, 50 and 55. The cohort is relatively homogeneous, including
 424 individuals born in Great Britain during a single week in 1958, reducing potential confounding by
 425 ethnicity. All models are adjusted for baseline covariates measured at age 7: sex, baseline BMI, and
 426 an early-life social adversity index computed as the average of 13 binary indicators (e.g., housing
 427 problems, financial hardship, parental divorce, unemployment, illness, disability, or death) (Flèche
 428 et al., 2021). We fit sex-stratified models and compare the mean squared error (MSE) and mean
 429 absolute error (MAE) of two imputation pipelines for BMI trajectories: (i) mean imputation (a sim-
 430 ple but commonly used approach in tabular workflows) and (ii) multiple imputation by chained
 431 equations (MICE) (van Buuren & Groothuis-Oudshoorn, 2011). The $n = 4952$ longitudinal BMI

³University College London, UCL Social Research Institute, Centre for Longitudinal Studies (2024)

432 series exhibit substantial missingness (mean 25%, range 8–96%), spanning dense to super-sparse
 433 regimes. On average, subjects have 6.2 observations (SD 0.9) across the sweeps (Figure 7). Across
 434 both imputation settings, IDAT consistently outperforms all competing models, while requiring no
 435 imputation or preprocessing and operating directly on sparse and irregular inputs.
 436

437 **Synthetic HIV Dataset (Health Gym Project):** We use the HIV dataset from the Health Gym
 438 project (Kuo et al., 2022), a public collection of synthetic yet realistic clinical datasets, and focus
 439 exclusively on the HIV cohort. Since the measurements are monthly and equally spaced, alongside
 440 mean imputation and MICE, we also evaluate the last-observation-carried-forward (LOCF) method
 441 (Lachin, 2016; Woolley et al., 2009) and report accuracy and F1 score in Table 12. The binary
 442 response label indicates whether a patient achieves viral suppression ($VL < 200$ copies/mL) at any
 443 time during the prediction window (months 20–30). For each patient, we use VL measurements from
 444 the first 20 months as longitudinal covariates and include sex as a baseline covariate. The $n = 8683$
 445 VL series in the feature window is very sparse (mean missingness 65%, range 47–88%). Subjects
 446 receive a mean of 5.8 observations (SD 1.8) during the 20-month covariate interval (Figure 9).
 447

448 Table 2: Performance on real-world tasks. For NCDS BMI (regression), we report MSE/MAE under
 449 mean and MICE imputation. For Synthetic HIV (classification), we report F1 under mean, MICE,
 450 and LOCF imputation. The best method is in **bold** and the top three are in *italics*. Only a subset of
 451 the 19 baselines is shown here for readability; see Tables 11 and 12 for the full comparison.
 452

Method	NCDS BMI (MSE/MAE)				Synthetic HIV (F1)		
	mean	imputed	MICE		mean	MICE	LOCF
SAINT	9.7213	2.3524	9.4844	2.3231	0.9751	0.9745	0.9752
TabPFN	8.5794	2.1621	8.5164	2.1503	0.9722	0.9734	0.9758
MLP	9.4439	2.3142	9.2378	2.3191	0.9751	0.9727	0.9764
NODE	9.6511	2.2955	8.6911	2.2528	0.9727	0.9751	0.9769
AutoGluon	9.0408	2.2623	8.9595	2.2543	0.9746	0.9745	0.9751
IDAT	8.0061	2.1728	8.0061	2.1728	0.9752	0.9752	0.9752
IDAT w/o A_I	8.1177	2.1966	8.1177	2.1966	0.9752	0.9752	0.9752

