
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

SIAM: SELF-IMPROVING CODE-ASSISTED MATHEMAT-
ICAL REASONING OF LARGE LANGUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

There is a growing trend of teaching large language models (LLMs) to solve math-
ematical problems through coding. Existing studies primarily focus on prompting
powerful, closed-source models to generate seed training data followed by in-
domain data augmentation, equipping LLMs with considerable capabilities for
code-assisted mathematical reasoning. However, continually training these mod-
els on augmented data derived from a few datasets such as GSM8K may impair
their generalization abilities and restrict their effectiveness to limited question
types. Conversely, the potential of improving such LLMs by leveraging large-scale,
expert-written, diverse math question-answer pairs remains unexplored. To utilize
these resources and tackle unique challenges such as code response assessment,
we propose a novel paradigm that uses a code-based critic model to guide steps
including question-code data construction, quality control, and complementary
evaluation. We also explore different alignment algorithms with self-generated
instruction/preference data to foster continuous self-improvement. Experiments
across both in-distribution (up to +5.7%) and out-of-distribution (+4.4%) bench-
marks in English and Chinese show the effectiveness of the proposed paradigm.

1 INTRODUCTION

Though large language models (LLMs) have demonstrated strong performance on mathematical
benchmarks, they still face challenges in achieving accurate computation and reasoning, especially in
out-of-distribution scenarios. For example, even the recent closed-source LLM o1-mini struggles with
multiplication beyond eight digits (Deng, 2024) using step-by-step reasoning (or Chain-of-Thought,
CoT) (Wei et al., 2022). To alleviate the computational burden on LLMs, particularly those of
smaller sizes, there is a growing trend of utilizing code and code interpreters to enhance precise
computation and reasoning of LLMs in solving mathematical problems (Chen et al., 2022; Gao
et al., 2023b; Zhou et al., 2023). An effective method involves prompting closed-source LLMs to
generate code-based solutions for given questions. However, previous studies demonstrated that
closed-source models, without extra test-time compute, still struggle with real-world high school and
college-level math exams (Liu et al., 2024). Solving advanced problems through coding demands not
only mathematical expertise but also interdisciplinary knowledge and skills, including programming
and natural language, making it a more formidable challenge. Previous code-assisted studies primarily
focus on using closed-source LLMs such as GPT-4 to label a few small-scale, representative datasets
such as GSM8K (Cobbe et al., 2021) and MATH (Hendrycks et al., 2021), verifying the correctness of
the solutions via pattern-based answer matching, and training models on the verified data for further
in-distribution data augmentation through sampling, code execution, and answer validation (Wang
et al., 2023; Liu et al., 2023; Gou et al., 2024; Lu et al., 2024). However, continually learning from
these datasets or their augmented versions, regardless of the use of code, is evidently less effective
for improving the generalization of LLMs due to the limited diversity.

On the other hand, large-scale, expert-written, mathematical question-answer (QA) pairs from
educational web resources remain under-studied to improve code-assisted math reasoning abilities
of LLMs. These resources span educational levels from primary school to college and include
various question types and answer formats, such as multiple-choice, application, proof, and cloze.
To use these resources to self-improve code-assisted1 LLMs, instead of further extensively distilling

1Using the data to compare CoT with code-assisted reasoning or enhancing CoT is not the focus of this work.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

(question, solution) (question, solution)

seed question

(question, code) (question, code)

question

code

answer

critic
model

unseen web
corpora

seed model

seed datacode interpreter

valid valid

valid

sampling sampling

failed

SFT/DPO

YES/NO

next iteration

unseen web
corpora

next iteration

Figure 1: Overview of our self-improving code-assisted paradigm using large-scale web QA data.

closed-source models, one natural solution is to use a fine-tuned model to generate code samples for
each problem and use the valid data to (iteratively) improve this LLM, similar to self-improved CoT
reasoners (Zelikman et al., 2022; Yuan et al., 2023; Xu et al., 2024; Hosseini et al., 2024) over data
with reference answers. However, the key challenge is to determine whether the self-generated
code responses align with reference answers in diverse formats. Fortunately, with the aid of an
external code interpreter, we are less concerned about potential computation errors in intermediate
CoT reasoning steps. We assume a code solution is more likely to be correct if its execution result
matches the reference answers, thus shifting the focus from the step-by-step comparison to comparing
the reference answers with the code execution results. Based on our analysis (Section 3.1), we
observe that most cases primarily require format conversion between plain text and code syntax (e.g.,
“(x-5)(xˆ2-4x+7)” vs. “(x-5)*(x**2-4*x+7)” and “(1, -2, 2, -3)” vs. “{A:1, B:-2, C:2, D:-3}”) and
relatively simple numerical calculations, which do not require advanced logical reasoning abilities or
in-depth language-specific knowledge (Section 3.5).

These observations and task simplification motivate us to design a critic model to evaluate the
correctness of the code execution result against the reference answer by simply predicting YES or NO
(see examples in Table 1). As illustrated in Figure 1, this critic model is used to guide multiple steps
during self-improvement. We first train a model with seed question-code data following previous
code-assisted studies and consider it as the initial policy model. In each iteration, we use the current
policy model to generate code samples for new questions and keep the highest-scoring valid code
responses rated by the critic model for supervised fine-tuning (SFT) in the subsequent iteration. To
foster continuous improvement, we also explore different preference learning algorithms such as
DPO (Rafailov et al., 2024) and ORPO (Hong et al., 2024) with self-generated preference data, where
the preference labels are also provided by the critic model.

We perform experiments on various model families, such as Llama3-8B (AI@Meta, 2024) and
DeepSeek-Coder-7B (Daya Guo, 2024), and Qwen2-7B (Yang et al., 2024). Experimental results
across both in-distribution (up to +5.7%) and out-of-distribution (OOD) (+4.4%) benchmarks in
English and Chinese show the effectiveness of self-improving LLMs using our proposed paradigm
with large-scale mathematical QA pairs. The resulting 7-8B models can outperform state-of-the-art
70B code-assisted math LLMs (Gou et al., 2024) by 11.9% in OOD scenarios. Notably, we observe
a strong correlation between the traditional heuristic-based evaluation method and the critic model
(Section 3.5), with the latter reducing the additional human effort needed to design rules for new
mathematical benchmarks. Additionally, introducing SFT loss into the DPO training is surprisingly
effective in controlling the code response length. To summarize the contributions of this work:

• To the best of our knowledge, this is the first attempt to leverage large-scale web QA pairs
to improve the code-assisted mathematical reasoning abilities of LLMs.

• To better leverage these large-scale, diverse QA pairs, we propose a novel iterative self-
improving paradigm that employs a new critic model to guide various steps such as data
construction and filtering. This critic model can also serve as a complementary evaluation
scorer, reducing the reliance on heuristic design for new evaluation tasks.

• Extensive experiments on both English and Chinese tasks demonstrate the effectiveness of
our paradigm, and our comprehensive analysis of the key factors in achieving continuous
improvement at different stages may shed light on future studies.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Table 1: Example instances of the code-based critic task ((question, reference answer) pairs come
from the web QA data, and Chinese texts are translated into English).

System Prompt Your goal is to evaluate whether the candidate answer provided by the model for a math problem
matches the reference answer. Here are the steps to complete the task:
– First, carefully read the given math problem.
– Next, review the reference answer for the math problem.
– Then, examine the candidate answer provided by the model, which may include a program and the
result of running that program.
– Finally, summarize whether the candidate answer matches the reference answer or can be made to
match through simple calculations/conversions.
– The response format should be Yes or No.

Instruction ### Question\n\n Given f(1 − 2x) = 3x + 1, find f(−3)= __．
Reference Answer\n \n 7 \n \n
Candidate Answer\n \n <code>from sympy import symbols, Eq, solve\n# Define the variable\n
x = symbols(‘x’)\n# Establish the equation based on the problem conditions\n equation = Eq(1 - 2*x,
-3)\n# Solve the equation\n solution = solve(equation, x, dict=True)\n solution_value = solution[0][x]\n
Calculate f(-3)\n f_neg_3 = 3*solution_value + 1\n f_neg_3</code><solution>7</solution>\n\n
Assessment

Output Yes

Instruction ### Question\n\n Given the sequence {an} with the sum of the first n terms Sn = 2n − 3, what is
a3? A: 3 B: 2 C: 1 D: 0
Reference Answer\n \n B \n \n
Candidate Answer\n \n <code># Define a function to calculate the nth term\n def calcu-
late_nth_term(n):\n # Based on the derived formula\n an = 2 ** n - 2 ** (n - 1)\n return an\n # Calculate
the value of the 3rd term \n a3 = calculate_nth_term(3) # a3 </code><solution>4</solution>\n\n
Assessment

Output No

2 METHOD

2.1 TRAINING AN INITIAL MODEL

One key factor for an iterative paradigm is to have a reasonably strong initial model. To train such a
model, we first use high-quality seed data to fine-tune an LLM, resulting in model Mseed. We use
Mseed to generate code samples and keep up to four predictions per question wherein the execution
result of the code matches the reference answer and combines the seed data and the self-distilled data
to train M0, which is further used as the initial model for later stages. We will introduce more details
about the seed data construction in the experiment section.

