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ABSTRACT

We consider scalar-on-function prediction from functional covariates that may be
measured sparsely and irregularly over time with noise, which is common in lon-
gitudinal studies. We propose a dual-attention Transformer that operates on a
discretized time grid with missing-value masks and trains end-to-end without any
imputation. The model couples time-point attention, which encodes local and
long-range temporal structure, with inter-sample attention, which shares informa-
tion across similar subjects. We derive prediction error bounds and prove con-
sistency under a random-effects framework that accommodates sparse/irregular
sampling, measurement error, and label noise. In simulations across varying
sparsity levels, our method outperforms 19 strong baselines (ensemble, statisti-
cal/functional, deep learning methods, tabular Transformers, and pre-trained mod-
els such as TabPFN) in regimes with ≤ 50% observations and remains competitive
in denser settings, highlighting the importance of end-to-end missingness-aware
modeling. The learned attention weights are interpretable, revealing predictive
time windows and cluster structure. In real-world data, our approach achieves
the best prediction and classification performance, surpassing leading imputa-
tion methods paired with competitive learners. This underscores that explicitly
modeling sparsity is preferable. In summary, the dual-attention mechanism is in-
terpretable, consistently identifying predictive time windows and cohort clusters
that align with domain knowledge. The proposed Transformer also outperforms
state-of-the-art methods while preserving robustness and interpretability.

1 INTRODUCTION

Longitudinal data consist of repeated measurements on the same subjects over time, often coupled
with time-varying covariates and subject-specific heterogeneity (Diggle et al., 2002; Fitzmaurice
et al., 2004; 2009). Such data are ubiquitous in biomedicine, environmental monitoring, and digital
health, where dynamic trajectories inform prognosis, treatment response, and risk stratification. It
is common to assume that the underneath dynamic trajectory of each subject is a smooth function
of time, while the observed longitudinal measurements may be noisy and measured at irregular and
subject-specific time points. This adopts a perspective in the field of functional data analysis (FDA)
(Wang et al., 2016; Ramsay & Silverman, 2005), where each trajectory is a realization of a latent
smooth process observed with noise. When the sampling plan is intensive, a nonparametric approach
is typically deployed to model such functional data; whereas a parametric approach, such as a mixed-
effect model (Laird & Ware, 1982b) was the norm to model sparse or irregularly sampled functional
data, until a nonparametric approach was proposed in (Yao et al., 2005a). Since longitudinal data
are discretely sampled functional data (possibly with noise/measurement error), we aim to develop
a unified nonparametric approach that handles a broad range of sampling schemes, whether they are
intensive, sparse, or in between, including irregular and subject-specific time schedules.

We address the scalar-on-function regression problem, where a functional covariate, possibly ob-
served on a sparse and irregular time schedule with noise, is used to predict a scalar outcome. The
method must learn an unspecified functional of the whole trajectories without restrictive paramet-
ric forms. Since accurate scalar prediction hinges on correctly capturing the trajectory–outcome
relationship in the presence of missingness and noise, an effective model should therefore (i) ac-
commodate irregular sampling and missing data, (ii) encode temporal order and dependencies, (iii)
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borrow strength across similar subjects, and (iv) learn the trajectory–outcome relationship without
restrictive parametric assumptions.

Given that sparse and irregular longitudinal data are the most challenging type of functional data,
we introduce the Interpretable Dual-Attention Transformer (IDAT), a unified architecture inspired
by Transformers (Vaswani et al., 2017) that is tailored to handle high missingness and irregular
sampling. Meanwhile, this approach is broadly applicable to any type of functional/longitudinal
data. In contrast to “sparse Transformers” that impose artificially designed sparse attention patterns
for computational efficiency (Jaszczur et al., 2021; Correia et al., 2019), our notion of “sparsity”
refers to missing-data sparsity arising from the sampling scheme. We discretize the time inter-
val into a working grid and use explicit missing-value masks to encode each subject’s observation
pattern. The model combines (i) time-point attention, which serves as a data-adaptive functional
encoder capturing smooth trajectory structure, with (ii) inter-sample attention, which learns nearest-
neighbor–like weights across subjects via a learned similarity metric. A regressor layer then sum-
marizes the learned representation to deliver end-to-end scalar-on-function prediction.