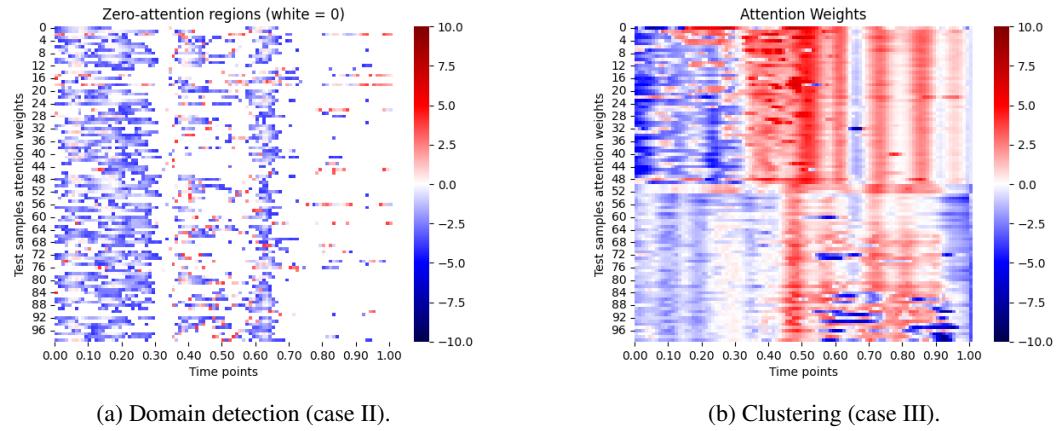
6 CONCLUSION

466 Across datasets and simulations with diverse sparsity, our end-to-end dual-attention Transformer
 467 IDAT, consistently performs the best when less or equal to 50% of time points are observed, a
 468 regime typical of many longitudinal applications, and remains competitive as sparsity decreases.
 469 In practice, sparsity varies widely across cohorts, time windows, and variables; thus, robustness
 470 across sampling densities is essential. By adaptively leveraging inter-sample attention to borrow
 471 strength when data are scarce and emphasizing time-point structure as coverage improves, IDAT
 472 offers a unified solution across the full sparsity spectrum, while yielding interpretable dual-attention
 473 patterns that clarify when and where each mechanism contributes.
 474

475 **Domain detection with time-point attention.** Time-point attention learns a data-driven weighting
 476 scheme over time, highlighting the segments of a trajectory that are most predictive. As shown
 477 in Figures 1a and 8b, when portions of the time axis are not informative for the response, the learned
 478 weights shrink toward (near) zero in those intervals, effectively performing time domain selection.
 479 This behavior mirrors the known informative window in the simulation and is corroborated by ex-
 480 ternal domain knowledge in the real cohort as shown in Figure 8.
 481

482 **Clustering with inter-sample attention.** Inter-sample attention acts as a learned, end-to-end
 483 nearest-neighbor mechanism: it computes attention across data points (rows) within a batch using
 484 a learned similarity and aggregates information from the most relevant samples. This cross-sample
 485 sharing of information is particularly helpful for sparse or noisy features. In clustered data, it pro-
 486 duces cluster-specific attention profiles that better align with the regression signal. Figure 1b illus-
 487 trates a two-group setting with different group mean functions: the clusters display clearly distinct
 488

486 attention patterns⁴. This demonstrates the clustering capability of the dual-attention mechanism. In
 487 contrast, removing inter-sample attention (Figure 6) makes profiles of the two clusters much more
 488 similar, differing only slightly in the early trajectory. This highlights that time-point and inter-sample
 489 attention provide complementary and additive gains in predictive performance.
 490



503
 504 Figure 1: Interpretable dual-attention. All the attention weights are scaled by a factor of 1000.
 505
 506

507 DISCUSSION

510 In IDAT, temporal patterns benefit from similar subjects identified by inter-sample attention. At the
 511 same time, attention better captures subject similarity by leveraging temporal relationships learned
 512 in time-point attention. This mutual reinforcement is especially important when per-subject data
 513 are scarce. Unlike hierarchical or two-stage architectures, where temporal and relational modeling
 514 are decoupled and processed sequentially or in separate stages, IDAT differs from existing attention
 515 architectures by jointly modeling temporal and inter-sample dependencies in a single encoder.
 516 These hierarchical or two-stage architectures are problematic in sparse and irregular settings, be-
 517 cause sparse data makes decoupled modeling unstable. Moreover, IDAT extends beyond the re-
 518 gression setting. On real data (Table 2), replacing the regression layer with a classification layer
 519 while keeping dual-attention unchanged shows seamless adaptation to classification. IDAT can also
 520 include time-independent covariates via simple concatenation (without positional encodings), al-
 521 lowing the model to jointly learn their relationships with longitudinal covariates and the outcome.
 522 For multi-dimensional functional input, an intra-functional attention layer can capture cross-channel
 523 relations. To balance the variance reduction and pooling bias under measurement noise, a possible
 524 extension is to introduce a learnable, data-adaptive gate $\lambda \in [0, 1]$: $\mathcal{T}B^{(\lambda)} = [\lambda A_T + (1 - \lambda) A_I] \circ FF$.
 525