2.2 BUILDING A MULTI-USE CODE-BASED CRITIC MODEL

To improve LLMs with large-scale, diverse-format math QA data without code annotations, several
challenges arise in data utilization, filtering, and evaluation. First, previous studies primarily use
pattern-based methods to compare predictions and ground truth answers during validation and
evaluation. This works well for GSM-style datasets, where answers are single numbers and well-
formatted (e.g., “72” in “...72 clips altogether in April and May.\n #### 72”). However, pattern-based
methods face inherent challenges in handling diverse answer types and formats and bridging the
gap between natural language and programming language. For example, with the MATH dataset,
comparing CoT predictions with reference answers in LaTeX-like format already requires human-
written patterns and answer conversion (Yue et al., 2023). This complexity is compounded when
predictions are presented in code syntax, even when the critic task is already simplified to compare
the reference answer with the code execution result.

To address the above challenges, we propose building a code-based critic model optimized by the
following objective:

L(rϕ) = − log rϕ(y | q, a, c, e), (1)

where q denotes a question, a is the reference answer to q, c represents the code response to q, and e
is the execution result of code c. To simplify the task, we let y be either “YES” or “NO”. Examples
are shown in Table 1. We leave other formulations, such as training a scalar critic model (Ouyang
et al., 2022), to future work.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

2.3 CODE DATA GENERATION

As mentioned previously, our goal is to leverage web math QA data to continuously self-improve
the code-assisted mathematical reasoning ability of LLMs. For well-formatted, web-collected math
data such as APE (Zhao et al., 2020) and CM (Qin et al., 2021), where most answers are one or two
numerical values (see examples in Table 16), it is efficient and effective to compare the reference
answer and the execution result of the code using scripts released by previous studies (Section 3.2).
For real-world math data involving various types of questions, such as multiple-choice, multi-part
questions, fill-in-the-blank, application, and proof, using a critic model introduced in the previous
section is more flexible and saves the need for the labor-intensive and time-consuming process of
creating task-specific patterns. Note that for all questions, we only use their reference answers to
verify the correctness of code execution results, rather than directly using these answers – often short
and inconsistent in style – for training. Additionally, we only use benchmarks’ training sets.

In the k + 1-th iteration, for each new question, we use the current policy model πθk to generate
five code samples and execute them to obtain the results. For questions in the diverse-format web
data, the critic model is then used to predict YES or NO for each response (ai, cij , eij) given qi.
We use the probability of YES or NO as the confidence value for the critic model’s judgment. A
higher probability score indicates a greater confidence in the code response, either agreeing with or
disagreeing with the reference answer.

2.4 SELF-IMPROVEMENT WITH UNSEEN DATA

One natural choice is to perform supervised fine-tuning (SFT) on πθk using DSFT:

LSFT(πθk+1) = − log πθk+1(c | q) (2)

DSFT = {(qi, cij) | rϕ(y = YES | qi, ai, cij , eij)} (3)

As critics may contain errors, we explore using the probability of each judgement (i.e., YES or NO)
as a confidence score to filter out noise. Besides, we introduce extra constraints: for each question,
we only retain the highest-scoring positive instance tij = {qi, ai, cij , eij}, similar to rejection (Bai
et al., 2022) or Best-of-N sampling (Stiennon et al., 2020), where tij ∈ Ti of the same question qi.
To encourage models to learn from more challenging problems, if all instances in Ti are judged as
YES, we discard this question and its corresponding generated code from consideration.

DSFT, H = {(qi, cij) | rϕ(y = YES | tij),
prϕ(y = YES | tij) > λ1,

tij = arg max
tij∈Ti

prϕ(y = YES | tij),

|Ti|∑
j=1

1{rϕ(y = No | tij)} ≥ λ2}

(4)

where λ1, λ2 represent thresholds for filtering and difficulty control.

In addition to supervised fine-tuning a policy model on self-generated SFT data (DSFT, H or DSFT),
we further leverage negative instances by optimizing the policy model on preference data using
algorithms such as DPO (Rafailov et al., 2024) and ORPO (Hong et al., 2024). Compared to SFT,
these preference learning algorithms additionally decrease the probability of losing responses. We
mainly focus on DPO and leave other options for future studies, and we jointly train the policy with
the SFT objective to alleviate overfitting to the preference data and ensure a stable update (Hong et al.,
2024). See more discussions on the impact of the SFT objective, especially its role in controlling the
response length, in Section 3.4.

LDPO(πθk+1) = − log σ

(
β log

πθk+1(yw | x)
πθk (yw | x) − β log

πθk+1(yl | x)
πθk (yl | x)

)
− λ · log πθk+1(yw | x) (5)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

We can easily leverage our critic model to build preference (cw, cl) pairs, where cw represents the
winning code and cl represents the losing code. For each question, we use the highest-scoring YES
response and the highest-scoring NO response to form a preference “best-and-worst” pair, aiming to
maximize the difference between them. See preference data examples in Section A.6.

DDPO = {(qi, cij , cik) | rϕ(y = YES | tij),
rϕ(y = NO | tik),
tij = arg max

tij∈Ti

prϕ(y = YES | tij),

tik = arg max
tik∈Ti

prϕ(y = NO | tik)}

(6)

3 EXPERIMENTS

3.1 DATA

We summarize the statistics of data used for self-improvement in Table 2 and evaluation benchmarks
in Table 15. The large-scale in-house math QA pairs (1.13M in total) are used in compliance with
the authorized licenses from educational websites. It covers various educational stages from primary
school to college and question types like prof, application, cloze, and multiple-choice questions (e.g.,
questions in Table 1). More examples (e.g., questions in Table 18 and Table 19) and analysis of the
web QA data can be found in the Appendix. While we will not release the full QA pairs, we will
release our code, seed data in English, self-improved/critic models, and self-generated SFT/preference
data to facilitate future studies.

Table 2: Statistics of training data used in our three-
stage paradigm (D1 and D2,in-house are Chinese re-
sources; D2,WebInstruct is English-dominant).

Data/Subset QA Source Size

D0
zh web 76K
en GSM8K, MATH 44K

D1 APE, CM 211K

D2,in-house

SFT
educational websites

893K
SFT(H) 273K
DPO 465K

D2,WebInstruct DPO pre-training corpora 447K

Seed Data D0: To generate the seed data for
English, following previous work, we use GPT-
4-0613 to generate Python code in an iterative
fashion: we repeatedly sample the remaining
questions that do not have correct code (i.e.,
the code execution results match the reference
answer of the questions) for up to three itera-
tions. We use questions from the training sets of
GSM8K (7.5K) and MATH (7.5K) as the seed
questions for imitation learning. For datasets
such as GSM8K in which the answers are mostly
single numbers, it is easier to compare answer
and code execution results. After two iterations,
we can annotate 98.5% of questions in GSM8K.
For datasets such as MATH wherein the answers
are diverse in formats, we simply keep the code that can be successfully executed without errors. For
seed questions for Chinese, we randomly sample 20K math questions from the in-house web QA
data and follow the same procedure using GPT-4-0613 for code generation to construct the Chinese
subset of D0. For each question, we add a language-specific system prompt: “Please write a python
code to solve the following questions” or its Chinese counterpart, “请用python代码解决以下问题”.

Value-Style D1: We utilize the initial policy M0 to generate code samples to questions in training
sets of two open-source word math problem datasets APE (200.5K) (Zhao et al., 2020) and CM
(13.6K) (Qin et al., 2021), both collected from educational websites covering elementary and middle-
school levels. Since all the answers are one or two numerical values, for efficiency, we use heuristics
with Python to compare the code execution results with reference answers for validation. We keep up
to four valid code samples for each question.

Diverse-Format Data D2 and Critic Data: To increase the diversity of our training data, we
further consider large-scale mathematical QA pairs (excluding those used for seed data) mentioned
previously. For each question, we retain only one positive code and one negative code (if any exists)
judged by the critic. To better understand this web data and the critic task, we analyze the reference
answers for 50 instances. Only 14% of them are single numerical values, while 50% involve format
conversion (e.g., syntax or structure) when the answers are expressions, equations, coordinates, sets,
etc. Another difference between real-world data and well-formatted benchmarks is the inconsistency

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

in the format of reference answers. Specifically, half of the answers contain CoT-style (Wei et al.,
2022) explanations and/or irrelevant contents, such as tags and URLs, while the rest are in a short
form. This makes it challenging to use this QA data directly to improve CoT reasoning or to parse
short-form answers for easier verification with a few patterns, as done for clean benchmarks (e.g.,
answer indicators “###” for GSM8K and “BOXED{}” for MATH). For multiple-choice or multi-part
questions (8% in total), we additionally require the question context for mapping option labels and
their contents, as well as question decomposition. These observations reflect the diversity of question
types in our web QA data. See statistics in the Appendix (Table 13).

To evaluate the generalization and robustness of our paradigm, we also use a recently released
large-scale reasoning QA dataset named WebInstruct (Yue et al., 2024) to construct a similar-scale
D2, containing 447K preference pairs (see examples in Section A.6). Compared to our in-house web
QA data, WebInstruct is mostly in English and is extracted from the pre-training corpora. Therefore,
the answers are not guaranteed to be written by educational experts as our Chinese web data.

To build the training data for the critic model, we use M0 to generate code samples for randomly
sampled questions from D2 and execute these code samples. We then prompt GPT-4-0613 with the
input (question, code, code result, reference answer) following the template in Table 1. After filtering,
we retain 16.8K training instances, of which 48.6% of are judged as YES.