1.1 MAIN CONTRIBUTIONS

End-to-end scalar-on-function regressors. We propose a dual-attention Transformer that pre-
dicts a scalar outcome from a sparse, irregular longitudinal trajectory in an end-to-end manner. The
model uses explicit missing-value masks under supervised setup in the training stage, avoiding ad-
hoc imputation while respecting each subject’s observation pattern. The architecture jointly captures
within-trajectory structure and cross-subject borrowing, yielding a trainable pipeline without restric-
tive parametric assumptions.

Interpretable dual-attention Transformer. The learned attention weights act as nonparametric
regression coefficients along two axes. Time-point attention acts as a data-adaptive smoother, ag-
gregating local and long-range temporal information to encode functional structure. Inter-sample
attention implements learned and convex pooling over subjects, akin to nearest neighbors with a
learned metric, which stabilizes predictions for missing and noisy data. Under masking, attention
conditions on the observed entries and propagates signal about Y , effectively behaving as an in-
formative weighting mechanism rather than simple imputation. Empirically, attention maps reveal
domain-relevant windows and cluster structure, aiding interpretability.

Theoretical and numerical justification. We derive prediction error bounds and show consis-
tency of the training and testing phases MSE. Extensive simulation and real data studies across a
wide range of sparsity demonstrate robustness to high missingness and superior accuracy relative
to 19 baselines (ensemble methods, statistical/functional models, deep learning methods, tabular
Transformers, and pre-trained models TabPFN).

1.2 RELATED WORK

Modeling longitudinal data, defined as repeated measurements over time that are often irregularly
sampled and of varying length, poses challenges for representation learning and prediction. In
biomedical settings (e.g., EHR), recent surveys document a rapid expansion of machine learning
and deep learning approaches (Cascarano et al., 2023; Carrasco-Ribelles et al., 2023). Early neural
models typically flatten a temporal history into fixed feature vectors for feedforward networks (e.g.,
cardiovascular risk prediction (Zhao et al., 2019)), thereby discarding ordering information. To re-
tain functional structure, Yao et al. (2021) propose a basis-learning layer in which hidden units act as
adaptive basis functions, enabling end-to-end, task-specific trajectory expansions for fully observed
functional data.

Convolutional neural networks (CNNs) capture local temporal structure via 1D convolutions and
are competitive for time-series classification (Wang et al., 2017), but modeling long-range de-
pendencies often requires very deep networks or large receptive fields. Recurrent architectures
(RNNs/LSTMs) maintain hidden states that aggregate past information and naturally handle variable
sequence lengths and missingness patterns, with applications in clinical prognosis (e.g., Alzheimer’s
disease (Cui et al., 2019; Aghili et al., 2018)) and broader EHR modeling (Lipton et al., 2016).
Nonetheless, their inherently sequential computation can be a bottleneck for long sequences.
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Transformers (Vaswani et al., 2017) replace the sequential recurrence approach in CNN, RNN, and
LSTM by “self-attention” to relate all time points within a sequence, capturing both local and global
dependencies and supporting parallel computation. Empirically, reviews report strong performance
on longitudinal biomedical tasks (Siebra et al., 2024). Early EHR applications such as BEHRT
encoded patient histories as sequences of medical concepts to learn contextualized representations
for downstream prediction (Li et al., 2020), while general frameworks demonstrated effectiveness
across multivariate time-series classification and regression (Zerveas et al., 2021). The architec-
ture has also been adapted to domain-specific objectives, including survival modeling (Öğretir et al.,
2024; Zhang et al., 2025). Beyond prediction, specialized self-attention modules have been proposed
for functional data imputation: SAND (Hong et al., 2024) introduces attention weights on deriva-
tives to promote smooth reconstructions under irregular sampling. More broadly, efficient attention
variants (e.g., sparse or kernelized forms (Jaszczur et al., 2021; Lou et al., 2024; Correia et al., 2019;
Chen et al., 2023)) have been explored to mitigate quadratic time/memory costs on long sequences,
though their approximation properties in sparse/irregular regimes require careful validation.

2 METHOD AND MODEL

The proposed architecture in Figure 1 is designed to handle sparse, irregular longitudinal inputs and
is applicable to all longitudinal and functional data. The top panel shows two subjects measured at
only a few subject-specific times (blue circles and light-blue crosses) with additional measurement
errors. Because the full latent trajectories are infinite-dimensional, we discretize the time domain
into grid points, then inject positional encodings and apply explicit masks to tokens for unobserved
grid points. The resulting input is a tabular form, whose columns index time grid locations, so each
column at a time grid acts as a feature, while positional encodings preserve temporal ordering and
proximity. The key difference from standard tabular data is the substantial missingness induced by
sparse and irregular sampling and strong temporal dependence between adjacent features.