526 LIMITATIONS

527 Absolute sinusoidal positional encodings enable universal approximation on fixed maximum se-
 528 quence lengths (Yun et al., 2019) but may not extrapolate well beyond the training horizon T
 529 or to unseen temporal spacings, and are suboptimal when prediction depends on relative timing
 530 (e.g., calendar/seasonal features). Alternative encodings from time-series forecasting or continuous-
 531 time/relative encodings (Zhou et al., 2021; Woo et al., 2022) may better capture temporal structure.
 532 Practical deployments require the tuning of T and B to balance accuracy and efficiency, larger
 533 B and T improve predictions but drive up computation. Computing A_T requires $O(T^2)$ in mem-
 534 ory and $O(dT^2)$ computation times per subject; whereas for A_I , we need $O(B^2)$ in memory and
 535 $O(dB^2)$ computation times for each token. Sparsified or local attentions could possibly be more ef-
 536 ficient, yet dual-attention scheme still becomes computationally expensive for very long sequences
 537 or large batches. Nevertheless, Table 1 shows IDAT remains relatively fast compared to existing
 538 Transformer-based methods.

539 ⁴Group 1 assigns negative weights in the first third of the trajectory and near-zero weights in the last third, whereas Group 2 shows near-zero weights early and coherent within-cluster structure thereafter.

540 REFERENCES
541

542 Maryamossadat Aghili, Vittorio Murino, and Diego Sona. Predictive modeling of longitudinal data
543 for alzheimer’s disease diagnosis using rnns. In *International Workshop on PReditive Intelli-
544 gence In MEDicine*, pp. 13–21. Springer, 2018.

545 Sercan Ö Arik and Tomas Pfister. Tabnet: Attentive interpretable tabular learning. In *Proceedings
546 of the AAAI conference on artificial intelligence*, volume 35, pp. 6679–6687, 2021.

547 Peter L Bartlett and Shahar Mendelson. Rademacher and gaussian complexities: Risk bounds and
548 structural results. *Journal of machine learning research*, 3(Nov):463–482, 2002.

549 Daniel Beaglehole, David Holzmüller, Adityanarayanan Radhakrishnan, and Mikhail Belkin. xrfm:
550 Accurate, scalable, and interpretable feature learning models for tabular data, 2025. URL
551 <https://arxiv.org/abs/2508.10053>.

552 T Tony Cai and Peter Hall. Prediction in functional linear regression. 2006.

553 Lucia A Carrasco-Ribelles, Fernando Martín-Sánchez, Niels Peek, and Carlos Sáez. Prediction
554 models using artificial intelligence and longitudinal data from electronic health records: a sys-
555 tematic methodological review. *Journal of the American Medical Informatics Association*, 30
556 (12):2072–2082, 2023.

557 Anna Cascarano, Ilaria D’Aloisio, Giusy Guastamacchia, and Francesca Ieva. Machine and deep
558 learning for longitudinal biomedical data: a review of methods and applications. *Artificial Intel-
559 ligence Review*, 56(Suppl 2):1711–1771, 2023.

560 Centers for Disease Control and Prevention. Hiv diagnoses, deaths, and preva-
561 lence, April 2025. URL [https://www.cdc.gov/hiv-data/nhss/
562 hiv-diagnoses-deaths-prevalence.html](https://www.cdc.gov/hiv-data/nhss/hiv-diagnoses-deaths-prevalence.html). Accessed: 2025-09-12.

563 Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In *Proceedings of the
564 22nd acm sigkdd international conference on knowledge discovery and data mining*, pp. 785–794,
565 2016.

566 Xiang Chen, Hao Li, Mingqiang Li, and Jinshan Pan. Learning a sparse transformer network for
567 effective image deraining. In *Proceedings of the IEEE/CVF conference on computer vision and
568 pattern recognition*, pp. 5896–5905, 2023.

569 Gonçalo M Correia, Vlad Niculae, and André FT Martins. Adaptively sparse transformers. *arXiv
570 preprint arXiv:1909.00015*, 2019.