3.2 IMPLEMENTATION

We use LLLAMAFACTORY (Zheng et al., 2024) for efficient fine-tuning built upon DeepSpeed
(ZeRO-3). Our experiments are conducted using 8XA100 40GB GPUs. We train LLMs with BF16
mixed-precision. The training for the self-improving paradigm takes approximately 96 hours. With
80 workers in multi-processing mode on a CPU machine, we can execute about 9,003 code samples
per minute. Each model at each stage is trained for two epochs with a learning rate of 1e-5 for SFT
and 1e-6 for preference learning. We set the SFT loss coefficient (λ in Equation 7) to 1.0. The
maximum sequence length is set to 1024, and the batch size is set to 64. We set λ1 to 0.8 and λ2 to 3.

We experiment with various LLMs to select backbone models such as CodeLlama-7B-Python (Roziere
et al., 2023), Llama3instruct (AI@Meta, 2024), CodeQwen1.5-7B-Chat (Team, 2024), QWEN2(Yang
et al., 2024), and Deepseek-Coder-7B-instruct-v1.5 (Daya Guo, 2024), which demonstrate strong
coding capabilities on code-related benchmarks. Due to limited computational resources, we use
their 7-8B versions with their default templates and leave the model scaling up for future work.
We primarily follow the evaluation scripts from previous studies (Liang et al., 2024) for Chinese
benchmarks and FastEval2 for English benchmarks GSM8K and MATH, which often use Python for
numerical comparison. We also make adjustments to these scripts, as our predicted answers are in
code syntax. CodeLlama-7B-Python is used as the backbone model to train the code-based critic
model for three epochs with the maximum sequence length 4096.

3.3 THE PERFORMANCE OF THE INITIAL POLICY AND SELF-IMPROVED LLMS

As shown in Table 3, we experiment with three backbone models for self-improvement —
DeepSeekcode, Llama3instruct, QWEN2Mathinstruct — that show superior average performance across
math datasets in both Chinese (APE, CM, and CMATH (Wei et al., 2023)) and English (GSM8K
and MATH) than other investigated models when trained with seed data (see complete results of
initial policy models based on eight LLMs in Table 9). Therefore, we consider them as initial policy
models (i.e., M0) for self-improvement. After two additional iterations on the unseen data D1, and D2

constructed with the help of our code-based critic model, the resulting models (i.e., M2) consistently
outperform M0 by a large margin on Chinese benchmarks.

We observe that self-improving the initial policy model with Chinese-only data, D1 and D2, does not
hurt the accuracy of M2 on English tasks. In fact, it may be beneficial (e.g., +1.5% on both MATH
and GSM8K datasets using DeepSeekcode). Conversely, adding English seed data (36.7% of D0)
consistently improves M0’s average performance on Chinese benchmarks (D0 vs. D0,zh in Table 4).
To some extent, we may interpret code as a universal language for solving mathematical problems
across different languages. The language-specific parts are mainly in the code comments, which
are relatively indirect for problem-solving via code execution. Thus, our paradigm may reduce the

2github.com/FastEval/FastEval/.

6

github.com/FastEval/FastEval/

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 3: Accuracy across the dev sets of math datasets. All Chinese datasets are OOD for M0.
CMATH is OOD for M2 as the training sets of CM and CMATH are later used for distant supervision.

Chinese Tasks English Tasks

Model Size (B) Tool CM APE CMATH GSM8K MATH

GPT-4-1106-Preview – × – 84.2 89.3 93.6 53.6
Qwen-Chat (Bai et al., 2023) 72 × – 77.1 88.1 76.4 31.8
ChatGLM-Math (Xu et al., 2024) 32 × – 89.4 85.6 82.6 40.6
Skywork-Math (Yang et al., 2023) 13 × – 74.4 77.3 72.3 17.0
Math-InternLM2 (Team, 2023) 20 × – 75.2 78.5 82.6 37.7
MetaMath (Yu et al., 2023a) 70 × – – – 82.3 26.6
MathCoder (Wang et al., 2023) 34 ✓ – – – 81.7 45.2
ToRA (Gou et al., 2024) 70 ✓ – – – 84.3 49.7

7 ✓ – – – 72.6 44.6
MathGenieLM (Lu et al., 2024) 70 ✓ – – – 88.4 51.2
MinT (Liang et al., 2024) 7 ✓ 77.6 76.0 – 40.8 –

Initial Model Baselines (M0)

QWEN2Mathinstruct 7 ✓ 84.9 83.4 87.3 79.5 48.0
DeepSeekcode 7 ✓ 82.7 81.2 87.0 77.4 44.4
Llama3instruct 8 ✓ 83.3 83.2 87.2 76.8 41.8

Self-Improvement with Chinese Diverse-Format Web Data (M2)

SIaM(QWEN2Mathinstruct) 7 ✓ 90.1 (+5.2) 88.1 (+4.7) 93.2 (+5.9) 81.5 (+2.0) 50.0 (+2.0)
SIaM(DeepSeekcode) 7 ✓ 87.3 (+4.6) 85.9 (+4.7) 91.2 (+4.2) 78.9 (+1.5) 45.9 (+1.5)
SIaM(Llama3instruct) 8 ✓ 89.0 (+5.7) 86.8 (+3.6) 90.8 (+3.6) 80.5 (+3.7) 41.9 (+0.1)

burden of preparing large-scale, language-specific math data for each language. We observe similar
trends on DeepSeekcode and QWEN2Mathinstruct, as shown in Table 4.

We list several general-purpose/math-specified multi-lingual/English LLMs for reference. Note that
direct comparisons are challenging due to differences in architectures, pre-training corpora, alignment
algorithms, model size, the use of tools, and labeled data. For example, code-assisted methods ToRA,
MathCoder, and MathGenieLM are trained on 69K, 80K, and 170K English-only data, respectively,
augmented based on GSM8K and MATH. In contrast, our experiments use 44K English seed data
and explore the use of large-scale Chinese math QA pairs. Moreover, the evaluation scripts, originally
designed for plain-text answers instead of code outputs, may cause an underestimation of our methods’
performance on datasets such as MATH, where answers involve more expressions and structures
beyond numerical values. This also highlights the need for a more flexible evaluation method.

Table 4: Impacts of different stages and data selection on the development sets of datasets.

Model Stages Data CM APE CMATH GSM8K MATH Average

QWEN2Mathinstruct SFT D0,en – – – 78.5 47.7 –
SFT D0,zh 83.9 83.8 87.0 – – –
SFT D0 84.9 83.4 87.3 79.5 48.0 76.6
SFT D0 + D1 87.8 85.9 88.3 79.2 49.5 78.1
SFT → DPO D0 + D1; D2,WebInstruct 87.8 86.0 88.5 82.4 48.7 78.7
SFT → DPO D0 + D1; D2,in-house 90.1 88.1 93.2 81.5 50.0 80.6

DeepSeekcode SFT D0,en – – – 74.6 43.8 –
SFT D0,zh 81.0 82.4 86.8 – – –
SFT D0 82.7 81.2 87.0 77.4 44.4 74.5
SFT D0 + D1 87.0 84.3 88.0 77.6 44.6 76.3
SFT → DPO D0 + D1; D2,WebInstruct 87.0 84.4 88.2 78.2 44.4 76.5
SFT → DPO D0 + D1; D2,in-house 87.3 85.9 91.2 78.9 45.9 77.8

Llama3instruct SFT D0,en – – – 75.1 37.2 –
SFT D0,zh 82.5 83.3 85.5 – – –
SFT D0 83.3 83.2 87.2 76.8 41.8 74.4
SFT D0 + D1 87.6 85.0 89.0 76.6 41.8 76.0
SFT → DPO D0 + D1; D2,WebInstruct 87.5 86.1 88.7 80.2 42.1 76.9
SFT → DPO D0 + D1; D2,in-house 89.0 86.8 90.8 80.5 41.9 77.8

3.4 THE COMPARISON OF DIFFERENT CHOICES OF DATA AND ALIGNMENT METHODS

Diversity & Quality: Based on the experimental results, given D0 and D1, we observe that two-stage
SFT (first on D0 for two epochs and then on D1 for two epochs) under-performs one-stage SFT

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

(over the concatenation of D0 and D1 for two epochs) (B vs. C in Table 5). However, incorporating
D2 using either strategy achieves similar performance (E vs. F in Table 5). One possible reason
may be that the questions in D1 are from two web-collected value-style benchmarks (APE and
CM), resulting in less diversity compared with D2, which has a broader range of question types
(Section 3.1). Ensuring the diversity of data in each stage may help the model generalize better across
various types of math questions, similar to the observations seen when training general-purpose
LLMs (e.g., (Shen et al., 2023)).

As mentioned previously, we use the code-based critic model to construct SFT data. Since the process
will inevitably introduce false positive data, we further consider several constraints for filtering
(Equation 4 in Section 2.4). Experimental results show that we can achieve similar average accuracy
using either D2,SFT,H or the D2,SFT (D vs. E in Table 5). However, D2,SFT,H is only 30.6% of the
latter’s size, indicating the usefulness of the filtering process.

Table 5: The average accuracy of Llama3instruct on the dev sets of five datasets after alignment.

ID Alignment Data Accuracy

A SFT D0 74.4
B SFT → SFT D0 ; D1 75.4
C SFT D0 + D1 76.0

D SFT D0 + D1 + D2,SFT 76.1
E SFT D0 + D1 + D2,SFT,H 76.1
F SFT → SFT D0 + D1; D2,SFT,H 76.2
G SFT → SFT D0 + D1; D2,DPO, winning 76.0
H SFT → ORPO D0 + D1; D2,DPO 77.0
I SFT → DPO D0 + D1; D2,DPO 77.8

DPO or SFT: Based on a reasonably good model M1 (trained with D0 and D1, such as C in Table 5),
we can either self-improve it via SFT or DPO (Section 2.4). We compare using the (question, winning
code) pairs in the DPO data for another round of SFT, which results in a 1.8% drop in accuracy on
downstream tasks (G vs. I in Table 5). Since we do not impose strict constraints on the winning code
responses in DPO, D2,DPO, winning is 1.7 times the size of D2,SFT,H. Still, using the filtered SFT data
D2,SFT,H achieves slightly better performance (F vs. G), showing the effectiveness of filtering.