The proposed method, IDAT, is a dual-attention (encoder-only) Transformer for scalar-on-function
regression. Time–point attention operates along each subject’s time grid to learn both local and
long-range temporal dependencies, encoding trajectory structure while respecting order and smooth-
ness. Unlike imputation methods that reconstruct the entire trajectory without using the outcome,
our model is trained with a Y -token: during training, attention flows between covariate tokens and
the response, providing supervision that turns time-point attention into a nonparametric weighting
scheme over time (low weights mark uninformative windows). At test time, the Y -token is masked,
so predictions rely solely on observed covariates but still benefit from the supervision-shaped repre-
sentation learned in training. Inter–sample attention acts across the mini-batch at each time grid, as-
signing data-adaptive weights to similar subjects to share information between subjects. In practice,
these weights reveal the cluster structure when it exists. With underlying smooth latent trajectories,
both attentions yield smooth reconstructions. Theoretical details are provided in the Appendix.

This modular design, which separates time-point and inter-sample attention, allows us to quantify
the within-trajectory encoding and across-subjects contributions respectively. The model prioritizes
prediction over imputation, learning attention weights end-to-end for regression rather than recon-
structing trajectories. Empirically, the model outperforms state-of-the-art methods under ≤ 50%
observed data and irregular sampling, remains robust to measurement error, and performs competi-
tively in denser regimes. Its strong performance spans a wide range of sampling schemes, enabling
real-world applicability.

2.1 MODEL SETUP

Without loss of generality, we assume all subjects have trajectories in the time interval I = [0, 1] with
latent smooth trajectories Xi(·), under contamination of measurement errors and irregular sampling
scheme, the observation times for subject i is t̃i = (ti1, . . . , ti,ni) ⊂ I , and we observe

X∗
i (t̃i) = Xi(t̃i) + ηi(t̃i), ηi(t̃i)

iid∼ N(0, σ2
X). (1)

The scalar response is generated from the functional regression model with an unspecified F ,

Yi = F
(
Xi(·)

)
+ ϵi, ϵi

iid∼ N(0, σ2
Y ). (2)

We refer to ϵi as the label noise on Yi, in contrast to the measurement noise ηi on Xi.
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Figure 1: IDAT Model Architecture.

Discretization, masking and positional encoding. Despite irregular measurement times and
varying ni across subjects, we align all observations to a shared fixed grid τ̃ = (τ1, . . . , τT ) ⊂ I ,

Mi(τj) = 1{τj ∈ t̃i}, X∗
i (τj) = X∗

i (ti,k)1{τj = ti,k}, (3)

and form the length-T + 1 vector Di = (X∗
i (τ̃)⊙Mi(τ̃), Yi) ∈ RT+1 with a mesh size defined by

∆ = maxj |τj+1 − τj |. Linear embeddings EX and EY from R to Rd are applied token–wise along
with sinusoidal positional encodings P (τ̃),

D̃i =
[
EX

(
X∗

i (τ̃)⊙Mi(τ̃)
)
+ P (τ̃), EY (Yi)

]
∈ Rd×(T+1). (4)

Dual–attention Transformer. Given a batch D̃ of size B, the dual-attention Transformer block is

T B = FF1 ◦AI ◦ FF2 ◦AT , (5)

omitting normalization layers for brevity, where AT (time-point attention) applies attention along
the temporal axis within each sample, AI (inter-sample attention) applies attention across samples
in the batch (enabling cross-sample borrowing), and FF1,FF2 are position-wise two-layer ReLU
MLPs. Stacking L dual-attention Transformer blocks yields the embedding T = T B◦L.