571 Ruoxuan Cui, Manhua Liu, and Alzheimer’s Disease Neuroimaging Initiative. Rnn-based longitu-
572 dinal analysis for diagnosis of alzheimer’s disease. *Computerized Medical Imaging and Graphics*,
573 73:1–10, 2019.

574 George Cybenko. Approximation by superpositions of a sigmoidal function. *Mathematics of control,
575 signals and systems*, 2(4):303–314, 1989.

576 Anna K Dahl, Chandra A Reynolds, Tove Fall, Patrik KE Magnusson, and Nancy L Pedersen.
577 Multifactorial analysis of changes in body mass index across the adult life course: a study with
578 65 years of follow-up. *International journal of obesity*, 38(8):1133–1141, 2014.

579 Peter J. Diggle, Patrick Heagerty, Kung-Yee Liang, and Scott L. Zeger. *Analysis of Longitudinal
580 Data*. Oxford Statistical Science Series. Oxford University Press, Oxford, 2 edition, 2002.

581 Robert W Eisinger, Carl W Dieffenbach, and Anthony S Fauci. Hiv viral load and transmissibility
582 of hiv infection: undetectable equals untransmittable. *Jama*, 321(5):451–452, 2019.

583 Nick Erickson, Jonas Mueller, Alexander Shirkov, Hang Zhang, Pedro Larroy, Mu Li, and Alexan-
584 der Smola. Autogluon-tabular: Robust and accurate automl for structured data. *arXiv preprint
585 arXiv:2003.06505*, 2020.

586 Garrett Fitzmaurice, Marie Davidian, Geert Verbeke, and Geert Molenberghs (eds.). *Longitudinal
587 Data Analysis*. Chapman & Hall/CRC, Boca Raton, FL, 2009.

594 Garrett M. Fitzmaurice, Nan M. Laird, and James H. Ware. *Applied Longitudinal Analysis*. Wiley
 595 Series in Probability and Statistics. Wiley, Hoboken, NJ, 2004.
 596

597 Sarah Flèche, Warn N Lekfuangfu, and Andrew E Clark. The long-lasting effects of family and
 598 childhood on adult wellbeing: Evidence from british cohort data. *Journal of Economic Behavior
 599 & Organization*, 181:290–311, 2021.

600 Steven Garasky, Susan D Stewart, Craig Gunderson, Brenda J Lohman, and Joey C Eisenmann.
 601 Family stressors and child obesity. *Social science research*, 38(4):755–766, 2009.

602 Matthew W Gillman, Sheryl Rifas-Shiman, Catherine S Berkey, Alison E Field, and Graham A
 603 Colditz. Maternal gestational diabetes, birth weight, and adolescent obesity. *Pediatrics*, 111(3):
 604 e221–e226, 2003.

605 Yury Gorishniy, Ivan Rubachev, Valentin Khrulkov, and Artem Babenko. Revisiting deep learning
 606 models for tabular data. *Advances in neural information processing systems*, 34:18932–18943,
 607 2021.

608 Peter Hall, Hans-Georg Müller, and Jane-Ling Wang. Properties of principal component methods
 609 for functional and longitudinal data analysis. 2006.

610 Jennifer A Halliday, Cassandra L Palma, David Mellor, Julie Green, and AMN Renzaho. The
 611 relationship between family functioning and child and adolescent overweight and obesity: a sys-
 612 tematic review. *International journal of obesity*, 38(4):480–493, 2014.

613 Moritz Hardt, Ben Recht, and Yoram Singer. Train faster, generalize better: Stability of stochastic
 614 gradient descent. In *International conference on machine learning*, pp. 1225–1234. PMLR, 2016.

615 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
 616 nition. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp.
 617 770–778, 2016.

618 Noah Hollmann, Samuel Müller, Katharina Eggensperger, and Frank Hutter. TabPFN: A transformer
 619 that solves small tabular classification problems in a second. *arXiv preprint arXiv:2207.01848*,
 620 2022.

621 Noah Hollmann, Samuel Müller, Lennart Purucker, Arjun Krishnakumar, Max Körfer, Shi Bin Hoo,
 622 Robin Tibor Schirrmeister, and Frank Hutter. Accurate predictions on small data with a tabular
 623 foundation model. *Nature*, 637(8045):319–326, 2025.