Table 6: The impact of the weight of the SFT loss
in DPO training on the average accuracy and av-
erage response length in words on GSM8K and
CMATH (L0: response length of reference policy).

λ
GSM8K CMATH

ACC L L
L0

ACC L L
L0

reference model
- 76.6 323 1.0 89.0 136 1.0

0.0 73.4 1834 5.7 57.5 3160 23.2
0.5 78.8 532 1.6 90.7 201 1.5
1.0 80.5 352 1.1 90.8 136 1.0
1.5 79.0 328 1.0 90.7 135 1.0
2.0 79.8 326 1.0 90.7 134 1.0

DPO with SFT: Our experiments indicate that
DPO training is relatively insensitive to the
weight (λ in Equation 7) of the SFT loss. We
tested with λ = 1.0 and λ = 2.0, both of which
resulted in similarly good performance (77.8%).
However, as shown in Table 6, removing the
SFT loss (i.e., λ = 0) from DPO training leads
to a dramatic increase in response length, espe-
cially for Chinese tasks such as CMATH, and
yields worse results than the reference policy
model (C in Table 5). This observation aligns
with discussions on length exploitation issue of
the original DPO loss (Park et al., 2024). One
possible reason for the length control achieved
by adding the SFT loss could be that the winning
responses used for the SFT loss are generated
by the reference policy model. By setting a larger weight to SFT, we control the deviation from the
reference policy, which alleviates a substantial increase in response length. We also experiment with
using ORPO (Hong et al., 2024), which removes the need for a reference model and jointly trains
with the SFT loss. However, this method is not as effective as jointly training DPO and SFT in our
experiments on Llama3instruct (H vs. I in Table 5) and the other two backbone models (Table 17).

Other Diverse-Format Resources: We also experiment with constructing similar-scale preference
data using the diverse-format D2 based on WebInstruct (Section 3.1). However, the resulting improve-
ment in average accuracy is less substantial compared to that achieved with the Chinese diverse-format
D2 (+0.9% vs. +1.8% on Llama3instruct in Table 4; +0.6% vs. +2.5% on QWEN2Mathinstruct in Ta-
ble 4). One possible reason for this difference could be that the QA pairs in the WebInstruct extracted
from pre-training corpora, despite being of similar scale used for experiments, may provide weaker

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

supervision compared to those sourced from educational websites, where answers are typically written
by experts. Although we have filtered out QA pairs where reference answers contain no numbers, we
observe that some questions still do not require any calculations as they are originally collected for
improving the general reasoning abilities of LLMs, such as “How is the interquartile range (IQR)
connected to percentiles?” or related to other subjects such as “What is the most prevalent state of
matter in the universe ...?”, while our mathematical benchmarks for evaluation primarily require
numerical computation. Nevertheless, these results demonstrate the robustness of our paradigm.

3.5 USING THE CRITIC MODEL AS A COMPLEMENTARY EVALUATOR

Table 7: Correlation of two evaluation meth-
ods: heuristics-based EM and the critic model.
ACC represents the average accuracy of our best-
performing M2 on downstream tasks rated by the
two methods on downstream tasks.

Dataset CorrelationKendall ACCEM ACCcritic

CM 0.66 89.0 84.6
APE 0.76 86.8 86.5
CMATH 0.77 90.8 91.8
GSM8K 0.97 80.5 80.6
MATH 0.79 41.9 48.2

average 0.79 77.8 78.3

We have shown the effectiveness of using the
critic model to construct SFT and preference
data, and all scores are computed by compar-
ing predictions with ground truth answers, using
heuristics-based exact match (EM) following
previous studies for fair comparisons. To ex-
plore the potential of using the critic model as
a complementary evaluator, we examine the cor-
relation between the two evaluation methods on
the previously used benchmarks. We use the
critic model to compare the code execution re-
sult and the original ground truth answers (final-
step answers if answers are COT-style) (e.g.,
“3750”, “[12, 18]”, and “\\frac{1}{2}”) in
these benchmarks. Since all scores are either 0
(NO) or 1 (YES), we report the Kendall’s τ between the two methods. As shown in Table 7, there is
a very strong correlation (0.79) (compared to the very-strong-cutoff value 0.71 and strong-cutoff
value 0.49 (Schober et al., 2018)) between the scores computed by the two evaluators. The strong
associations in English tasks are surprising, given that the critic model is trained on Chinese-only
data. This may be due to (i) the backbone model being a well-instructed model focused on English,
and (ii) comparing answers to mathematical questions relying less on language-specific knowledge.

3.6 THE PERFORMANCE OF SELF-IMPROVED LLMS ON MORE OUT-OF-DISTRIBUTION TASKS

Table 8: OOD accuracy on MathBench (⋆: scored by the
critic model; †: based on the numbers reported by (Liu
et al., 2024); A: application; T: theoretical).

model Tool Subset-A Subset-T ACCaverage

GPT-4-0125-Preview × 58.8† 78.4† 68.6†

GLM4 × 51.3† 73.1† 62.2†

Qwen-Chat-72B × 49.7† 77.2† 63.5†

Math-InternLM2-20B × 41.9† 64.3† 53.1†

Llama3instruct-8B × 36.7† 52.1† 44.4†

MathCoder-7B ✓ 32.6⋆ 27.4⋆ 30.0⋆

MathCoder-34B ✓ 50.1⋆ 49.3⋆ 49.7⋆

ToRA-7B ✓ 31.0⋆ 28.4⋆ 29.7⋆

ToRA-70B ✓ 54.3⋆ 54.4⋆ 54.3⋆

Language-specific system prompt:
SIaM(Llama3instruct)0-8B ✓ 62.5⋆ 57.9⋆ 60.2⋆

SIaM(Llama3instruct)2-8B ✓ 66.7⋆ 62.6⋆ 64.6⋆

Chinese-only system prompt:
SIaM(Llama3instruct)0-8B ✓ 64.0⋆ 64.4⋆ 64.2⋆

SIaM(Llama3instruct)2-8B ✓ 69.5⋆ 65.8⋆ 67.6⋆

Considering the above results in Sec-
tion 3.5, we are now more confident in
using the critic model to evaluate models’
performance on additional OOD bench-
marks, without the need to write exten-
sive heuristics for different tasks. Be-
sides CMATH, we evaluate the OOD
performance of our models using Math-
Bench (Liu et al., 2024), a math bench-
mark supporting evaluation in both Chi-
nese and English. The open-ended or
multiple-choice questions in MathBench
span various educational stages, from pri-
mary school to college levels. We report
scores on its two subsets: MathBench-
A, which evaluates practical problem-
solving skills, and MathBench-T, which
assesses theoretical understanding.

As shown in Table 8, the self-improved
models demonstrate substantial gains on
both subsets, with an accuracy improvement of 4.4%. On both subsets, the self-improved model
consistently outperforms the initial one across all educational levels with notable improvements,
particularly in answering middle school and English theoretical questions. See sub-category per-
formance in Tables 10 and 11 (Section A.3). Note that we provide the scores of other CoT models

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

for reference, as they are judged by a different scorer. We compare our method with ToRA and
MathCoder, two strong code-aided math LLMs, rated by the same critic model. Although trained on
English-only data, ToRA-70B and MathCoder-34B demonstrates reasonable performance on Chinese
tasks. Nevertheless, our 8B model also outperforms the best-performing ToRA-70B on the English
subset of MathBench by 14.5% and 9.2%, respectively, on A and T (Table 12). In addition, we
observe that our self-improved model performs better when the Chinese system prompt is applied
to solve English questions. This may be due to the fact that our training data primarily consists of
Chinese data with Chinese system prompts.

Compared to practical application questions, it seems that using CoT, LLMs are much better at
handling theoretical knowledge questions. In contrast, solving all questions via coding shows
balanced and reasonable performance. This demonstrates the advantage of using tools to aid in
computation but also indicates the limitations of relying solely on code to address questions that may
not require actual computation. It remains an open question whether, and how, code can be used to
assist advanced theoretical reasoning (Liu et al., 2024)–a topic beyond the scope of this paper.

4 RELATED WORK

Evaluation: For automatic math evaluation on well-formatted benchmarks, previous studies mostly
use heuristics and external tools (e.g., the Python EVAL() function) to compare answers and predic-
tions (Fourrier et al., 2023; Gao et al., 2023a), which works quite well for single numerical value
answers, as seen in datasets such as GSM8K (Cobbe et al., 2021), ASDiv (Miao et al., 2020), and
SVAMP (Patel et al., 2021). However, since answers from web resources are diverse in formats and
language-code syntactic differences, using carefully designed task-specific heuristics becomes less
feasible for comparing answers and code execution results. For datasets beyond value-style answers
such as MATH (Hendrycks et al., 2021), closed source LLMs are also used for evaluation such as
OpenAI-Evals. However, this approach is not cost-effective for assessing large-scale code samples.