Regression layer. Given the output of dual–attention Transformer T (D̃i) =
[
ZX

∣∣ ZY

]
i
∈

Rd×(T+1), we write ZX = T (D̃i):,:,1:T ∈ Rd×T for the longitudinal covariate embeddings and
ZY = T (D̃i):,:,T+1 ∈ Rd for the Y -token embedding. Each sequence ZX is summarized to a
single d-vector via a trainable pooling map ϕ : Rd×T → Rd. The pooled representation is then
mapped to a scalar by a MLP g (e.g., two-layer ReLU), yielding the prediction

Ŷi = g
(
ϕ
(
[ZX ]i

))
. (6)

During training, we minimize the loss function ℓ
(
Ŷi, g([ZY ]i)

)
(e.g., MSE for regression), treating

the response embedding ZY as an informative target. At test time, the Y token is masked (set to
zero) prior to encoding, so predictions depend solely on the covariate sequence.
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3 KEY THEORETICAL RESULTS

Let D̃ denote the discretized, noisy and masked embedding, and S̃ the oracle embedding.
The input–embedding discrepancy (discretization error) is controlled by δ0 = ∥D̃ − S̃∥∞
(Lemma 3). In training, the dual–attention block components, including time–point self–attention
AT , feed–forward networks FF1,FF2, and inter–sample attention AI , are Lipschitz with constants
LT , LFF, LI (Lemmas 4, 8) and admit uniform approximation on compact sets (Lemmas 5, 6,
7), giving deterministic approximation errors εAT

, εFF, εAI
. Hence, a dual-attention block T B

is LT B-Lipschitz (Lemma 8). Inter–sample attention further reduces a stochastic embedding error
εvar by up to a B−1/2 factor (Lemma 9) with batch size B.

Except for Theorems 1 and 2 below, all the lemmas and other theorems are listed in the Appendix.
Theorem 1 (Consistency of T ). Under the assumptions and notations of Lemmas 3-9, the oracle
mapping is H(S̃) = G ◦ fI ◦G ◦ fT(S̃). Let

εT B := LFF

(
εvar + εAI

+ LI

(
εFF + LFFεAT

))
+ εFF.

Then, with probability at least 1− δ,∥∥T B(D̃)−H(S̃)
∥∥
∞ ≤ εT B,

∥∥T (D̃)−H(S̃)
∥∥
∞ ≤ LL

T B (δ0 + εT B) := εT . (7)
In particular, if (i) the mesh shrinks ∆ → 0 so that δ0 → 0; (ii) the dual-attention Transformer
has sufficient capacity so that εFF, εAT

, εAI
, εvar → 0; and (iii) the block Lipschitz constant is

uniformly bounded with training size n and batch size B, i.e., supn,B LT B(n,B) < ∞ for fixed
depth L, then ∥∥T (D̃)−H(S̃)

∥∥
∞

P−→ 0,

i.e., the dual-attention Transformer T is consistent for the oracle mapping H .

Generalization bounds for T B and T are given in Lemmas 10 and 11. Let S(U) = U:,:,1:T denote
the covariate-token slice (excluding the Y -token), define the predictor with Lϕ-Lipschitz pooling
function ϕ and Lg-Lipschitz MLP,

Ŷ (L)(D̃) = g
(
ϕ(S[T (D̃)])

)
.

Theorem 2 (Training MSE generalization and consistency). Let T = T B◦L be the L-block encoder,
and set p := B d (T + 1). Assume (i) Boundedness: ∥D̃∥∞ ≤ Rin, |Ŷ (L)(D̃)| ≤ Rout, and
|Y | ≤ Mf almost surely with Lℓ := 2(Rout + Mf ). (ii) Optimization: a stable SGD regime in
which the empirical risk approaches its minimum (within the hypothesis class) with high probability
(Hardt et al., 2016). (iii) supn LT (n) < ∞ for fixed depth L and (iv) p/n → 0. Let MSEtrain

n be
the training MSE over n samples. Then, for any δ ∈ (0, 1), with probability at least 1− δ,∣∣∣MSEtrain

n − E
(
Ŷ (L)(D̃)− Y

)2∣∣∣ ≤ 2Lℓ Lg Lϕ LT Rin

√
2p
n + 3

√
ln(2/δ)

2n .

Moreover, if the regressor approximation error vanishes as capacity grows (Hornik, 1991; Stinch-
combe, 1999; Cybenko, 1989; Hornik et al., 1989; Yarotsky, 2017) and T is consistent (Theorem 1),
the population training MSE is consistent.

At test time, with N independent samples, the Y -token is masked so that

E
∣∣Ŷ ∗(D̃∗)− Ŷ (L)(D̃)

∣∣ ≤ LℓLgLϕLT LY E|Y |.
Lemma 12 quantifies this testing phase Y -token perturbation. Theorem 13 further bounds the point-
wise and uniform test errors via a decomposition (embedding, head approximation, discretization,
label noise), and controls the population test MSE by the training MSE plus a Rademacher term and
an expectation bridge; the empirical test MSE adds an extra concentration term. If the training MSE
is consistent and the Y -token embedding is scaled so that LY → 0, the bridge term vanishes then
both population and empirical test MSE are consistent asymptotically (Corollary 14).