624 Ju-Sheng Hong, Junwen Yao, Jonas Mueller, and Jane-Ling Wang. SAND: Smooth imputation
 625 of sparse and noisy functional data with transformer networks. In *The Thirty-eighth Annual
 626 Conference on Neural Information Processing Systems*, 2024. URL <https://openreview.net/forum?id=MXR05kukST>.

627 Kurt Hornik. Approximation capabilities of multilayer feedforward networks. *Neural networks*, 4
 628 (2):251–257, 1991.

629 Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks are uni-
 630 versal approximators. *Neural networks*, 2(5):359–366, 1989.

631 Sebastian Jaszczur, Aakanksha Chowdhery, Afroz Mohiuddin, Lukasz Kaiser, Wojciech Gajewski,
 632 Henryk Michalewski, and Jonni Kanerva. Sparse is enough in scaling transformers. *Advances in
 633 Neural Information Processing Systems*, 34:9895–9907, 2021.

634 BARTLETT JG. Panel on antiretroviral guidelines for adults and adolescents. guidelines for the use
 635 of antiretroviral agents in hiv-1-infected adults and adolescents. *The Department of Health and
 636 Human Services Panel on Antiretroviral Guidelines for Adult and Adolescents*, pp. 42–43, 2008.

637 Tokio Kajitsuka and Issei Sato. Are transformers with one layer self-attention using low-rank weight
 638 matrices universal approximators? *arXiv preprint arXiv:2307.14023*, 2023.

639 Michail Katsoulis, Martina Narayanan, Brian Dodgeon, George Ploubidis, and Richard Silverwood.
 640 A data driven approach to address missing data in the 1970 british birth cohort. *medRxiv*, pp.
 641 2024–02, 2024.

648 Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye, and Tie-
 649 Yan Liu. Lightgbm: A highly efficient gradient boosting decision tree. *Advances in neural*
 650 *information processing systems*, 30, 2017.

651

652 Nicholas I-Hsien Kuo, Mark N Polizzotto, Simon Finfer, Federico Garcia, Anders Sönnborg, Mau-
 653 rizio Zazzi, Michael Böhm, Rolf Kaiser, Louisa Jorm, and Sebastiano Barbieri. The health gym:
 654 synthetic health-related datasets for the development of reinforcement learning algorithms. *Sci-
 655 entific data*, 9(1):693, 2022.

656 John M Lachin. Fallacies of last observation carried forward analyses. *Clinical trials*, 13(2):161–
 657 168, 2016.

658

659 Nan M. Laird and James H. Ware. Random-effects models for longitudinal data. *Biometrics*, 38(4):
 660 963–974, 1982a. ISSN 0006341X, 15410420. URL <http://www.jstor.org/stable/2529876>.

661

662 Nan M Laird and James H Ware. Random-effects models for longitudinal data. *Biometrics*, pp.
 663 963–974, 1982b.

664

665 Michel Ledoux and Michel Talagrand. Probability in banach spaces. classics in mathematics, 2011.

666

667 Yehua Li and Tailen Hsing. Uniform convergence rates for nonparametric regression and principal
 668 component analysis in functional/longitudinal data. 2010.

669

670 Yikuan Li, Shuvro Rao, José Roberto Ayala Solares, Ahmed Hassaine, Peter Ramadge, Hui Li, and
 671 Jim Sun. Behrt: Transformer for electronic health records. *Scientific reports*, 10(1):7155, 2020.

672

673 Zachary C Lipton, David C Kale, and Randall Wetzel. Modeling missing data in clinical time series
 674 with rnns. In *Machine Learning for Healthcare Conference*, pp. 231–245. PMLR, 2016.

675

676 Chao Lou, Zixia Jia, Zilong Zheng, and Kewei Tu. Sparser is faster and less is more: Efficient sparse
 677 attention for long-range transformers. *arXiv preprint arXiv:2406.16747*, 2024.

678

679 Tarek Mostafa, Martina Narayanan, Benedetta Pongiglione, Brian Dodgeon, Alissa Goodman,
 680 Richard J Silverwood, and George B Ploubidis. Missing at random assumption made more plau-
 681 sible: evidence from the 1958 british birth cohort. *Journal of Clinical Epidemiology*, 136:44–54,
 682 2021.

683

684 Hans-Georg Mu et al. Functional modeling of longitudinal data. In *Longitudinal data analysis*, pp.
 685 237–266. Chapman and Hall/CRC, 2008.