Self-Improvement: Several approaches (Li et al., 2023; Yu et al., 2023b; Lu et al., 2023; Yuan
et al., 2024; Hu et al., 2024) use the LLM itself or a separate critic model (Ouyang et al., 2022) for
scoring or validating natural-language responses. This work focuses on tool-assisted assessment
of code responses to math questions. Similar to previous self-improvement CoT studies (Zelikman
et al., 2022; Hosseini et al., 2024; Yuan et al., 2023; Xu et al., 2024), we use ground truth answers
to assist training data validation and filtering, as it is still challenging to train a good critic/reward
model for math reasoning without reference answers, even for solution-level assessment (Lightman
et al., 2023; Daheim et al., 2024). In our paradigm, a single iteration of DPO can already enhance
performance, and additional iterations on unseen data might further improve results, as suggested by
previous online studies with CoT reasoning (Dong et al., 2024; Zhang et al., 2024). However, it has
been shown that using a general-purpose reward model yields fewer improvements in mathematical
reasoning compared to the gains observed in other tasks.

Data Augmentation and Knowledge Distillation: Though recent studies have shown that CoT or
code-assisted in-distribution data augmentation will lead LLMs to achieve strong performance on
in-distribution math datasets (Luo et al., 2023; Yu et al., 2023a; An et al., 2023; Li et al., 2024),
we leave data augmentation on web data (either CoT or code-assisted reasoning) for future work.
We only use GPT-4 to annotate seed/critic training data, and using closed-source LLMs to annotate
the code responses of large-scale web questions is not explored. Unfortunately, SOTA code-aided
models (Gou et al., 2024; Wang et al., 2023), trained on English data, have limited capability in
labeling diverse-format questions written in Chinese.

5 CONCLUSIONS AND FUTURE WORK

We introduce a novel paradigm for improving LLMs, which employs a code-based critic model to
guide stages such as the creation and filtering of question-code data as well as complementary evalua-
tion. We also investigate various alignment algorithms using self-generated instruction/preference
data for further improvement. Results show the effectiveness of self-improving LLMs with this
proposed paradigm. Future research includes studying post-training on code-only data to enhance the
computational capabilities of LLMs and improvement of the critic model.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

AI@Meta. Introducing meta llama 3: The most capable openly available llm to date. https:
//ai.meta.com/blog/meta-llama-3/, 2024.

Shengnan An, Zexiong Ma, Zeqi Lin, Nanning Zheng, Jian-Guang Lou, and Weizhu Chen. Learning
from mistakes makes llm better reasoner. arXiv preprint arXiv:2310.20689, 2023.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge,
Yu Han, Fei Huang, et al. Qwen technical report. arXiv preprint arXiv:2309.16609, 2023.

Yuntao Bai, Saurav Kadavath, Sandipan Kundu, Amanda Askell, Jackson Kernion, Andy Jones, Anna
Chen, Anna Goldie, Azalia Mirhoseini, Cameron McKinnon, et al. Constitutional ai: Harmlessness
from ai feedback. arXiv preprint arXiv:2212.08073, 2022.

Wenhu Chen, Xueguang Ma, Xinyi Wang, and William W Cohen. Program of thoughts prompt-
ing: Disentangling computation from reasoning for numerical reasoning tasks. arXiv preprint
arXiv:2211.12588, 2022.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve
math word problems. arXiv preprint arXiv:2110.14168, 2021.

Ganqu Cui, Lifan Yuan, Ning Ding, Guanming Yao, Wei Zhu, Yuan Ni, Guotong Xie, Zhiyuan Liu,
and Maosong Sun. Ultrafeedback: Boosting language models with high-quality feedback. arXiv
preprint arXiv:2310.01377, 2023.

Nico Daheim, Jakub Macina, Manu Kapur, Iryna Gurevych, and Mrinmaya Sachan. Stepwise
verification and remediation of student reasoning errors with large language model tutors. arXiv
preprint arXiv:2407.09136, 2024.

Dejian Yang Zhenda Xie Kai Dong Wentao Zhang Guanting Chen Xiao Bi Y. Wu Y.K. Li Fuli Luo
Yingfei Xiong Wenfeng Liang Daya Guo, Qihao Zhu. Deepseek-coder: When the large language
model meets programming – the rise of code intelligence, 2024. URL https://arxiv.org/
abs/2401.14196.

Yuntian Deng. Is openai’s o1 a good calculator? we tested it on up to 20x20 multiplication—o1 solves
up to 9x9 multiplication with decent accuracy, while gpt-4o struggles beyond 4x4. for context,
this task is solvable by a small lm using implicit cot with stepwise internalization., 2024. URL
https://x.com/yuntiandeng/status/1836114401213989366/photo/1.

Hanze Dong, Wei Xiong, Bo Pang, Haoxiang Wang, Han Zhao, Yingbo Zhou, Nan Jiang, Doyen
Sahoo, Caiming Xiong, and Tong Zhang. Rlhf workflow: From reward modeling to online rlhf.
arXiv preprint arXiv:2405.07863, 2024.

Clémentine Fourrier, Nathan Habib, Thomas Wolf, and Lewis Tunstall. Lighteval: A lightweight
framework for llm evaluation, 2023. URL https://github.com/huggingface/
lighteval.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster,
Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas Muennighoff,
Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lintang Sutawika,
Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. A framework for few-shot
language model evaluation, 12 2023a. URL https://zenodo.org/records/10256836.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon, Pengfei Liu, Yiming Yang, Jamie Callan, and
Graham Neubig. Pal: Program-aided language models. In International Conference on Machine
Learning, pp. 10764–10799. PMLR, 2023b.

Zhibin Gou, Zhihong Shao, Yeyun Gong, yelong shen, Yujiu Yang, Minlie Huang, Nan Duan,
and Weizhu Chen. ToRA: A tool-integrated reasoning agent for mathematical problem solving.
In The Twelfth International Conference on Learning Representations, 2024. URL https:
//openreview.net/forum?id=Ep0TtjVoap.

11

https://ai.meta.com/blog/meta-llama-3/
https://ai.meta.com/blog/meta-llama-3/
https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/2401.14196
https://x.com/yuntiandeng/status/1836114401213989366/photo/1
https://github.com/huggingface/lighteval
https://github.com/huggingface/lighteval
https://zenodo.org/records/10256836
https://openreview.net/forum?id=Ep0TtjVoap
https://openreview.net/forum?id=Ep0TtjVoap

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset, 2021.

Jiwoo Hong, Noah Lee, and James Thorne. Orpo: Monolithic preference optimization without
reference model. arXiv preprint arXiv:2403.07691, 2(4):5, 2024.

Arian Hosseini, Xingdi Yuan, Nikolay Malkin, Aaron Courville, Alessandro Sordoni, and Rishabh
Agarwal. V-star: Training verifiers for self-taught reasoners. arXiv preprint arXiv:2402.06457,
2024.

Chi Hu, Yimin Hu, Hang Cao, Tong Xiao, and Jingbo Zhu. Teaching language models to self-improve
by learning from language feedback. arXiv e-prints, pp. arXiv–2406, 2024.

Chen Li, Weiqi Wang, Jingcheng Hu, Yixuan Wei, Nanning Zheng, Han Hu, Zheng Zhang, and
Houwen Peng. Common 7b language models already possess strong math capabilities. arXiv
preprint arXiv:2403.04706, 2024.

Xian Li, Ping Yu, Chunting Zhou, Timo Schick, Luke Zettlemoyer, Omer Levy, Jason Weston, and
Mike Lewis. Self-alignment with instruction backtranslation. arXiv preprint arXiv:2308.06259,
2023.

Zhenwen Liang, Dian Yu, Xiaoman Pan, Wenlin Yao, Qingkai Zeng, Xiangliang Zhang, and Dong Yu.
MinT: Boosting generalization in mathematical reasoning via multi-view fine-tuning. In Nicoletta
Calzolari, Min-Yen Kan, Veronique Hoste, Alessandro Lenci, Sakriani Sakti, and Nianwen Xue
(eds.), Proceedings of the 2024 Joint International Conference on Computational Linguistics,
Language Resources and Evaluation (LREC-COLING 2024), pp. 11307–11318, Torino, Italia, May
2024. ELRA and ICCL. URL https://aclanthology.org/2024.lrec-main.988.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. arXiv preprint
arXiv:2305.20050, 2023.

Bingbin Liu, Sebastien Bubeck, Ronen Eldan, Janardhan Kulkarni, Yuanzhi Li, Anh Nguyen, Rachel
Ward, and Yi Zhang. Tinygsm: achieving> 80% on gsm8k with small language models. arXiv
preprint arXiv:2312.09241, 2023.

Hongwei Liu, Zilong Zheng, Yuxuan Qiao, Haodong Duan, Zhiwei Fei, Fengzhe Zhou, Wenwei
Zhang, Songyang Zhang, Dahua Lin, and Kai Chen. Mathbench: Evaluating the theory and
application proficiency of llms with a hierarchical mathematics benchmark, 2024.

Jianqiao Lu, Wanjun Zhong, Wenyong Huang, Yufei Wang, Fei Mi, Baojun Wang, Weichao Wang,
Lifeng Shang, and Qun Liu. Self: Language-driven self-evolution for large language model. arXiv
preprint arXiv:2310.00533, 2023.

Zimu Lu, Aojun Zhou, Houxing Ren, Ke Wang, Weikang Shi, Junting Pan, Mingjie Zhan, and
Hongsheng Li. Mathgenie: Generating synthetic data with question back-translation for enhancing
mathematical reasoning of llms. arXiv preprint arXiv:2402.16352, 2024.