Mesh–size trade-off. For an α–Hölder trajectory (Lemma 3), the grid discretization bias ∥D̃ −
S̃∥∞ scales as O(∆α), with ∆ = maxj |τj+1 − τj |. Since T ≍ ∆−1, time-point attention incurs
O(T 2d) time and O(T 2) memory, so halving ∆ quadruples computational cost, while improving the
bias by only 2−α. ∆ must be chosen to balance statistical accuracy (smaller ∆) against compute and
memory (larger ∆). The inter–sample component scales linear in T , so a similar trade–off applies.
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Variance reduction by inter–sample attention. When subject-level heterogeneity is not promi-
nent, queries/keys align across subjects and the inter-sample attention weights are nearly uniform
(≈ 1/B), yielding an OP(1/

√
B) reduction in embedding noise (Lemma 9). This variance contrac-

tion is orthogonal to deterministic approximation biases, so increasing B stabilizes the embedding
without changing those bias terms. MSE improves when the induced averaging does not introduce
substantial pooling bias, namely, when the attended neighbors are genuinely similar for the target.

Masking Y -token. During training, the final token carries the response embedding to help learn
the X → Y relation. By Lemma 12, masking the Y -token induces an approximation perturbation
scaled by LY = ∥EY ∥op. To reduce train–test mismatch and improve robustness, one can randomly
mask the Y -token during training: draw di ∼ Bernoulli(q) and feed Z̃Y = diEY Yi with a corre-
sponding mask-reweighted loss. The resulting train phase embedding error remains bounded up to
constants, with the fully masked case (matching test time) serves as a worst-case upper bound.

4 EXPERIMENTS

We compare our method against a diverse set of 19 baselines that collectively cover statistical, func-
tional, attention-based tabular, deep learning methods and ensemble approaches, each adapted to ir-
regular and sparse longitudinal inputs. The statistical and/or functional baselines comprise ordinary
linear regression (LR), functional linear regression (FLR) (Yao et al., 2005a; Cai & Hall, 2006), and
functional principal components analysis followed by a regression neural layer (FPCA+NN) (Yao
et al., 2005b; Wang et al., 2016).

For deep learning and tabular Transformer methods, we provide mean-imputed inputs on a fixed
grid, where each feature corresponds to a time point. Compared methods include SAINT (Somepalli
et al., 2021), FTTransformer (Gorishniy et al., 2021), TabNet (Arik & Pfister, 2021), AutoInt (Song
et al., 2019), and a vanilla Transformer trained solely on covariates without a Y -token followed by
a regression neural layer (VT+NN). We also include the most recent state-of-the-art tabular model,
TabPFN (Hollmann et al., 2022; 2025), a generative Transformer-based foundation model pretrained
on millions of synthetic datasets. To assess the value of end-to-end training relative to decoupled
imputation, we also evaluate SAND (Hong et al., 2024) augmented with a prediction multilayer
perceptron (SAND+NN)1, thereby testing how well a learned imputer performs when the regression
layer is trained separately. Other deep learning approaches including multilayer perceptron (MLP)
and ResNet (He et al., 2016) are considered. As well as AdaFNN (Yao et al., 2021), a basis-specified
neural method tailored to completely observed functional data.

Finally, we benchmark strong ensemble and tree-based systems, including AutoGluon (Erickson
et al., 2020), which automatically trains, tunes, and stacks diverse models on tabular tasks. Gradient-
boosted approaches, including XGBoost (Chen & Guestrin, 2016), LightGBM (Ke et al., 2017), Cat-
Boost (Prokhorenkova et al., 2018), and NODE (Popov et al., 2019) are included. We also evaluate
xRFM (Beaglehole et al., 2025), a very recent method that combines random-feature (kernel-style)
learning with tree-based partitioning. These 19 existing models are compared with our proposed
dual-attention method (IDAT) and a variant without inter-sample attention (IDAT w/o AI ).