686

687 Mine Öğretir, Miika Koskinen, Juha Sinisalo, Risto Renkonen, and Harri Lähdesmäki. Seqrisk:
 688 Transformer-augmented latent variable model for improved survival prediction with longitudinal
 689 data. *arXiv preprint arXiv:2409.12709*, 2024.

690

691 World Health Organization et al. Consolidated guidelines on the use of antiretroviral drugs for
 692 treating and preventing hiv infection: recommendations for a public health approach june 2013.
 693 In *Consolidated guidelines on the use of antiretroviral drugs for treating and preventing HIV
 694 infection: recommendations for a public health approach June 2013*, pp. 272–272. 2013.

695

696 Sonali Parbhoo, Jasmina Bogojeska, Maurizio Zazzi, Volker Roth, and Finale Doshi-Velez. Com-
 697 bining kernel and model based learning for hiv therapy selection. *AMIA Summits on Translational
 698 Science Proceedings*, 2017:239, 2017.

699

700 Tessa J Parsons, Chris Power, Stuart Logan, and CD Summerbelt. Childhood predictors of adult
 701 obesity: a systematic review. *International journal of obesity*, 23, 1999.

702

703 Sergei Popov, Stanislav Morozov, and Artem Babenko. Neural oblivious decision ensembles for
 704 deep learning on tabular data. *arXiv preprint arXiv:1909.06312*, 2019.

705

706 Liudmila Prokhorenkova, Gleb Gusev, Aleksandr Vorobev, Anna Veronika Dorogush, and Andrey
 707 Gulin. Catboost: unbiased boosting with categorical features. *Advances in neural information
 708 processing systems*, 31, 2018.

702 James O Ramsay and Bernard W Silverman. *Functional data analysis*. Springer, 2005.
 703

704 Imogen Rogers. The influence of birthweight and intrauterine environment on adiposity and fat
 705 distribution in later life. *International journal of obesity*, 27(7):755–777, 2003.

706 Caroline A Sabin, Helen Devereux, Andrew N Phillips, Andrew Hill, George Janossy, Christine A
 707 Lee, and Clive Loveday. Course of viral load throughout hiv-1 infection. *JAIDS Journal of*
 708 *Acquired Immune Deficiency Syndromes*, 23(2):172–177, 2000.

709

710 Shai Shalev-Shwartz and Shai Ben-David. *Understanding machine learning: From theory to algo-*
 711 *rithms*. Cambridge university press, 2014.

712 Clauriton A Siebra, Mascha Kurpicz-Briki, and Katarzyna Wac. Transformers in health: a system-
 713 atic review on architectures for longitudinal data analysis. *Artificial Intelligence Review*, 57(2):
 714 32, 2024.

715

716 Gowthami Somepalli, Micah Goldblum, Avi Schwarzschild, C Bayan Bruss, and Tom Goldstein.
 717 Saint: Improved neural networks for tabular data via row attention and contrastive pre-training.
 718 *arXiv preprint arXiv:2106.01342*, 2021.

719

720 Weiping Song, Chence Shi, Zhiping Xiao, Zhijian Duan, Yewen Xu, Ming Zhang, and Jian Tang.
 721 Autoint: Automatic feature interaction learning via self-attentive neural networks. In *Proceedings*
 722 *of the 28th ACM international conference on information and knowledge management*, pp. 1161–
 723 1170, 2019.

724

725 Christina Stenhammar, Gunilla Maria Olsson, S Bahmanyar, A-L Hulting, Björn Wettergren, Bir-
 726 gitta Edlund, and Scott M Montgomery. Family stress and bmi in young children. *Acta paedi-*
 727 *atrica*, 99(8):1205–1212, 2010.

728

729 Maxwell B Stinchcombe. Neural network approximation of continuous functionals and continuous
 730 functions on compactifications. *Neural Networks*, 12(3):467–477, 1999.

731

732 Naoki Takeshita and Masaaki Imaizumi. Approximation of permutation invariant polynomials by
 733 transformers: Efficient construction in column-size. *arXiv preprint arXiv:2502.11467*, 2025.

734

735 Anton Frederik Thielmann, Manish Kumar, Christoph Weisser, Arik Reuter, Benjamin Säfken,
 736 and Soheila Samiee. Mambular: A sequential model for tabular deep learning. *arXiv preprint*
 737 *arXiv:2408.06291*, 2024.