Haipeng Luo, Qingfeng Sun, Can Xu, Pu Zhao, Jianguang Lou, Chongyang Tao, Xiubo Geng,
Qingwei Lin, Shifeng Chen, and Dongmei Zhang. Wizardmath: Empowering mathematical
reasoning for large language models via reinforced evol-instruct. arXiv preprint arXiv:2308.09583,
2023.

Shen-yun Miao, Chao-Chun Liang, and Keh-Yih Su. A diverse corpus for evaluating and developing
English math word problem solvers. In Dan Jurafsky, Joyce Chai, Natalie Schluter, and Joel
Tetreault (eds.), Proceedings of the 58th Annual Meeting of the Association for Computational
Linguistics, pp. 975–984, Online, July 2020. Association for Computational Linguistics. doi: 10.
18653/v1/2020.acl-main.92. URL https://aclanthology.org/2020.acl-main.92.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. Advances in Neural Information Processing Systems, 35:
27730–27744, 2022.

12

https://aclanthology.org/2024.lrec-main.988
https://aclanthology.org/2020.acl-main.92

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Ryan Park, Rafael Rafailov, Stefano Ermon, and Chelsea Finn. Disentangling length from quality in
direct preference optimization. arXiv preprint arXiv:2403.19159, 2024.

Arkil Patel, Satwik Bhattamishra, and Navin Goyal. Are NLP models really able to solve simple
math word problems? In Proceedings of the 2021 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language Technologies, pp. 2080–2094,
Online, June 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.naacl-main.
168. URL https://aclanthology.org/2021.naacl-main.168.

Jinghui Qin, Xiaodan Liang, Yining Hong, Jianheng Tang, and Liang Lin. Neural-symbolic solver
for math word problems with auxiliary tasks. In ACL, pp. 5870–5881, 2021.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea
Finn. Direct preference optimization: Your language model is secretly a reward model. Advances
in Neural Information Processing Systems, 36, 2024.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi
Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, et al. Code llama: Open foundation models for code.
arXiv preprint arXiv:2308.12950, 2023.

Patrick Schober, Christa Boer, and Lothar A Schwarte. Correlation coefficients: appropriate use and
interpretation. Anesthesia & analgesia, 126(5):1763–1768, 2018.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Mingchuan Zhang, YK Li, Y Wu,
and Daya Guo. Deepseekmath: Pushing the limits of mathematical reasoning in open language
models. arXiv preprint arXiv:2402.03300, 2024.

Zhiqiang Shen, Tianhua Tao, Liqun Ma, Willie Neiswanger, Joel Hestness, Natalia Vassilieva, Daria
Soboleva, and Eric Xing. Slimpajama-dc: Understanding data combinations for llm training. arXiv
preprint arXiv:2309.10818, 2023.

Nisan Stiennon, Long Ouyang, Jeffrey Wu, Daniel Ziegler, Ryan Lowe, Chelsea Voss, Alec Radford,
Dario Amodei, and Paul F Christiano. Learning to summarize with human feedback. Advances in
Neural Information Processing Systems, 33:3008–3021, 2020.

InternLM Team. Internlm: A multilingual language model with progressively enhanced capabilities,
2023.

Qwen Team. Code with codeqwen1.5, April 2024. URL https://qwenlm.github.io/
blog/codeqwen1.5/.

Ke Wang, Houxing Ren, Aojun Zhou, Zimu Lu, Sichun Luo, Weikang Shi, Renrui Zhang, Linqi Song,
Mingjie Zhan, and Hongsheng Li. Mathcoder: Seamless code integration in llms for enhanced
mathematical reasoning. arXiv preprint arXiv:2310.03731, 2023.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Tianwen Wei, Jian Luan, Wei Liu, Shuang Dong, and Bin Wang. Cmath: can your language model
pass chinese elementary school math test? arXiv preprint arXiv:2306.16636, 2023.

Martin Weyssow, Aton Kamanda, and Houari Sahraoui. Codeultrafeedback: An llm-as-a-judge
dataset for aligning large language models to coding preferences, 2024.

Yifan Xu, Xiao Liu, Xinghan Liu, Zhenyu Hou, Yueyan Li, Xiaohan Zhang, Zihan Wang, Aohan
Zeng, Zhengxiao Du, Wenyi Zhao, et al. Chatglm-math: Improving math problem-solving in large
language models with a self-critique pipeline. arXiv preprint arXiv:2404.02893, 2024.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li,
Chengyuan Li, Dayiheng Liu, Fei Huang, et al. Qwen2 technical report. arXiv preprint
arXiv:2407.10671, 2024.

13

https://aclanthology.org/2021.naacl-main.168
https://qwenlm.github.io/blog/codeqwen1.5/
https://qwenlm.github.io/blog/codeqwen1.5/

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Liu Yang, Haihua Yang, Wenjun Cheng, Lei Lin, Chenxia Li, Yifu Chen, Lunan Liu, Jianfei Pan,
Tianwen Wei, Biye Li, et al. Skymath: Technical report. arXiv preprint arXiv:2310.16713, 2023.

Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu, Zhengying Liu, Yu Zhang, James T Kwok, Zhenguo
Li, Adrian Weller, and Weiyang Liu. Metamath: Bootstrap your own mathematical questions for
large language models. arXiv preprint arXiv:2309.12284, 2023a.

Xiao Yu, Baolin Peng, Michel Galley, Jianfeng Gao, and Zhou Yu. Teaching language models to
self-improve through interactive demonstrations. arXiv preprint arXiv:2310.13522, 2023b.

Weizhe Yuan, Richard Yuanzhe Pang, Kyunghyun Cho, Sainbayar Sukhbaatar, Jing Xu, and Jason
Weston. Self-rewarding language models. arXiv preprint arXiv:2401.10020, 2024.

Zheng Yuan, Hongyi Yuan, Chengpeng Li, Guanting Dong, Keming Lu, Chuanqi Tan, Chang Zhou,
and Jingren Zhou. Scaling relationship on learning mathematical reasoning with large language
models. arXiv preprint arXiv:2308.01825, 2023.

Xiang Yue, Xingwei Qu, Ge Zhang, Yao Fu, Wenhao Huang, Huan Sun, Yu Su, and Wenhu Chen.
Mammoth: Building math generalist models through hybrid instruction tuning. arXiv preprint
arXiv:2309.05653, 2023.

Xiang Yue, Tuney Zheng, Ge Zhang, and Wenhu Chen. Mammoth2: Scaling instructions from the
web. arXiv preprint arXiv:2405.03548, 2024.

Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah Goodman. Star: Bootstrapping reasoning with
reasoning. Advances in Neural Information Processing Systems, 35:15476–15488, 2022.

Yuheng Zhang, Dian Yu, Baolin Peng, Linfeng Song, Ye Tian, Mingyue Huo, Nan Jiang, Haitao
Mi, and Dong Yu. Iterative nash policy optimization: Aligning llms with general preferences via
no-regret learning. arXiv preprint arXiv:2407.00617, 2024.

Wei Zhao, Mingyue Shang, Yang Liu, Liang Wang, and Jingming Liu. Ape210k: A large-scale and
template-rich dataset of math word problems. arXiv preprint arXiv:2009.11506, 2020.

Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan Ye, and Zheyan Luo. Llamafactory: Unified
efficient fine-tuning of 100+ language models. arXiv preprint arXiv:2403.13372, 2024.

Aojun Zhou, Ke Wang, Zimu Lu, Weikang Shi, Sichun Luo, Zipeng Qin, Shaoqing Lu, Anya Jia,
Linqi Song, Mingjie Zhan, et al. Solving challenging math word problems using gpt-4 code
interpreter with code-based self-verification. arXiv preprint arXiv:2308.07921, 2023.

A APPENDICES

A.1 BACKBONE COMPARISONS FOR INITIAL MODEL SELECTION

Although QWEN2 also demonstrates strong performance, we use its math-specific variant to ensure
the diversity of selected backbone models. For the same reason, and given the marginal perfor-
mance difference between Llama3instruct and Llama3base when both are fine-tuned on D0, we only
Llama3instruct for our experiments.

A.2 IMPACTS OF STAGES AND DATA SELECTION

Ablation studies of the stages and data selection on the development sets of datasets.

A.3 SUB-TYPE PERFORMANCE ON MATHBENCH

The data presented in the tables clearly shows the advantage of SIaM(Llama3instruct)2 over
SIaM(Llama3instruct)0 across various educational levels. For both the MathBench-A and MathBench-
T datasets, SIaM(Llama3instruct)2 consistently outperforms SIaM(Llama3instruct)0. In the
MathBench-A dataset, improvements are seen in all levels from Primary to College, with notable
jumps in Middle and High school levels (6.7% and 7.0% improvement, respectively, in Table 10).

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Table 9: Accuracy across the development sets of math datasets of initial policy models based on
different backbone models.

Chinese Tasks English Tasks Average

Model Size (B) Tool CM APE CMATH GSM8K MATH

CodeLlama 7 ✓ 77.7 78.0 84.5 69.7 37.6 69.5
QWENcode 7 ✓ 81.9 81.5 86.0 71.9 41.4 72.6
Llama3.1instruct 8 ✓ 82.4 82.1 86.2 76.5 41.1 73.6
Llama3base 8 ✓ 83.9 82.6 86.8 76.8 41.9 74.4
Llama3instruct 8 ✓ 83.3 83.2 87.2 76.8 41.8 74.4
DeepSeekcode 7 ✓ 82.7 81.2 87.0 77.4 44.4 74.5
QWEN2 7 ✓ 83.9 82.8 87.3 77.7 44.4 75.2
QWEN2Mathinstruct 7 ✓ 84.9 83.4 87.3 79.5 48.0 76.6

Similarly, the MathBench-T dataset shows improvement across all levels, particularly in the Middle
school and English categories, which demonstrate 8.1% and 10.5% increases, respectively. These re-
sults indicate that SIaM(Llama3instruct)2 provides enhanced accuracy in out-of-distribution scenarios,
making it a more reliable choice for varied educational levels.