4.1 SIMULATION

Without loss of generality, we consider functions on the unit interval I = [0, 1] generated as follows.
In all simulations, the time grid has length T = 100. For subject i in group g ∈ {1, . . . , G}, the
(noise-free) latent trajectory is

Xi(t) = µg(t) +

20∑
k=1

[ask sin(2πkt) + ack cos(2πkt)] /k, t ∈ I,

where µg is a group-specific mean function and {ask, ack} are Fourier coefficients with smoothness
controlled by the decay rate of k−1. To induce smooth but heavy-tailed trajectories (beyond the
sub-Gaussian assumption), these coefficients are independently drawn from a zero-mean exponential
distribution. The response is generated by a functional operator Yi = F(Xi)+εi with εi

iid∼ N(0, 1).
1SAND is an imputation method and is not applied when the covariates are 100% observed.
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Case I: Functional linear regression. Set µg ≡ 0. Let F(X) =
∫ 1

0
β1(t)X(t) dt with

β1(t) = (3− 6t)1{t ≤ 0.5} + (2t− 1)1{t > 0.5}.

Case II: Nonlinear model. Set µg ≡ 0. Define

F(X) =

∫ 1

0

β2(t)X(t) dt +
(∫ 1

0

β3(t)X(t) dt
)2

,

with β2(t) = (4− 16t)1{t ≤ 0.25} and β3(t) = (4− 16|t− 0.5|)1{0.25 ≤ t ≤ 0.75}. Here, time
points t > 0.75 are non-informative; the interval just beyond t = 0.25 contributes weakly.

Case III: Cluster analysis. Let G = 2 and with F(X) =
∫ 1

0
0.5 tX(t) dt,

µ1(t) = 1 + 4(t− 0.5)1{t ≥ 0.5}, µ2(t) = −6(t− 0.5)1{t ≥ 0.5}.

This scenario is explicitly designed to demonstrate the clustering ability, where group-specific mean
shifts create separable subpopulations that inter-sample attention can cluster.

In addition to Cases I-III, we also add measurement error on the functional covariate2. We set the
signal-to-noise ratio to SNR =

(∫ 1

0
Xi(t)

2 dt
)
/ sd(ηi) = 4. Across the six simulation cases, we

evaluate five observation regimes at various levels of sparsity: ssparse (10%), vsparse (20%), sparse
(50%), dense (80%), and full (100%). The mean squared errors (MSE) for all 30 settings are reported
in Tables 4–9, evaluating predictive accuracy and computational efficiency across the full spectrum
of sampling scenarios. Consistently, IDAT performs best in regimes when at most 50% of time points
are observed (out of 100 grid points), as summarized in Table 2. As the sparsity decreases, TabPFN
becomes the primary competitor. TabPFN’s pre-trained prior favors simple, additive, and near-linear
relationships, allowing it to fit dominant trends in dense settings. Intuitively, inter–sample attention
lowers the variance by borrowing strength from “similar” subjects; under measurement error, how-
ever, similarity can be inaccurately estimated and borrowing from mismatched neighbors raises the
bias. When the increase in bias outweighs variance reduction, the time–point–only variant (no AI )
can prevail, though the dual-attention model still outperforms other baselines. Empirically, IDAT
delivers the largest gains in sparse settings with clear cluster structures (Table 3). In practice, we rec-
ommend the dual–attention model by default for detecting and exploiting clustering; if the learned
attention maps are diffuse or uniform across subjects, a pragmatic fallback is the AT –only variant.

4.2 REAL DATA

National Child Development Study: We analyze data from the 1958 National Child Develop-
ment Study (NCDS)3. The task is to predict BMI at age 62 from prior BMI trajectories observed
at ages 11, 16, 23, 33, 42, 44, 46, 50 and 55. The cohort is relatively homogeneous, including
individuals born in Great Britain during a single week in 1958, reducing potential confounding by
ethnicity. All models are adjusted for baseline covariates measured at age 7: sex, baseline BMI, and
an early-life social adversity index computed as the average of 13 binary indicators (e.g., housing
problems, financial hardship, parental divorce, unemployment, illness, disability, or death) (Flèche
et al., 2021). We fit sex-stratified models and compare the mean squared error (MSE) and mean ab-
solute error (MAE) of two imputation pipelines for missing BMI trajectories: (i) mean imputation (a
simple but commonly used approach in tabular workflows) and (ii) multiple imputation by chained
equations (MICE) (van Buuren & Groothuis-Oudshoorn, 2011). The n = 4952 longitudinal BMI
series exhibit substantial missingness (mean 25%, range 8%–96%), spanning dense to super-sparse
regimes. On average, subjects have 6.2 observations (SD 0.9) across the sweeps (Figure 7). Across
both imputation settings, IDAT consistently outperforms all competing models, while requiring no
imputation or preprocessing and operating directly on sparse and irregular inputs.