738

739 University College London, UCL Social Research Institute, Centre for Longitudinal Studies. Na-
 740 tional child development study. UK Data Service, 2024. URL <https://doi.org/10.5255/UKDA-Series-2000032>. Data series, 14th Release. SN: 2000032.

741

742 Stef van Buuren and Karin Groothuis-Oudshoorn. mice: Multivariate imputation by chained equa-
 743 tions in r. *Journal of Statistical Software*, 45(3):1–67, 2011. doi: 10.18637/jss.v045.i03.

744

745 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
 746 Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In *Advances in neural information*
 747 *processing systems*, volume 30, 2017.

748

749 Jane-Ling Wang, Jeng-Min Chiou, and Hans-Georg Müller. Functional data analysis. *Annual Review*
 750 *of Statistics and its application*, 3(1):257–295, 2016.

751

752 Zhiguang Wang, Weizhong Yan, and Tim Oates. Time series classification from scratch with deep
 753 neural networks: A strong baseline. In *2017 International joint conference on neural networks*
 754 (*IJCNN*), pp. 1578–1585. IEEE, 2017.

755

756 Gerald Woo, Chenghao Liu, Doyen Sahoo, Akshat Kumar, and Steven Hoi. Etsformer: Exponential
 757 smoothing transformers for time-series forecasting. *arXiv preprint arXiv:2202.01381*, 2022.

758

759 Stephen B Woolley, Alex A Cardoni, and John W Goethe. Last-observation-carried-forward impu-
 760 tation method in clinical efficacy trials: review of 352 antidepressant studies. *Pharmacotherapy: The*
 761 *Journal of Human Pharmacology and Drug Therapy*, 29(12):1408–1416, 2009.

756 Fang Yao, Hans-Georg Müller, and Jane-Ling Wang. Functional linear regression analysis for lon-
 757 gitudinal data. 2005a.

758

759 Fang Yao, Hans-Georg Müller, and Jane-Ling Wang. Functional data analysis for sparse longitudinal
 760 data. *Journal of the American statistical association*, 100(470):577–590, 2005b.

761 Junwen Yao, Jonas Mueller, and Jane-Ling Wang. Deep learning for functional data analysis with
 762 adaptive basis layers. In *International conference on machine learning*, pp. 11898–11908. PMLR,
 763 2021.

764

765 Dmitry Yarotsky. Error bounds for approximations with deep relu networks. *Neural networks*, 94:
 766 103–114, 2017.

767

768 Chulhee Yun, Srinadh Bhojanapalli, Ankit Singh Rawat, Sashank J Reddi, and Sanjiv Kumar.
 769 Are transformers universal approximators of sequence-to-sequence functions? *arXiv preprint*
 770 *arXiv:1912.10077*, 2019.

771

772 Maurizio Zazzi, Francesca Incardona, Michal Rosen-Zvi, Mattia Prosperi, Thomas Lengauer, Andre
 773 Altmann, Anders Sonnerborg, Tamar Lavee, Eugen Schüller, and Rolf Kaiser. Predicting response
 774 to antiretroviral treatment by machine learning: the euresist project. *Intervirology*, 55(2):123–127,
 775 2012.

776

777 George Zerveas, Srideep Jayaraman, Dhaval Patel, Anuradha Bhamidipaty, and Carsten Efor. A
 778 transformer-based framework for multivariate time series representation learning. In *Proceedings*
 779 of the 27th ACM SIGKDD conference on knowledge discovery & data mining, pp. 2114–2124,
 780 2021.

781

782 Zhiyue Zhang, Yao Zhao, and Yanxun Xu. Transformerlsr: Attentive joint model of longitudinal
 783 data, survival, and recurrent events with concurrent latent structure. *Artificial intelligence in*
 784 *medicine*, 160:103056, 2025.

785

786 Juan Zhao, QiPing Feng, Patrick Wu, Roxana A Lupu, Russell A Wilke, Quinn S Wells, Joshua C
 787 Denny, and Wei-Qi Wei. Learning from longitudinal data in electronic health record and genetic
 788 data to improve cardiovascular event prediction. *Scientific reports*, 9(1):717, 2019.

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809