In the seed data D0, we use a language-specific system prompt for each English instance: “Please
write a python code to solve the following questions”. For the Chinese subset of D0 and all instances
in D1 and D2 — which are exclusively Chinese data — we use a consistent Chinese system prompt
“请用python代码解决以下问题” (“Please write a python code to solve the following questions”).
When evaluating our self-improved model on MathBench, we observe that it performs better when
the Chinese system prompt is applied to solve English questions (Table 11). This may be due to the
fact that our training data primarily consists of Chinese data with Chinese system prompts.

We compare with SOTA code-assisted models trained on augmented MATH and GSM8K datasets
ToRA and MathCoder. Before detailed comparisons, we first review the background of the use of code
for mathematical reasoning. Code can be used either directly (Chen et al., 2022; Gao et al., 2023b)
(code-only) or interactively (Wang et al., 2023) during problem-solving. The latter approaches such as
ToRA and MathCoder jointly solve problems using CoT explanation and code. One advantage of these
interactive methods over code-only methods is that the final step of their solution is usually written
in CoT, allowing the easy use of existing scripts designed for CoT-style benchmarks for evaluation.
However, this does not allow for robust comparisons for unseen diverse-format comparisons. In
addition, the role of using tools multiple times to address a single math problem is unclear based
on the performance difference of interactive methods (Table 3). For example, ToRA needs 1.02
tool interaction rounds per question while MathCoder requires 2.05 for MATH and GSM8K. This
work focuses on the direct usage of code as a case study to avoid multi-step inference and leave the
interactive setting for future studies.

For ToRA 7B3 and 70B4 models, we use their official inference scripts.5 On MathBench, ToRA needs
an average of 1.00 and 1.01 tool interaction rounds per question. It seems its final CoT reasoning
primarily focuses on adjusting formatting answers to fully leverage existing CoT evaluation scripts.
We use ToRA’s generated code and execution result, keeping the rest of the inputs for the critic model
the same. We also experiment with replacing the execution results with the CoT outputs, but this does
not result in significant changes. Our self-improved 8B model outperforms one SOTA code-assisted
model, ToRA-70B, across all subcategories on this OOD dataset (Table 12).

For MathCoder, we evaluate its best-performing 34B model6 and 7B model7, which needs 1.53 and
2.13 tool interaction rounds per question, respectively. We also use their released inference scripts8

and follow the data format.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Table 10: Fine-grained OOD accuracy on the MathBench dataset scored by the critic model using
language-specific system prompts.

MathBench-A MathBench-T

Level SIaM(Llama3instruct)0 SIaM(Llama3instruct)2 SIaM(Llama3instruct)0 SIaM(Llama3instruct)2

Arith 98.0 99.0 – –
Primary 75.7 80.7 66.6 67.5
Middle 56.3 63.0 60.1 68.2
High 50.3 57.3 59.1 60.6
College 32.0 33.3 50.2 57.9

Chinese 56.8 63.5 62.7 63.6
English 66.2 68.8 50.6 61.1

Table 11: Fine-grained OOD accuracy on the MathBench dataset scored by the critic model using a
Chinese-only system prompt.

MathBench-A MathBench-T

Level SIaM(Llama3instruct)0 SIaM(Llama3instruct)2 SIaM(Llama3instruct)0 SIaM(Llama3instruct)2

Arith 97.3 98.3 – –
Primary 71.0 79.0 71.6 71.3
Middle 60.0 69.0 70.3 71.5
High 54.0 59.7 61.8 62.3
College 37.7 41.3 59.2 62.6

Chinese 57.3 63.7 63.8 63.4
English 68.4 73.3 65.4 69.5

Table 12: Fine-grained OOD accuracy of ToRA (70B and 7B) and MathCoder (34B and 7B) on the
MathBench dataset scored by the critic model (T: ToRA; M: MathCoder).

MathBench-A MathBench-T

Level T-7B T-70B M-7B M-34B T-7B T-70B M-7B M-34B

Arith 39.3 82.7 40.7 66.3 – – – –
Primary 40.3 77.7 43.3 70.0 30.9 53.9 26.2 47.0
Middle 24.3 39.7 28.7 45.3 31.0 57.6 25.0 46.8
High 30.0 39.7 29.7 39.0 28.0 51.9 28.2 47.8
College 21.0 31.7 20.7 30.0 25.5 55.1 29.0 54.3

Chinese 28.2 47.5 23.0 41.5 26.5 50.5 25.4 43.8
English 32.9 58.8 39.0 55.9 31.2 60.3 30.4 57.5

A.4 DATA STATISTICS

We only use GPT-4 to generate seed question-code training data: 76K for Chinese and 44K for
English (Table 2). This scale is similar to those (CoT or code-assisted) in previous work (e.g., (Wang
et al., 2023; Gou et al., 2024; Luo et al., 2023)) for a single language. See Table ?? for comparisons.
The output of the critic model is simply "Yes" or "No", which is a much cheaper labeling task
compared to traditional generation tasks.

A.5 OTHER ALIGNMENT ALGORITHMS

As shown in Table 17, DPO demonstrates superior performance compared to ORPO, both with the
SFT loss. We leave the exploration of more length-regularized alignment algorithms and the role of
the reference policy model in preference optimization to future studies.

3https://huggingface.co/llm-agents/tora-code-7b-v1.0.
4https://huggingface.co/llm-agents/tora-70b-v1.0.
5https://github.com/microsoft/ToRA/tree/main.
6https://huggingface.co/MathLLMs/MathCoder-CL-34B.
7https://huggingface.co/MathLLMs/MathCoder-CL-7B.
8https://github.com/mathllm/MathCoder.

16

https://huggingface.co/llm-agents/tora-code-7b-v1.0
https://huggingface.co/llm-agents/tora-70b-v1.0
https://github.com/microsoft/ToRA/tree/main
https://huggingface.co/MathLLMs/MathCoder-CL-34B
https://huggingface.co/MathLLMs/MathCoder-CL-7B
https://github.com/mathllm/MathCoder

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Table 13: Distribution of different types in the dataset.

Type Percentage (%)

Noisy step-by-step rationale 50
Numerical value 30
Expression 20
Set 20
Equation 8
Multiple-choice 6
Multi-questions 2
Coordinates 2
Other 14

Table 14: Overview of datasets and their labelers, languages, and scales.

Dataset Labeler Tool Language Scale

WizardMath (Luo et al., 2023) ChatGPT × en 96K
MetaMath (Yu et al., 2023a) GPT-3.5-Turbo × en 395K
MathCoder (Wang et al., 2023) GPT-4 ✓ en 49K
ToRA (Gou et al., 2024) GPT-4 ✓ en 16K
D0 (Ours) GPT-4 ✓ en 44K
D0 (Ours) GPT-4 ✓ zh 76K

Table 15: Statistics of evaluation benchmarks. Note that in our experiments, we do not use any
rationale in these datasets as we focus on solving problems via coding. We only use the questions and
short-form answers from the training set of MATH and GSM8K for constructing the seed data, and
we use the questions and short-form answer from the training set of APE and CM for constructing
the data for self-improvement.

Dataset Language Answer Type Level Training Validation

APE (Zhao et al., 2020) zh numerical value elementary 200,488 5,000
CM (Qin et al., 2021) zh numerical value(s) grades 6—12 13,628 1,703
CMATH (Wei et al., 2023) zh numerical value elementary – 600
MathBench (Liu et al., 2024) en, zh mixed from primary to college – 3,709
MATH (Hendrycks et al., 2021) en mixed college 7,500 5,000
GSM8K (Cobbe et al., 2021) en numerical value elementary 7,473 1,319

Table 16: An example instance of the APE dataset (Zhao et al., 2020) (we translate the question into
English; ⋆: we do not use this rationale in our paradigm).

Question: Given: Apples cost 6 yuan for 4 kilograms, and oranges cost 11 yuan for 5 kilograms. Uncle Wang
buys 16 kilograms of apples and 20 kilograms of oranges. How much should he pay in total?

Answer: 68
Rationale⋆: x=6/4*16+11/5*20

Table 17: The self-improving performance in different stages on the development sets of different
datasets. The best open-sourced performance for each backbone model is highlighted in bold.

Model Alignment Data CM APE CMATH GSM8K MATH ACCaverage

DeepSeekcode SFT D0 + D1 87.0 84.3 88.0 77.6 44.6 76.3
SFT → ORPO D0 + D1; D2 87.7 85.5 91.2 76.5 44.5 77.1
SFT → DPO D0 + D1; D2 87.3 85.9 91.2 78.9 45.9 77.8

Llama3instruct SFT D0 + D1 87.6 85.0 89.0 76.6 41.8 76.0
SFT → ORPO D0 + D1; D2 88.0 86.4 91.8 76.4 42.1 77.0
SFT → DPO D0 + D1; D2 89.0 86.8 90.8 80.5 41.9 77.8

LORPO(πθk+1) =− λ · log σ
(
log

πθk+1(yw | x)
1− πθk+1(yw | x)

− log
πθk+1(yl | x)

1− πθk+1(yl | x)

)
− log πθk+1(yw | x)

(7)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

A.6 SELF-GENERATED PREFERENCE DATA

Existing preference datasets (Cui et al., 2023; Weyssow et al., 2024) do not include many these kinds
of inter-disciplinary annotations. We use the current policy to generate preference data. Examples are
provided in Table 18 and Table 19.