Synthetic HIV Dataset (Health Gym Project): We use the HIV dataset from the Health Gym
project (Kuo et al., 2022), a public collection of synthetic yet realistic clinical datasets, and focus
exclusively on the HIV cohort. Since the measurements are monthly and equally spaced, alongside

2Cases with measurement errors are denoted by Case I*, II* and III*
3University College London, UCL Social Research Institute, Centre for Longitudinal Studies (2024)
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mean imputation and MICE, we also evaluate the last-observation-carried-forward (LOCF) method
(Lachin, 2016; Woolley et al., 2009) and report accuracy and F1 score4 in Table 10. The binary
response label indicates whether a patient achieves viral suppression (VL< 200 copies/mL) at any
time during the prediction window (months 20–30). For each patient, we use VL measurements from
the first 20 months as longitudinal covariates and include sex as a baseline covariate. The n = 8683
VL series in the feature window is very sparse (mean missingness 65%, range 47–88%). Subjects
receive a mean of 5.8 observations (SD 1.8) during the 20-month covariate interval (Figure 9).

Table 1: Performance on real-world tasks. For NCDS BMI (regression), we report MSE/MAE
under mean and MICE imputation. For Synthetic HIV (classification), we report F1 score under
mean, MICE, and LOCF imputation. The best method is in bold and the top three are in italics.

NCDS BMI Synthetic HIV

mean imputed MICE mean MICE LOCF

Method MSE MAE MSE MAE F1 F1 F1

LM/GLM 21.2318 3.5864 9.1630 2.2935 0.9746 0.9751 0.9716
FLR/FGLM 11.1655 2.5682 11.1655 2.5682 0.9736 0.9736 0.9736
FPCA+NN 10.2562 2.3870 10.2562 2.3870 0.9698 0.9698 0.9698

TabNet 9.6078 2.3381 8.1461 2.1843 0.9734 0.9740 0.9752
SAINT 9.7213 2.3524 9.4844 2.3231 0.9752 0.9745 0.9752

FTTransformer 9.8154 2.3606 9.2480 2.3276 0.9721 0.9739 0.9757
AutoInt 8.6933 2.2375 8.7121 2.2607 0.9703 0.9740 0.9758
TabPFN 8.5794 2.1621 8.5164 2.1503 0.9722 0.9734 0.9758
VT+NN 19.1824 3.3388 19.1824 3.3388 0.9611 0.9611 0.9611

SAND+NN 19.1647 3.3413 19.1647 3.3413 0.9647 0.9647 0.9647
MLP 9.4439 2.3142 9.2378 2.3191 0.9752 0.9727 0.9764

ResNet 9.3321 2.3526 8.9923 2.2780 0.9715 0.9751 0.9752
AdaFNN 9.2237 2.2716 8.6085 2.2147 0.9649 0.9649 0.9649

NODE 9.6511 2.2955 8.6911 2.2528 0.9727 0.9751 0.9769
CatBoost 9.5655 2.3125 9.1693 2.2969 0.9679 0.9715 0.9751
XGBoost 10.9604 2.4617 10.3945 2.4074 0.9652 0.9727 0.9745

LightGBM 9.5160 2.3066 9.9092 2.3795 0.9678 0.9715 0.9733
AutoGluon 9.0408 2.2623 8.9595 2.2543 0.9746 0.9745 0.9751

xRFM 11.5200 2.5628 20.5166 2.7625 0.9698 0.9698 0.9698

IDAT 8.0061 2.1728 8.0061 2.1728 0.9752 0.9752 0.9752
IDAT w/o AI 8.1177 2.1966 8.1177 2.1966 0.9752 0.9752 0.9752

5 CONCLUSION

Across datasets and simulations with diverse missingness, our end-to-end dual-attention Trans-
former IDAT, without external imputation and with supervision via the Y -token, consistently per-
forms the best when less or equal to 50% of time points are observed, a regime typical of many
longitudinal applications, and remains competitive as sparsity decreases. In practice, sparsity varies
widely across cohorts, time windows, and variables; thus, robustness across sampling densities is
essential. By adaptively leveraging inter-sample attention to borrow strength when data are scarce
and emphasizing time-point structure as coverage improves, IDAT offers a unified solution across
the full sparsity spectrum, while yielding interpretable dual-attention patterns that clarify when and
where each mechanism contributes.

Domain detection with time–point attention. Time-point attention learns a data-driven weight-
ing scheme over time, highlighting the segments of a trajectory that are most predictive. As shown
in Figures 2a and 8b, when portions of the time axis are not informative for the response, the learned

4The F1 score is a classification evaluation metric that represents the harmonic mean of precision and recall.
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(a) Domain detection in case II. (b) Embedding clustering in case III.

Figure 2: Interpretable dual-attention. All the attention weights are are scaled by a factor of 1000.

weights shrink toward (near) zero in those intervals, effectively performing time domain selection.
This behavior mirrors the known informative window in the simulation and is corroborated by ex-
ternal domain knowledge in the real cohort as shown in Figure 8.

Clustering with inter–sample attention. Inter–sample attention acts as a learned, end-to-end
nearest-neighbor mechanism: it computes attention across data points (rows) within a batch using
a learned similarity and aggregates information from the most relevant samples. This cross-sample
sharing of information is particularly helpful for missing or noisy features. In clustered data, it
produces cluster-specific attention profiles that better align with the regression signal. Figure 2b
illustrates a two-group setting with different group mean functions: the clusters display clearly dis-
tinct attention patterns (e.g., Group 1 assigns negative weights in the first third of the trajectory and
near-zero weights in the last third, whereas Group 2 shows near-zero weights early and coherent
within-cluster structure thereafter). This demonstrates the clustering capability of the dual-attention
mechanism. In contrast, removing inter-sample attention (Figure 6) makes profiles of the two clus-
ters much more similar, differing only slightly in the early trajectory. This highlights that time-point
and inter-sample attention provide complementary and additive gains in predictive performance.

Extension of the dual-attention method. On real data (Table 1), we replace the regression head
with a classification head while keeping the dual-attention encoder unchanged, demonstrating that
IDAT adapts seamlessly to classification. However, in imbalanced settings, inter-sample attention
can amplify majority signals and attenuate minority patterns. Time-independent covariates can be
included by simple concatenation (without positional encodings), so the model jointly learns their
relationships with the longitudinal covariates and the outcome. For multi-dimensional functional
input, an intra-functional attention layer could be added to capture cross-channel relations. Tabular
data can be cast as functional via “stringing” (Chen et al., 2011): order features by similarity and
treat each reordered row as samples from a smooth curve, carrying induced positions and masks. Si-
nusoidal encodings do not extrapolate beyond the largest trained horizon or unseen time grids; rela-
tive or seasonal encoders may better capture temporal structure (Zhou et al., 2021; Woo et al., 2022).
Although dual-attention can increase computational cost, Table 2 shows that IDAT is relatively fast
compared to existing Transformer-based methods. To balance variance reduction and pooling bias
under measurement noise, we further introduce a learnable, data-adaptive gate λ ∈ [0, 1], trained
end-to-end:

T (λ)
B =

[
λAT + (1− λ)AI

]
◦ FF.
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models using artificial intelligence and longitudinal data from electronic health records: a sys-
tematic methodological review. Journal of the American Medical Informatics Association, 30
(12):2072–2082, 2023.

Anna Cascarano, Ilaria D’Aloisio, Giusy Guastamacchia, and Francesca Ieva. Machine and deep
learning for longitudinal biomedical data: a review of methods and applications. Artificial Intel-
ligence Review, 56(Suppl 2):1711–1771, 2023.

Centers for Disease Control and Prevention. Hiv diagnoses, deaths, and preva-
lence, April 2025. URL https://www.cdc.gov/hiv-data/nhss/
hiv-diagnoses-deaths-prevalence.html. Accessed: 2025-09-12.

Kun Chen, Kehui Chen, Hans-Georg Müller, and Jane-Ling Wang. Stringing high-dimensional data
for functional analysis. Journal of the American Statistical Association, 106(493):275–284, 2011.

Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In Proceedings of the
22nd acm sigkdd international conference on knowledge discovery and data mining, pp. 785–794,
2016.

Xiang Chen, Hao Li, Mingqiang Li, and Jinshan Pan. Learning a sparse transformer network for
effective image deraining. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pp. 5896–5905, 2023.
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