Table 18: Examples of self-generated preference pairs based on in-house web QA data (I). Texts have
been translated into English.

question The perimeter of an isosceles triangle is 20, and the ratio of the lengths of the
two equal sides is 1:2. What is the length of the base? A.10 B.4 C.4 or 10 D.5 or
8

reference answer B
winning code (w)

from sympy import symbols, Eq, solve

Define the unknown
a, b = symbols(’a b’)

Establish the equation
The hypotenuse is twice the base
equation1 = Eq(a, 2*b)

The perimeter is 20
equation2 = Eq(2*a + b, 20)

Solve the equation
solution = solve((equation1, equation2), (a, b), dict=True)
solution

code result of w [a: 8, b: 4]
losing code (l)

from sympy import symbols, Eq, solve

Define the unknown variable
a = symbols(’a’)

Establish the equation
equation = Eq(2 * a + 2 * (2 * a), 20)

Solve the equation
solution = solve(equation, dict=True)
solution

code result of l [a: 10/3]

A.7 OTHER DISCUSSIONS

Language Diversity of Resources: in this paper, we focus on large-scale question-answer pairs from
educational websites for Chinese, and accordingly, our critic model used for guiding self-improvement
is trained on Chinese data. While considering resources in other languages such as English could
enhance the the generalizability of LLMs, it would require extensive human efforts for data collection
and cleaning, which is beyond the scope of this work. On the other hand, since the backbone LLMs
are pre-trained and aligned on multi-lingual data and our seed data includes English instruction
data, the initial policy already exhibits reasonable performance on in-distribution (Section 3.3) and
out-of-distribution benchmarks (Section 3.6). Self-improving this initial policy model on Chinese
data may even improve its performance on English tasks. Finally, experiments show that the critic
model is as effective at rating English responses as rating Chinese ones (Section 3.5).

LLM Scalings: Due to limited computational resources, our experiments focus on 7-8B LLMs.
Generally, improving the math reasoning abilities of relatively small LLMs requires a large amount
of training data and knowledge distillation (Li et al., 2024; Shao et al., 2024), which may not be
necessary for larger LLMs.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Table 19: Examples of self-generated preference pairs based on in-house web QA data (II). Texts
have been translated into English.

question Given that a and b are opposites, c and d are reciprocals, and the square of x
equals 4, try to find the value of the expression:

x2 − (a+ b+ cd)x+ (a+ b)2009 + (−cd)2008.

reference answer 3 or 7
winning code (w)

Based on the analysis, first solve for the two possible values of
x

Since x squared equals 4, solve for x
x1 = 2
x2 = -2

Next, calculate the value of the expression based on the value of
x

After simplification, the expression is x^2 - x + 1
Calculate the value of the expression for x1 and x2
result1 = x1**2 - x1 + 1
result2 = x2**2 - x2 + 1

Return results
{’x1 result’: result1, ’x2 result’: result2}

code result of w {‘x1’: 3, ‘x2’: 7}
losing code (l)

Based on analysis, we have obtained the simplified form of the
expression

Define variables
The value of a + b, since a and b are opposites, take a = 1, then

b = -1
a_b_sum = 1
The value of cd, since c and d are reciprocals, take c = 1, then

d = 1
cd_product = 1
The square of x
x_squared = 4

Calculate the value of the expression
x^2 - (a+b+cd)x + (a+b)^2009 + (-cd)^2008
result = x_squared - (a_b_sum + cd_product) * 2 + a_b_sum**2009 +

(-cd_product)**2008

Return result
{"result": result}

code result of l {2}

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Table 20: Examples of self-generated preference pairs based on WebInstruct (I). Texts have been
translated into English.

question How do you find the indefinite integral of 5x3−42x2+73x−27
(x−5)2(x2+4)

?
reference answer

We can use partial fraction decomposition to rewrite the integrand
as:\n\n(5x^3-42x^2+73x-27)/((x-5)^2(x^2+4)) = A/(x-5) + B/(x
-5)^2 + (Cx+D)/(x^2+4)\n\nMultiplying both sides by the
denominator, we get:\n\n5x^3-42x^2+73x-27 = A(x-5)(x^2+4) + B(
x^2+4) + (Cx+D)(x-5)^2\n\nExpanding and equating coefficients,
we get the following system of equations:\n\nA + C = 5\n-5A +
B - 10C + D = -42\n4A + 25C - 10D = 73\n-20A + 4B + 25D =
-27\n\nSolving this system, we find that:\n\nA = 2\nB = -3\nC
= 3\nD = 1\n\nTherefore, the indefinite integral of (5x^3-42x
^2+73x-27)/((x-5)^2(x^2+4)) is:\n\ n Ĺń (5x^3-42x^2+73x-27)/((x
-5)^2(x^2+4)) dx =\n\ n Ĺń (2/(x-5) - 3/(x-5)^2 + (3x+1)/(x^2+4)
) dx =\n\n2ln|x-5| + 3/(x-5) + 3/2ln(x^2+4) + 1/2arctan(x/2) +
C\n####\nThe answer is 2ln|x-5| + 3/(x-5) + 3/2ln(x^2+4) +
1/2arctan(x/2) + C}

winning code (w)
from sympy import symbols, integrate, factor

Define the variable
x = symbols(’x’)

Expressions for the numerator and denominator
numerator = 5*x**3 - 42*x**2 + 73*x - 27
denominator = (x - 5)**2 * (x**2 + 4)

Factor the denominator
factored_denominator = factor(denominator)

Calculate the definite integral
integral_result = integrate(numerator / factored_denominator, x)
integral_result

code result of w 2*log(x - 5) + 3*log(x**2 + 4)/2 + atan(x/2)/2 + 3/(x - 5)
losing code (l)

from sympy import symbols, integrate

Define the variable x
x = symbols(’x’)

Define the numerator and denominator
numerator = 5*x**3 - 42*x**2 + 73*x - 27
denominator = (x - 5)**2 * (x**2 + 4)

Calculate the derivatives of the numerator and denominator
numerator_derivative = numerator.diff(x)
denominator_derivative = denominator.diff(x)

Calculate the derivative of the original function
F_prime = numerator_derivative / denominator_derivative

Use the Newton-Leibniz formula to compute the original function
F = integrate(F_prime, x)

Return the result
{"F": F}

code result of l {’F’: 14*log(x - 5)/29 + 379*log(x**2 - 5*x/2 + 2)/232 +
291*sqrt(7)*atan(4*sqrt(7)*x/7 - 5*sqrt(7)/7)/812}

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Table 21: Examples of self-generated preference pairs based on WebInstruct (II). Texts have been
translated into English.

question What is the temperature in Fahrenheit if it is 25°C?
reference answer

\#\{:\textbackslash n(,"Fahrenheit","Celsius"),\textbackslash n("
boiling point",212\^{}@F,100\^{}@C),\textbackslash n("freezing
point",32\^{}@F,0\^{}@C),\textbackslash n("difference", 180F
\^{}@,100C\^{}@)\textbackslash n:\}\#\textbackslash nSo\
textbackslash n\#color(white) ("XXX")180 F\^{}@=100C\^{}@\
textbackslash n\#color(white)("XXX")1C\^{}@=180/100F\^{}@\
textbackslash n\#25\^{}@C\textbackslash n\#color(white)("XXX")
\# is \#0\^{}@C + 25\^{}@C\textbackslash n\#color(white)("XXXX
")=25\^{}@C\# above freezing.\textbackslash n\#25C\^{}@ = 25
xx180/100F\^{}@=45F\^{}@\#\textbackslash n\#45F\^{}@\# above
freezing is \#32\^{}@F + 45\^{}@F = \textcolor{green}{77\^{}@F
}\#}

winning code (w)
from sympy import symbols, Eq, solve

Define the unknown variable
f = symbols(’f’)

Given temperature in Celsius
c = 25

Conversion formula
equation = Eq(f, c * 9/5 + 32)

Solve the equation
solution = solve(equation, f, dict=True)
solution

code result of w [{f: 77.0000000000000}]
losing code (l)

Define a function to convert degrees to minutes
def degrees_to_minutes(degrees):

return degrees * 60

Given degrees
degrees_celsius = 25

Convert degrees to minutes
minutes = degrees_to_minutes(degrees_celsius)

Calculate the corresponding temperature (Fahrenheit), since 1
degree = 60 minutes, divide by 60

temperature_fahrenheit = minutes / 60

Return the result
result = {’temperature_fahrenheit’: temperature_fahrenheit}
result

code result of l {‘temperature_fahrenheit’: 25.0}

21

	Introduction
	Method
	Training an Initial Model
	Building a Multi-Use Code-Based Critic Model
	Code Data Generation
	Self-Improvement with Unseen Data

	Experiments
	Data
	Implementation
	The Performance of the Initial Policy and Self-Improved LLMs
	The Comparison of Different Choices of Data and Alignment Methods
	Using the Critic Model as a Complementary Evaluator
	The Performance of Self-Improved LLMs on More Out-of-Distribution Tasks

	Related Work
	Conclusions and Future Work
	Appendices
	Backbone Comparisons for Initial Model Selection
	Impacts of Stages and Data Selection
	Sub-Type Performance on MathBench
	Data Statistics
	Other Alignment Algorithms
	Self-Generated Preference Data
	Other Discussions

